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Abstract 

This study explores how climatic background or long-term thermal history influences 

individuals’ in-the-moment thermal comfort experiences. This investigation was conducted at 

eight mixed-mode university buildings in United Kingdom whose occupants had diverse 

thermal histories. The research design consisted of simultaneous environmental 

measurements, a questionnaire survey and observation on 3,452 students performing 

sedentary activities in the classrooms. To eliminate the influence of acclimatisation in the 

UK, a subset of 1,225 students with less than 3 years of residence in the UK were selected as 

the survey sample. Students’ thermal comfort responses were categorised into three main 

groups based on their climatic background compared to the UK (warmer, similar and cooler 

climatic background groups). Data was statistically analysed to derive the thermal comfort 

requirements of each climatic group based on reported thermal sensations, preferences, 

acceptability and comfort votes. The findings confirm the influence of long-term thermal 

history on thermal sensation, thermal comfort zone, acceptability, preference and comfort 

temperature (neutrality). There was generally no difference in the subjective thermal comfort 

of the students with similar climatic backgrounds to the UK and those from cooler climates 

than the UK. However, significant differences appeared between the warmer thermal history 

group and the other two groups. It was also demonstrated that the participants with a warmer 

thermal history had cooler thermal sensations compared to their counterparts in the similar-to 
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and colder-than-UK thermal history groups, when exposed to the same environments. The 

optimal acceptable temperature was higher for the warmer climatic background (24°C) than 

the similar/cooler climatic background groups (22°C). Likewise, heightened values of 

preference and comfort temperatures were observed for the warmer thermal history group 

than the other two groups, despite their heavier clothing insulation than the other groups. 

 

Key words: Thermal comfort, Thermal history, Thermal expectation, Climatic background, 

Higher educational buildings 

 

1. Introduction 

It is well documented that thermal comfort is an essential factor in learning environments to 

optimise the students’ educational achievements and to enhance learning performance and 

mental tasks [1–5]. Exposure to indoor temperatures higher or lower than the comfort zone 

impairs students’ performance and ability to grasp instructions, manual dexterity and speed of 

cognitive performance [7,8]. However, considering that HVAC services account for the 

largest end-use of energy in most non-residential buildings [7–9], providing students with 

thermally comfortable classrooms should not come at the cost of the environmental impact 

from energy and associated greenhouse gas emissions. This underscores the necessity of 

understanding what indoor climatic conditions are required to not only provide students with 

a thermally comfortable indoor environment, but also to minimise building energy 

consumption. Due to the considerable influence of thermal comfort on students’ productivity, 

energy consumption and environment, this topic has attracted substantial attention among 

researchers in recent years [10–13]. 
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The adaptive model of thermal comfort posits that occupants are not passive subjects, but 

instead they actively interact with the indoor environment through multiple feedback loops 

[14]. The context of this interaction includes not only environmental factors but also 

behavioural, cognitive and emotional parameters [15]. Previous studies indicate that 

psychological adaptation nudges the subjective thermal comfort temperature (i.e. neutrality) 

in the direction of the climatic conditions prevailing outdoors [16]. Psychological adaptation 

refers to the thermal perception and evaluation of a given indoor environment based on the 

subject’s past thermal experiences and comfort expectations [17]. Consequently, perception 

of thermal comfort cannot be considered as a static condition [18] since it is affected by some 

psychological factors and differs from person to person [10, 12]. The concept of comfort is 

dynamic, depending on how people adapt, perceive and interact with the environment [20]. 

This fact is highlighted in university buildings which accommodate individuals from diverse 

cultural and climatic backgrounds. 

Thermal history is a critical factor affecting thermal comfort perception in an environment 

[14]. Thermal history refers to the previous thermal conditions that were experienced by 

individuals. It exerts its influences on current thermal perceptions [9,10, 13] by providing a 

benchmark or experiential calibration frame of reference. Thermal sensation in a space is 

thought to result from a comparison between the current and previously experienced 

environmental conditions [22]. For further analysis we classify thermal history into two 

temporal scales [18]:  

1. Short-term: Referring to the effects across timescales ranging from weeks, days, hours 

to seconds in day-to-day thermal exposures. 

2. Long-term: Referring to the climatic influences of where people have been living for 

some years. 
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In terms of short-term thermal history, some studies have been conducted in transitional 

spaces in the UK higher educational buildings [20], office buildings in the hot and humid 

climate of Brazil [23], a university in the cold seasons in Pennsylvania, USA [24] and 

controlled chambers in different climate types [25–28]; with various exposure durations of 30 

minutes [28], 1 day [25] and a 10-day period [29]. All these studies lead to a common 

conclusion that pre-exposure to cold thermal environments improves comfort votes in the 

cold, whereas people pre-exposed to warmth tend to evaluate cool environments as colder 

than they would otherwise have done in the absence of the previous warm exposure. 

Regarding long-term thermal history, it is evident in previous studies that long-term pre-

exposure to both indoor [30–34] and outdoor climatic conditions [33,35,36] affects subjects’ 

in-the-moment thermal comfort perceptions.  

Zhang et al. [30] conducted an experiment in a controlled chamber in a hot and humid area of 

China under naturally ventilated (NV) and cooling (CL) modes with indoor temperatures 

from 20°C to 32°C. The subjects were 60 adults from air conditioned (AC) and naturally 

ventilated (NV) buildings who were born and raised in the same climate with natural 

acclimatisation to such weather. The results indicated that subjects exposed to AC 

environments with a cooler indoor thermal history had warmer thermal sensations than the 

other subjects coming from NV buildings. Similar results were revealed in studies conducted 

in a university building in the subtropical climate of southern Brazil [31], in climate 

chambers in Hungry (during the summer months with an indoor temperature of 30°C) [32] 

and in China (in an extremely cold climate under heating mode) [33]. Luo et al. [34] 

conducted a study in northern China (with ubiquitous district heating) and in southern regions 

of China (without district heating) during the winter to establish the influence of indoor 

thermal history on occupants’ comfort perceptions and expectations. Similar thermal 

acceptability levels were indicated for both groups although they had different thermal 
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sensations. It was suggested that long-term exposure to a comfortable thermal environment 

lifts occupants’ thermal expectation, whereas experience of non-neutral thermal environments 

stimulates thermal adaptation. Collectively, these studies confirm the influence of pre-

exposure to indoor thermal environments on in-the-moment thermal comfort perceptions [30–

34]. However, it should be noted that these studies were conducted in extreme climatic 

conditions and mostly on subjects who were exposed to the same climate as the experiment, 

for at least more than three years [30–34].  

The relation between climatic background and the subjects’ thermal comfort ratings was 

examined in a hall of residence in the UK [35,36] and in outdoor spaces in Israel [37]. The 

participants were people from different climatic backgrounds. The results showed higher 

temperature preferences and cooler thermal sensations for the residents in the UK who had 

been living in a warmer climate for two years before moving there [35]. The indoor air 

comfort temperature was also shown to be higher for subjects from warmer climatic 

background compared to the UK native residents [36]. However, a warmer indoor air 

temperature was reported by the residents from cooler climates than the UK residents, which 

can be due to their thermal adaptation to high levels of central space heating [36]. It may be 

deduced here that people’s exposure to warmth tends to play a more important role in thermal 

adaptation and as a result, in future thermal evaluations compared to exposure to cold. This 

finding was supported by Brychkov et al. [37], showing how people’s different “climato-

cultural” background may lead to different thermal perceptions. It is also concluded in this 

work that in stressful but not extreme thermal conditions, the warmer climatic background 

group has cooler thermal sensations in winter and higher levels of comfort in summer 

compared to their counterparts from cooler climates [37].  

The reviewed studies have so far confirmed that long-term thermal history affects in-the-

moment thermal comfort perceptions. In the first group of investigations (most were 
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conducted in extreme climatic conditions), the impact of pre-exposure to indoor thermal 

environments on thermal comfort perception was indicated, however, a negligible relation 

between pre-exposure to outdoor climates and current thermal expectation was shown [30–

34]. According to Brychkov et al. [37], in extreme thermal exposures,  the role of climatic 

backgrounds on current thermal perceptions tends to be diminished and consequently, similar 

thermal comfort votes can be observed for subjects from cooler and warmer climatic 

backgrounds. Nonetheless, these conclusions cannot be generalised to non-extreme climatic 

conditions. The research carried out in the temperate climate of the UK [35,36] was based on 

online post-occupancy evaluations, considering only two years pre-exposure of the subjects 

to a climatic condition [35,36]. None of the studies in this literature review demonstrated 

clear impacts of thermal history and expectations on thermal comfort in buildings that are 

shared by multiple occupants who have grown up in diverse climatic conditions. The present 

study addresses the research questions: “Is there any relation between thermal comfort 

perception and long-term thermal history in environments accommodating occupants with 

diverse climatic backgrounds?” and “How does the occupant’s climatic background (long-

term thermal history) influence their in-the-moment thermal comfort assessments inside 

classrooms in higher education institutions?” This work supposes that warmer thermal 

expectations and cooler thermal sensations will be observed among the subjects from warmer 

climates than the UK, compared to their counterparts from a cooler climatic background than 

the UK native residents.  

The output of this work can contribute to identify the thermally comfortable and energy 

efficient environmental criteria for UK universities as multidisciplinary buildings. 

Furthermore, information on the thermal comfort requirements of different climatic 

background groups can help to suggest appropriate environmental and design solutions which 

can offer a comfortable and satisfactory thermal environment. 
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2. Methods 

The data collection took place in eight mixed-mode ventilation university buildings in 

Coventry, England (buildings 1 to 4) and Edinburgh, Scotland (buildings 5 to 8), in the 

United Kingdom. All the buildings were equipped with HVAC systems and operated on 

changeover or concurrent mixed-mode [38]. The summary of the investigated buildings is 

presented in Table 1. 

The climate of Edinburgh is cool and moist, cloudy and rainy, reflecting its maritime setting. 

The average daily temperature ranges from 4 °C in January to 15 °C in July and August. In 

Coventry, the climate is temperate and cool for most of the year. Winter is cold but above 

zero, while summer is cool. The average Coventry temperatures changes from 4 °C in 

January to 18°C to June, July and August [39]. 

Comfort surveys were conducted in three different types of classrooms: lecture theatres, 

studios and PC labs. Classrooms were selected if the lecturers consented and all the students 

were involved in comparable activities. Each room was equipped with ceiling diffusers or 

radiators for heating and supply ducts or floor outlets for cooling. Three operation modes 

were available in the classrooms: free running (FR, neither heating nor cooling), cooling (CL) 

and heating (HT). Natural or mechanical ventilation was achieved through operable windows 

or fresh air supply ducts respectively, controlled manually or automatically, based on the CO2 

level monitored in some classrooms. Data collection occurred between October and 

November 2017 in Coventry; and between January and April 2018 in both Coventry and 

Edinburgh. 
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Table 1. Summary of the investigated buildings 

Location Building 
(B) 

Construction 
type 

Types of 
classrooms 

Average 
area 
(m2) 

No. of 
surveyed 
rooms 

No. of 
survey 
repeat 

Ave. 
occupancy 
density 

(person/m2) 

Coventry 1 A Lec. 100 2 2 2.5 

Stu. 150 4 4 5.0 
 2 C Lec. 120 1 8 1.2 
 Stu. 130 1 3 3.0 
 Pc. 90 3 7 3.5 
 3 B Lec. 100 8 21 2.0 

 Pc. 80 6 10 3.0 
 4 A Stu. 150 4 5 5.0 
Edinburgh 5 A Lec. 80 3 8 1.2 
 6 A Lec. 80 1 4 1.2 
 7 A Lec. 120 1 4 1.2 

 8 C Lec. 120 3 15 1.2 

A: Heavy weight, B: Medium weight, C: Low weight  

Lec.: Lecture room, Stu.: Studio, PC.: PC lab 

 

2.1.  Field study procedure 

The field studies started after receiving research ethics certificates from both universities. 

Ethics approval was provided after a review of the survey protocol, the participants’ consent 

form, the participant recruitment strategy, the questionnaire and the data management 

protocol by both universities Ethics Committees. Data was collected through simultaneous 

and contiguous instrumental environmental evaluation, questionnaire survey, and 

observation. Figure 1 summarises the methods of data collection and classification.  

Indoor air temperature (Tin), relative humidity (RH), air velocity (airV) and mean radiant 

temperature (Tmr) were recorded at 5 minutes interval continuously throughout the study. 

Each variable was measured from the beginning to the end of the class. For the analysis 

however, the recorded points averaged through the same time interval as the questionnaire 

survey were considered (the last 15 minutes of each class). The black globe thermometer was 

placed 1.1m above the floor level, as recommended by EN ISO 7726 [40], on a vertical stand. 

The anemometer and humidity probe were placed above and below the thermometer in the 

middle of the room, away from any heating or cooling sources (Figure 2).  
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Figure 2. Measurement instruments installed in a surveyed classroom 

Figure 1. Summary of the research methods 
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A summary of the measurement instruments is presented in Table 2. Outdoor air temperature 

data was obtained from the UK Meteorological Office [41] whose weather station was less 

than 5km from the comfort field study site.  

 
Table 2. Description of the instruments 

Measured parameter Instrument Resolution Range  Accuracy 

Mean radiant temperature Multi purposes SWEMA 3000 0.1 oC 0 –50 oC ±0.1 oC 

Air velocity Multi purposes SWEMA 3000 0.03 m/s 0.05 –3 m/s ±0.04 m/s 

Relative humidity Multi purposes SWEMA 3000 1 % 0 –100% ±0.8 % 

Air temperature RH10 USB data logger 0.1 oC −40 –70 oC ±1.0 oC 

 

 

The cross-sectional research design saw a total 3,873 students. However, approximately 9% 

of the students did not provide answers and were excluded from the data base. A small 

number of the questionnaires filled by the students sitting directly next to the heating or 

cooling sources were also excluded. Overall, 3,516 students, 2,046 in Coventry and 1,460 in 

Edinburgh took part in the surveys.  

Information regarding the students’ residence period in the UK was only available for “less 

than 1 year”, “1 to 3 years” and “more than 3 years”. To exclude the influence of 

acclimatisation in the UK, only students with less than 3 years of residence in the UK were 

considered for inclusion in the analysis. Results from a one-way ANOVA test confirmed the 

statistically insignificant difference between the mean thermal sensation votes (TSV), thermal 

preferences (TP), comfort temperature (neutrality) of the students with “less than 1 year” and 

“1 to 3 years” residence duration (p>0.05). A statistically significant difference in the mean 

TSV, TP and comfort temperature between these two groups and participants with more than 

3 years residence in the UK was however observed (p<0.001). Furthermore, the potential 

confounding factors for each residence period group in the UK (including gender, age and 

clothing insulation levels in each group) were examined and the results presented in Table 3. 

The distribution of the participants in terms of gender, age, and mean clothing insulation 

value were comparable for these three categories. Therefore, data for students who had been 
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in the UK for more than 3 years were excluded. In total, 1,225 subjects (729 in Coventry and 

496 in Edinburgh) of both genders and average ages between 18 and 25 years were retained 

for analysis.  

Table 3. Distribution of gender, age and clothing insulation values in groups of residence period in the UK 

 Gender Age group  Mean clothing 

value (clo) 

Residence period 

in the UK 

Males 

(%) 

Females 

(%) 

<21 

(%) 

2–25 

(%) 

26–30 

(%) 

31–35 

(%) 

36–40 

(%) 

>40 

(%) 

Do not wish 

to specify 

 

< 1 year   44 45 7 1 1 1 1 0.88 

1–3 years   41 51 5 1 1 0 1 0.90 

>3 years   54 38 4 1 1 1 0 0.87 

 

The questionnaire included four sections: 1) background questions such as age, gender, 

hometown and home country, 2) thermal comfort including thermal sensation, preference, 

acceptability and overall comfort votes, 3) clothing garment checklist and 4) preferred 

adaptive behaviours in the classrooms during uncomfortably warm and cold thermal 

conditions. The thermal sensation vote (TSV) was based on the ASHRAE 7-point scale. A 

similar 7-point scale was used for thermal preferences (TP) as indicated in Table 4. Clothing 

insulation levels were evaluated based on the tabulated garment clo values in EN ISO 7730 

[42]. Students filled in the paper-based questionnaires during the last 15 minutes of each 

class. Although 15 minutes is generally regarded as enough to eliminate the influence of prior 

activities on thermal sensation votes [53, 54], in this study, 1 hour of sitting in the classroom 

was considered as a safe margin to also eliminate the influence of short-term thermal history 

in transitional spaces prior to attending the classroom [27] and to minimise disruption to the 

class activity.  

Table 4. Thermal comfort scales 

Scale −3 −2 −1 0 1 2 3 

Thermal sensation 

(TSV) 
Cold Cool Slightly Cool Neutral Slightly Warm Warm Hot 

Thermal preference 

(TPV) 
Much warmer Warmer Slightly warmer No change Slightly cooler Cooler Much cooler 
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2.2.  Classification of the thermal history groups 

One of the most widely used climate classification schemes, the updated Köppen-Geiger, was 

selected to categorise the students’ climatic backgrounds [28, 10]. Each climate zone is based 

on the qualitative features of the Earth’s vegetation [47]. The updated versions by Kottek et 

al. [10] and Peel et al. [11] have been applied in various research problems ranging from 

climate change through to thermal comfort [49–51]. Table 5 presents the five main groups 

distinguished by Köppen-Geiger including zones A (tropical), B (arid), C (temperate), D 

(cold) and E (polar) [48]. The second letter in the classifications indicates the precipitation 

level and the third letter refers to air temperature [46] (e.g. Dfc for snow, fully humid with 

cool summer).  

Table 5. Description of Koppen climate symbols and criteria [46] 

1st 2nd 3rd Description Criteria 

A  
f 
m 
w 

 Tropical 

- Rainforest 
- Monsoon 
- Savannah 

Tcold≥18 
Pdry≥60 
Not (Af) & Pdry≥100–MAP/25 
Not (Af) & Pdry <100–MAP/25 

B  
w 
s 

 
 
 
h 
k 

Arid 

- Desert 
- Steppe 

- Hot 
- Cold 

MAP<10×Pthreshold 

MAP<5× Pthreshold 

MAP≥5×Pthreshold 

MAT≥18 
MAT<18 

C  
s 
w 
f 

 
 
 
 
a 
b 
c 

Temperate  

- Dry Summer 
- Dry Winter 
- Without dry season 

- Hot Summer 
- Warm Summer 
- Cold Summer 

Thot>10 & 0<Tcold<18 
Psdry<40 & Psdry < Pwwet/3 
Pwdry< Pswet/10 
Not (Cs) or (Cw) 
Thot≥22 
Not (a) & Tmon10≥4 
Not (a or b) & 1≤Tmon10<4 

D  

s 
w 
f 

 

 
 
 
a 
b 
c 
d 

Cold 

- Dry Summer 
- Dry Winter 
- Without dry season 

- Hot Summer 
- Warm Summer 
- Cold Summer 
- Very cold winter 

Thot>10 & Tcold≤0 

Psdry<40 & Psdry<Pwwet/3 
Pwdry<Pswet/10 
Not (Ds) or (Dw) 
Thot≥22 
Not (a) & Tmon10≥4 
Not (a, b or d) 
Not (a or b) & Tcold<–38 

E  
t 
f 

 Polar 

- Tundra 
- Frost 

Thot<10 
Thot> 0 
Thot≤0 

MAP = Mean Annual Precipitation, MAT = Mean Annual Temperature, Thot = temperature of the hottest month, Tcold = 
temperature of the coldest month, Tmon10 = number of months where the temperature is above 10, Pdry = precipitation of the 
driest month, Psdry = precipitation of the driest month in summer, Pwdry = precipitation of the driest month in winter, Pswet = 
precipitation of the wettest month in summer, Pwwet = precipitation of the wettest month in winter, Pthreshold = varies 
according to the following rules (if 70% of MAP occurs in winter then Pthreshold = 2 x MAT, if 70% of MAP occurs in summer 

then Pthreshold = 2 x MAT + 28, otherwise Pthreshold = 2 x MAT + 14).  
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The students’ hometowns and home countries were coded according to the Köppen-Geiger 

climate classification map (Figure 3). Considering Table 5, the main difference between 

groups A and B is precipitation level, while other thermal features are broadly similar. 

Moreover, the ANOVA tests indicated no statistically significant difference in the students’ 

thermal comfort results between A and B climates of origin, so they have been collapsed into 

a single group for the purposes of our analysis. As both locations of the field work, Coventry 

and Edinburgh, are in the temperate climate zone (group C), the cities in tropical or arid areas 

(zone A or B with higher mean annual temperature than UK) and cold or polar areas (zones D 

or E with lower mean annual temperature than UK) are considered as warmer and cooler 

climates compared to the UK, respectively. Table 6 summarises the samples’ Köppen-Geiger 

climate origins and thermal history groups relative to the UK. For instance, students from 

Malaysia (zone A) and Norway (zone D) are categorised as “warmer” and “cooler” thermal 

history groups, respectively.  

 
 
 

 

Table 6. Labelled thermal history groups in relation to Köppen-Geiger climate zones 

Letter Climate type Climate zone origins 

A & B Tropical / dry Warmer background 

C Mild temperate Similar background 

D & E Snow/ polar Cooler background 

Figure 3. Koppen Geiger climate classification map- main climate types  [46]  
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2.3. Data analysis 

The collected data was statistically analysed to estimate the acceptable thermal zone, comfort 

and preferred temperatures for each thermal history group. Statistical tests were applied to 

confirm the difference between the thermal comfort indices of each thermal history group. An 

independent t-test and one-way ANOVA test were applied to the normally distributed data 

and a Mann-Whitney U test (non-parametric equivalent to the independent t-test) was applied 

to the non-normal distributions or ordinal variables [52]. The probability vale (p-value) and 

Cohen’s effect size were also calculated [53] to confirm statistical differences between the 

thermal comfort of the climatic background groups. According to Cohen’s standard [53], an 

effect size of 0.2 is considered as small, 0.5 as medium, and 0.8 as a large difference between 

groups. A medium effect of 0.5 is visible to the naked eye of an observer; 

mathematically/statistically, a small effect of 0.2 is smaller than medium but it is not so small 

as to be trivial, while a large effect of 0.8 is above medium and shows larger differences [53, 

54]. However, for social science research or general ‘soft’ science research, interpretation of 

effect size is challenging as researchers tend to quantify the subjective factors in ways that 

are often deemed arbitrary [55]. Therefore, effect size for such soft studies may be interpreted 

differently to purely mathematical studies [55].  

3.  Results and Discussion 

Figure 4 shows the outdoor temperatures through 2017 – 2018 within the survey periods in 

Coventry and Edinburgh. There was a larger temperature difference between these two 

locations during summer compared to the winter months. Regarding the survey period, there 

were minimum, average and maximum air temperatures of 1°C, 7°C and 15°C in Coventry 

and 2°C, 6°C and 13°C in Edinburgh, respectively. 
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Figure 4. Monthly mean outdoor air temperature in Coventry and Edinburgh during survey periods (source: [41]) 

 

Figure 5 illustrates the distribution of operative temperatures (Top) recorded inside classrooms 

during the survey period. Around 90% of the observations fell between 22°C and 25°C. A 

summary of the thermal comfort indices for each thermal history group is given in Table 7. In 

terms of indoor thermal environments, all the climatic background groups were generally 

exposed to comparable indoor conditions. Subjects with similar backgrounds and cooler 

backgrounds were exposed to comparable indoor thermal environments in terms of operative 

temperature (Top), air velocity (AirV) and relative humidity (RH). With mean thermal 

sensation votes of 0.23 and 0.05 respectively, similar and cooler background groups were just 

on the very slightly warm side, which is consistent with their thermal preference votes. The 

warmer climatic background group was exposed to slightly lower (<0.5°C) operative 

temperatures, but similar RH and AirV compared to the similar and cooler background 

groups. Mean Thermal Sensation Votes (TSV) at −0.28 and mean Thermal Preference Votes 

(TPV) of +0.10 idicate the warmer background group experienced marginally cooler 

perceptions compared to the other two groups.  
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                 Figure 5. Distribution of indoor air operative temperature in the surveyed classrooms 

Figure 6 shows the mean clothing insulation estimates for each thermal history group. 

Students with warmer backgrounds wore more clothing insulation (0.95 clo) compared to 

their counterparts in the other two groups (≈0.85 clo). As the assumption of a normal 

distribution was not met for the independent t-test, a non-parametric Mann-Whitney U test 

was conducted between each pair of groups, as suggeted in previous studies for such types of 

data [56–58]. Results indicated a significant difference between the clothing value of the 

warmer background group compared with both the cooler and similar climatic background 

groups (p<0.001, effect size: 0.33), but an insignificant difference was detected between the 

clothing insulation levels of the similar and cooler groups (p>0.05). 

Table 7. Thermal comfort indices for each thermal history group 

 Sample 

size* 

Mean Top 

(°C) 

Mean AirV 

(m/s) 

Mean RH 

(%) 

Mean TSV 

(7-pt scale) 

Mean TPV 

(7-pt scale) 

Clothing 

(clo) 

Warmer background 340 22.8 0.06 38 –0.28 +0.10 0.95 

Similar background 345 23.2 0.06 36 +0.23 –0.18 0.85 

Cooler background 210 23.0 0.06 36 +0.05 –0.06 0.84 

   * The climatic background of 331 subjects could not be classified – missing values on the questionnaire 
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In the following sections, the influences of long-term thermal history and climatic 

background on thermal sensation votes, thermal acceptability, comfort temperature and 

neutrality, thermal preferences and sensitivity are examined. 

3.1. Thermal sensation votes 

The thermal sensation votes (TSV) of the students sorted into the three thermal background 

groups are presented in Figure 7. The thermal sensation votes of similar and cooler thermal 

history groups are comparable, being skewed towards the warmer-than-neutral side of the 

scale. However, a completely opposite pattern can be observed in the votes of the warmer 

background group. Despite wearing significantly heavier clothing insulation, the warmer 

thermal history group’s thermal sensations were displaced cooler than their counterparts in 

the other two groups. From a statistical point of view, using an ANOVA test, an insignificant 

difference was shown in TSVs of the cooler and similar climatic background groups. 

However, a statistically significant difference was observed in the TSVs of the warmer 

Figure 6. Mean of clothing insulation estimates for the three thermal history groups  
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thermal history group with both similar (p<0.001, effect size: 0.26) and cooler climatic 

backgrounds (p=0.020, effect size: 0.32).  

 

 

The results so far and those in the following sections show the same trend for similar and 

cooler thermal history groups in terms of environmental variables, clothing insulation, 

thermal sensation votes, thermal acceptability, preferences, neutrality and sensitivity. 

Furthermore, the statistical tests (independent t-test and one-way ANOVA) indicated 

insignificant differences between votes on all the thermal comfort scales of the similar and 

cooler thermal history groups (p>0.05). Therefore, to make them subsequently more 

intelligible, results for the similar and cooler thermal background groups were collapsed into 

one group, so the two remaining thermal history groups were Warmer background (group 1) 

and Similar/cooler background (group 2). 

3.2.  Thermally acceptable range 

According to ASHRAE 2017 [59], thermal dissatisfaction is considered as thermal sensation 

votes beyond the acceptable zone of –1, 0 and +1 on the 7 point thermal sensation scale. To 

Figure 7. Thermal sensation votes of the warmer, similar, and cooler thermal history groups 
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find the acceptable temperature zone, the thermal sensation votes were binary recoded as 

acceptable (TSV= 0 and ±1) and unacceptable votes (TSV= ±2 and ±3). Operative 

temperatures were binned at 1°C intervals and the proportion of thermally acceptable votes in 

each bin is indicated in Figure 8. Probit regression was employed to identify mean thermal 

acceptability and thermal comfort ranges for each climatic background group as applied in 

previous studies [60–62]. probit model is a statistical method that relates the 

proportion/probability of a binary qualitative variable to a continuous explanatory variable 

[63,64]. The advantage of probit regression analysis is that it does not require the equal-

intervals property, encouraging researchers to apply this method to the intervals between the 

thermal comfort descriptors to see how well they fulfil the ‘equal interval’ assumption [64]. 

In this work, thermal acceptability is the dependent binary outcome and operative 

temperature is considered as the independent variable. 

Considering the standard of a minimum 80% acceptability as recommended in regulatory 

documents such as ASHRAE 2017 [59], the thermally acceptable zone extends from 23°C to 

above 25°C for the warmer climatic background (group 1); and from around 18°C to 25°C for 

the similar/cooler climatic background (group 2). The optimal acceptable temperature was 

25°C and 22°C for groups 1 and 2 respectively. The thermally acceptable zone starts at 18°C 

for group 2, which is 5°C cooler than the lower acceptable margin for group 1 (23°C). In 

contrast, in the higher margin in operative temperature of above 25°C, more than 80% of the 

participants in group 1 were still thermally satisfied, while this temperature fell beyond the 

comfort zone for the participants in group 2.  

Higher optimal acceptable temperatures along with heightened thermal acceptability were 

observed in higher operative temperatures for the warmer climatic background group 1 

compared to similar/cooler climatic background group 2, which is consistent with group 1’s 

thermal comfort expectations being warmer than group 2’s. Students in group 1, with a 
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warmer climatic background, were better adapted to warmth as evidenced by their thermal 

sensation and acceptability results. Likewise, a wider thermal comfort range in lower 

operative temperatures for group 2 compared to group 1 confirms the influence of long-term 

thermal history on in-the-moment thermal comfort evaluations. 

Higher levels of thermal acceptability, tolerance of, and even enjoyment of warm thermal 

sensations resulting from familiarity and adaptation to warmth, plus higher acceptance and 

tolerance of cool exposures due to acclimatisation in cold thermal environments have also 

been observed in previous studies [26,50,65,66]. 

 

 

The warm and cool thermal dissatisfaction levels of each group are presented in Figure 9. 

According to the minimum 80% acceptability recommended by ASHRAE 2017 [59], cold 

thermal dissatisfaction starts at 21°C for the warm climatic background group 1 and 20°C for 

the similar/cooler climatic background group 2. Warm dissatisfaction for group 1 could not 

be precisely identified as there were no operative temperatures registered above 25°C in this 

study. More than 80% of the participants in group 1 remained thermally comfortable at 25°C 

Figure 8. Percentage of acceptable thermal sensation votes for warmer and similar/ cooler thermal history groups 
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and presumably a couple of degrees above that. However, warm dissatisfaction for group 2 

occurred at 24°C.  

Results in this section indicate the high sensitivity of the participants in group 1 compared to 

group 2 in cool exposures; and the lower tolerance of group 2 than 1 in warm exposures. The 

optimum temperatures at which thermal dissatisfaction was minimised were 24°C and 22.5°C 

for groups 1 and 2 respectively, which is consistent with the previous findings (Figure 8 to 

Figure 10). 

Taken together, this evidence supports the subjective nature of thermal comfort, reinforcing 

the view that a purely physiological model of absolute comfort is an inadequate 

representation of human thermal perceptions. 

 
 

 

3.3. Thermal neutrality (comfort temperature) 

Griffiths’ method was applied to the thermal sensation vote of each participant to estimate the 

mean comfort temperatures for the thermal history groups. This approach works based on an 

Figure 9. warm and cold thermal dissatisfaction of warmer background group 1 (a) and similar/cooler background group 2 (b)  
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assumed constant rate of thermal sensation vote change per unit of temperature change. 

Comfort temperatures were calculated using Griffiths’ method, equation (1) [67–69]; 

Tc = Top + (TSVneutral – TSV)/ α                                              (1) 

Where Tc is comfort temperature or neutrality (°C), Top is operative temperature (°C), 

TSVneutral is the neutral thermal sensation vote (zero in this project), TSV is the thermal 

sensation vote and α is the so-called Griffiths constant. Therefore, if the participants’ thermal 

sensation vote is equal to “0, Neutral” for example, their comfort temperature would simply 

be the same as the operative temperature registered when they cast that vote. The value of 

0.50 is assumed for the Griffiths’ constant as suggested by Humphreys et al. [70], estimated 

from a field-survey database, meaning that a 2°C change of operative temperature leads to a 

single unit change on the 7-pt thermal sensation scale, all else being held constant.   

 

 

 

Figure 10 indicates the mean comfort temperature of the warmer background group 1 (mean 

= 23.3, SD= 2.4) and the similar/cooler background group 2 (mean= 23.01, SD= 2.22). The 

Figure 10. Comfort temperature of the warmer and similar/cooler thermal history groups (95% confidence interval)  
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results of an independent t-test indicate an insignificant difference between the mean comfort 

temperatures of the thermal history groups. (p>0.05, df=892, t=1.41). However, subjects in 

the warmer climatic background group 1 still registered slightly higher comfort temperatures 

than their counterparts in the similar/ cooler climatic background group 2, despite the 

former’s higher clothing insulation level (Figure 6).  

3.4.  Preferred temperature 

To evaluate each climatic group’s preferred temperature, probit regression models were fitted 

to the relationship between the operative temperature and the thermal preference votes, as 

described in [71]. In Figure 11, the intersection points between “want warmer” and “want 

cooler” probit curves for each thermal history group are assumed to correspond with the 

group’s optimum preferred temperature [61,72]. 

Regardless of the students’ thermal background, operative temperature has a negative 

correlation with warmer thermal preferences and a positive association with the cooler 

preference votes, as expected. The preferred temperature was 24.5  ° C for group 1 which is 

about 1°C higher than group 2’s preferred temperature. The result of an independent t-test 

confirms the difference between the preference votes of the climatic background groups 

(p=0.01, effect size: 0.21, t=2.58). According to Cohen’s classification [53], the effect size of 

0.21 is ‘small’, but as mentioned in section 2.3, effect size in social/soft science research may 

interpret differently. Therefore, the resulted small effect size in this work may not necessarily 

mean small power of the statistical results [73,74]. Probit regression p-values and the Pearson 

goodness also indicate that the fitted curve for these two thermal history groups is 

significantly different (p=0.01).  

A more detailed look at the “want warmer” thermal preferences reveals that in operative 

temperatures above 19.5°C, a higher percentage of the students in the warmer background 

group 1 preferred the room temperature to be warmer compared to their counterparts in the 
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similar/cooler background group 2. Regarding the “want cooler” thermal preference votes, a 

higher percentage of similar/cooler background group 2 preferred to be cooler compared to 

warmer background group 1 above 21.5°C. The sharper growth of the cooler thermal 

preference votes by increasing the operative temperature for similar/cooler background group 

2 compared to warmer background group1, emphasises group 2’s higher sensitivity to 

warmth than group 1.   

The higher preferred temperature and lower thermal sensitivity to warmth for warmer 

climatic background group 1 than similar/cooler climatic background group 2 indicates the 

influence of long-term thermal history on the participants’ thermal preferences and preferred 

temperatures. Evidence showing the influence of thermal history and past experiences of 

thermal conditions on people’s current thermal preferences and perceptions has also been 

reported in the earlier thermal comfort research literature [12,43- 45,50]. 

 

 

 

 

 

 

 

 

 

 

According to Figure 7 through to Figure 11, the acceptable temperature ranges (thermal 

comfort zone), comfort temperature (neutrality), and preferred temperature were consistently 

Figure 11. The proportion of the thermal preference votes for the warmer and similar/cooler thermal history groups 
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lower for the cooler climatic background group 2 compared to the warmer background group 

1. The group 2 subjects had a wider range of thermal acceptability and comfort and a reduced 

thermal sensitivity to cool indoor temperatures, compared to the warmer background group 1, 

when exposed to the same indoor climatic condition. The opposite trend was evident for the 

warmer background group 1 subjects, with a higher acceptable temperature range, a lower 

sensitivity to warmth and higher comfort and preferred temperatures, despite wearing heavier 

clothing compared to the other climatic background group.  

In this study it was hypothesised that subjects with warmer climatic backgrounds than the UK 

native residents would have warmer thermal expectations and feel cooler compared to the 

subjects from climates that were cooler than the UK. The analyses reported in this paper 

broadly agreed with this prediction. Therefore, it is crucial to find an environmental or design 

solution which not only can provide thermal comfort for all climatic background groups of 

students in higher educational buildings, but also minimise the buildings’ energy 

consumption and related emissions.  

4.  Conclusions 

This study investigated influences of climatic background and long-term thermal history on 

in-the-moment thermal comfort experiences in eight mixed-mode university buildings located 

in the United Kingdom. Evaluations were conducted through environmental measurements, 

questionnaire surveys and observations. In total 3,452 students performing sedentary tasks 

inside classrooms were subjects in this study. Data from a subset of 1,225 students with less 

than 3 years of residence in the UK were categorised into three main groups based on their 

climatic background (climate of origin). The following key findings emerged from the 

analysis: 
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1. Climatic background and long-term thermal exposure to a thermal condition 

apparently affects thermal sensation, thermal comfort zone, thermal acceptability and 

temperature preferences in buildings accommodating occupants with diverse climatic 

backgrounds, such as higher learning environments.   

2. There was generally no statistically significant difference in the subjective comfort 

responses (thermal sensation, preference, neutrality and thermal acceptability) of 

students with backgrounds in similar climates to the UK’s and those from climates 

cooler than the UK. However, significant differences emerged in the results for the 

students with a warmer thermal history. 

3. The thermally acceptable zone was defined using the minimum 80% acceptability 

criterion. Considering the operative temperature between 18°C and 25°C in this work, 

thermal acceptability ranged from 23°C to 25°C for the warmer climatic background 

subjects, and approximately 18°C to 25°C for the similar/cooler climatic background 

subjects. The optimal acceptable temperatures were 24°C and 22°C for these two 

groups, respectively.  

4. Overall, when exposed to the same thermal environment, participants with a warmer 

thermal history felt cooler compared to their counterparts in the similar-to and colder-

than-UK thermal history groups. They also had lower thermal sensation votes, higher 

optimal acceptable temperatures, warmer thermal neutralities and preferred 

temperatures compared to subjects in the similar-to and colder-than-UK thermal 

history groups.  

5. Cold thermal dissatisfaction was experienced at lower indoor operative temperatures 

for the similar/cooler climatic background group compared to the warmer climatic 

background subjects. Furthermore, there was a wider acceptable temperature range in 

warmth for the warmer thermal history group compared to their counterparts in the 
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similar/cooler thermal history group. Heightened sensitivity to cool and warm 

conditions was also confirmed in this work for the warmer and similar/cooler climatic 

background groups, respectively.  
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