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Abstract 

This paper proposes the estimation of parameters and symmetrical components of unbalanced grid using adaptive 
observer framework. Recent adaptive observers proposed in the literature doesn’t employ any gain normalization in 
their frequency estimation loop. This can be problematic in the presence of large voltage dip. This paper proposes 
a solution to overcome this limitation using a novel gain normalized - frequency-locked loop (GN-FLL). Technical 
details of GN-FLL, stability analysis and tuning are provided in this paper. Comparative experimental results with 
adaptive Luenberger observer, second-order generalized integrator - phase-locked loop (SOGI-PLL) and enhanced PLL 
(EPLL) are provided to demonstrate the effectiveness the proposed technique in the single-phase case. Comparative 
experimental results with double SOGI-FLL (DSOGI-FLL) and adaptive notch filter (ANF) are provided to demonstrate 
the effectiveness the proposed technique in the three-phase case. 

Keywords: Frequency-Locked Loop (FLL), Three-Phase Sequence Detection, Phase Estimation, Frequency Estimation 

1. Introduction 

In the control, synchronization and monitoring of grid-
connected power converters, parameters of the grid volt­
age specially phase, frequency, symmetric components etc. 
play a very important role [1, 2]. This is a challenging topic 
specially in the context of increased renewable energy pen­
etration in the traditionally unidirectional power grid. 

In the context of grid integration of renewable energy 
sources, grid synchronization plays a vital role. There are 
many types of grid synchronization algorithms. Among 
them, grid synchronizing current controller is a popular 
technique for both single-phase and three-phase systems 
[3, 4]. In the single-phase case, to generate the reference 
current, the knowledge of instantaneous phase of the grid 
voltage signal is required. In the three-phase case, in addi­
tion to the instantaneous phase, sequence components are 
also required to control the power flow for unbalanced grid. 
As a result, accurate estimation of grid voltage parameters 
can be considered as a vital element of grid synchroniza­
tion algorithm. This has led to numerous results on this 
topic in the literature. 

There are several results available in the literature on 
the parameter estimation of grid voltage signal. The types 
of techniques that are proposed use a wide variety of meth­
ods. Some of the techniques are: open or pseud open-
loop technique [5], frequency domain methods (e.g. dis­
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crete Fourier transform [6]), maximum-likelihood estima­
tion (MLE) [7–9], singular-value decomposition (SVD) [10], 
linear and nonlinear least squares [11, 12], linear and non­
linear phase-locked loop (PLL) [6, 13–27], quadrature sig­
nal generator-based frequency-locked loops (FLL) [28–33], 
various variants of Luenberger observer [26, 34–36] etc. 

Based on the way the instantaneous phase is estimated, 
the above techniques can be broadly classified into two 
categories. In the first category, the techniques use a 
proportional-integral (PI) type (including various variants) 
low pass loop filter to estimate the frequency. Then by 
taking the time-integration of the angular frequency, the 
instantaneous phase is estimated. In the second category, 
the phase is estimated directly, by using quadratic signals 
through arctangent function. Since low-pass filter intro­
duces delay, the transient response of techniques that use 
PI-type loop filter can be slow. The transient response 
can be made arbitrarily fast, however, that generally gives 
second-order type response in the case of frequency jump. 
That is why in this work, we focus on techniques that use 
direct phase estimation from the fast transient response 
perspective. 

As mentioned above, some of the direct phase estima­
tion techniques are: linear and nonlinear harmonics oscil­
lators (including various variants) [28, 31, 33], various vari­
ants of Luenberger observer [34–36] etc. These techniques 
works by generating quadrature signals from the measured 
grid voltage. Out of these techniques, Luenberger observer 
type techniques recently became very popular. From the 
theoretical point of view, they can provide global asymp-
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Nomenclature 

Δω Frequency deviation from the nominal value A, C State and output matrix 
η, ζ State vector x in the transformed coordinates J Jacobian matrix 
Γ FLL gain of SOGI-FLL K, L Observer gain matrices 
.̂, .̃ Estimated value and estimation error M Amplitude of grid voltage signal 
κ Unknown grid frequency coefficient 

q 90 ° phase-shifting operator 
T , B Non-singular coordinate transformation matri-

V + Positive-sequence of Vabcabcces 
V − Negative-sequence of Vabcω, ωn Actual and nominal frequency of grid voltage abc 

V 0 Zero-sequence of Vabcdiag Diagonal matrix abc 

ϕ,θ Phase and instantaneous phase of grid voltage x State vector of grid voltage dynamics 

Vv Phasor notation of Vabc y Single-phase grid voltage signal 

totic stability unlike oscillator based techniques. From the 
practical point of view, they provide fast and accurate es­
timation of grid voltage parameters. However, they do not 
employ any gain normalization in their frequency identi­
fication loop. This can be problematic in the presence of 
large voltage sag (e.g. 50% dip). Many grid codes around 
the world compels the renewable energy sources to be con­
nected to the grid even when the grid voltage drops well 
beyond the nominal operating limit. This is commonly 
known as low-voltage-ride-through (LVRT) capability. In 
the low voltage context, if no gain normalization is em­
ployed in the frequency estimation block, the settling time 
will be significantly higher than that of nominal voltage 
condition (cf. Sec. 2 for a motivating example). This 
motivates the current work. In this work, we propose a 
novel gain normalized - frequency locked loop in the adap­
tive observer framework. Thanks to the gain normaliza­
tion, the proposed observer converges much faster than ob­
server that doesn’t use gain normalization. In addition, we 
also propose the fast detection of the symmetrical compo­
nents of three-phase systems using the developed observer. 
These are the main contributions of this paper. 

The rest of the paper is organized as follows: Sec. 2 
gives a motivating example to explain the idea behind the 
proposed work while Sec. 3 describes in the detail the 
proposed approach. Extension of the proposed observer 
for three-phase sequence detection is given in Sec. 4. Ex­
perimental results are given in Sec. 5 and finally, Sec. 6 
concludes this paper. 

2. Motivating Example 

Let us consider the grid voltage signal given by 

y = M sin (ωt + ϕ) (1)� �� � 
θ 

where amplitude, angular frequency and phase are given 
by M, ω and θ respectively. If we consider y = x1 and 
ẏ = x2 = Mω cos(θ), then the dynamics of the grid voltage 
signal in the state-space form can be written as: 

¯ẋ = Ax (2) 
¯y = Cx (3) 

where Ā =

 
0 

−ω2 
1 
0

 
, and C̄ =

 
1 0

 
. Since the 

frequency ω is unknown with a known nominal value ωn = 
100π or 120π, the unknown frequency can be represented 
as ω = 

√ 
κωn with κ = ω2/ω2 . To estimate the parameters n

of system (2) -(3), several adaptive observer based solution 
has been recently proposed in the literature [26, 34–36]. 
Most of them use non-singular transformation to facilitate 
the adaptive observer design. As a representative example, 
let us consider the following non-singular transformation 
[35]:   T 

η = η1 η2 = T x (4)    ωnβ1 −β2where T = / ω3 β1
2 + ω3 κβ2 , β1 > 0n n 2ω2 κβ2 ωnβ2n

and β2 > 0 are tuning parameters. In η− coordinate, 
system (2) -(3) can be written as: 

η̇ = Aη (5) 
y = Cη (6)   

ĀT −1 ¯ C̄T −1 ω2where A = T = A and C = = ωn .n 
For system (5) -(6), the following frequency adaptive Lu­
enberger observer has been designed in [35]: 

η̇̂ = Âη̂ − K (y − Cη̂) (7) 

κ̇ = −γω2 η̂1 (y − Cη̂) (8)n 
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Figure 1: Simulation results for the motivating example. 

3. Gain Normalized Adaptive Observer 

In this Section, we use the same dynamic model (2) -(3) 
as given in Sec. 2. However, to introduce gain normaliza­
tion in the frequency estimation part, let us assume that 
the unknown frequency is represented by ω = ωn + Δω 
where Δω represents the deviation from the nominal fre­
quency. With respect to the new representation of the 
unknown frequency, let us consider the following non sin­
gular transformation 

ζ = Bx (9) 

where B = 
ω −1 

/ 2ω3 . In the ζ−coordinate, sys­
ω2 ω 

tem (2) -(3) can be written as: 

ζ̇ = Aζ (10) 
y = Cζ (11) 

where A = BĀB−1 = Ā and C = C̄B−1 = [ω2 ω]. For 
system (10) -(11), the following gain normalized adaptive 
observer - frequency-locked loop (GN-FLL) is proposed: 

  
˙
ζ̂ = Âζ̂ + L y − Ĉζ̂ (12)where ˆ represents the estimated value and the observer  T−1 

   
gain, K 0 and γ− (ωn − K2β2) ,K2 0> >= λ(l1 + l2)ω̂3ζ̂1 y − Ĉη̂
is the frequency estimation tuning parameter. The fre- Δ̇ω = − (13) 

2 2 
-

quency identification part given in Eq. (8) resembles the (ζ̂1 2ˆ +(ζ̂2 2ˆω3) ω2)
frequency-locked loop (FLL) proposed in [28]. The FLL of 
[28] is obtained using special frequency domain property of 
the quadrature axis signal and the estimation error. The 
FLL (8) on the other hand is obtained with the help of 
Lyapunov function given in [35]. It is to be noted here 
that unlike [28], Eq. (8) doesn’t employ any gain normal­
ization i.e. using the estimated amplitude of the signal to 
normalize the right-hand side of Eq. (8). As such any grid 
synchronization algorithm that employs the above adap­
tive observer may take more time to converge in the pres­

2ω̂2 

Twhereˆ represents the estimated value, L = [l1 l2] is the 
observer gain and λ > 0 is the frequency identification 
gain. 

Remark 1. During the estimation process, the states ζ̂1, 
and ζ̂2 may become zero. This will lead to a division by 
zero situation in (13). To overcome this issue, the denom­
inator of (13) has been implemented as⎛ ⎞      

ence of voltage sag. Moreover as low-voltage-ride-through 

max ⎜⎝ ˆ ω3 ˆ ω2ζ12ˆ + ζ22ˆ

2ω̂2 
(LVRT) capability is a desired (or compulsory, depending 
the local regulations) property of any grid synchroniza­

, ε ⎟⎠ 

tion control algorithm, this issue needs to be addressed. 
To illustrate this fact, let us consider a simulation study 
with 50% voltage sag. Parameters of the Luenberger Ob­
server (7)-(8) are selected as K = −[0.0027 1.2]T , γ = 0.05 
As a comparison tool, we have selected gain normalized √ 
SOGI-FLL with parameters as k = 2 and Γ = 50. Sim­
ulation result is given in Fig. 1. By considering ±0.1Hz. 
band, SOGI-FLL took ≈ 55msec. to converge while LO 
took ≈ 84msec. This example clearly demonstrates the ef­
fect of gain normalization and thus motivates the current 
work of developing gain normalized adaptive observer. De­
tails of the proposed development is given in the following 
Section. 

where E > 0 is a very small positive constant. 

From the estimated states ζ, ˆ the state variables in the 
x− coordinate can be obtained using the following rela­
tionship: 

ω̂2 ω̂
x̂ = ζ̂ (14)−ω̂3 ω̂2 

B̂−1 

From the estimated states, the instantaneous phase θ can 
be estimated as: 

θ̂ = arctan (ω̂x̂1/x̂2) (15) 
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A major difference between the Luenberger observer and 
the proposed GN-FLL is that GN-FLL uses the estimate 
amplitude of the signal in the right-hand side of the FLL 
equation (13). To check this fact, i.e. the denominator 
of Eq. (13) represents the amplitude, let us consider the 
steady-state case i.e. ω̂ = ωn. In that case, 

ζ = Bx (16) 

ζ1 1 ω −1 M sin (θ)
= (17)

ζ2 2ω3 ω2 ω Mω cos(θ) 

ζ1 1 M sin(θ) − M cos(θ)
= (18)

ζ2 2ω2 ω {M sin(θ) + M cos(θ)} 

ζ1 1 x1 − x2/ω= (19)
ζ2 2ω2 x1ω + x2 

Using the values of ζ1 and ζ2 given in Eq. (18)-(19) , the 
denominator of Eq. (13) can be written as: 

2 2 
ˆ ˆζ12ω̂3 + ζ22ω̂2 

(20)
2ω2  
2 2

(x1ω − x2) + (x1ω + x2)
= (21)

2ω2 -
2x2

1ω
2 + 2x2

2 = (22)
2ω2  

= M2 sin2 (ωt) + M 2 cos2 (ωt) (23) 

= M (24) 

The above calculations show the gain normalization prop­
erty of the proposed GN-FLL unlike the existing Luen­
berger observers that use the same dynamical model (2) 
-(3). 

3.1. Stability analysis of GN-FLL 

To analyze the stability of the proposed GN-FLL, we 
use the linearization based approach. Before further de­
velopment, let us define the observation error as, ζ̃ = ζ − ζ̂. 
Then the dynamics of the observation error is given as 

˜ ˆζ
˙
= ζ̇ − ζ˙ (25)   

ˆ= Aζ − Aζ̂ + L y − Ĉζ̂ (26)    
˙
ζ̃ = (A − LC) ζ̃ + A − Â − L C − Ĉ ζ̂ (27) 

Similarly, the FLL dynamics (13) in terms of observation 
error ζ̃ can be written as: 

  
ω3 ̂ C ̃ C − ˆ ˆ−λ(l1 + l2)ˆ ζ1 ζ + C ζ

Δ̇ω = - (28) 
2 2

(ζ̂12ω̂3) +(ζ̂22ω̂2)
2ω̂2 

Table 1: Routh-Hurwitz table for polynomial (32). 
2s 1 ω2 (l2 + 1 − l1ωn)n
1s l1ω

2 
n + l2ωn 0 

0s ω2 (l2 + 1 − l1ωn)n 0 

Closed loop error dynamics of the GN-FLL is given by 
(27)-(28). Near the nominal operating condition, the equi­
librium point is given by:     

ζ, ˜ Δω = ζ̃ = 0, Δω = 0 (29) 

The Jacobian matrix of the closed-loop error dynamics of 
the GN-FLL evaluated at the desired equilibrium is given 
by: 

   ⎡ 
−l1ω

2 
n 1 − l1ωn l1 

⎤ 

J ζ̃, Δω = ⎣ −ω2 (l2 + 1) n −l2ω l2 ⎦ (30) 
0 0 0 

To determine the stability of the Jacobian matrix, let us 
consider the characteristics polynomial of (30) given below: 

2 s 3 + (l1ω
2 + l2ωn)s + ω2 (l2 + 1 − l1ωn)s = 0 (31)n n

If the elements of the gain Matrix L are selected in a way 
such that l2 +1 ≥ l1ωn, then all the coefficients of polyno­
mial (31) are non-negative. The stability of the polynomial 
(31) can be obtained through Routh-Hurwitz test. For this 
purpose, polynomial (31) can be rewritten as: 

s 2 + (l1ω
2 + l2ωn)s + ω2 (l2 + 1 − l1ωn) = 0 (32)n n

To show that the polynomial (32) does not have any roots 
in the right-half plane, let us consider the Routh-Hurwitz 
table given in Table 1. From Table 1, it can be seen that 
if l2 + 1 ≥ l1ωn, all the elements in the first column of 
the Routh-Hurwitz table are positive. This implies no sign 
change, as a result, no roots lie in the right-half plane. This 
together with the root at origin implies marginal stability 
of the closed-loop system. As such, the local stability of 
the GN-FLL can be established. 

3.2. Gain tuning of GN-FLL 

Proposed GN-FLL has two parameters to tune, gain 
matrix, L and the frequency estimation parameter λ. To 
tune the gain matrix L, pole placement can be the solution. 
Let us assume that the desired closed-loop poles are p1 

and p2. Then the elements of L can be calculated using 
the following formula: 

(s − p1)(s − p2) = det {sI2 − (A − LC)} (33) 

By equating the coefficients on both side of the polyno­
mial (33), the following formulas can be obtained for gain 
elements: 

4 
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Figure 2: Frequency step-response. 

−(p1p2 + p1ωn + p2ωn − ω2 )nl1 = (34)
2ω3 

n 

−(p1ωn − p1p2 + p2ωn + ω2 )nl2 = (35)
2ω2 

n 

Tuning the parameter λ is complicated since the FLL dy­
namics (13) is nonlinear. In order to use the tools from 
linear control system, one solution is to approximate the 
FLL dynamics. For that purpose, we have performed a 
frequency step test to obtain the approximated linear sys­
tem. From the step-response, it could be found that the 
following linear system can be used to approximate the 
frequency dynamics: 

λωn
Gf (s) = (36)

s + λωn 

For the value of λ = 0.2, the response of the FLL and 
the model (36) is given in Fig. (2). Since λ = 0.2 gives 
a close enough (sufficient for gain tuning) approximation 
of the nonlinear dynamics of the FLL, this value has been 
considered all throughout this work. It is to be noted here 
that eq. (36) represents a first-order approximation of the 
highly nonlinear FLL dynamics. As such modeling error is 
inevitable. However, the objective here is to simplify the 
gain tuning, not stability analysis. As such, any modeling 
error introduced by eq. (36) has no impact on the stability 
of the proposed GN-FLL. FLL dynamics is heavily influ­
enced by λ. through extensive simulation study, we found 
that 0 < λ < 1 can be considered as a good range for λ. 

The proposed gain normalized adaptive observer has 
two parts. The first part generates quadrature signal from 
the measured grid voltage. In addition, a filtered copy of 
the grid voltage signal is also generated. In the second 
part, a frequency locked-loop (FLL) is used to estimate 
the unknown frequency of the grid voltage signal. FLL 
part exploits special phase relationship between the output 
(i.e. in-phase) estimation error and the quadrature-phase 
signal. In the presence of large voltage sag, the output 
estimation error can be significantly small. This will slow 
down the unknown frequency estimation dynamics. To 
overcome this problem, a gain normalization procedure is 

Figure 3: Block diagram of the proposed GN-FLL. 

used. Gain normalization procedure uses the estimated 
amplitude in the frequency estimation dynamics similar 
to per unit measurement typically used in power system 
calculation. This significantly enhances the dynamics of 
the frequency estimation loop despite large voltage sag. 

To implement the proposed GN-FLL, Eq. (12), (13), 
(14) and (15) are required. Block diagram representation 
is given in Fig. 3. 

4. GN-FLL for Three-Phase Applications 

The proposed GN-FLL can be applied to extract the 
symmetrical components of three-phase systems. For this 
purpose, let us consider the unbalanced three-phase grid 
voltage 

= V + + V − + V 0Vabc abc abc (37)abc 

where the positive, negative and zero sequence voltages 
are given by: 

  
+ 2πk 

V + = v sin ωt + ϕ+ − (38)abc abc 3  
2πk −V − = v sin ωt + ϕ− + (39)abc abc 3  

0V 0 = vabc sin ωt + ϕ0 (40)abc 

where k = 0, 1, 2 for individual phases. Then the sym­
metrical components can be extracted using the following 
relationship [37]: 

V + = T2Vabc + T1qVabc (41)abc 

V − = T2Vabc − T1qVabc (42)abc 

V 0 = {diag (1, 1, 1) − 2T2} Vabc (43)abc 

where diag (1, 1, 1) represents the 3 × 3 diagonal matrix 
−jπ/2with diagonal elements being 1, q = e is 90 ° phase-

shifting operator and the matrices T1 and T2 are given as: 
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⎡ ⎤ ⎡ ⎤ 
0 1 −1 2 −1 −1 

T1 = √ 
1 ⎣ −1 0 1 ⎦ , T2 =

1 ⎣ −1 2 −1 ⎦ 
2 3 6

1 −1 0 −1 −1 2 
(44) 

GN-FLL generates quadrature signals, GN-FLL can be 
easily applied to estimate the symmetrical components us­
ing Eq. (41)-(43). As the system has only one frequency 
to estimate, so only one FLL is needed. 

4.1. GN-FLL vs Luenberger observer : a comparison 

The proposed GN-FLL is motivated by Luenberger type 
observer-based approach [34–36]. Existing Luenberger ob­
servers do not employ any gain normalization scheme. This 
can be problematic in the presence of large voltage sag/swell. 
According to grid codes, many countries now demand grid 
connected converters (GCC) to have low voltage ride through 
capability (LVRT). In this context, any controller for GCC 
should be able to function during large voltage sag. If 
gain normalization procedure is not included inside the 
PLL/FLL block of the controller, the controller will take 
much longer to stabilize. This is not desirable. As such, 
in this paper, we propose GN-FLL inspired by Luenberger 
observer. Existing Luenberger observers are designed ei­
ther for single-phase [35, 36] or three-phase [34]. The pro­
posed GN-FLL can be easily applied to single and three­
phase cases. In the three-phase case, the same single-phase 
structure case can be applied. Only few additional trans­
formations need to be used. This clearly distinguishes the 
proposed technique w.r.t. existing Luenberger observer-
based techniques. Moreover, we have provided construc­
tive rules for gain tuning using small-signal modeling. This 
is another contribution of the proposed work. 

5. Results And Discussions 

5.1. Simulation Results 

5.1.1. Single-Phase 
To demonstrate the suitability of the theoretical devel­

opments proposed in Sec. 3 and 4, numerical simulation 
studies are considered here. For the simulation study, a 
sampling frequency of 10kHz is considered with the nomi­
nal frequency being ωn = 120π. As a comparison tool, we 
have selected the Luenberger observer (LO) as described 
in Sec. 2, SOGI-PLL [19] and EPLL [18]. All the se­
lected techniques work by generating quadrature signals 
(QSG). In actual grid voltage signal, various abnormali­
ties are present e.g. sub-harmonics (SH), inter-harmonics 
(IH) and DC bias. The selected techniques do not consider 
these disturbances explicitly. In this Section, robustness 
of the selected techniques will be considered. To make the 
article concise and easy to read, standard tests i.e. fre­
quency and amplitude step change, voltage sag etc. will 
be considered in Sec. 5.2 through experimental study. 

Figure 4: Harmonic distortion results of simulation harmonics test. 

5.1.2. Harmonics test 
In this test, harmonics are suddenly added to the grid 

voltage signal. The selected harmonics signal comprised 
,5thof 3rd ,7th and 11th order harmonics, sub-harmonics of 

30Hz and inter-harmonics of 180Hz, with each having an 
amplitude of 0.03p.u. This implies a total harmonic dis­
tortion (THD) of 7.35%. Harmonic distortion generated 
by the selected techniques for this test is given in Fig. 
4 while the estimated phase and frequency are given in 
Fig. 6 (a). From the THD results of Fig. 4, it can be 
seen that the proposed GN-FLL has very good harmonic 
filtering capability. It has a THD of 3.00% while SOGI­
PLL and LO has a THD of 3.24% and 3.27%, respectively. 
This results in ≈ 60% reduction in harmonics for GN­
FLL while ≈ 55% for LO and SOGI-PLL. The proposed 
GN-FLL does not use any loop-filters unlike EPLL and 
SOGI-PLL, yet the THD of GN-FLL is almost identical 
to EPLL which is the best performing technique in terms 
of THD. Moreover, GN-FLL produced significantly less 
distortion with respect to sub-harmonics. This property 
is very important if we want to use it inside any grid-
connected converter controller. In today’s power system, 
the contribution of LED lighting and various other non­
linear loads are increasing. As such the contribution of 
sub-harmonics and inter-harmonics are increasing. There 
are many techniques available in the literature to filter out 
odd-harmonics. However, filtering out sub-harmonics and 
inter-harmonics are not straightforward. GN-FLL can be 
very useful in this regard. In term of frequency estimation, 
GN-FLL has better performance w.r.t. other techniques 
while the phase estimation error of GN-FLL is similar to 
EPLL and LO. Fig. 4 and 6(a) show that the proposed 
GN-FLL has very good filtering property. 

5.1.3. DC bias test 
In this test, DC bias of 0.2p.u. has suddenly been added 

to the grid voltage. Controllers for grid-connected invert­
ers are implemented in general in micro-controller, DSP, 
etc. The feedback of the grid voltage signal is obtained 
through an analog-to-digital converter (ADC). This pro­
cess may add measurement offset. Moreover, DC offset 
may appear as a result of fault or transformer saturation. 
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Figure 5: Histogram of noise distributions. 

As such it may not be avoided in real-life. This test con­
siders the challenging situation involving DC offset. Simu­
lation results are given in Fig. 6(b). Fig.6(b). shows that 
the proposed GN-FLL and EPLL have very good perfor­
mance in terms of frequency estimation w.r.t. LO and 
SOGI-PLL. The ripple magnitude for GN and EPLL are 
bounded within a range of 3Hz while SOGI-PLL and LO 
have significantly higher ripple magnitude. However, in 
term of phase estimation, SOGI-PLL performed slightly 
better than that of the GN-FLL where as EPLL and LO 
performed not so good. The ripple magnitude of GN-FLL 
and SOGI-PLL are almost half of EPLL and LO. This test 
demonstrates that the proposed GN-FLL can be useful de­
spite the presence of large amplitude DC bias in the grid 
voltage signal. 

5.1.4. Noise test 
In this test, Gaussian measurement noise (zero mean 

and variance 10−4) is suddenly added to the grid volt­
age signal. Histogram plot of the noise signal is given in 
Fig. 5. Simulation results are given in Fig. 6(c). From 
the estimated frequency in Fig. 6(c), it can be seen that 
GN-FLL and EPLL performs significantly better than LO 
and SOGI-PLL. The frequency estimated by GN-FLL and 
EPLL has the ripple bounded by ±0.05Hz while for SOGI­
PLL and LO, the ripple magnitude is more than two times 
than that of other techniques. In term of phase estima­
tion error, SOGI-PLL showed better performance, how­
ever, GN-FLL showed better performance w.r.t. EPLL 
and LO. GN-FLL’s ripple magnitude is slightly higher than 
that of the best performing technique SOGI-PLL. If we 
consider both frequency and phase estimation, GN-FLL 
can be considered as the overall best technique. 

5.1.5. Three-phase 
All the selected techniques in Sec. 5.1 work by gener­

ating quadrature signals. However, there are other non-
QSG based PLL techniques available in the literature e.g. 
non-adaptive moving average filter (NMAF)-PLL (NMAF­
PLL) [38], Clarke transformation-based discrete Fourier 
transform (CT-DFT) [39]. It is to be noted here that the 
purpose of GN-FLL for three-phase case is to estimate se­
quences. CT-DFT and NMAF-PLL are more suitable to 

estimate the phase and frequency. They were not designed 
to estimate the positive, negative, and zero sequence volt­
ages of an unbalanced three-phase grid voltage system. 
Although it is to be mentioned here that through proper 
modification, it is possible to detect the sequences of three­
phase signal through CT-DFT and NMAF-PLL. However, 
this is beyond the scope of the current work. In this work, 
our focus is on FLL/PLL type techniques, that is why 
NMAF-PLL is considered for further analysis. 

To test the performance of GN-FLL and NMAF-PLL, 
an unbalanced grid voltage is considered. Before the fault, 
the symmetrical components are set as Vv + = 1∠0 ° , Vv − = 

v0, V 0 = 0. After the fault, the grid became unbalanced 
with Vv + = 0.5∠30 ° , Vv − = 0.3∠ − 50 ° , Vv 0 = 0.2∠0 °. Un­
balance fault is not so uncommon for three-phase system. 
As such this test scenario is very realistic and at the same 
time very challenging. The results of the simulation are 
given in Fig. 7. Figure 7 demonstrates that despite the 
unbalanced fault, the frequency estimation error converged 
in ≈ 0.75 cycle whereas NMAF-PLL took ≈ 3 cycles. The 
peak overshoot for NMAF-PLL is almost 5Hz where as it 
is less than 0.5Hz for GN-FLL. GN-FLL doesn’t involv­
ing any averaging calculation whereas NMAF-PLL does 
involve averaging. This will add additional computational 
cost w.r.t. GN-FLL. This concludes on the suitability of 
GN-FLL for unbalanced three-phase system. 

5.2. Experimental Results 

To validate the results of the proposed GN-FLL, dSPACE 
1104 board based hardware-in-the-hoop (HIL) experimen­
tal studies have been considered in this Section. For the 
practical implementation, a sampling frequency of 10kHz 
is considered. Proposed GN-FLL has two parameters to 
tune. First to tune the observer gain, let us consider 
the desired closed-loop poles as p1 = −1.5ωn + jωn and 
p2 = −1.5 − jωn with ωn = 120π. Then applying the 
formula (34) and (35), the observer gain is found to be 

T 
L = 9.9472 · 10−4 2.6250 . Since l2 + 1 > l1ωn, the sta­
bility is assured as discussed in Sec. 3.1. The frequency 
identification parameter is set to be λ = 0.2 as discussed in 
Sec. 3.2. As a comparison tool, we have selected the Lu­
enberger observer (LO) as described in Sec. 2, SOGI-PLL 
[19] and EPLL [18]. The parameters of LO are selected 
the same as in Sec. 2, SOGI-PLL parameters are selected 
as: k = 2.1, kp = 137.5 and ki = 7878 according to the 
optimized values given in [40], the parameters of EPLL are 
selected as: µ1 = µ3 = ωn and µ2 = ω2 /8 according the n

optimized values given in [18]. 
To test the algorithms, the following test conditions 

have been considered: 

1. Test - I: −0.4p.u. change in amplitude 
2. Test - II: +5Hz. change in Frequency 
3. Test - III: −45 ° change in Phase 
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(a) Harmonics test. 

(b) DC bias test. 

(c) Noise test. 

Figure 6: Simulation results for the single-phase case: (a) harmonics test, (b) DC bias test, and (c) noise test. 
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Table 2: Comparative time domain performance summary. 

Characteristics Test-I: Amplitude Change 
GN LO SOGI EPLL 

Test-II: Frequency Change 
GN LO SOGI EPLL 

Test-III: Phase Change 
GN LO SOGI EPLL 

Settling time 30 65 55 58 28 27 46 61 32 30 53 69 
(±0.1Hz.)(ms) 
Settling time 
(±0.1 °)(ms) 

5 32 58 26 12 10 35 46 19 17 44 52 

Frequency 1.2 3 4.4 1.3 0 0 2 0 8.8 15.1 13.6 4.2 
overshoot (Hz.) 
Instantaneous 7.3 16.15 8.6 10.8 5.5 6 11.9 8.8 NA NA NA NA 

phase overshoot (°) 
*GN = GN-FLL, SOGI= SOGI-PLL, NA=Not applicable, since the maximum instantaneous phase error is −45 °, phase 
overshoot is omitted for Test-III. 

Test-I: −0.4p.u. Change in Amplitude 

Figure 7: Simulation results for the three-phase unbalanced case. 

Figure 8: Experimental results for Test-I. X-axis scale: 10msec./Div. 
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Test-III: −45 ° Change in Phase 
Test-II: +5Hz. Change in Frequency 

Figure 9: Experimental results for Test-II. X-axis scale: 
10msec./Div. 

Figure 10: Experimental results for Test-III. X-axis scale: 
10msec./Div. 
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5.3. Test - I: Amplitude Step Test 
To test the performance of the algorithm in the context 

of low-voltage-ride-through capability situation, a step change 
of −0.4p.u.in amplitude is considered. Experimental re­
sults for this test scenario are given in Fig. 8. From Fig. 
8, it can be seen that the proposed GN-FLL converged 
much faster than the other techniques. The frequency es­
timation error converged two times faster than the next 
best technique SOGI-PLL wheres phase estimation error 
converged 5 times faster than the next best best technique 
EPLL. GN-FLL also outperformed the comparative tech­
niques in terms of peak overshoots for phase and frequency 
estimation error. The experimental results clearly demon­
strate the benefit of the proposed GN-FLL. 

5.4. Test - II: Frequency Step Test 
In this test, initially the frequency of the grid voltage 

is set to 60Hz. Suddenly a discontinuous jump of +5Hz. 
is applied. Comparative experimental results are given in 
Fig. 9. Fig. 9 shows that in terms of frequency esti­
mation error, GN-FLL and LO have similar convergence 
time where as SOGI-PLL and EPLL has much higher con­
vergence time. Except SOGI-PLL, the other techniques 
converged with no peak frequency overshoot. Similar to 
frequency estimation error, GN-FLL and LO have similar 
convergence time for phase estimation error as well. How­
ever, the convergence time is more than 3 times for SOGI­
PLL and EPLL. This test demonstrates the suitability of 
adaptive observer based technique. 

5.5. Test - III: Phase Step Test 
In this test, a sudden phase jump of −45 °is applied. 

Comparative experimental results for this test are given 
in Fig. 10. The results are very similar to the other test 
cases. GN-FLL and LO have similar performances while 
SOGI-PLL and EPLL have slower responses than that of 
the adaptive observer based techniques. One point to note 
here that although the convergence time is very similar for 
GN-FLL and LO, however, the peak frequency overshoot 
is two times more for LO with respect to GN-FLL. This is 
a clear indication of the effectiveness of GN-FLL. 

A summary of the time domain performances in these 
test cases are given in Table 2. From Fig. 8, 9 and 10, the 
advantage of the proposed GN-FLL is very clear. GN-FLL 
uses gain normalization which is very useful specially in the 
case of voltage sag i.e. Test-I. The frequency estimation 
error for GN-FLL converged in ≈ 30msec., whereas for un­
normalized Luenberger observer, it took ≈ 65msec. In all 
the test cases, GN-FLL performed similar or better than 
LO. It outperformed SOGI-PLL and EPLL in almost every 
cases. This demonstrated the effectiveness of the GN-FLL 
for single-phase systems. 

5.6. Three-Phase Unbalanced Grid 

To test the GN-FLL for the three-phase system, an un­
balanced grid voltage is considered. As comparison tech­
niques, in this Section, we have chosen double SOGI-FLL 
(DSOGI-FLL) [41] and adaptive notch filter (ANF) [42]. 
Both ANF and DSOGI-FLL are designed for unbalanced √ 
grid. The parameters of DSOGI-FLL are chose as, k = 2 
and γ = 50. These values are suggested in [41]. The pa­√ 
rameters of ANF are selected as γ = 18000 and ζ = 1/ 2 
as recommended in [42]. 

We assume that unbalanced fault occurred in the grid. 
Before the fault, the symmetrical components are set as 
Vv + = 1∠0 ° , Vv − = 0. After the fault, the grid became 
unbalanced with Vv + = 0.75∠ − 30 ° , Vv − = 0.25∠110 °. In 
addition, the grid frequency also changed from 60Hz. to 
62Hz. Considered grid voltage and estimated frequencies 
by the comparative techniques for the unbalanced grid 
are given in Fig. 11. Moreover, the estimated positive 
and negative sequence voltages are given in Figs. 12 and 
13. Figure 11 demonstrates that despite the unbalanced 
fault and the frequency jump, the frequency estimation 
error converged in ≈ 1.5 cycles for the proposed GN-FLL 
while it took ≈ 2.8 cycles for DSOGI-FLL and ≈ 4 cycles 
for ANF. This shows that the proposed GN-FLL is very 
suitable to track unknown frequencies even in unbalanced 
grid voltages condition. Moreover, the estimation for both 
positive and negative sequence components also converged 
very rapidly as shown in Figs. 12 and 13. This concludes 
the effectiveness of GN-FLL for unbalanced three-phase 
system w.r.t. DSOGI-FLL and ANF. 

5.7. Applications to Inverter Control 
In this work, we have proposed a gain normalized adap­

tive observer for three-phase systems. This technique can 
be used to extract the symmetrical components of the un­
balanced grid voltage signals. This is very useful to syn­
chronize grid connected inverters in unbalanced grid. As 
detailed in Sec. VI.B of [43], in the presence of unbal­
ance fault, grid-connected converters can synchronize with 
the fundamental frequency positive sequence (FFPS) grid 
voltages. The proposed GN-FLL is capable to extract the 
FFPS voltages. As such GN-FLL can become an integral 
part of grid-connected inverter controller. The algorithm is 
computationally simple and easy to implement. As such, 
it can be easily implemented inside the existing micro-
controller or DSP-based controller without any additional 
cost. 

6. Conclusion and Future Work 

This paper has proposed a novel gain normalized adap­
tive observer for the parameter and sequences estimation 
of unbalanced grid. The gain normalization helps to achieve 
fast convergence in the presence of large voltage sag unlike 
existing alternatives. Comparative experimental results 
demonstrated the benefit of the proposed solution. 
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Figure 11: Experimental results for unbalanced grid with frequency 
step change. X-axis scale: 10msec./Div. 

The main limitation of the proposed technique is it’s 
harmonic filtering capability. Same goes for any Luen­
berger observer-based technique. Existing PLL-based tech­
niques employ proportional integral (PI) controller to es­
timate the frequency. PI is a low-pass type filter. This 
adds harmonic filtering property to PLL-based technique, 
however, at the cost of slow dynamic response. FLL-
based techniques e.g. proposed technique, estimate the 
frequency directly without any filtering. As a result, the 
fast dynamic response comes at the cost of lower harmonic 
filtering property. To overcome this issue, various tech­
niques have been reported in the literature. One popu­
lar approach in this regard is to use frequency-adaptive 
pre-filtering technique. This will be considered in a future 
work. The proposed observer can only guarantee local sta­
bility i.e. in the close vicinity near the equilibrium. From 
the theoretical point of view, global stability is more inter­
esting. This issue will also be considered in a future work. 
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