
 

 

Near-term impacts of climate variability and 
change on hydrological systems in West and 
Central Africa 
 
Sidibe, M., Dieppois, B., Eden, J., Mahé, G., Paturel, J-E., Amoussou, 
E., Anifowose, B., Van De Wiel, M. & Lawler, D. 
  
Author post-print (accepted) deposited by Coventry University’s Repository 

  
Original citation & hyperlink:  
Sidibe, M, Dieppois, B, Eden, J, Mahé, G, Paturel, J-E, Amoussou, E, Anifowose, B, Van De Wiel, M & 
Lawler, D 2020, 'Near-term impacts of climate variability and change on hydrological systems in 
West and Central Africa', Climate Dynamics, vol. 54, no. 3-4, pp. 2041-2070. 
  
DOI   10.1007/s00382-019-05102-7 
ISSN 0930-7575 
ESSN   1432-0894 
  
Publisher: Springer 

  
The final publication is available at Springer via http://dx.doi.org/10.1007/s00382-019-05102-7 
  
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A 
copy can be downloaded for personal non-commercial research or study, without prior permission 
or charge. This item cannot be reproduced or quoted extensively from without first obtaining 
permission in writing from the copyright holder(s). The content must not be changed in any way or 
sold commercially in any format or medium without the formal permission of the copyright 
holders.  
  
This document is the author’s post-print version, incorporating any revisions agreed during the 
peer-review process. Some differences between the published version and this version may 
remain and you are advised to consult the published version if you wish to cite from it.  
 



Climate Dynamics
 

Near-term impacts of climate variability and change on hydrological systems in West
and Central Africa
--Manuscript Draft--

 
Manuscript Number: CLDY-D-19-00353R1

Full Title: Near-term impacts of climate variability and change on hydrological systems in West
and Central Africa

Article Type: Original Article

Keywords: Climate Change;  Hydroclimatic variability;  rainfall-runoff modelling;  streamflow
projections;  RCP4.5 scenario;  West and Central Africa

Corresponding Author: Moussa Sidibe, M Sc
Coventry University
Coventry, England UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Coventry University

Corresponding Author's Secondary
Institution:

First Author: Moussa Sidibe, M Sc

First Author Secondary Information:

Order of Authors: Moussa Sidibe, M Sc

Bastien Dieppois, Ph.D

Jonathan Eden, Ph.D

Gil Mahé, Ph.D

Jean-Emmanuel Paturel, Ph.D

Ernest Amoussou, Ph.D

Babatunde Anifowose, Ph.D

Marco Van De Wiel, Ph.D

Damian Lawler, Prof.

Order of Authors Secondary Information:

Funding Information:

Abstract: Climate change is expected to significantly impact on the availability of water resources
in West and Central Africa through changes in rainfall, temperature and
evapotranspiration. Understanding these changes in this region, where surface water
is fundamental for economic activity and ecosystem services, is of paramount
importance. In this study, we examine the potential impacts of climate variability and
change on hydrological systems by the mid-21st century in West and Central Africa, as
well as the uncertainties in the different climate-impact modelling pathways.
Simulations from nine global climate models downscaled using the Rossby Centre
Regional Climate model (RCA4) are evaluated and subsequently bias-corrected using
a nonparametric trend-preserving quantile mapping approach. We then use two
conceptual hydrological models (GR2M and IHACRES), and a regression-based model
built upon multi-timescale sea surface temperatures and streamflow teleconnections,
to understand hydrological processes at the subcontinental scale and provide
hydrological predictions for the near-term future (2020-2050) under the RCP4.5
emission scenario.
The results highlight a zonal contrast in future precipitation between western (dry) and
eastern (wet) Sahel, and a robust signal in rising temperature, suggesting an increase

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



in potential evapotranspiration, across the multi-model ensemble. Overall, across the
region, a significant increase in discharge (~+5%) is expected by the mid-21st century,
albeit with high uncertainties reported over most of Central Equatorial Africa inherent to
climate models and gridded observation data quality. Interestingly, in this region,
teleconnections-based regression models tend to be an alternative to hydrological
models.
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Abstract 26 

Climate change is expected to significantly impact on the availability of water 27 

resources in West and Central Africa through changes in rainfall, temperature and 28 

evapotranspiration. Understanding these changes in this region, where surface water 29 

is fundamental for economic activity and ecosystem services, is of paramount 30 

importance. In this study, we examine the potential impacts of climate variability and 31 

change on hydrological systems by the mid-21st century in West and Central Africa, 32 

as well as the uncertainties in the different climate-impact modelling pathways. 33 

Simulations from nine global climate models downscaled using the Rossby Centre 34 

Regional Climate model (RCA4) are evaluated and subsequently bias-corrected using 35 

a nonparametric trend-preserving quantile mapping approach. We then use two 36 

conceptual hydrological models (GR2M and IHACRES), and a regression-based 37 

model built upon multi-timescale sea surface temperatures and streamflow 38 

teleconnections, to understand hydrological processes at the subcontinental scale and 39 

provide hydrological predictions for the near-term future (2020-2050) under the 40 

RCP4.5 emission scenario.  41 

The results highlight a zonal contrast in future precipitation between western (dry) and 42 

eastern (wet) Sahel, and a robust signal in rising temperature, suggesting an increase 43 

in potential evapotranspiration, across the multi-model ensemble. Overall, across the 44 

region, a significant increase in discharge (~+5%) is expected by the mid-21st century, 45 

albeit with high uncertainties reported over most of Central Equatorial Africa inherent 46 

to climate models and gridded observation data quality. Interestingly, in this region, 47 

teleconnections-based regression models tend to be an alternative to hydrological 48 

models. 49 



Keywords: Climate change, Hydroclimatic variability, rainfall-runoff modelling, 50 

streamflow projections, RCP4.5 scenario, West and Central Africa. 51 

1. INTRODUCTION 52 

In Sub-Saharan Africa, more than 60% of the population relies heavily on rainfed 53 

agriculture and surface water to sustain a living. This part of the world is identified as 54 

one of the most vulnerable to climate change (IPCC 2014; Serdeczny et al. 2017). In 55 

particular, the increased risk of droughts and floods, predicted to result from global 56 

warming (e.g. Aich et al. 2014), is very likely to have severe implications for both 57 

natural and human systems. Development of adaptation strategies to adequately 58 

tackle the harmful effects of climate change on water resource availability, food 59 

production and ecosystem services is one of the most important challenges faced in 60 

Sub-Saharan Africa (e.g. Aloysius et al. 2016). Such adaptation strategies depend on 61 

reliable climate change scenarios and a good representation of different hydrological 62 

processes. Climate impacts on hydrological systems are often investigated through a 63 

modelling chain whereby outputs of different climate models under different 64 

greenhouse gases emission scenarios are used as inputs for hydrological models (e.g. 65 

Clark et al. 2016; Hattermann et al. 2018). This process however is limited, particularly 66 

by the quality of observational datasets and the uncertainties introduced at both the 67 

climate (e.g. Yira et al. 2017) and hydrological modelling steps (e.g. Steinschneider et 68 

al. 2015; Kauffeldt et al. 2016; Clark et al. 2016; Giuntoli et al. 2018).  69 

Despite significant advances in climate modelling, both global climate models (GCMs) 70 

and regional climate models (RCMs) exhibit important biases in their characterization 71 

of West and Central Africa hydroclimatic variability (e.g. Druyan et al. 2010; Nikulin et 72 

al. 2012, Salack et al. 2015; Aloysius et al. 2016; Mba et al. 2018), which is primarily 73 

driven by the West African Monsoon (WAM) system. Biases in climate change 74 



scenarios, which are more pronounced in precipitation than temperature trends (e.g. 75 

Aloysius et al. 2016; Yira et al. 2017) over this region,  arise from multiple sources: (1) 76 

the influence of climate forcings or unrealistic large-scale variability; (2) poor 77 

representation of internal variability; and (3) imperfections in parameterization 78 

schemes and unresolved subgrid-scale orography (Eden et al., 2012). For such 79 

scenarios to contribute effectively to climate change impact assessment, model biases 80 

must be quantified, communicated and, if possible, corrected. Interestingly, 81 

projections for the near-term climate which is defined in the fifth assessment report of 82 

the Intergovernmental Panel on Climate Change (IPCC) as the period from present 83 

through mid-century (IPCC 2013), tend to be less sensitive to uncertainties related to 84 

Representative Concentration Pathways (RCP) scenarios (Hawkins and Sutton 2009; 85 

IPCC 2013). Over West Africa, for instance, Sylla et al. (2016) found that temperature 86 

changes from two forcing scenarios (RCP4.5 & RCP8.5) start to diverge only around 87 

2050.  88 

Previous work has demonstrated the benefit of multi-model approaches in  accounting 89 

for uncertainties in hydroclimatic scenarios (e.g. Déqué et al. 2007). However, 90 

relatively few studies have considered multi-model ensembles for impact assessment 91 

at the scale of Sub-Saharan Africa (e.g. Mbaye et al. 2015; Oyerinde et al. 2016; Yira 92 

et al. 2017). Even in the case that this approach successfully accounts for climate 93 

model-related uncertainties, realistic hydrological simulations still require a 94 

postprocessing step to remove systematic bias and satisfactorily reproduce seasonal 95 

cycles of hydroclimate variables. So-called bias correction algorithms (e.g. Maraun et 96 

al. 2010; Teutschbein and Seibert 2012; Yira et al. 2017) are often associated with an 97 

additional source of uncertainty whose impacts are increasing with the length of the 98 

projection lead-time (Hingray and Said 2014). In the context of hydrological climate 99 



change impact studies, nonparametric quantile mapping bias correction approaches 100 

appear more appropriate, as they can be applied without specific assumptions 101 

regarding the nature of the underlying statistical distribution (Gudmundsson et al. 102 

2012). However, some of these methods, despite preserving trends in long-term mean 103 

states, result in erroneous trends in extreme quantiles (Cannon et al. 2015). It is 104 

therefore important that physical consistency and climate model sensitivity are not 105 

altered by bias correction (Hempel et al. 2013). While some studies (e.g. Bürger et al. 106 

2011; Cannon, 2016) highlighted the importance of multi-variate quantile mapping, 107 

Wilcke et al. (2013) found that univariate quantile mapping induces very little change 108 

to the inter-variable linear dependence structure.  109 

Hydrological model uncertainty, while in general lesser than climate model uncertainty, 110 

ought to be also accounted for in climate change impact studies, at least for near-term 111 

regional projections (Giuntoli et al. 2018). Hydrological simulations in natural 112 

ecosystems are always limited by simplified representation of complex processes 113 

occurring in the real world (Paturel et al. 2003; Clark et al. 2008; Dezetter et al. 2008). 114 

However, complex physically-based models do not necessarily yield better results 115 

than simpler models, especially in data-scarce regions, due to the large number of 116 

parameters and their inherent uncertainties (Singh and Marcy 2017). Identifying the 117 

most suitable hydrological model for a given purpose remains an outstanding 118 

challenge for the hydrological community. Nonetheless, a multi-model approach 119 

favouring different model structures provides better characterization of different 120 

hydrological processes (e.g. Clark et al. 2008, 2016). To address the caveat 121 

concerning hydrological model structures and bias correction methods, some 122 

researchers have suggested streamflow predictions using regression models based 123 

on large-scale climate teleconnections (e.g. Chiew and McMahon 2002; Kingston et 124 



al. 2013). As reported in Sidibe et al. (2019), most of these studies focus on specific 125 

regions (mainly regions with sufficiently long and complete observation records) and 126 

climatic indices, and therefore lack of reproducibility at larger spatial scales.  127 

The comprehensive review of previous studies investigating the impact of climate 128 

change on water resources in West Africa by Roudier et al. (2014), underlines the fact 129 

that existing studies mainly focus on individual basins with climate change scenarios 130 

often provided by coarse spatial scale GCMs or early versions of RCMs. At the sub-131 

continental scale, the impacts of climate change on hydrological systems over West 132 

and Central Africa are not fully understood (Washington et al. 2013; Roudier et al. 133 

2014). The study by Stanzel et al. (2018) bridges this gap over West Africa by applying 134 

a multi-model ensemble of 15 RCMs from the CORDEX initiative (Coordinated 135 

Regional Climate Downscaling Experiment; Giorgi et al. 2009). However, in the latter, 136 

streamflow is estimated using a water balance model (at the annual timescale), which 137 

does not fully describe the complexity of hydrological processes. Moreover, climate 138 

projections are corrected using the widely applied delta-change approach, which, 139 

while stable and robust, does not account for potential future changes in climate 140 

decadal to multi-decadal variability and makes no distinction between extreme and 141 

normal events (i.e. the amount of change is similar for heavy rainfall and drizzle; 142 

Teutschbein and Seibert 2012). 143 

Here, we aim to provide further insights into the response of hydrological systems to 144 

a changing climate across West and Central Africa by the mid-21st century. For this 145 

timeframe, climate projections are less sensitive to emission scenarios (e.g. Hawkins 146 

and Sutton 2009; IPCC 2013; Sylla et al. 2016), therefore, for simplicity, only results 147 

corresponding to a mitigation scenario (RCP4.5) are discussed in this paper. Climate 148 

simulations from the Rossby Centre Regional Climate model (RCA4) driven by nine 149 



GCMs available within the CORDEX initiative are evaluated and bias-corrected using 150 

a nonparametric trend preserving quantile mapping approach (QDM; Cannon et al. 151 

2015). We then use two conceptual hydrological models to understand hydrological 152 

processes at the subcontinental scale and provide future hydrological scenarios. For 153 

the first time, we also assess uncertainty in the traditional hydrological climate change 154 

impact modelling chain, through the implementation of a regression-based model 155 

linking streamflow with sea surface temperature (SST).  156 

2. Data and Methods 157 

The study area covers West and Central Africa (from 10°S to 25°N and 20°W to 30°E), 158 

with different climatic conditions: from arid in the northern fringe to tropical humid in 159 

the South. Hydrological regimes are described in Sidibe et al. (2018). Over the study 160 

area, 131 catchments with sizes ranging from 197 to 3,700,000 km2 (median of 20,492 161 

km2) were considered. 162 

2.1. Data 163 

Streamflow and catchment properties (e.g. area, elevation, shape) datasets were 164 

collected from the SIEREM (“Système d’Informations Environnementales sur les 165 

Ressources en Eaux et leur Modélisation”) database (Boyer et al. 2006; Dieulin et al. 166 

2019). Over the study area, 131 discharge stations from the reconstructed streamflow 167 

dataset presented in Sidibe et al. (2018) were selected. Information about selected 168 

watersheds is provided in Appendix A.  169 

Observed mean monthly precipitation (P), minimum and maximum temperature (Tmin 170 

and Tmax, respectively) datasets for the historical period (1951-2005) were collected 171 

from the Climatic Research Unit (CRU TS v4.00; Harris et al. 2014). Harris et al. (2014) 172 

found good agreement between the CRU dataset and other datasets, such as the 173 

Global Precipitation Climatology Centre (GPCC; Schneider et al. 2011). Due to the 174 



large scale of the study and climatic data availability/quality, evapotranspiration is 175 

estimated using relatively few input variables. The method used herein (eq. 1), after 176 

Droogers and Allen (2002), is a modified version of the Hargreaves approach 177 

(Hargreaves and Samani 1985), which accounts for precipitation as a proxy for 178 

insolation and relative levels of humidity. In data scarce environments, such an 179 

approach is a good alternative to the more physically based Penman-Monteith 180 

equation, which requires more input data (Allen et al. 1998). Mean external radiation 181 

is approximated from the latitude and the month of the year, after Allen et al. (1994).  182 

          𝐸𝑇0 = 0.0013 ∗ 0.408𝑅𝑒𝑡 ∗ (𝑇𝑎𝑣𝑔 + 17.0) ∗ (𝑇𝑑 − 0.0123𝑃)0.76                     (eq.1) 183 

With P the monthly precipitation amount (mm), Ret the extra-terrestrial radiation  184 

(MJ.m-2), Tavg the average temperature (°C) and Td the temperature range (°C).  185 

The Extended Reconstructed SST version 5 (ERSST.v5, Huang et al. 2017) is used 186 

to develop multi-timescale linear regression models based on large-scale climate 187 

teleconnections. ERSST.v5 is a global monthly 2°×2° gridded SST dataset derived 188 

from the International Comprehensive Ocean–Atmosphere Dataset (ICOADS) 189 

Release 3.0. In addition, climate simulations (P, Tmax, Tmin) from nine GCMs of the fifth 190 

phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. 2012), 191 

dynamically downscaled by the latest version of the Rossby Centre Regional Climate 192 

Model (RCA4), developed by the Swedish Meteorological and Hydrological Institute 193 

(SMHI) and available within the CORDEX framework, were collected via the Earth 194 

System Grid Federation (ESGF) data portals (Table 1). 195 

Table 1: List of datasets and climatic variables used in the study 196 

 Institution Name Variable Period 

O
b

s.
 SIEREM, France SIEREM Q, Area 1951-2005 

CRU, UK CRU TS v.4.00 P, Tmax, Tmin 1951-2005 

NOAA-NCDC, USA ERSST.v5 sst 1951-2005 

C
M IP
5

 

M
o

d
e

l 

o
u

t

p
u

t

s G
C M
 

CCCma, Canada CanESM2 sst 1951-2050 



CNRM, France CNRM-CM5 

CSIRO-QCCCE, Australia CSIRO-Mk3-6-0 

MOHC, UK HadGEM2-ES 

IPSL, France IPSL-CM5A-MR 

MIROC, Japan MIROC5 

MPI-M, Germany MPI-ESM-LR 

NCC, Norway NorESM1-M 

NOAA-GFDL, USA GFDL-ESM2M 

R
C

M
 

SMHI, Sweden 

CanESM2_SMHI-RCA4 

P, Tmax, Tmin 

CNRM-CM5_SMHI-RCA4 

CSIRO-Mk3-6-0_SMHI-RCA4 

HadGEM2-ES_SMHI-RCA4 

IPSL-CM5A-MR_SMHI-RCA4 

MIROC5_SMHI-RCA4 

MPI-ESM-LR_SMHI-RCA4 

NorESM1-M_SMHI-RCA4 

GFDL-ESM2M_SMHI-RCA4 

The multi-model ensemble is downscaled using a single RCM to constrain the 197 

uncertainty inherent to process representation within different RCMs, while RCM 198 

performances mainly relate to the quality of the GCM boundary forcing over West 199 

Africa (Kebe et al. 2016). Previous studies highlighted that the SMHI-RCA models 200 

satisfactorily represent different characteristics of historical precipitation and 201 

temperatures over West Africa (Nikulin et al. 2012; Mascaro et al. 2015; Stanzel et al. 202 

2018).  203 

Streamflow near-term projections (2020-2050) are then derived from two hydrological 204 

models, and a teleconnection-based regression model using SST fields from the nine 205 

aforementioned GCMs.  206 

Due to the similarity in climate model responses to RCP forcing scenarios, over the 207 

near-term future (Hawkins and Sutton 2009; IPCC 2013; Aloysius et al. 2016; Sylla et 208 

al. 2016), we only present results for a mitigation scenario, i.e. RCP 4.5 (corresponding 209 

to a medium range emission and high mitigation with radiative forcings stabilized at 210 

4.5 W.m-2 and 650 ppm CO2 equivalent in the year 2100; Moss et al. 2010).  211 



2.2. Methods 212 

2.2.1. Bias correction 213 

Climate simulations are compared to corresponding observed fields for the period 214 

1951-2005 with Quantile Delta Mapping (QDM; Cannon et al. 2015) applied as a bias 215 

correction algorithm. Standard quantile mapping techniques are limited by the 216 

assumption of bias stationarity (i.e. bias remains constant over historical and future 217 

periods; Cannon et al. 2015). More advanced algorithms tackle this issue by applying 218 

quantile mapping on detrended time series (i.e. removing trend in the long-term mean) 219 

and reintroducing the trend afterwards (detrended quantile mapping). This however 220 

preserves only the climate change signal in the mean, while changes in other quantiles 221 

(extremes) are not accounted for. QDM preserves changes in simulated quantiles from 222 

climate models.  223 

Discrepancies between model simulations and observations over a given period are 224 

corrected by: (1) detrending model-projected future quantiles and applying quantile 225 

mapping on the detrended series; (2) reintroducing projected trends on bias-corrected 226 

results, so that part of the climate sensitivity is preserved. More details about the 227 

different steps are provided in Cannon et al. (2015). 228 

The method is applied at each grid point within the study area, and to each month 229 

individually for a better representation of seasonal cycles. Biases in future simulations 230 

(2006-2050) are corrected using transfer functions derived over the entire historical 231 

period (1951-2005) to mitigate to some extent the so-called “variability related 232 

apparent bias changes” (Maraun 2012).  233 

A K-fold (K=11) cross-validation approach (Geisser 1975) is separately implemented 234 

to assess the performance of bias correction algorithms. For each grid-point, we 235 

generate a cross-validated time series consisting of all validation segments. Using 236 



these cross-validated timeseries, performance of the bias correction algorithms is first 237 

assessed with respect to the overall deviation between simulations and observations 238 

using the percent bias (PBIAS). Second, biases in cumulative distribution functions 239 

(CDFs) are also investigated using the Kolmogorov-Smirnov (K-S) test, with the null 240 

hypothesis being that both samples (observations and simulations) are drawn from the 241 

same statistical distribution and the K-S test statistic D, the maximum difference 242 

between CDFs.  243 

2.2.2. Hydrological modelling 244 

Identifying the most appropriate model structure for the characterization of 245 

hydrological processes and quantifying associated uncertainties are the main 246 

challenges facing the hydrological community (Clark et al. 2008). In this study, two 247 

hydrological models (GR2M and IHACRES) are used to investigate the impacts of 248 

climate change on streamflow over West and Central Africa. Both models are 249 

computationally attractive (due to few calibration parameters), and therefore 250 

convenient for data-scarce environments. 251 

GR2M is a two parameter spatially lumped conceptual monthly rainfall-runoff model 252 

developed by IRSTEA (Institut national de recherche en sciences et technologies pour 253 

l´environnement et l´agriculture). In the version used herein (developed by Mouelhi et 254 

al. 2006), hydrological processes are described using two reservoirs: a production 255 

reservoir with capacity X1 and a routing reservoir (fixed capacity of 60 mm), whose 256 

interactions with groundwater systems are governed by the parameter X2 (Figure 1a). 257 

Due to its robustness and very low input data requirement (precipitation, potential 258 

evapotranspiration and streamflow), the GR2M model has been extensively used in 259 

West and Central Africa (e.g. Paturel et al. 1995; Ardoin-Bardin et al. 2009; Ibrahim et 260 

al. 2015). 261 



The IHACRES model is a conceptual-metric model built upon a non-linear soil 262 

moisture accounting module (Jakeman et al. 1990), which converts total precipitation 263 

into effective rainfall and a linear routing module generating stream discharge from 264 

effective rainfall. In this study, the model is implemented at monthly time steps and the 265 

non-linear soil moisture accounting module is based on the Catchment Wetness Index 266 

(CWI; Jakeman and Hornberger 1993), where effective rainfall is proportional to an 267 

antecedent soil moisture index and a scaling factor used to enforce mass balance. 268 

The soil moisture accounting module is built upon three main calibration parameters: 269 

the drying rate at reference temperature, the temperature dependence of drying rate 270 

and the mass balance term. The linear routing module is represented by two reservoirs 271 

(quick flow and baseflow) in parallel. The outflow is then processed using ARMAX-272 

type (auto-regressive moving average with exogenous inputs) linear transfer functions 273 

(Jakeman et al. 1990) to generate simulated streamflow (Figure 1b).  274 

Such a formulation reduces parameter uncertainty inherent to hydrological models, 275 

while at the same time attempting to characterize internal hydrological processes 276 

(Croke and Jakeman 2004). This model implemented for the Niger River basin by 277 

Oyerinde et al. (2016) yielded satisfactory results. 278 

2.2.3. Regression-based SST-streamflow model 279 

Sidibe et al. (2019) found streamflow variability in West and Central Africa to be 280 

significantly associated with SST anomalies in the Pacific and Atlantic Oceans at 281 

different timescales: interannual (~2-5 years) to multi-decadal (> 20 years). Such 282 

relationships are similar to those detected for rainfall over the region (e.g. Mohino et 283 

al. 2011; Rodriguez-Fonseca et al. 2015; Dieppois et al. 2013, 2015).  Building upon 284 

these teleconnections, we thus use multiple regressions of annual streamflow on 285 

empirical orthogonal functions (EOFs) of SST fields following the modelling strategy 286 



developed by Benestad (2001). This approach is modified based on Massei et al. 287 

(2017) findings, who integrated a discrete wavelet multiresolution analysis, to capture 288 

the main modes of variability, i.e. predictors, at different timescales.  289 

In data-scarce regions, due to the lower number of input variables (streamflow and 290 

SSTs), this streamflow prediction strategy could potentially help narrowing the 291 

uncertainty associated with the quality of gridded observational datasets (e.g. rainfall 292 

and temperature), built upon spatio-temporal interpolation techniques, which impact 293 

hydrological model performances, climate model evaluation and bias-correction 294 

algorithms, resulting in misleading streamflow projections. The main steps are: (1) to 295 

generate individual predictor datasets (1951-2050) by combining (along the time axis) 296 

observations (ERSST v5) and GCMs SST fields; (2) to extract wavelet details using 297 

the Maximum Overlap Discrete Wavelet Transform (MODWT; Percival and Walden, 298 

2000) for both predictors and predictands; (3) to implement one regression model for 299 

each wavelet decomposition level of the atmospheric field and local 300 

hydrometeorological variables using the common EOF analysis; and (4) to reconstruct 301 

the final time series by summing up all models at the end of the process.  302 

Principal components (PCs) of the 20 leading EOFs, which represent the observation 303 

part of the combined dataset, are used as predictors to develop linear step-wise 304 

regression models. The selected PCs derived from future GCM simulations are then 305 

used to generate streamflow projections. Using the common EOF analysis ensures 306 

the physical consistency of climate model simulations (Benestad 2001).  307 

A K-fold cross-validation is also implemented (K=11), and performance is assessed 308 

with the Kling Gupta efficiency criteria (Kling et al. 2012).  309 

3. Climate scenarios: evaluation and bias correction 310 

3.1. Model evaluation 311 



Rigorous regional-scale evaluation of climatic variables´ seasonal cycles is of  312 

paramount importance for impact studies (Eyring et al. 2019). The ability of climate  313 

models to reproduce historical (1951-2005) climatic patterns is assessed relatively to  314 

the CRU observation datasets. 315 

3.1.1. Precipitation patterns  316 

The spatial distribution of precipitation (long-term means) for the period 1951-2005, is 317 

characterized by a strong meridional gradient, with highest amounts found in the 318 

Southwest and Southeast of West Africa and Central Equatorial Africa (Figure 2a), as 319 

observed by Mahé et al. (2001). Major parts of the study area receive around 60 320 

mm.month-1, with maximum reaching 253 mm.month-1 (Figure 2a). Most models are 321 

able to capture this meridional gradient, but dissimilarities are observed in the 322 

representation of the spatial extent and rainfall amounts (figure 2b). Over West Africa, 323 

most models except CNRM and CSIRO capture relatively well the regions of maximum 324 

precipitation, despite overestimations along the Guinean highlands (Figure S1), as 325 

suggested by Akinsanola et al. (2018). In addition, precipitation patterns over the 326 

Sahel (between 11°N and 18°N) are generally well-represented, except for CanESM2 327 

and IPSL, where the region of minimum rainfall (<25 mm.month-1) extends southwards 328 

to 15°N. This can be attributed to model representation of the ITCZ northward 329 

propagation and gradual southward retreat (Nikulin et al. 2012). In fact, all models fail 330 

at representing the pattern observed in Central Equatorial Africa (Figure 2a-b), leading 331 

to higher biases in total precipitation. More specifically, the magnitude of deviation 332 

between RCA4 simulations and CRU observations (assessed using the PBIAS) over 333 

the entire historical period (1951-2005) underlines a dry bias (between -20% and -334 

35%) in Central Africa regardless of the driving GCMs (Figure 2c-k), consistently with 335 

the findings of Aloysius et al. (2016). A dry bias is also observed in the Guinean 336 



Coastal regions (4°N-8°N) for most models, except MIROC5 (median PBIAS of +6.4%) 337 

(Figure 2c-k). Further North, the influence of driving GCMs becomes more important. 338 

In Sudanian (8°N-11°N) and Sahelian (11°N-18°N) regions for instance, models such 339 

as CanESM2, CNRM, HadGEM2, IPSL and NCC present negative biases (reaching -340 

62.9% for IPSL), while others present wet biases (up to +40% for CSIRO over the 341 

Sahel). Overall the mean climatology is best represented by HadGEM2, MIROC5, 342 

GFDL and MPI (Figure 2f, h, i, k). Similar results are found for the NRMSE statistic 343 

(not shown). 344 

The deviations between simulations and observations result in bias in the CDFs. As 345 

determined using the KS-test, most of the study area is characterized by high 346 

dissimilarity between statistical distributions of observations and simulations (Figure 347 

3a). Highest differences (K-S test statistic D > 0.5) can be observed in Central 348 

Equatorial Africa (Figure 3a). At p ≤ 0.1, multi-model agreement indicates that less 349 

than 5% of the study area presents significantly similar statistical distributions (Figure 350 

3b). The dissimilarity is however smaller between 12°N and 18°N for most models 351 

(except CSIRO and IPSL), confirming a good representation of rainfall distributions 352 

over the Sahel (Figure 3a). For each model, the ability to reproduce the seasonal cycle 353 

is also investigated (cf. Figure S2). For all models, the critical value (D = 0.1645) at p 354 

≤ 0.1 is in general exceeded for each month. The lowest values are observed between 355 

December and February, albeit with the highest inter-quartile range (Figure S2). 356 

Highest dissimilarities occur from May to October (Figure S2), suggesting that 357 

uncertainties mainly arise from the representation of the West African Monsoon 358 

(WAM) meridional migrations, as described by Sultan and Janicot (2000). 359 

3.1.2. Minimum and Maximum temperatures 360 



Similar to long-term precipitation, maximum temperatures over the study area are 361 

characterized by a strong meridional gradient with highest temperatures reported 362 

along the Sahelian band (>35°C) and lowest maximum temperatures in western 363 

Central Africa (20-25°C) (Figure 4a). This meridional pattern is relatively well 364 

represented by most models, except CNRM, CSIRO and GFDL (not shown). The 365 

median absolute bias over the study area suggests that majority of the models present 366 

a cold bias ranging from -0.37°C in HadGEM2 to -1.30°C in GFDL (Figure 4c-k). This 367 

cold bias is predominantly located in Sudanian and Sahelian regions (Figure 4c-k), as 368 

already reported by Sarr (2017). From the Gulf of Guinea to Central Africa, most 369 

models present warm biases, ranging from +0.84°C  in GFDL to +2.7°C in IPSL. 370 

For minimum temperatures, the long-term climatology highlights a zonal gradient, 371 

where most of West Africa (up to 21°N) is warmer (20°C-25°C) than eastern and 372 

Central Africa (15°C-20°C; Figure 5a). This zonal pattern is best reproduced by CSIRO 373 

(median absolute bias -0.13°C), MIROC5 (median absolute bias of -0.17°C) and IPSL 374 

(median absolute bias of 0.18°C), showing the lowest biases over the region (Figure 375 

5e, h, g). All models are characterized by a cold bias ranging from -0.74°C in MIROC5 376 

to -3.18°C in CNRM (Figure 5c-k), which similarly to maximum temperatures is located 377 

along the Sahelian band (Figure 4c-k). Moreover, the amplitude of the warm bias 378 

detected for maximum temperatures over the Gulf of Guinea and Central Africa is 379 

dampened: from +0.42°C in MIROC5 to +1.68°C in IPSL (Figure 5h, g).  380 

Biases in CDFs are also found in historical simulations for temperature, with the 381 

highest K-S test statistic D observed in Central Equatorial Africa (Figure 6a, c). We 382 

note that distributional biases in minimum temperatures are higher than those 383 

observed for maximum temperatures (Figure 6c). In addition, multi-model agreement 384 



highlights that less than 2% of the study region present significantly similar CDFs at p 385 

≤ 0.1 (Figure 6b, d).  386 

Seasonal cycles of distributional biases in Tmax and Tmin underline high discrepancies 387 

(median K-S test statistic D ranging from 0.4 and 0.8; Figure S3-4). While distributional 388 

biases in maximum temperature are more important between May and October 389 

(Figure S3), those observed in minimum temperature are homogenous throughout the 390 

year with no marked seasonality (cf. Figure S4). 391 

According to Sarr (2017), the predominant cold bias observed for the different 392 

temperature fields over the study area is mainly due to the misrepresentation of 393 

climatic processes in GCMs. Other factors, such as excess cloudiness, surface 394 

albedo, and aerosols could play an important role (e.g. Giannini et al. 2003; Nicholson 395 

2013). 396 

3.2. Bias correction and cross-validation 397 

Model evaluation highlighted important biases in precipitation and temperatures. The 398 

bias correction algorithms were thus applied to all hydroclimatic variables. For 399 

application in hydrological climate change impact studies, it is crucial that biases are 400 

also corrected in the seasonal cycle. 401 

Cross-validation results highlight the ability of the QDM algorithms to satisfactorily 402 

reduce these biases (Figure 7). In fact, median PBIAS over the study area is now 403 

within the range ±1.1% for precipitation fields (not shown). More importantly, higher 404 

order moments are also improved in precipitation: median ratio of standard deviations 405 

derived from bias-corrected and raw data over the study area is around 1.05 for all 406 

models (not shown). In precipitation, the distributional biases are thus significantly 407 

reduced for more than 55% of the study area (Figure 7a-c). Distributional biases in the 408 



seasonal cycle are also significantly corrected with median K-S test statistic D below 409 

0.2 at p≤0.1 (cf. Figure S2).  410 

In general, bias correction algorithms yielded better results for temperatures compared 411 

to precipitation, with median absolute bias of ±0.05°C (standard deviation ratio of 1.02; 412 

Figure 7d-i).  413 

In maximum temperatures, distributional biases are corrected (at p≤0.1) for more than 414 

80% of the study area (Figure 7d-f). Significant biases however remain over parts of 415 

Central Africa, where multi-model agreement is low (Figure 7e).  416 

Similar patterns are identified for minimum temperatures (Figure 7g-i), with however 417 

residual significant distributional biases extending to the Gulf of Guinea coastal 418 

regions (Figure 7h). Seasonal distributional dissimilarities in maximum and minimum 419 

temperature are also satisfactorily corrected (cf. Figure S3-4). 420 

Despite overall good performances, the bias correction algorithms presented limited 421 

skill in Central Equatorial Africa, where distributional biases remain significant. This 422 

can be attributed partly to the lack of observed gauge data over the region (New et al. 423 

2000; Nikulin et al. 2012), resulting in a limited representation of the regional climatic 424 

processes, and therefore difficulties in model evaluation and bias correction. In 425 

addition, several GCMs present the so-called “double ITCZ problem” (Lin, 2007), 426 

characterized by precipitation overestimation off the equator, and underestimation 427 

along the equator, over Central Africa, as a result of poor representation of climate 428 

processes controlling the formation and propagation of Mesoscale Convective 429 

Systems (MCSs) (Aloysius et al. 2016). Disentangling the part of uncertainties related 430 

to the quality of observation gridded-data and to climate models is however difficult. 431 

Further details about model parametrization, performances and potential 432 



inadequacies in tropical regions are provided in Monerie et al. (2012), Washington et 433 

al. (2013) among others. 434 

4. Hydrological modelling: calibration and validation 435 

According to Sidibe et al. (2018), missing information in discharge time series over the 436 

region mainly occur in the early 1950s and 2000s. To reduce the uncertainty 437 

associated with the reconstructed streamflow datasets, the 1960-1999 period has thus 438 

been selected to quantify hydrological model parameters. Models are calibrated using 439 

automated calibration algorithms on a decade and validated on the next, with a warm-440 

up period of 5 years, before each calibration interval. Calibration intervals are also 441 

used for validation to assess model robustness. Two different performance criteria are 442 

used to assess model efficiency: the Nash-Sutcliffe efficiency criterion (NSE; Nash 443 

and Sutcliffe 1970) and the modified Kling-Gupta criterion (Kling et al. 2012). Both 444 

models are calibrated through sampling the parameter space: uniform grid screening 445 

for GR2M (Michel 1991) and Latin hypercube sampling (LHS; McKay et al. 1979) for 446 

IHACRES-CWI.  447 

Even though simple in their parametrization, the hydrological models were able to 448 

capture to some extent the complexity of hydrological processes occurring over the 449 

study area. Both models perform well over most of the region, with median KGE higher 450 

than 0.7 (median NSE above 0.75) (Figure S5). GR2M however, seems to perform 451 

slightly better than IHACRES-CWI, which present higher inter-quartile ranges. For 452 

GR2M, we also note that performances tend to be better when models are calibrated 453 

on relatively drier periods (i.e. 1970s and 1980s), as suggested by Dezetter et al. 454 

(2008) for 49 river basins over the same region.  455 

Despite overall good performances, the implemented hydrological models showed 456 

limited skill locally. For instance, GR2M performs poorly (KGE < 0.4) over the Niger 457 



River middle reach (e.g. at Tossaye [MLQ0036] and Niamey [NEQ2000]; Figure 8). 458 

This may be due to the impact of the Inner Niger Delta (flooded area ~40,000 km2 459 

resulting in annual water losses of ~40%), which significantly modifies downstream 460 

rainfall-runoff relationships (Mahé et al. 2009; Zaré et al. 2017). Low performances are 461 

also observed in GR2M for basins in the northeastern part of the study region (e.g. at 462 

Logone Gana [TDQ5006]) and the northern fringe of the Congo basin (e.g. at M’bata 463 

[CFQ0034], Bwembe [CGQ0013] and Gamboma [CGQ0017]; Figure 8a, b). This could 464 

be explained through changes in runoff coefficients after 1970, due to changes in land 465 

use and persistent degradation of the woody cover in the Sahel, as described by Mahé 466 

et al. (2005) and Mahé and Paturel (2009), and/or to the quality of gridded 467 

observational data over Central Africa, where few stations were assimilated to build 468 

the CRU dataset (New et al. 2000; Nikulin et al. 2012; Aloysius et al. 2016).  469 

Interestingly, we note that IHACRES-CWI capture to some extent the hydrological 470 

conditions downstream the Inner Niger Delta (Figure 8c, d). This results from the linear 471 

routing function, which accounts for a lag-time between input and simulated outflow.  472 

However, this model presents limited skill in parts of Central Africa (e.g. at Bwembe 473 

[CGQ0013] and Gamboma [CGQ0017]), and over humid regions of West Africa (e.g. 474 

Hetin Sota [BJQ0036]), where Mahé et al. (2005) found significant changes in 475 

groundwater levels. This might thus highlight limitations in IHACRES-CWI, which does 476 

not account for groundwater interactions.  477 

As illustrated in Figure S6, model parameters could slightly change from one period to 478 

another due to climate variability (e.g. changes in frequency and intensity of rain 479 

events) and/or changes in land use (Niel et al. 2003; Dezetter et al. 2008; Ibrahim et 480 

al. 2015). To better account for non-stationarity in model parametrization, future 481 

streamflow scenarios presented in Section 3.4.3 were thus derived using model 482 



parameters estimated for the 1970-1999 period, which roughly corresponds to an 483 

average response of the system (Figure S6).  484 

5. Linear regression-based streamflow SST model 485 

Previous studies seeking to link local climatic variables with large-scale SST 486 

anomalies indicated the importance of predictor domain size on linear model skill (e.g. 487 

Benestad 2002; Mtongori et al. 2016). In this study, we found that a domain comprising 488 

the Atlantic and Pacific basins results in higher cross-validation performances (median 489 

KGE ~ 0.4). The spatial distribution of model efficiency highlights good skill for most 490 

catchments (Figure 9). However, the results contrast slightly with the hydrological 491 

models presented in the previous sections. In fact, poor performances (KGE < 0.4) are 492 

now mainly observed on the upper Niger River reach, i.e. from the Guinean highlands 493 

to southern Mali (Figure 9). Similar results also are observed in parts of the Volta basin 494 

and in some regions of northern and western Central Africa (Gabon; Figure 9). These 495 

results might stem from weak predictor-predictand relationships and human-induced 496 

catchment modifications. Interestingly, we observe that some catchments in Central 497 

Africa, where hydrological models were performing poorly now present better results 498 

(see Appendix A). For instance, over parts of Central Africa (e.g. the N’Keni basin at 499 

Gamboma [CGQ0017]), the regression model outperformed (KGE > 0.8) the 500 

hydrological models (KGE < 0.2), which were mainly impacted by the quality of 501 

observed gridded precipitation and temperature datasets. This highlights the potential 502 

added-value of teleconnections-based regression models in data-scarce 503 

environments, where gridded observational datasets quality is likely to be poor, for 504 

improved predictions.  505 

6. Future hydroclimatic variability in West and Central Africa by mid-21st 506 

century 507 



6.1. Changes in near-term precipitation 508 

 509 

In Figure 10, near-term (2020-2050) projected precipitation changes relative to the 510 

historical period are explored under the RCP4.5 emission scenario. Most models 511 

(except CSIRO [-2.2%] and MPI [-2.1%]) show slight positive relative changes over 512 

the study area (from 2 to 12%; Figure 10). Good agreement is observed between 513 

uncorrected simulations and bias-corrected data (not shown). 514 

In Central Africa, the mid-21st century will be characterized by slight changes (±4%) 515 

with a trend towards wetter conditions, within the range predicted by Aloysius et al. 516 

(2016) using the same emission scenario. A similar pattern is identified along the Gulf 517 

of Guinea coastal regions, where GFDL and MIROC5 both predict higher relative 518 

changes in precipitation of around +8.5% and +6.7%, respectively (Figure 10i, f). 519 

Further North, along the Sahelian strip, relative changes are more significant, with 520 

highest changes predicted by CanESM2 (+17%), MIROC5 (+16.4%), NCC (+15.8%) 521 

and HadGEM2 (+12%).  522 

In addition, the Sahelian band presents a zonal contrast, with its westernmost part 523 

drier than central and eastern regions (except for CNRM, MIROC5, NCC and GFDL). 524 

This pattern is consistent with previous investigation of future rainfall in the Sahel (e.g. 525 

Monerie et al. 2012; Sylla et al. 2016). Over the westernmost part of the Sahel, 526 

precipitation decrease of up to -22% is reported in IPSL (Figure 10e). In the central 527 

and eastern regions, most models (except CSIRO, MPI and GFDL) predict significant 528 

positive changes: CanESM2 (+28%), NCC (+28%), MIROC5 (+23%), HadGEM2 529 

(+18.6%) IPSL (+16%) and CNRM (+8.7%).  530 

6.2. Changes in near-term temperatures 531 

 532 



Absolute changes in temperature by the mid-21st century over West and Central Africa 533 

show significant warming trends, with an overall good agreement between models 534 

(Figure 11).  535 

Changes in maximum temperatures are expected to range between +1.2°C and 536 

+1.9°C (Figure 11). Spatial patterns, however, suggest regional contrasts (Figure 11). 537 

For instance, greater warming tends to be observed in Central Africa and over the 538 

northern fringe (Sahara) of the study area, while weaker warming tends to be identified 539 

along the Gulf of Guinea coastal regions (Figure 11). 540 

According to Figure 12, over the study area minimum temperatures rise faster than 541 

maximum temperatures by the mid-21st century, consistently with previous findings 542 

(Funk et al. 2012; Ringard et al. 2016; Sarr 2017). Median warming anomalies range 543 

between +1.4°C in CNRM and +2.2°C in IPSL (Figure 12b, e). By the mid-21st century, 544 

all models, but one (CNRM), predict minimum temperatures anomalies larger than 545 

+1.7°C.  546 

Temperature trends presented in this study corroborate previous findings describing 547 

Sahelian and tropical West African regions as hotspots of climate change (IPCC 2014; 548 

Niang et al. 2014; Sylla et al. 2016). 549 

6.3. Discharge evolution by the mid-21st century in West and Central 550 

Africa 551 

 552 

Changes in river discharge are explored relatively to the historical period using two 553 

conceptual hydrological models in Figure 13-14, and a multi-timescale regression-554 

based model in Figure 15. Projections are compared to historical streamflow 555 

generated with calibrated model parameters and bias-corrected hydroclimatic 556 

variables rather than observed streamflow to limit the uncertainty related to residual 557 

biases in the mean of bias-corrected climate inputs.  558 



With respect to the long-term historical percent bias presented in Section 3.1.1,  559 

models such as HadGEM2, MIROC5, GFDL and MPI (see Figure 2f,h, i, k) provided 560 

good representation of precipitation patterns (long-term means), indicating quality of 561 

model simulations and good representation of climate processes (Eyring et al. 2019). 562 

If these models are likely to provide robust streamflow projections with limited impact 563 

of bias-correction uncertainties, at the regional scale, others such as IPSL, CanESM2 564 

and CSIRO (high biases over the Sahel and Sudanian regions; Figure 2g, c, e) might 565 

result in uncertain streamflow projections.  566 

Despite differences in their ability to capture some hydrological processes, 567 

hydrological models generally predicted consistent changes in streamflow over the 568 

region and show slight changes in river discharge by the mid-21st century. 569 

Uncertainties appear to result mainly from climate model projections. Depending on 570 

the driving GCMs, we observe differences in the proportion of area with significant 571 

streamflow changes at p ≤ 0.1: CanESM2 (38.2%), CNRM (20%), CSIRO (36%), 572 

HadGEM2 (33.6%), IPSL (14.5%), MIROC5 (59.5%), MPI (10%), NCC (36.6%) and 573 

GFDL (42.7%). 574 

Using the GR2M model, projected climate variables result in positive streamflow 575 

changes ranging from +1.4% to +19.4% on average across the study region (Figure 576 

13) for all models, except CSIRO (-9.4%), which presented important biases in 577 

historical precipitation. More specifically, most parts of Central Africa, where GR2M 578 

presented limited skill and climate model evaluation indicated important dry and warm 579 

biases, present slight uncertain changes ±5% (with most models predicting wetter 580 

conditions; Figure 13). Along the Gulf of Guinea up to 11°N, where hydrological 581 

regimes are bimodal (Descroix et al. 2009; Roudier et al. 2014), changes are mostly 582 

positive, reaching +23.5% in MIROC5 (Figure 13). Changes in the Gambia River basin 583 



are uncertain, with some models predicting negative changes mainly in the headwater 584 

(CNRM, CSIRO, IPSL, MIROC5 and MPI), and others slightly positive changes 585 

(CanESM2, HadGEM2, NCC and GFDL). Further North, in the Sahelian regions, 586 

where GR2M presented good skill (except the Inner Niger delta region) and climate 587 

models showed a predominant cold bias, changes in river discharge are even stronger 588 

(Figure 13). Over this region, which comprises the Senegal and the upper reach of the 589 

Niger River, the highest relative changes in streamflow are predicted by HadGEM2 590 

(+22.5%), MIROC5 (+21%), CanESM2 (+18.7%) and NCC (+18.4%). Although 591 

positive trends in river discharge are consistent with predicted rainfall, they could 592 

appear counterintuitive considering the expected increase in temperatures and 593 

evapotranspiration. This is nonetheless consistent with a recent assessment of future 594 

water availability by Sylla et al. (2018), suggesting that increased precipitation 595 

overcompensates the increased evapotranspiration.  596 

In general, similar patterns are observed using IHACRES-CWI model (Figure 14). 597 

Except CSIRO and IPSL which show negative changes in river discharge, West Africa 598 

is mostly characterized by positive trends using IHACRES-CWI (Figure 14), 599 

consistently with GR2M predictions. Median changes over the study area are also 600 

relatively smaller in IHACRES-CWI compared to GR2M which tends to be wetter 601 

(Figure S7). This is probably inherent to the structure of IHACRES-CWI, which 602 

accounts for catchment moisture levels. In Central Africa, projected changes are 603 

uncertain with most models predicting relatively small positive changes ranging from 604 

+0.1% to +6.8%, while the rest of the models present negative changes ranging from 605 

-5% to -8% (CanESM2, CSIRO, IPSL; Figure 14). At the regional scale, the fact that 606 

negative changes are predicted by models which presented important biases in 607 

historical precipitation (CSIRO, CanESM2 and IPSL), indicating limitations in the 608 



representation of climate processes, provides more confidence in wetter conditions. 609 

In addition, at the catchment scale, we note positive changes for catchments in the 610 

Gulf of Guinea region (e.g. Sassandra [+11%], Bandama [+11%]), except for the 611 

Cavally basin, where changes are of opposite signs for GR2M (+5%) and IHACRES-612 

CWI (-1.2%). Even though streamflow projections are consistent across the study area 613 

for both hydrological models, results should be interpreted with caution, particularly 614 

over Central Africa and parts of the Gulf of Guinea, where uncertainty remains high 615 

regardless of the driving GCM, as indicated by bias-correction results (cf. Section 3.2). 616 

Using the multi-timescale regression-based model, discharges in West and Central 617 

Africa by the mid-21st also present slight positive changes (from +2% to +27%) for 618 

most models (Figure 15), except in CNRM (-1.1%), CSIRO (-20%) and MPI (-15%), at 619 

the regional scale. In Central Africa, in particular, where the linear-regression model 620 

presents sometimes higher prediction skill compared to hydrological models, 621 

streamflow changes range from -8% (NCC) to +2.5% (GFDL) and can even reach 622 

+15% using HadGEM2 (Figure 15). Over the Gulf of Guinea and Sudano-sahelian 623 

regions, predicted changes are more important, yet more uncertain. In these regions, 624 

most models present changes in the range of +5%, approximately, and +25% using 625 

HadGEM2 (Figure 15d). Reversely, negative changes are found using CSIRO, and 626 

reach up to -40% using MPI (Figure 15c, g). Median changes in streamflow over the 627 

study area are summarized in Figure S8. In addition, at the catchment scale, the 628 

Bandama catchment shows contrasting results for the linear regression model 629 

regardless of the driving GCM (median change ~ -12%). This could have resulted from 630 

complex predictor-predictand relationships, which are not fully captured by the 631 

regression-based model.  632 



These results suggest that for some regions in Central Africa, where strong SST-633 

streamflow teleconnections exist, regression models can serve as an alternative to 634 

hydrological models that require more input data. However, the higher spread of 635 

predictions observed over the Gulf of Guinea and Sudano-sahelian regions underline 636 

the need for larger multi-model ensembles for a better representation of predictor 637 

(SST) fields. In their evaluation of SST patterns from CMIP5 models (22 models), 638 

Wang et al. (2014) highlighted important biases (too low values in the Northern 639 

Hemisphere and too high values in the Southern Hemisphere) mainly resulting from 640 

model misrepresentation of physical processes and feedback mechanisms. For 641 

example, the amplitude of Global SST biases is significantly associated with model 642 

capacity to characterize the Atlantic Meridional Overturning Circulation (AMOC): 643 

biases increase as the AMOC circulation weakens. Findings also highlighted important 644 

biases in the representation of decadal modes of global SST variability and El-Nino-645 

Southern Oscillation (ENSO) patterns. These discrepancies in climate models 646 

representation of ENSO, which result from overestimations over the western regions 647 

and underestimations over the eastern regions, are particularly important in CSIRO 648 

and IPSL (which fail at capturing the seasonality of ENSO) and less pronounced for 649 

models such as MIROC5 and CNRM (Dieppois et al. 2015, 2019). For improved 650 

projections, climate models which present less bias in the representation of key SST 651 

patterns and their modes of variability should be preferred (e.g. MIROC5, CNRM). 652 

Although based on a single RCM, the findings presented in this section are consistent 653 

with previous investigation of near-term river flow evolution in West Africa under similar 654 

emission scenario (Ardoin-Bardin et al. 2009; Roudier et al. 2014; Aich et al. 2014; 655 

Mbaye et al. 2015; Yira et al. 2017; Stanzel et al. 2018), except for the Gambia River 656 

basin where most studies predict significant negative trends. For instance, Bodian et 657 



al. (2018) found a decrease of up to -22% for the near-term future using a set of six 658 

GCMs (statistically downscaled with the delta change method) and the GR4J 659 

hydrological model. However, different results could have resulted from the use of the 660 

RCA4-RCM, which has a tendency towards wetter projections over West Africa 661 

compared to other RCMs (Stanzel et al. 2018).  662 

7. CONCLUSIONS 663 

In this study, we investigated the impact of near-term (2020-2050) climate variability 664 

and change on hydrological systems over West and Central Africa using a regional 665 

multi-model ensemble, bias correction algorithms and different runoff modelling 666 

strategies.  667 

Evaluation of climate model outputs, performed to quantify biases and therefore help 668 

assess performance of bias-corrections techniques, highlighted different levels of 669 

accuracy in the representation of key WAM features, resulting in important 670 

dissimilarities. For instance, biases in precipitation are often associated with model 671 

representation of the ITCZ intensity and northward propagation (Nikulin et al. 2012). 672 

Over Central Equatorial Africa, however, these biases were more important regardless 673 

of the driving GCMs. This can be attributed to the quality of gridded observational 674 

datasets over this region and other factors such as representation of topography and 675 

climate processes controlling the formation and propagation of MCSs (Aloysius et al. 676 

2016).  677 

Two different approaches were adopted to assess future changes in streamflow over 678 

the region. Firstly, bias correction algorithms were applied to climatic variables 679 

(precipitation, maximum and minimum temperatures) prior to their use in two 680 

conceptual hydrological models. These bias correction algorithms satisfactorily 681 

reduced discrepancies between model simulations and observations, and importantly 682 



preserved the climate change signal predicted by climate models. However, the bias 683 

correction presented limited skill over Central Equatorial Africa, stemming mainly from 684 

the quality of observational stations (New et al. 2000; Nikulin et al. 2012) impacting 685 

gridded datasets. Input data quality in this region might have also impacted 686 

hydrological models, which performed poorly. Elsewhere, hydrological models 687 

presented higher skill, and more importantly, their different structures satisfactorily 688 

characterized different important hydrological processes: while GR2M provided 689 

insights for regions with important groundwater interactions, IHACRES-CWI 690 

satisfactorily captured complex hydrological processes occurring downstream the 691 

Inner Niger Delta and the Benue River. 692 

Secondly, streamflow projections were derived based on large-scale SST 693 

teleconnections using multi-timescale linear regression models (Massei et al. 2017). 694 

This latter procedure, implemented here for the first time across West and Central 695 

Africa, appeared as an alternative to hydrological models for impact studies in data-696 

scarce regions with robust streamflow-SST teleconnections. For instance, in parts of 697 

Central Africa (e.g. the N’Keni basin at Gamboma [CGQ0017]), the regression model 698 

outperformed (KGE > 0.8) the hydrological models (KGE < 0.2), which were mainly 699 

impacted by the quality of observation datasets. This regression model nevertheless 700 

presented limited skill over the upper reach of the Niger River in the Guinean and 701 

Sudanian regions, where complex SST teleconnections were highlighted in previous 702 

studies (Wotling et al. 1995; Nicholson 2008; Sidibe et al. 2019). 703 

West and Central Africa are found to be characterized by slightly wetter conditions by 704 

the mid-21st century under RCP4.5 scenario, and, according to previous studies 705 

(Hawkins and Sutton 2009; IPCC 2013; Sylla et al. 2016), these results are expected 706 

to be similar to those of more optimistic or pessimistic scenarios (e.g. RCP2.6 and 707 



8.5). In fact, similarities were detected in future precipitation over the region, with less 708 

than  4.5% of the study area presenting significant (p ≤ 0.1) differences between 709 

RCP4.5 and 8.5 (not shown). Overall, precipitation is likely to increase within a range 710 

of +2 to +12%. Important spatial variability is however observed locally over Central 711 

Africa (±4%)  and across the Sahel, where some models present a zonal contrast (up 712 

to -22% in the western part and up to 28% in the eastern part). Temperatures present 713 

a sustained increasing rate (higher for minimum temperatures) between +1.2°C and 714 

+2.2°C, with highest absolute changes occurring mainly along the Sahelian band.  715 

These future trends in climatic variables are therefore likely to result in slight positive 716 

streamflow changes (~ +5%), which are consistent across the different modelling 717 

strategies, despite local differences. Importantly, these wetter conditions are predicted 718 

by climate models which presented reduced biases in historical precipitation, 719 

suggesting less influence of bias-correction uncertainties. The pattern closely mimics 720 

the change in rainfall, with smaller (higher) changes in Central Africa (further North). 721 

Despite agreements in streamflow projected change over the entire study area, a 722 

higher interquartile range (±40%) is observed for the linear regression-based model, 723 

due to uncertainties in SST simulations. This is especially true for the different future 724 

trajectories of main modes of variability in the Atlantic and Pacific Oceans (e.g. ENSO, 725 

AMO) predicted by CMIP5 models (e.g. Wang et al. 2014; Dieppois et al. 2019). 726 

Notwithstanding the uncertainties in streamflow projections over the study area, we 727 

showed here that reducing the steps in traditional hydrological climate change impact 728 

studies, can help improve predictions of changes in data-scarce regions. Nonetheless, 729 

further investigations with larger multi-model ensembles are required to shed the light 730 

on uncertainties associated with SST projections, streamflow large-scale climate 731 

teleconnections, and help assess the full spectrum of future streamflow fluctuations. 732 



Recent developments in statistical post-processing of climate information (e.g. multi-733 

variate bias-correction; Robin et al. 2019) might also help improve projection of 734 

changes.  735 

In addition, river flow projections presented in this study account only for climate 736 

change and variability. It should not be forgotten that an expected population increase 737 

in Sub-Saharan Africa by 2050 (population expected to approach 2 billion people) will 738 

result in rising demand posing substantial threats to water security (quantity and 739 

quality; Serdeczny et al. 2017), and greatly modifying hydrological regimes (Mahé et 740 

al. 2013). Detailed investigations must be conducted to integrate the influence of three 741 

other key aspects significantly impacting river flow (Sterling et al. 2013): land use, 742 

water consumption/withdrawal and carbon effect on plant water use. This will require 743 

an integrated approach with different modelling strategies but most importantly a joint 744 

effort for data collection and sharing across key actors (e.g. national water offices, 745 

water practitioners, stakeholders) in sub-Saharan Africa. 746 
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Appendix A: List of selected stations with model performances and multi-model ensemble relative change in streamflow under 
RCP4.5 emission scenario 

Station Metadata Model calibration (KGE) Relative Change (MME) 

ID Basin Station Area(km2) LAT LON GR2M IHACRES SST-Q GR2M IHACRES SST-Q 

BFQ0010 LERABA YENDERE au pont 6288 10.167 -5.068 0.85 0.7 0.46 0.157 0.107 -0.02 

BFQ0060 VOLTA WAYEN 20241 12.379 -1.08 0.83 0.7 0.26 0.287 0.233 0.295 

BFQ0064 VOLTA BOROMO 54499 11.783 -2.917 0.74 0.72 0.47 0.202 0.1 0.126 

BFQ0065 VOLTA DAPOLA 86566 10.567 -2.917 0.91 0.91 0.39 0.212 0.132 -0.07 

BFQ0072 VOLTA NWOKUY 15463.75 12.528 -3.55 0.75 0.81 0.64 0.144 0.123 0.174 

BFQ0074 VOLTA SAMANDENI 4454 11.467 -4.467 0.91 0.87 0.43 0.157 0.094 0.142 

BJQ0009 SOTA  COUBERI 25974 11.74 3.333 0.89 0.77 0.54 0.115 0.063 0.127 

BJQ0022 COUFFO  
LANHOUNTA - LANTA 

1701.517 7.1 1.883 0.8 0.7 0.4 0.08 0.003 0.315 

BJQ0033 OUEME  BONOU 48816 6.9 2.45 0.9 0.66 0.61 0.097 0.023 0.419 

BJQ0036 OUEME  HETIN SOTA 49907.33 6.6 2.5 0.7 0.61 0.61 0.042 0.09 0.09 

BJQ0047 OKPARA  KABOUA 10430 8.25 2.717 0.79 0.44 0.55 0.08 0.005 0.338 

BJQ0050 SOTA  
RTE KANDI-SEGBANA 

AMONT 
8426 10.983 3.25 0.86 0.69 0.49 0.101 0.015 0.146 

BJQ1000 PENDJARI  PORGA 22920 10.994 0.977 0.84 0.8 0.42 0.163 0.063 0.077 

BJQ2000 NIGER  MALANVILLE 719331 11.888 3.383 0.53 0.82 0.5 0.15 0.059 -0.07 

BJQ2004 OUEME  
PONT DE BETEROU 

10491 9.199 2.268 0.84 0.83 0.49 0.087 0.044 0.314 

BJQ2005 OUEME  PONT DE SAVE 23476 8 2.417 0.82 0.86 0.55 0.1 0.139 0.442 

CFQ0025 OUBANGUI ZINGA TRANSIT 526113 3.714 18.587 0.85 0.93 0.49 -0.03 0.001 0.069 

CFQ0027 MBOMOU ZEMIO 27952 5.029 25.147 0.76 0.81 0.47 -0.07 -0.068 0.091 

CFQ0028 BANGUI-KETTE ALINDAO 4551 5.045 21.202 0.58 0.85 0.45 -0 -0.04 0.155 

CFQ0034 LOBAYE M'BATA 31346 3.666 21.981 -0.21 0.88 0.52 0.006 -0.03 -0.02 

CFQ0040 M'POKO BOSSELE-BALI 10573.43 4.531 18.469 0.84 0.83 0.47 0.014 -0.056 0.148 

CFQ0057 SANGHA SALO 72416 3.182 16.114 0.44 0.89 0.44 0.002 -0.047 -0.01 



CFQ2000 OUBANGUI BANGUI 499000 4.364 18.595 0.85 0.92 0.46 -0.03 -0.017 0.068 

CGQ0003 ALIMA TCHIKAPIKA 20067 -1.264 16.169 0.66 0.04 0.73 0.005 0.023 0.004 

CGQ0013 LEFINI BWEMBE 13589 -2.917 15.631 0.1 0.18 0.57 0.005 0.016 0.008 

CGQ0014 LIKOUALA ETOUMBI 4647.94 0.017 14.95 0.71 0.58 0.59 -0.01 -0.035 0.043 

CGQ0015 LIKOUALA MAKOUA 15037.86 0.002 15.633 0.73 0.75 0.62 -0.02 -0.061 -0.13 

CGQ0017 N'KENI GAMBOMA 6202 -1.9 15.85 -0.57 0.14 0.84 0.018 -0.035 0.013 

CGQ0020 KOUYOU LINNEGUE 6890.2 -0.5 15.933 0.49 0.49 0.55 0.002 0.016 0.021 

CGQ0026 LIKOUALA BOTOUALI 19223 -0.55 17.45 0.47 0.87 0.66 0.046 -0.003 0.113 

CGQ2000 CONGO 
BEACH - V.N. Brazzaville 

3700000 -4.273 15.294 0.65 0.85 0.62 -0.03 -0.057 0.05 

CGQ2001 SANGHA OUESSO 159016 1.617 16.05 0.44 0.95 0.45 -0 -0.034 -0.02 

CIQ0013 BANDAMA KIMOUKRO  BALISE  
10201 

56364.5 6.506 -5.305 0.72 0.6 0.41 0.114 0.004 -0.09 

CIQ0032 MARAOUE 
RTE BEOUMI-SEGUELA - 

KONGASSO 10145 

12905 7.832 -6.254 0.85 0.85 0.52 0.125 0.022 -0.15 

CIQ0033 MARAOUE BOUAFLE 10147 21267 6.98 -5.754 0.84 0.53 0.53 0.124 0.104 -0.1 

CIQ0058 NZI BOCANDA 20880 7.044 -4.52 0.83 0.83 0.5 0.134 -0.006 -0.35 

CIQ0061 NZI DIMBOKRO 10141 24100 6.636 -4.71 0.76 0.72 0.46 0.141 -0.015 -0.29 

CIQ0154 KOUROUKELE IRADOUGOU 1820 9.707 -7.803 0.91 0.74 0.45 0.124 0.177 -0.15 

CIQ0292 KAVI MBESSE 975 5.839 -4.296 0.65 0.4 0.39 0.095 0.06 0.675 

CIQ0312 CAVALLY FLAMPLEU 2508 7.283 -8.058 0.81 0.89 0.52 0.057 -0.012 -0 

CIQ0314 CAVALLY TAI 12719 5.86 -7.45 0.89 0.84 0.56 0.149 0.136 -0.05 

CIQ0319 NSE TAI 1 (TAI PONT) 1424.36 5.875 -7.458 0.75 0.81 0.44 0.16 0.117 -0.07 

CIQ4020 BANDAMA BADA 23809 8.107 -5.497 0.79 0.71 0.46 0.103 -0.015 -0.23 

CIQ4022 BANDAMA TIASSALE 10144 61850 5.895 -4.818 0.78 0.53 0.45 0.113 0.023 -0.33 

CIQ4025 NZI FETEKRO 10175 7.811 -4.688 0.88 0.82 0.49 0.122 -0.031 -0.35 

CIQ4026 NZI MBAHIAKRO 10133 15368 7.446 -4.356 0.84 0.8 0.49 0.124 -0.03 -0.38 

CIQ4027 NZI NZIENOA  10136 35340 5.996 -4.813 0.77 0.74 0.47 0.154 -0.045 -0.44 



CIQ4028 COMOE 
ANIASSUE PONT 10138 

70636 6.638 -3.713 0.81 0.56 0.46 0.155 0.212 -0.34 

CIQ4029 COMOE MBASSO 70500 6.125 -3.48 0.79 0.54 0.49 0.152 0.09 -0.38 

CIQ4030 COMOE SEREBOU 50587 7.938 -3.942 0.84 0.7 0.51 0.162 0.253 -0.27 

CIQ4031 SASSANDRA SEMIEN 10130 29900 7.708 -7.067 0.96 0.87 0.57 0.105 0.053 -0.11 

CIQ4032 SASSANDRA SOUBRE 62173 5.783 -6.613 0.61 0.26 0.41 0.115 0.06 -0.07 

CIQ4033 BAFING BAFINGDALA 
BIANKOUMA 10162 

6049 7.842 -7.667 0.94 0.9 0.79 0.064 -0.007 0.099 

CIQ4034 LOBO NIBEHIBE 6233.53 6.8 -6.7 0.77 0.79 0.37 0.147 0.005 -0.1 

CIQ4035 COMOE 
AKAKOMOEKRO 10149 

57803 7.447 -3.509 0.78 0.6 0.51 0.158 0.151 -0.37 

CMQ0029 SANAGA NACHTIGAL 78625.04 4.35 11.633 0.62 0.86 0.43 0.027 0.009 0.072 

CMQ0030 SANAGA NANGA EBOKO 67600.32 4.7 12.383 0.64 0.88 0.41 0.029 0.017 0.021 

CMQ0038 MBAM BAC DE GOURA 42240.11 4.567 11.367 0.94 0.93 0.53 0.001 -0.015 0.069 

CMQ0071 NYONG DEHANE 26398.84 3.567 10.117 0.55 0.9 0.51 0.001 -0.039 0.061 

CMQ5006 BENOUE BUFFLE NOIR 3309 8.117 13.833 0.91 0.88 0.59 0.096 0.04 0.114 

CMQ5007 BENOUE GAROUA 46940 9.294 13.404 0.89 0.8 0.49 0.061 0.02 0.481 

CMQ5015 MAPE  AU PONT DE MAGBA  
AMONT 

4260 5.983 11.267 0.75 0.94 0.42 0.034 -0.011 0.07 

CMQ5016 VINA DU SUD LAHORE 1680 7.25 13.567 0.69 0.92 0.5 0.061 0.125 0.017 

CMQ5018 LOBE BAC KRIBI-CAMPO 3403 2.867 9.883 0.8 0.82 0.35 0.111 0.134 -0.07 

CMQ5019 LOKOUNDJE LOLODORF 1051 3.233 10.733 0.65 0.78 0.54 0.007 -0.032 -0.04 

CMQ5038 MUNGO MUNDAME 2730 4.567 9.533 0.78 0.89 0.63 -0 0.039 0.035 

CMQ5040 NTEM BAC DE NGOAZIK 18100 2.133 11.3 0.83 0.87 0.5 -0.02 -0.008 -0.07 

CMQ5044 LOM BETARE OYA 6931 5.917 14.133 0.7 0.91 0.62 0.027 0.044 0.014 

CMQ5047 KIENKE  KRIBI SCIERIE 1533 2.933 9.9 0.73 0.71 0.48 0.145 0.217 -0.17 

CMQ5050 KADEI BATOURI 8974.88 4.417 14.317 0.47 0.87 0.51 -0.01 -0.092 -0.01 

GAQ0028 IVINDO  MAKOKOU (LMNG) 35800 0.569 12.861 0.72 0.85 0.56 -0.03 -0.091 -0.02 

GAQ0041 NGOUNIE  FOUGAMOU  S H O  
(LMNG) 

21620 -1.216 10.591 0.87 0.9 0.32 0.115 0.176 0.088 



GAQ0046 NGOUNIE  MOUILA VAL MARIE 14908 -1.887 11.056 0.86 0.85 0.36 0.097 0.144 0.125 

GHQ0045 NASIA  NASIA 4968.985 10.15 -0.8 0.84 0.7 0.5 0.125 0.066 -0.27 

GNQ0015 NIGER  FARANAH 3171 10.037 -10.749 0.9 0.88 0.45 0.044 0.001 -0.24 

GNQ0016 NIGER  KOUROUSSA 17164 10.652 -9.871 0.91 0.89 0.34 0.082 0.124 -0 

GNQ0018 NIGER  TIGUIBERY  (Siguiri) 6974 11.354 -9.165 0.7 0.93 0.41 0.044 0.115 0.001 

GNQ0026 MILO  KANKAN 10047 10.383 -9.3 0.96 0.92 0.25 0.069 0.034 -0.11 

GNQ0030 NIANDAN  BARO 1307 10.617 -9.7 0.77 0.95 0.48 0.04 0.029 -0.01 

GNQ0034 NIANDAN  KISSIDOUGOU (NIANDAN 
SCIERIE) 

1398 9.25 -10.017 0.76 0.92 0.49 0.045 -0.006 -0.03 

GNQ0200 BADI  BAC DE BADI 3095.6 10.283 -13.4 0.86 0.79 0.39 0.014 0.007 -0.05 

GNQ0204 KONKOURE  PONT DE LINSAN 1278.69 10.3 -12.417 0.88 0.8 0.35 0.019 0.016 -0.08 

MLQ0009 NIGER DIRE 341047 16.276 -3.395 0.58 0.9 0.52 0.141 0.075 -0.05 

MLQ0012 NIGER KE MACINA 160848 13.958 -5.359 0.93 0.89 0.39 0.108 0.139 0.022 

MLQ0019 NIGER KOULIKORO 120315 12.857 -7.558 0.93 0.92 0.34 0.089 0.072 -0.03 

MLQ0022 NIGER MOPTI 301898 14.496 -4.201 0.85 0.94 0.46 0.142 0.036 -0.06 

MLQ0036 NIGER TOSSAYE 35195 16.933 -0.583 0.27 0.9 0.55 0.076 0.073 0.027 

MLQ0091 BANI SOFARA 130331 14.014 -4.243 0.84 0.93 0.44 0.188 0.135 -0.06 

MLQ0123 SENEGAL GALOUGO 120821 13.833 -11.133 0.92 0.91 0.48 0.142 0.109 0.053 

MLQ0130 SENEGAL BAFING MAKANA 20529 12.55 -10.267 0.84 0.95 0.51 0.057 0.031 0.042 

MLQ0131 SENEGAL SOUKOUTALI 26614 13.2 -10.417 0.96 0.96 0.47 0.078 0.059 0.02 

MLQ0134 BAKOYE OUALIA 78154.91 13.6 -10.383 0.9 0.77 0.38 0.213 0.017 0.171 

MLQ0135 BAKOYE TOUKOTO 16860 13.45 -9.883 0.92 0.75 0.45 0.146 0.075 -0.11 

MLQ0137 FALEME FADOUGOU 8200 12.517 -11.383 0.95 0.92 0.51 0.096 0.074 -0.03 

MLQ0145 BAOULE 
SIRAMAKANA  (Balenda) 

51029 13.583 -9.883 0.86 0.76 0.43 0.269 0.018 0.216 

MLQ2007 SANKARANI SELINGUE 6084 11.583 -8.167 0.72 0.72 0.4 0.058 0.004 0.067 

MLQ2008 BANI DOUNA 101225 13.214 -5.903 0.85 0.81 0.42 0.182 0.2 -0.19 

MLQ2064 SENEGAL DAKA SAIDOU 15660 11.95 -10.617 0.97 0.91 0.46 0.061 0.033 -0.03 

MLQ2066 SENEGAL DIBIA 32453 13.233 -10.8 0.9 0.81 0.57 0.083 0.028 0.171 



MLQ2069 FALEME GOURBASSY 16315 13.4 -11.633 0.96 0.73 0.42 0.097 0.052 -0.1 

MLQ2070 SENEGAL KAYES 160835 14.45 -11.45 0.88 0.9 0.5 0.152 0.1 0.07 

NEQ2000 NIGER NIAMEY 631549 13.502 2.105 0.43 0.86 0.54 0.169 0.098 -0.01 

NGQ0001 BENUE MAKURDI 289983 7.75 8.533 0.88 0.92 0.51 0.036 0.036 0.191 

NGQ0002 NIGER ONITSHA 124794 6.167 6.75 0.7 0.91 0.44 0.059 0.047 0.078 

NGQ2000 NIGER LOKOJA 1023616 7.8 6.767 0.91 0.93 0.72 0.117 0.137 0.221 

SNQ2039 GAMBIE  KEDOUGOU 8127 12.55 -12.183 0.96 0.95 0.42 0.059 -0.01 0.081 

SNQ2045 GAMBIE  MAKO 11007 12.867 -12.35 0.96 0.91 0.46 0.062 0.017 0.121 

SNQ2055 GAMBIE  SIMENTI 20936 13.033 -13.3 0.96 0.83 0.51 0.07 0.01 0.118 

SNQ2060 GAMBIE  WASSADOU-AMONT 21767 13.35 -13.367 0.95 0.82 0.48 0.069 -0.008 0.1 

SNQ2062 GAMBIE  WASSADOU-AVAL 33392 13.35 -13.383 0.93 0.83 0.41 0.085 0.009 0.089 

SNQ2063 SENEGAL  BAKEL 220818 14.9 -12.45 0.9 0.91 0.42 0.151 0.026 0.024 

SNQ2065 FALEME  KIDIRA  UHEA 28703.4 14.455 -12.205 0.96 0.75 0.46 0.112 0.16 -0.01 

TDQ0004 CHARI SARH (EX.FORT-
ARCHAMBAULT) 

192042.6 9.15 18.417 0.77 0.87 0.4 0.058 0.068 0.084 

TDQ0009 CHARI  MAILAO 590607 11.6 15.283 0.76 0.94 0.46 0.066 0.038 0.141 

TDQ0013 BAHR-SARA MANDA 79176.06 9.183 18.2 0.92 0.9 0.44 0.008 -0.011 0.13 

TDQ0014 BAHR-SARA MOISSALA 66467.04 8.333 17.767 0.94 0.89 0.46 0.009 -0.017 0.102 

TDQ0036 LIM OULI BANGALA 4231.94 7.833 15.833 0.9 0.86 0.36 0.128 0.141 -0.04 

TDQ0041 PENDE GORE 11508.84 7.95 16.617 0.86 0.85 0.42 0.053 -0.01 0.244 

TDQ0043 TANDJILE TCHOA 6669.972 9.333 16.083 0.75 0.7 0.39 -0 0.068 0.374 

TDQ2011 CHARI BOUSSO 461854 10.5 16.717 0.84 0.93 0.44 0.07 0.061 0.103 

TDQ5004 LOGONE KATOA 77557 10.833 15.083 0.95 0.96 0.54 0.042 0.034 0.163 

TDQ5005 LOGONE LAI (MISSION) 61010 9.4 16.3 0.95 0.92 0.46 0.053 0.052 0.102 

TDQ5006 LOGONE  LOGONE-GANA 3396 11.55 15.15 0.33 0.93 0.53 0.031 0.075 0.159 

TOQ0006 KARA  LAMA KARA 1 1502 9.533 1.183 0.88 0.81 0.47 0.062 -0.007 0.132 

TOQ0037 SIO  KPEDJI 1824 6.532 1.008 0.85 0.64 0.53 0.002 -0.035 0.075 

TOQ0042 MONO  CORREKOPE 9859 7.8 1.3 0.86 0.59 0.59 0.073 0.095 0.143 

TOQ0043 MONO  DOTAIKOPE 5797 7.817 1.267 0.85 0.87 0.57 0.068 -0.008 0.123 



TOQ0046 MONO  TETETOU 20492 7.017 1.533 0.89 0.72 0.54 0.063 0.071 0.149 

TOQ0048 AMOU  AMOU OBLO 197.2919 7.4 0.867 0.8 0.73 0.3 -0 -0.035 0.053 

TOQ0053 ANIE  PONT C F T 3688.05 7.733 1.2 0.79 0.72 0.5 0.077 0.019 -0.06 

TOQ0059 OGOU  SIRKA 3745 7.917 1.367 0.7 0.7 0.66 0.083 0.124 0.126 
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Figure 1:Hydrological model structures a) GR2M hydrological model (adapted from Mouelhi et 
al. 2006) b) IHACRES-CWI hydrological model (adapted from Jakeman and Hornberger 1993). 



 
Figure 2: Long-term mean monthly historical precipitation (1951-2005) in (a) CRU observation 
(b) Multi-model mean. Long-term historical percentage bias between models and CRU 
precipitation fields (1951-2005) [median pbias is also provided for Central Africa CA, Gulf of 
Guinea GG, Sudan and Sahel] (c) CanESM2 (d) CNRM (e) CSIRO (f) HadGEM2 (g) IPSL (h) 
MIROC5 (i) MPI (j) NCC (k) GFDL. Grey contours highlight regions of significant difference 
between observations and simulations at p≤0.1 based on a t test, applied for each grid-point.  

 



 

 
Figure 3: Distributional biases between models and CRU precipitation fields (1951-2005) (a) 
Multi-model mean K-S test statistic D (b) Models agreement on CDFs similarity at p ≤ 0.1 
significance level based on the KS-test, applied for each grid-point: darker colours correspond 
to higher model agreement on the similarity in CDFs. 
 



 
 
Figure 4: Long-term mean monthly historical maximum temperatures (1951-2005) (a) CRU 
observation (b) Multi-model mean. Long-term historical absolute bias between models and CRU 
maximum temperature (c) CanESM2 (d) CNRM (e) CSIRO (f) HadGEM2 (g) IPSL (h) MIROC5 (i) 
MPI (j) NCC (k) GFDL. Grey contours highlight regions of significant difference between 
observations and simulations (p≤0.1) based on a t test, applied for each grid-point. 



 

Figure 5: Long-term mean monthly historical minimum temperatures (1951-2005) (a) CRU 
observation (b) Multi-model mean. Long-term historical absolute bias between models and CRU 
minimum temperature (c) CanESM2 (d) CNRM (e) CSIRO (f) HadGEM2 (g) IPSL (h) MIROC5 (i) 
MPI (j) NCC (k) GFDL. Grey contours highlight regions of significant difference between 
observations and simulations (p≤0.1) based on a t test, applied for each grid-point. 



 
Figure 6: Distributional biases between models and CRU observations (1951-2005) (a-b) 
Maximum temperatures: (a) Maximum temperature multi-model mean K-S test statistic D (b) 
Models agreement on CDFs similarity at p ≤ 0.1 significance level based on the KS-test: darker 
colours correspond to higher model agreement on the similarity in CDFs (c-d) Minimum 
temperatures: (c) minimum temperature multi-model mean K-S test statistic D (d) Models 
agreement on CDFs similarity at p ≤ 0.1 significance level based on the KS-test, applied for each 
grid-point: darker colours correspond to higher model agreement on the similarity in CDFs. 



 
Figure 7: Distributional biases between bias-corrected (cross-validation time series) model 
simulations and CRU observations (a-c) Precipitation fields: (a) Precipitation multi-model mean 
K-S test statistic D (b) Models agreement on CDFs similarity at p ≤ 0.1 significance level based 
on the KS-test, applied for each grid-point (c) Summary of bias correction performances: white 
histograms refer to the average K-S test statistic D (D); Grey histograms refer to  the percentage 
of area with significantly similar CDFs (%Area) (d-f) Maximum temperature fields (g-i) Minimum 
temperature fields. 

 

 



 
 

Figure 8: Spatial distribution of hydrological model performances (KGE average for all periods) 
for calibration and validation periods. Overall average performances for GR2M calibration (a) 
validation (b). Overall average performances for IHACRES-CWI calibration (c) validation (d).  
Blue values indicate good performances, while red values indicate poor performances.  Grey 
polygons display the geographic boundaries of the major river basins. 



 
 

Figure 9: Performance of multi-timescale linear regression models based on K-fold cross-
validation, as determined using KGE criterion. Blue values indicate good performances, while 
red values indicate poor performances. Grey polygons display the geographic boundaries of 
the major river basins. 



 
 

Figure 10: Near-term (2020-2050) relative change in precipitation under RCP4.5 emission 
scenario (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 (g) MPI (h) NCC (i) 
GFDL. White colour corresponds to relative changes of ± 0.05. Grey contours highlight regions 
of significant changes (p≤0.1) based on a t test, applied for each grid-point. 
 



 
 
Figure 11: Near-term (2020-2050) absolute changes in maximum temperatures under RCP4.5 
emission scenario (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 (g) MPI 
(h) NCC (i) GFDL. Grey contours highlight regions of significant changes (p<0.1) based on a t 
test, applied for each grid-point. 



 
 

Figure 12: Near-term (2020-2050) absolute changes in minimum temperatures under RCP4.5 
emission scenario (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 (g) MPI 
(h) NCC (i) GFDL. Grey contours highlight regions of significant changes (p<0.1) based on a t 
test, applied for each grid-point. 



 
 

Figure 13: Near-term (2020-2050) relative change in discharge for the GR2M model under 
RCP4.5 emission scenario (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 
(g) MPI (h) NCC (i) GFDL. Black crosses highlight regions of significant changes (p≤0.1) based 
on a t test. 
 



 
 
Figure 14: Near-term (2020-2050) relative change in discharge for the IHACRES model under 
RCP4.5 emission scenario (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 
(g) MPI (h) NCC (i) GFDL. Black crosses highlight regions of significant changes (p≤0.1) based 
on a t test. 



 
 

Figure 15: Near-term (2020-2050) relative changes in discharge for the teleconnections-based 
linear regression model under RCP4.5 emission scenario (a) CanESM2 (b) CNRM (c) CSIRO (d) 
HadGEM2 (e) IPSL (f) MIROC5 (g) MPI (h) NCC (i) GFDL. Black crosses highlight regions of 
significant changes (p≤0.1) based on a t test. 
 

 

 

 

 

 

 

 

 



Supplementary materials 

 

S1: Long-term mean monthly historical precipitation (1951-2005) (a) CRU observations (b) 
CanESM2 (c) CNRM (d) CSIRO (e) HadGEM2 (f) IPSL (g) MIROC5 (h) MPI (i) NCC (j) GFDL . Grey 
contours highlight regions of significant difference between observations and simulations 
(p≤0.1) based on a t test, applied for each grid-point. 
 



 
 

S2: Seasonal distributional biases (K-S test statistic D) in historical precipitation between 
observation and climate model simulations for the period 1951-2005. White boxplots correspond 
to historical simulations and red boxplot correspond to bias-corrected (cross-validation) 
simulations. (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 (g) MPI (h) NCC 
(i) GFDL. At p≤0.1 the critical value is 0.1645.  



 
 

S3: Seasonal distributional biases (K-S test statistic D) in historical maximum temperatures 
between observation and climate model simulations for the period 1951-2005. White boxplots 
correspond to historical simulations and red boxplot correspond to bias-corrected (cross-
validation) simulations.  (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 (g) 
MPI (h) NCC (i) GFDL. At p≤0.1 the critical value is 0.1645. 



 
 

S4: Seasonal distributional biases (K-S test statistic D) in historical minimum temperatures 
between observation and climate model simulations for the period 1951-2005. White boxplots 
correspond to historical simulations and red boxplot correspond to bias-corrected (cross-
validation) simulations.  (a) CanESM2 (b) CNRM (c) CSIRO (d) HadGEM2 (e) IPSL (f) MIROC5 (g) 
MPI (h) NCC (i) GFDL. At p≤0.1 the critical value is 0.1645. 
 



 
 
S5: Hydrological model performances for different calibration and validation periods. a) Kling-
Gupta Efficiency; b) Nash-Sutcliffe Efficiency. Blue refers to GR2M and red to IHACRES-CWI. 

 



 
 
S6: Cumulated distribution functions of Hydrological model parameters for different calibration 
periods over the entire study area (a) GR2M X1 parameter (b) GR2M X2 parameter (c) IHACRES-
CWI tw parameter (d) IHACRES-CWI f parameter (e) IHACRES-CWI scale parameter.  
 



 
 
S7: Relative change in streamflow by mid-21st simulated by both hydrological models (a) GR2M 
(b) IHACRES-CWI.  
 



 
 
S8: Relative change in streamflow by mid-21st simulated by the multi-timescale teleconnections-
based regression model. 
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