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Abstract

Ransomware is a type of malware that encrypts files and demands a ransom from victims. It can

be viewed as a form of kidnapping in which the criminal takes control of the victim’s files with the

objective of financial gain. In this article, we review and develop the game theoretic literature on

kidnapping in order to gain insight on ransomware. The prior literature on kidnapping has largely

focused on political or terrorist hostage taking. We demonstrate, however, that key models within

the literature can be adapted to give critical new insight on ransomware. We primarily focus on

two models. The first gives insight on the optimal ransom that criminals should charge. The second

gives insight on the role of deterrence through preventative measures. A key insight from both

models will be the importance of spillover effects across victims. We will argue that such spillovers

point to the need for some level of outside intervention, by governments or otherwise, to tackle

ransomware.
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Introduction
Ransomware denotes the branch of malware that, after infecting a

computer, asks for a ransom. Typically, the files on the computer

are encrypted and the criminals demand a ransom for the private

key to decrypt the files [1, 2]. Victims are given a set time, typically

72 h, to pay the ransom, which can vary from $100 to $1000 for

individuals, and a lot higher for firms and organizations [3]. While

the know-how to develop ransomware has existed in academia for

some time, e.g. Young and Yung [4], it is only recently that crypto-

graphically sound ransomware has found its way into the wild.

While there exist many variants of ransomware that allow for

reverse-engineering [5], there are now many variants in which a vic-

tim, who wants to recover their files, has no choice but to pay the

ransom.

The point of departure for this article is the recognition that ran-

somware is a form of kidnapping in which a criminal takes control

of a victim’s computer files in the hope of financial gain. The kid-

napping aspect of ransomware is already acknowledged at a prac-

tical level with companies using insurance policies designed to cover

against kidnapping of staff to mitigate losses from ransomware [6].1

In this article, we use insights from the game theoretical literature to

better understand the incentives behind ransomware. Game theory

provides a natural tool with which to study kidnapping, particularly

when the motives of the criminal are financial, and several models

of kidnapping have been developed within the literature (e.g. [7–9]).

In this article, we adapt and apply to the ransomware context two

key models of kidnapping: one developed by Selten [10] and the

other by Lapan and Sandler [11].

1 Internal procedures can also require law enforcement agencies to call on

trained hostage-taking officers to execute ransom payments (to track the

criminal money flow).
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Before we continue, it seems pertinent to clarify that only two

studies, of which we are aware, have explicitly applied game theor-

etic models of kidnapping to ransomware [12, 13]. This is, there-

fore, an area ripe for further study. Most of the game theoretic

literature on kidnapping has focused on terrorist hostage taking in

conflict zones [11, 14, 15]. War may seem a world removed from

ransomware but the beauty of the game theoretic approach is that,

by focusing on the salient strategic incentives, it is applicable across

different domains.2 Even so, there are specific aspects of ransom-

ware that point to the issues that could be analysed in more detail

than we find in the current literature. We shall highlight these issues

as we proceed. Let us also remark that ransomware provides a very

natural application of game theoretic reasoning in that it primarily

involves money and computer files; this raises less moral (and mod-

elling) issues than the kidnap (and potential murder) of a hostage

[17, 18].

As already previewed, we shall develop and extend two key

models of kidnapping. The first model, due to Selten [10], primar-

ily focuses on the optimal ransom that criminals should charge.

The second model, due to Lapan and Sandler [11], primarily

focuses on whether potential victims should take action to deter

hostage taking. While neither model was designed to study ran-

somware, we argue that there are clear lessons that can be drawn

from both these models. For instance, they feed into the general de-

bate on the willingness of ransomware victims to pay to recover

files and the willingness of people to avoid attack through anti-

virus protection, regular backups or similar. Some clear and action-

able policy recommendations follow from our analysis. Let us

highlight that we focus on these two models, and analyse them sep-

arately, because they study complementary aspects of the ransom-

ware problem. In the concluding discussion we discuss how the

models could be joined together to create an amalgamated model

covering deterrence and bargaining. Our results are robust to this

generalized model.

A potential criticism of a game theoretic approach is that it

assumes rational decision-making by both the criminal and victim.

In addressing this point, one thing to observe is that rationality

does not preclude a role for emotions, such as anger or panic, and

so rational does not have to mean ‘cold and calculated’. This is

illustrated by an assumption of irrational aggression that is crucial

to the model of Selten [10]. A more fundamental thing to recognize

is the forces that direct towards rationality. In particular, we be-

lieve it is naı̈ve to assume that the strategy of ransomware criminals

is not going to evolve towards an optimum. The closer to the opti-

mum they get, the more money the criminals will make and so, by

accident or not, they are likely to stumble towards the optimum.

This does not mean the criminals are currently optimizing [19]. But

it does mean that a game theoretic approach gives us insight on

where things might go, and that, in turn, gives chance for law en-

forcement and others to be one-step ahead.

Our article adds to a small but growing literature on the eco-

nomic aspects of ransomware. In earlier work [19], we look at the

economic theory behind optimal ransom pricing. Insights from this

work are applied below (see section ‘A simple game model of kid-

napping’ discussing kidnapping game). Laszka et al. [12] model

the ransomware eco-system as a multi-stage, multi-defender game.

The particular focus of their analysis is on the interaction

between the decision to back up and pay a ransom. Their model has

a close overlap with our second model (see section ‘A simple game

model of deterrence’ discussing deterrence game) and so we discuss

their results in detail at that point. Caporusso et al. [13] show that

game theory can be used to model bargaining between criminal and

victim. Huang et al. [20] explore how ransomware can fit within a

cybercrime business model, while August et al. [21] explore the po-

tential implications of ransomware for software vendors. There are

also a number of papers that have looked to quantify and document

the financial gains from ransomware and the behaviour of victims

and criminals. This literature is crucial for our purposes as it allows

us to calibrate model parameters with real-world observation. We

will discuss this literature more in the next section.

Set against a background of increasing interest in the economics

and game theory of ransomware, our article makes two basic contri-

butions. First, it provides an accessible summary of existing results

in the game theoretic literature on kidnapping; this, hopefully,

avoids researchers ‘reinventing the wheel’. Secondly, we extend the

analysis of the Selten [10] and Lapan and Sandler [11] models in

nontrivial ways to take account of specific aspects in ransomware.

We proceed as follows. First, we provide a brief overview of ran-

somware with the objective of feeding the subsequent analysis (ra-

ther than providing a comprehensive review). Then we apply in turn

the key models of Selten [10] and Lapan and Sandler [11] to ransom-

ware. Subsequently we review the remaining game theoretic litera-

ture on kidnapping and discuss the complementary findings of

different models before a concluding discussion. While none of the

literature has explicitly studied ransomware, we in this article frame

the analysis throughout in terms of a ransomware attack.

Background on ransomware

In this section, we provide a brief overview of ransomware. This

overview is not intended to be comprehensive but merely to high-

light salient points for the analysis to follow. We can begin by noting

that CryptoLocker was one of the first, if not the first, to implement

a scheme close to the Young and Yung [4] protocol in a technically

sound way from its conception [22]. Its ‘good’ implementation un-

fortunately forced victims wanting to recover their files to pay the

ransom. That was the only available alternative. Throughout this

article we will focus on cryptographically sound ransomware, such

as CryptoLocker, where the files are recoverable if and only if the

criminals return the relevant keys.3

The precise proportion of victims who paid ransoms to

CryptoLocker is unknown with estimates ranging from 2% to 40%

[23]. It is, however, clear that enough people paid ransom to gener-

ate a large amount of money. Conservative estimates on the amount

of ransom received by the criminals range from $300 000 to over

$1 000 000 (with fluctuations in bitcoin making valuation volatile)

[24, 25]. We also know that a single address connected with

Cyrptolocker received a total of 346 102 BTC at the time of its last

transaction in February 2014. This was a significant proportion of

2 This also means that in a game theoretic sense kidnapping can be used more

widely than in common usage. For example, Schelling [16] equates nuclear

power with the ability to take hostages. Basically, if, say the USA has the abil-

ity to destroy Russia, then it is as if the USA takes Russian citizens as

hostages.

3 This is not to say that it is the only type of ransomware. There is ‘fake’ ran-

somware that simply destroys the files, and non-sound ransomware that

allows recovery without paying a ransom.
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the total number of bitcoins in circulation (approx. 12 million) and

would have had a valuation in excess of $200 million.

Operation Tovar in 2014, led by the US Department of Justice

and the FBI, led to the Gameover/Zeus botnet being closed down.

This was one of the main distribution paths for CryptoLocker and

so effectively meant the end for this particular form of ransomware.4

This, though, was definitely not the end of the story. CryptoLocker

demonstrated the huge potential to extract large amounts of money

through a cryptovirus and other large-scale attacks have followed,

and new families such as CryptoWall, TorLocker, Fusob, Cerber,

TeslaCrypt, etc. have emerged [2, 3, 26]. Conservative estimates of

the total amount paid in ransoms since 2013 are around $13– $26

million [27, 28]. The economic and social costs of ransomware

clearly extend well beyond the payment of ransoms.

Modern ransomware strands are fast evolving, not only in terms

of technical capabilities but also in economic sophistication. For in-

stance, ransomware-as-a-service allows just about anyone to commit

the crime irrespective of technical know-how [20]. Also, modern

strands come with a ‘customer service’ department to advise ‘clients’

and facilitate payment. We have also seen large-scale targeted

attacks on large organizations, including universities and health

trusts. Indeed, the trend appears to be towards more targeted attacks

on large organizations [29]. Unfortunately, there is less evidence of

individuals and organizations taking the necessary measures (par-

ticularly, regular backups) to mitigate and possibly deter the damage

from attack. This means that ransomware is likely to remain a ser-

ious threat for many years to come.

Ransomware is rare (maybe unique) in being a cybercrime that

positively benefits from publicity and greater knowledge. The more

individuals and organizations recognize that ransomware is a genu-

ine extortion scenario in which access to files can only be regained

through paying the ransom, the more willing they might be to en-

gage with the criminals. Indeed, the FBI was somewhat inadvertent-

ly dragged into such complexities when in 2015 an agent was

quoted as saying that ‘the ransomware is that good . . . To be honest,

we often advise people to just pay the ransom’ [30]. This leads onto

two key issues that will be important in our models, namely,

whether the criminals do return files and the proportion of victims

that pay.

Data is understandably sketchy given the nature of ransomware.

Anecdotal evidence shows, however, that criminals do often honour

ransom payments and return the key to decrypt the files. The widely

publicized case of the University of Calgary paying $20 000 to get

back their files is one example of a ransom payment that ‘worked’.

More generally, some ransomware strands such as CryptoWall

developed a good reputation for returning the files [31]. This means

victims have a reasonable chance of recovering their files, leaving

them with a basic dilemma of whether to pay or not. The evidence

suggests that many victims do indeed pay, particularly businesses

[32]. This suggests that ransomware can provide a sustainable busi-

ness model for criminals.5

A simple game model of kidnapping

In this section, we apply and adapt the model of kidnapping due to

Selten [10]. We shall refer to the game studied as the ‘kidnapping

game’. The kidnapping game was originally developed to model a

situation in which an individual is taken hostage so as to extract a

ransom from family members. Here, however, we will frame the dis-

cussion in terms of ransomware.6 We will see that the kidnapping

game is particularly informative in terms of the optimal ransom de-

mand. It also highlights the need for criminals to have a credible

way of threatening victims. The game involves two players, a crim-

inal and victim. It has six stages, which can be explained as follows.
Stage 1: The criminal chooses whether or not to infect the vic-

tim’s computer. If the files are not infected then the game ends and

both players get payoff 0.7

Stage 2: If the criminal infects the victim’s computer then the

criminal chooses a ransom demand D > 0. This demand is commu-

nicated to the victim.

Stage 3: Having seen the demand D, the victim chooses a

counter-offer C 2 ½0;D�.8 Note that it is far from clear whether it is

in the criminal’s interests to let the victim make a counter-offer. It is

simply assumed for now that this possibility exists. We return to this

issue later. We can note, though, that almost all (genuine) ransom-

ware strains allow for some form of communication with the crimi-

nals in order to make a counter-offer [26, 33] and so bargaining is a

key aspect of the game [13]. Whether or not the criminals are willing

to lower the price varies by type of ransomware.

Stage 4: With probability a ¼ að1� C=DÞ, where a 2 ð0;1Þ is a

constant, the victim’s files are destroyed without any exchange of

ransom. Note that if C ¼ D, then the files are not destroyed. If C <

D then the files may be destroyed and the probability of destruction

increases in the gap between demand and counter-offer. In a game

theoretic sense, this destruction is modelled as an act of nature (out

of the criminal’s control) and so we shall call it random destruction.

Selten [10] equates this with ‘irrational aggression’ on the part of the

criminal. More generally, it can be equated with a risk of aggressive

behaviour because the counter-offer is below that demanded. As a

reviewer of an earlier version of the article pointed out that such

random destruction could be programmed into the malware itself by

the criminal (although we have no example of that ever being done).

Let us, however, highlight that the crucial thing here is the victim’s

perception of the probability the files will be destroyed; the value of

a captures this perception. Destruction of the files results in a payoff

of �Y � 0 for the criminal and �W < 0 for the victim.9 In inter-

pretation Y can be thought of as including the costs of attacking the

victim (given that no attack has payoff 0).
Stage 5: If the files were not destroyed in Stage 4 then the crim-

inal chooses between releasing the files and receiving C�G, for

some G � 0, or destroying the files and receiving �Y. The value of

G captures the cost of having to properly engage with the victim in

order to decrypt files. It may, for instance, involve customer support

[29]. In interpretation we can think of the criminal as having a

4 During Operation Tovar, a database was located, containing approximately

500 000 individuals, and this allowed the set up of a website to facilitate vic-

tims recovering their files (https://www.decryptcryptolocker.com). It is import-

ant to note that this was only possible due to the recovery of the criminals’

database, and not to any security weakness in the implementation of the cryp-

tovirus itself.

5 A typical ransomware strand may only be able to survive for, say, six months

before the law enforcement agencies start to close in. But the criminals can

evolve and continually develop new strains.

6 Some aspects of the model are arguably better suited to ransomware than the

original scenario of an individual being taken hostage. In particular, we shall

see that a key part of the model is a threat of aggression. In the context of

ransomware, aggression merely means the files will be destroyed, while in

the original context it meant the victim would be murdered. It would seem less

controversial to quantify the loss of computer files than the loss of life.

7 Normalizing the payoffs from no attack to zero can be done without loss of

generality.

8 We assume that the victim makes a counter-offer of some form, rather than

simply ignoring the ransom demand. In the model, offering zero is at least as

good as ignoring the ransom demand.

9 These payoffs are based on the criminal not being caught (see Stage 6).
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minimum acceptable offer M. If C �M, then the files are released or

otherwise they are destroyed. Note that the model does not include

the possibility of the criminal taking the ransom and not releasing

the files. This is clearly an important possibility in terms of ransom-

ware and so we return to the issue below.

Stage 6: With probability q the criminal is caught by the police.

Note that this probability is assumed to be independent of the actions

of the criminal (see Iqbal et al. [34] for an alternative approach). We as-

sume that if the criminal is caught, the victim is recompensed any ran-

som but does not recover her files if they were destroyed. Our results

are not, however, sensitive to this assumption and alternative assump-

tions, such as recovering the files but not the ransom (as happened with

CyptoLocker) are easily modelled. The payoff of the criminal is �X <

0 or �Z < 0 depending on whether the criminal is caught after releas-

ing or destroying the files. It is assumed that �Z < �X < �Y, imply-

ing a harsher punishment in case the files are destroyed.

A (pure) strategy for the criminal comprises three components: a

choice to kidnap, a ransom demand, D and a minimum acceptable

offer, M. A pure strategy for the victim consists of a function mapping

from a ransom demand to a counter-offer. Table 1 summarizes the pos-

sible outcomes of the game and payoffs in each case. We see that the

value of W proves particularly important. So let us note that this can be

interpreted as the victim’s willingness to pay to recover her files. Put an-

other way, it is the victim’s direct loss from losing access to her files. For

instance, if the victim has recently performed a backup then W � 0, but

if the files are valuable and no backup exists, then W will be large.

Main theoretical result

A Nash equilibrium for the game can be defined as a pair of strat-

egies such that neither victim nor criminal has any incentive to

change their strategy given the strategy of the other. The kidnapping

game has many Nash equilibria and so we focus, as is the standard,

on the subset of equilibria that is sub-game perfect. Our first result

details the sub-game perfect Nash equilibrium of the game. Note

that the theorem and its proof are different from that of Selten [10]

but draw heavily on his approach.

Theorem 1. Generically, there exists a unique sub-game perfect

Nash equilibrium of the kidnapping game: (a) If

W < ðqXþ ð1� qÞGÞ 1þ a

a

� �
(1)

then the criminal will not infect the victim’s computer.(b) Otherwise,

the victim’s computer is infected, the criminal makes demand

D� ¼ a

1þ a

� �
W

1� q

� �
; (2)

the victim makes counter-offer C ¼ D�, and the files are released

to the victim.

Proof: We proceed by backward induction. Consider Stage 5. If the

files are released, the criminal has expected payoff,

VR ¼ ð1� qÞðC�GÞ � qX:

If the files are not released, the criminal has expected payoff

VE ¼ �ð1� qÞY � qZ: (3)

Given that C > 0 � �Y and �X > �Z, it is trivial that VR > VE

provided G < C. Hence, the files are released. In interpretation, the

criminal has nothing to gain from not taking the ransom and releas-

ing the files.

Consider Stage 3: Given the optimal strategy of the criminal in

Stage 5, the expected payoff of the victim is

U ¼ �ð1� aÞð1� qÞC� aW

¼ � 1� a 1� C

D

� �� �
ð1� qÞC� a 1� C

D

� �
W:

Solving for the optimal value of C gives

C�ðDÞ ¼
D if D � D0

W

2ð1� qÞ �
1� a

2a
if D0 < D � D1

0 if D � D1

;

8>><
>>:

where

D0 ¼
a

1þ a

� �
W

1� q

� �
and D1 ¼

a

1� a

� �
W

1� q

� �
:

In interpretation, if the ransom demand is low enough,

where low enough is measured by D0, then the victim pays the

ransom. If the ransom is too high, where high is measured by D1,

then the victim does not offer to pay any ransom. For

intermediate demands, the victim makes a counter-offer less than

that demanded.

Consider Stage 2: From our analysis above, we know that the

criminal will not choose to destroy the files. Let a�ðDÞ ¼
að1� C�ðDÞ=DÞ, and let V�RðDÞ ¼ ð1� qÞðC�ðDÞ �GÞ � qX. Then

the expected payoff of the criminal from choosing demand D is

VðDÞ ¼ ð1� a�ðDÞÞV�RðDÞ þ a�ðDÞVE; where VE is given by equa-

tion (3). There are three cases to consider. (i) Suppose that D < D0.

Then C�ðDÞ ¼ D and a�ðDÞ ¼ 0. So, VðDÞ ¼ ð1� qÞ
ðD�GÞ � qX, which is clearly increasing in D. (ii) Suppose that

D0 < D � D1. An increase in D increases a�ðDÞ. It also decreases

C�ðDÞ and, therefore, V�RðDÞ. Given that V�RðDÞ > VE for all

D < D1, this means that VðDÞ is a decreasing function of D. (iii) If

D � D1 then VðDÞ is a constant function of D. Overall, therefore,

VðDÞ is maximized at D0 giving equation (2).

Finally, consider Stage 1: Substituting in the optimal choice of

D ¼ D0 gives an expected payoff for the criminal of

VðD0Þ ¼ ð1� qÞ
�

C�ðD0Þ �G
�
� qX

¼ a

1þ a

� �
W � ð1� qÞG� qX:

Setting VðD0Þ � 0, gives inequality (1). QED

There are several salient points to take from Theorem 1. First of

all, as one would expect, the criminal is more likely to infect the

victim’s computer if the probability of being caught is low.

For instance, if q ¼ 0 and so there is no chance of being caught, then

the criminal will infect the computer. Experience suggests that the

probability of facing punishment for a ransomware attack is

very low across legal jurisdictions and this clearly invites attack.

Table 1.The payoffs to different outcomes in the kidnapping game

Outcome Payoffs

Criminal Victim

Criminal does not infect computer 0 0

Release of files for ransom C and not caught C�G �C

Files destroyed and not caught �Y �W

Criminal caught after release of files �X 0

Criminal caught after destroying files �Z �W
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Secondly, again as one would expect, the optimal ransom demand is

increasing in the amount the victim is willing to pay to regain her

files. This will have a knock on effect on the incentive of the criminal

to infect the computer in the first place. For instance, if W ¼ 0

because, say, the victim has backed up her files, then the criminal

has no incentive to infect the computer. If W is large then the incen-

tive is higher.

A more surprising finding is the role of irrational aggression or

random destruction. If there is no chance of random destruction,

meaning a ¼ 0, then the optimal ransom demand is 0, and so it is

not in the criminal’s interest to infect the computer. The intuition

behind this result is that, without the threat of irrational aggression,

the criminal will accept any positive offer from the victim (because

something is better than nothing) and so a high ransom demand is

simply non-credible. The threat of aggression is, therefore, key to

the criminal’s bargaining power. The more likely is ‘random destruc-

tion’ (or the victim’s perception of it) then the higher is the optimal

ransom demand (see also [9]).

It may seem counter-intuitive that the criminal benefits from the

likelihood he will do something ‘irrational’ but this is a common

finding in game theoretic models of bargaining [35]. Essentially, it is

in the criminal’s interest to ‘tie his hands’ so that he cannot accept a

low counter-offer and irrational aggression achieves this end. A spe-

cific example would be a criminal who simply does not allow any

counter-offers. This would equate to a high a and would mean (if

the probability of being caught is low) that the criminal will obtain

a ransom near to the victim’s willingness to pay to recover her files.

There are various simple extensions that one can make to the

kidnapping game to accommodate alternative specifications. For in-

stance, it may be that the victim is credit constrained and so cannot

afford to pay a high ransom, even if she would want to [10]. If the

victim can pay at most �W then it is simple to show that the optimal

ransom demand is minf �W;D�g, where D� is the same as in the state-

ment of Theorem 1. Basically, it is not in the criminal’s interest to

make a ransom demand that the victim cannot afford. We can also

reconsider our assumption that the victim recovers the ransom if the

criminal is caught. It is simple to show that if the ransom is not

recovered, then q drops out of the equation for the optimal ransom

demand (equation (2)), meaning the optimal ransom is lower.

In the following two sections, we explore more elaborate exten-

sions of the kidnapping game (not considered by Selten [10]) that

seem relevant to ransomware.

The criminal’s incentive to return files

Recall that in the kidnapping game the criminal can, in Stage 5 of

the game, only take the ransom if he returns the files. What if the

criminal can keep the ransom and not does return the files to the vic-

tim? Clearly, this is a distinct possibility in the case of ransomware,

given the inability of the victim to track the criminal. Also, as dis-

cussed earlier, we know that the criminals do sometimes take the

money and run. It is beyond the scope of the current article to ana-

lyse how criminals could generate trust, but we can give interesting

insight on the problem. In particular, it may intuitively seem advan-

tageous for the criminal that he need not return the files. A little

game theoretic reasoning shows, however, that it is not advanta-

geous to have this possibility.

To see why, suppose that the criminal would prefer to take the

ransom and not return access to the files. For instance, there may be

some cost involved in returning the files, or properly encrypting the

files in the first place. If the victim anticipates that the criminal will

not return the files, then he has no incentive to pay any ransom.

But if the victim will not pay any ransom, there is no incentive for

the criminal to infect the computer in the first place. In short, the

possibility that the criminal will take the money and run undermines

the criminal’s ability to make money. This is another illustration of

how the criminal can benefit from having his hands-tied. In this

case, it is to his benefit that he cannot take the money and run.

To better appreciate the issue we shall contrast two alternatives

to Stage 5 of the game. The first alternative is as follows.

Stage 5: If the files were not destroyed in Stage 4, then the criminal

chooses between releasing the files and receiving C, or destroying the files

and receiving �Y. The criminal determines a minimum acceptable offer

M. If C �M, then the files are released, otherwise they are destroyed. If

the files are released, then there is probability b that they are not access-

ible because of error. If they are not accessible, then the payoff of the vic-

tim is�W–C because she pays the ransom but still loses her files.

We will call this a ‘kidnapping game with error’ to capture the

fact that files may be lost even if the criminal did not intend this. It

is worth recognizing that error is a distinct possibility with ransom-

ware, given the technical difficulties of encrypting and decrypting a

large number of disparate files. We do observe instances in which

private keys are returned (and genuine looking help is provided by

the criminals) but not all files are recoverable [23]. It is also import-

ant to appreciate that error (as we have defined it) is different to ir-

rational aggression. In particular, error happens independent of the

ransom demand and counter-offer, while irrational aggression or

random destruction is caused by a gap between demand and

counter-offer. Moreover, in the former case the ransom is paid,

while in the latter it is not (because the criminal refuses the offer).

The following result is a natural extension of Theorem 1 to cap-

ture the possibility of error.

Corollary 1. In the kidnapping game with error, the, generically,

unique sub-game perfect equilibrium is such that the victim’s com-

puter is infected if and only if

W � qXþ ð1� qÞG
1� b

� �
1þ a

a

� �
:

If infected, the criminal makes ransom demand,

D�� � 1þ a

a

� �
Wð1� bÞ

1� q

� �
:

and the victim makes counter-offer C ¼ D��.

Proof. We need to revisit Stage 3 of the proof of Theorem 1. The

expected payoff of the victim is now

U ¼ �ð1� aÞð1� qÞC� aW � ð1� aÞbW:

The final ð1� aÞbW term captures the possibility that the files

are lost irrespective of irrational aggression. Solving for the optimal

value of C gives

C�ðDÞ ¼
D if D � D0
Wð1� bÞ
2ð1� qÞ �

1� a

2a
if D0 < D � D1

0 if D � D1

;

8>><
>>:

where

D0 ¼
a

1þ a

� �
Wð1� bÞ

1� q

� �
and D1 ¼

a

1� a

� �
Wð1� bÞ

1� q

� �
:

The proof then follows through as for Theorem 1. QED

Corollary 1 shows that the optimal ransom demand is decreasing

in b and so the more likely it is that the files will be lost the lower
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the ransom the criminal can demand. Hence, the criminal does not

gain from the possibility of error. This provides an interesting trade-

off whereby the criminal’s bargaining power relies on the possibility

of irrational aggression but is diminished by the possibility of purely

random error. It may be difficult for criminals to walk this dividing

line between being tough on those who do not pay and fair on those

who do. For instance, postings by victims on web forums are likely

to simply say that ‘my files were destroyed’ without giving a

nuanced commentary on ransom bargaining. This ‘noisy informa-

tion’ makes it difficult to build a tough but fair reputation.

The preceding discussion relates to inadvertent error. What if we

give the criminal the chance to deliberately take the money and run?

Consider a further variation on Stage 5 of the game.

Stage 5: If the files were not destroyed in Stage 4, then the crim-

inal chooses between releasing the files and receiving C�G or

destroying the files and receiving C.

We will call this a ‘kidnapping game with deception’ to capture

the fact that the criminal may take the ransom money and not

return the files. This is captured in our setting by assuming that this

avoids the cost G of providing a good customer support etc.

Corollary 2. In the kidnapping game with deception, the, generical-

ly, unique sub-game perfect equilibrium is such that: (a) if

G >
qðZ�XÞ

1� q

The criminal does not infect the computer. (b) Otherwise, the

equilibrium is the same as in the kidnapping game (except part

(a) would condition on W �G rather than W).

Proof. We need to revisit Stage 5 of the proof of Theorem 1. If the

files are released, the criminal has expected payoff

VR ¼ ð1� qÞðC�GÞ � qX:

If the files are not released, the criminal has expected payoff

VE ¼ ð1� qÞC� qZ:

It is, therefore, in the criminal’s interest to destroy the files if G is

sufficiently high. If the criminal destroys the files, then there is no in-

centive for the victim to pay any ransom and so no incentive for the

criminal to infect the computer. If the criminal does not destroy the

files, then the equilibrium follows from the proof of Theorem 1.

QED

Corollary 2 shows that the criminal cannot possibly gain from

the ability to deceive. If the gains from deception, i.e. G, are large,

then this undermines the whole basis of ransomware because no-

body will pay a ransom to a criminal who is likely to take the money

and run [36]. If the gains from deception are not large, then the

criminal will not use the option and so does not benefit from the

ability to use it. In practice, we can expect that Z � Y because pun-

ishment will be the same irrespective of whether the criminal

released files. Also, we can expect that q is small because of the

small probability of capture. This means that the smallest gain (or

saving in costs) from not releasing the files may be enough to under-

mine the criminal’s ability to profit.

In a one-shot context it is difficult to envisage how a criminal

could credibly overcome this problem and commit to returning the

files. If, however, the criminal targets multiple individuals over time,

then he can create a reputation for returning files. The crucial insight

we have is that it is in the criminal’s interest to build up such a repu-

tation because any short-term gain from taking the money will be

quickly offset by the unwillingness of future victims to pay any ran-

som.10 Indeed, as we have seen, it will be in the criminal’s interest to

have a 100% record of returning files to those who pay the ransom.

This can be captured within our model by revisiting the interpret-

ation of G. We introduced G as the cost of engaging with the victim

and returning files, but we could also include reputational damage

for not honouring a ransom payment. Such reputational damage

would decrease G and indeed may make G negative. We can see in

Corollary 2 that this undermines the incentive to take the money

and run.

For now, let us reiterate that a reputation for ‘honouring

payments’ if a ransom is paid is not at odds with a reputation

for irrational aggression if a ransom demand is not met. The crimi-

nal’s bargaining position is highest if he is tough on those that don’t

pay (a is large) and fair to those who do (b is small). A tough but

fair approach gives maximum incentive for the victim to pay the

ransom.

Incomplete information on willingness to pay

The kidnapping game is one of complete information in which both

criminal and victim know the payoff values given in Table 1.

Particularly important is the assumption that the criminal knows the

willingness of the victim to pay to recover her files, W. In reality,

the criminal is unlikely to know W and this will undoubtedly have

important implications for equilibrium outcomes. Unfortunately, no

study has analysed the consequences of incomplete information in

the kidnapping game. This is presumably because in many hostage-

taking situations it is not unreasonable that W would be common

knowledge.11 In the case of ransomware, however, we clearly need

to take account of uncertainty regarding W.

Despite the lack of formal analysis, it is possible to make some

relatively firm conjectures regarding the likely consequences of in-

complete information. One thing to note is that there no reason to

expect incomplete information will fundamentally change any of the

conclusions we have drawn so far. In particular, the role of irration-

al aggression and a reputation for returning files to those who pay

the ransom will remain. Taking account of incomplete information

will, though, impact the probability of the victim recovering her

files. Theorem 1 shows that in equilibrium the victim always retains

her files (either because her computer is not infected or she pays the

ransom). This result is critically dependent on complete information

because it relies on the criminal being able to calculate the maximum

ransom that the victim will pay.

If there is incomplete information, then the criminal is not in a

position to calculate the optimal ransom to charge each individual

victim. Instead, he will have to work with aggregates and calculate

the optimal ransom for the ‘average’ victim. The inevitable conse-

quence of this is that some victims will refuse to pay the ransom be-

cause their willingness to pay is relatively low. The better the

criminal’s ability to predict or infer W, then the more profit he can

earn. This provides a strong incentive for the criminal to price dis-

criminate based on the characteristics of the victim [19]. And, in

principle, the criminal may be able to infer quite a lot about the

10 Formally, this will depend on the strategy of the victims. But any form of trig-

ger strategy in which a victim refuses (with significantly high probability) to

pay if a previous victim did not recover her files would lead to this result.

11 For instance, the amount that governments have paid to release hostages

from war zones is relatively well known.

6 Journal of Cybersecurity, Vol. 5, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article-abstract/5/1/tyz009/5554879 by U

niversity of C
oventry user on 20 D

ecem
ber 2019



victim given that he has free rein to look at the victim’s computer

and files. Moreover, the criminal may have access to data on the

past willingness of victims to pay. It is in the criminal’s interest to

use this in order to reduce imperfect information as much as

possible.

Having made this point, let us emphasize that bargaining

with the victim is not a good method of inferring willingness to pay.

To illustrate the point, suppose that there are two types of victims, a

low-type with willingness to pay WL, and a high-type with willing-

ness to pay WH > WL. If the criminal could perfectly tell the type of

the victim then he can replace W in equation (2) with either WL or

WH and determine the optimal ransom D�L and D�H. As we would

expect, a higher ransom would be asked of those with a higher will-

ingness to pay, D�L < D�H. Suppose, however, that type is private in-

formation and so the criminal cannot infer type of victim. Let p

denote the probability that the victim is of high-type. Call this a kid-

napping game with unknown type.

Corollary 3: If ð1� aÞWH � ð1þ aÞWL, then the following is a

(Bayesian) equilibrium of the kidnapping game with unknown

type: (a) If

maxfWL;pWHg < qX
1þ a

a

� �
;

then the criminal will not infect the victim’s computer. (b)

Otherwise, the victim’s computer is infected. If pWH < WL the

criminal makes demand

D�L ¼
a

1þ a

� �
WL

1� q

� �
;

Then the victim makes counter-offer C ¼ D�L, and the files are

released to the victim. Otherwise, the criminal makes demand

D�H ¼
a

1þ a

� �
WH

1� q

� �
;

The high-type makes counter-offer C ¼ D�H and the files are

released. The low-type makes counter-offer 0 and the files are

destroyed.

Proof. In Stage 5, we still have that any positive offer will be

accepted. So consider Stage 3. If the criminal sets ransom D�H then

we can see that the high-type maximizes payoff by setting C ¼ D�H
and the low-type by setting C ¼ 0. Revenue for the criminal is then

pD�H. If the criminal sets ransom D�L, his revenue is D�L. QED

Corollary 3 shows that if the gap between the willingness to pay

of the high- and low-type of victims is sufficiently large, then the

criminal does best to make a choice of whether to target the high- or

low-type. This choice will depend on the probability of the victim

being of high-type and the gap in willingness to pay. Clearly, if the

criminal does best to target the high-type, then this means the victim

will not recover his files if she is a low-type.

A simple game model of deterrence

In this section, we turn to the model of Lapan and Sandler [11], fur-

ther developed by Brandt et al. [37]. Note that the model was devel-

oped to study government policy towards terrorist kidnapping and

hijacking, and so the primary focus is on deterring attack. We shall

see, however, that the model can still provide valuable insight on

ransomware. In doing so we focus on the one shot interaction be-

tween a criminal and a victim. This contrasts with Lapan and

Sandler [11] who focus on repeated interaction between a govern-

ment and a terrorist organization [8]. Given the difference in focus,

our results and analysis are distinct from those of Lapan and Sandler

[11]. To be more specific, the game we study is analogous to that of

Lapan and Sandler [11] but all of our results are new. Closer to our

analysis, as we shall discuss below, is that of Laszka et al. [12].

Again, we have a game with two players: a criminal and a victim.

We shall refer to the game as the ‘deterrence game’. The game con-

sists of the four stages detailed below.

Stage 1: The potential victim chooses how much to spend deter-

ring attack. This could be equated with virus protection, greater

care in opening files etc. Denote expenditure by E � 0.

Stage 2: The criminal chooses whether or not to attack the vic-

tim’s computer. If the computer is not attacked then the game ends.

The criminal has payoff 0 and the victim’s payoff is �E. Note that

expenditure on deterrence is a sunk cost.

Stage 3: If the criminal chooses to attack, then with probability

hðEÞ the attack is a failure, where h is a continuous, differentiable

monotonically increasing function of E.12 With probability

1� hðEÞ, the attack is a ‘success’ and the victim’s files are infected.

If the attack is a failure, then the game ends. The criminal has payoff

�F < 0 and the victim’s payoff is �P� E, where �P � 0 includes

costs (e.g. downtime) from repelling attack.

Stage 4: If the attack is a success, then the criminal makes a ran-

som demand C. The victim can either pay or not pay the ransom.

If the victim pays the ransom then she regains access to her files.

Her payoff is �C� E� B, where B � P captures the damage from

the attack, and the payoff of the criminal is C. Let A ¼ P� B be the

difference in damage between a failed attack and an attack where

the ransom is paid. If the victim does not pay the ransom, then

the files are destroyed. Her payoff is �W � E and the payoff of the

criminal is �L � 0, where L includes the cost of the attack.13 Any

damage to the victim is assumed to be captured by W. Note that

there is no chance to negotiate the ransom.

A (pure) strategy for the criminal consists of a choice to attack

and demand a ransom of C. A strategy for the victim consists of an

amount spent on deterrence and the decision whether or not to pay

the ransom. Table 2 summarizes the possible outcomes of the game

and payoffs in each case.

Before we continue to the analysis, let us set out how our model

differs from that of Laszka et al. [12]. The key differences come in

Stages 1 and 2 of the game. In their setting, the victim can spend

resources on backup. This is essentially the analog of our Stage 1.

Crucially, however, a backup (in their model) does not reduce the

probability of a successful attack (as in our Stage 3) but instead

reduces the potential losses from an attack. Meanwhile, the criminal

can determine the amount of resource spent attacking two different

types of victims. This is the analog of our Stage 2, but it is this spend-

ing that determines the probability of a successful attack. The comple-

mentary insights of the two models will be discussed further below.

Main theoretical result

Again, we focus on solving for the set of sub-game perfect Nash

equilibria. The function h is going to prove crucial and measures the

12 We allow that h may not be differentiable at point E¼ minE fhðE Þ ¼ 1g.
Clearly, h Eð Þ ¼ 1 for all E > E .

13 Lapan and Sandler [11] allow that L may be positive. In a terrorist setting, this

is because a successful hostage taking can generate publicity. The payment

of ransom may, therefore, be of secondary benefit. In the ransomware set-

ting, however, it is difficult to conceive of a net-benefit without the payment

of the ransom.
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returns to spending on deterrence. To simplify the analysis, we will

assume that h is weakly convex. More formally, for any E0 < E00,
where hðE00Þ < 1, and any k 2 ð0; 1Þ, we assume that

hðkE0 þ ð1� kÞE00Þ < khðE0Þ þ ð1� kÞhðE00Þ. Alternative specifica-

tions of h will be discussed as we proceed.

Theorem 2. If h is weakly convex, then, generically, there exists a

unique sub-game perfect Nash equilibrium of the deterrence game.

(a) If W > C and

Ê ¼ h�1 C

F þ C

� �
<
�

1� hð0Þ
�

Cþ hð0ÞA� B ¼ U0 ð4Þ

then the victim spends Ê on deterrence and the criminal does not

attack. (b) If W > C and Ê > U0, then the victim does not spend

on deterrence, the criminal will attack, and if the attack is suc-

cessful, the victim will pay the ransom. (c) If W < C, then the

victim does not spend on deterrence, the criminal does not attack

and the victim would not pay a ransom.

Proof. We proceed by backward induction. Suppose that W > C.

Then the victim will pay the ransom. The expected payoff of the

criminal if he attacks the victim’s computer is therefore

V ¼
�

1� hðEÞ
�

C� hðEÞF:

The payoff if he does not attack the computer is 0. The criminal

will thus attack if and only if E < Ê, where Ê solves

hðÊÞ ¼ C

F þ C
:

Consider Stage 1. The victim clearly has no incentive to choose E >

Ê as the criminal is deterred when E ¼ Ê. Her expected payoff with

full deterrence is�Ê. Her expected payoff with deterrence E < Ê is

UðEÞ ¼ �ð1� hðEÞÞðCþ BÞ � hðEÞP� E
¼ �C� Bþ ðC� AÞhðEÞ � E:

Note that

dUðEÞ
dðEÞ ¼ ðC� AÞ dhðEÞ

dE
� 1:

Weak convexity of h means that it can never be optimal to set

E 2 ð0; ÊÞ. The victim will therefore choose between no deterrence

E ¼ 0 or full-deterrence E ¼ Ê. Her expected payoff with no deter-

rence is �ð1� hð0ÞÞðCþ BÞ � hð0ÞP. So, it is optimal to choose de-

terrence if and only if Ê < ð1� hð0ÞÞðCþ BÞ þ hð0ÞP.

Suppose that W < C. Then the victim will not pay the ransom. The

expected payoff of the criminal if he attacks is therefore ð1� hðEÞÞ
L� hðEÞF < 0. The payoff if he does not attack is 0. The criminal will

thus not attack. Given that the criminal will not attack, the victim has no

incentive to deter attack. QED

In interpreting Theorem 2, note that one crucial thing is whether

the victim will pay the ransom. If W > C, then the victim’s willingness

to pay for his files exceeds the ransom and so he will pay. Any threat to

not pay is simply non-credible.14 Clearly, this incentivizes the criminal

to infect the computer. This, however, incentivizes the victim to deter

an attack. The second crucial thing is, therefore, the cost of deterring

attack. If that cost is not too high, where high cost is determined by

equation (4), the victim spends enough to deter attack. Deterrence

works by making it unlikely that the criminal’s attempt will succeed. If

the cost of deterrence is too high, then the victim accepts the chance of

her files being infected and pays the ransom if necessary.

What determines whether the cost of deterrence is high or low?

This depends on the cost F of a failed attack. If F is small then deter-

rence can only work by being highly effective. If F is large then deter-

rence is easier. In the context of ransomware, the value of F will likely

be very small, given the low marginal costs of a criminal, say, sending

out phishing emails. Indeed, failed attacks are clearly the norm in com-

mon uses of ransomware. A small F means that deterrence has to be

highly effective at stopping attack if it is to deter criminals. This puts

the focus on h and the potential effectiveness of vigilance or anti-virus

software. To be effective, the measures have to be essentially perfect at

stopping an attempt to infect the computer.

Theorem 2 suggests that the victim will either spend nothing on

deterrence or spend so much as to fully deter attack. This all or

nothing approach follows directly from the assumption that h is

weakly convex. If h is concave, then the victim may find it optimal

to spend on deterrence even if this will not deter attack. To illus-

trate, we can work through a simple numerical example.

Suppose that hðEÞ ¼
ffiffiffiffi
E
p

for E � 1. Also, set B ¼ 0 and F ¼ 0 (or

some small positive number). Then the potential victim could spend

E ¼ 1 on deterrence and be guaranteed to keep her files. This would

leave final payoff as �1. Or she could spend E < 1 on deterrence, face

the potential of being attacked, and have expected payoff UðEÞ ¼
�ð1� hðEÞÞW � E. Maximizing UðEÞ gives a candidate solution E ¼
W2=4 and UðEÞ ¼ �W þW2=4. Comparing the respective payoffs,

we can see that if W � 2 then it is optimal for the victim to spend

E ¼ 1. This is analogous to outcome (a) in Theorem 2 and means that

attack is deterred. If W < 2, then it is optimal for the victim to spend

E ¼W2=4 < 1 on deterrence. This is analogous to outcome (b) in

Theorem 2, but note that the victim spends something on deterrence.

The spending is not enough to deter the criminal but still means the vic-

tim is less vulnerable to attack.

This example illustrates that we need not expect victims to take an

all or nothing approach to deterrence. There is scope for victims to

spend on deterrence in order to reduce the probability of a successful

attack. This is particularly possible if there are multiple approaches to

deterrence. For example, we might find someone who buys anti-virus

protection but is not cautious enough when opening email attachments

or we might find someone who does not buy anti-virus but is cautious

at opening attachments. This kind of approach may be optimal even if

it does not completely immunize from attack.

Incomplete information

A somewhat trivial result for the deterrence game is that if the ran-

som demand is too high, W < C, then the victim will not pay the

ransom and so the criminal has no incentive to infect the computer.

This result seems a little strange in application. For instance, why

does the criminal simply not ask a ransom that the victim is willing

Table 2.The payoffs to different outcomes in the deterrence game

Outcome Payoffs

Criminal Victim

No attack 0 �E� E

Failed attack �F � F �P� E� P� E

Release of files for ransom CC CC �C� B� E� C� B� E

Ransom not paid �L� L �W � E�W � E

14 In a hostage-taking setting, there is a credible incentive to not pay theran-

som demand if this creates a reputation that deters future attack. This logic

may be relevant in thinking about governments or firms that may face

repeated attacks from criminals.
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to pay? This brings us back to the issue of incomplete information

that we discussed above. So, let us explore the consequences of the

criminal not knowing how much a victim is willing to pay to recover

her files.

To be specific, consider again the case in which there are two

types of victims, a low-type willing to pay WL, and a high-type will-

ing to pay WH > WL to recover her files. Suppose that criminal sets

a ransom targeted at a high-type victim. In other words, the ransom,

C, is set at WL < C � WH. For instance, it may be possible that

the criminal is targeting firms (high-types) but will attack individuals

(low-types) along the way. Theorem 2 can be applied to discern

what the high-type will do. If

Ê ¼ h�1 C

F þ C

� �
<
�

1� hð0Þ
�

WH þ hð0ÞA;

then the high-type will spend E ¼ Ê on deterrence. This will deter

all attacks and so the high-type not only defends herself but also the

low-type. Indeed, the low-type can spend EL ¼ 0 on deterrence. In

interpretation, we might think of the low-type as ‘free-riding’ on the

vigilance of the high-type.

If Ê > ð1� hð0ÞÞWH þ hð0ÞA, then the high-type will spend EH ¼
0 on deterrence. This leaves both the high-type and the low-type open

to attack. An interesting question is whether this incentivizes the low-

type to spend on deterring attack. This is not as obvious as it may seem

because the high-type ‘only’ pays the ransom (and doesn’t lose their

files), while the low-type stands to ‘only’ lose her files. Recall, however,

that WL < C and so the low-type values her files by less than the ran-

som. This means the high-type still has more to lose than the low-type.

So, if it is too costly for the high-type to deter attack, then the same

must hold for the low-type.

Spillover effects of deterrence

In the preceding section, we saw that the low-type will spend less on

deterrence than the high-type. In interpretation, we suggested this

means the low-type is somewhat at the mercy of the high-type. In

particular, if the high-type spends enough to deter attack, then the

low-type benefits ‘for free’. It is, though, important to distinguish

different types of deterrence before attaching any kind of moral

judgement on who is better or worse.

In the deterrence game spending reduces the probability of an at-

tack being successful. This modelling assumption naturally fits cer-

tain types of deterrence such as spending on malware or greater

vigilance in checking email attachments. And, in this case, the term

free-riding may be appropriate. For example, if large corporations

(high-types) spend sufficient funds on cyber-security to deter crimi-

nals, then small corporations or individuals (low-types) may not

need to devote such high resources to cyber-security. So, low-types

gain from the spending of high-types.

Another form of deterrence, which is not captured in the deterrence

game, is for the potential victim to lower the value of W. For example,

someone who regularly backs up their files would have a much lower

W than someone who did not do so because they have less to lose from

not being able to recover their files. If everyone were to regularly back

up files and have a low W, then the incentives for the criminals to at-

tack would be much diminished. So, in this context the term free-riding

seems somewhat unjustified. In particular, those who regularly back up

their files (low-types) may still be vulnerable to attack because the crim-

inals are targeting those who do not back up their files (high-types).

More generally, we see that there are important spillover effects

from one interaction to another. One person’s spending on deterrence,

in lowering the incentives of the criminals, will likely have a positive

benefit for others. It is, though, unlikely that potential victims would

take this into account when spending on deterrence. These externalities

are also picked up by Laszka et al. [12]. Note that this is different from

the setting originally considered by Lapan and Sandler [11] of a govern-

ment repeatedly interacting with hostage takers. In this latter case, the

externality is internalized because the government is the ‘victim’ every

time. In ransomware, however, it is disparate individuals or firms that

will be targeted, and so the externality is not internalized. This compli-

cates attempts to combat ransomware.

Discussion and other literature

In this section, we draw together the previous analysis, and compare

and contrast results. We also bring in insights from the rest of the game

theoretic literature on kidnapping. Particularly important is to compare

and contrast the two models analysed in this article together with that

of other closely related work such as Caporusso et al. [13], Hernandez-

Castro et al. [19] and Laszka et al. [12]. The basic point to appreciate

is that all of these models look at complementary aspects of ransom-

ware. It would be relatively simple to plug all these models together

and come up with a big overarching ransomware game, but as we now

discuss this is ultimately unlikely to lead to any additional insight.

What we need to do is to clearly isolate the contribution that different

models can make and the ways they can be extended. This seems espe-

cially apt, given that game theoretic modelling of ransomware is in its

infancy and much work remains to be done.

The kidnapping game we analysed above primarily informs on

the bargaining process between criminal and victim, the optimal

ransom demand and the incentives to return files to the victim (see

also [15, 19]). Our main results are that bargaining does not benefit

the criminal, the optimal ransom demand will depend on the threat

of random destruction (if the ransom is not paid in full) and the

criminal should honour ransom payments (if paid in full). The deter-

rence game analysed above and the model of Laszka et al. [12] sim-

ply assume away these issues. Specifically, they take as given, no

bargaining, a fixed ransom demand and that files will be returned.

The crucial thing to observe is that these assumptions are supported

by our analysis (including Theorem 1) and so Theorem 2, and our

analysis of the deterrence game is robust. For instance, to add bar-

gaining to the deterrence game would not change Theorem 2, or add

any insight we are not able to get from Theorem 1.

The deterrence game that we analysed primarily informs on the

incentives of potential victims to deter attack. The model of Laszka

et al. [12] informs on the incentives to do backups in order to miti-

gate the losses from attack. There may be some crossover between

deterrence or backup and bargaining. For instance, a victim you

have devoted resources to deterrence and back up could be expected

to have a low willingness to pay, which then influences bargaining.

Even so, Theorem 1 can pick this up as changes in W. To be more

specific, In Theorem 2 the key determinant of whether the victim

should spend enough to deter attack is

Ê ¼ h�1 C

F þC

� �
<
�

1� hð0Þ
�

Cþ hð0ÞA� B ¼ U0:

From Theorem 1 we get that

C ¼ a

1þ a

� �
W

1� q

� �
:

These two equations contain independent variables and so we can

readily combine them to provide an overall expression for whether

the victim should spend on deterring attack.
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A key insight that comes out of our deterrence game and Laska

et al. [12] are the spillovers between different types of victims.

Basically, the actions of one victim has implications for the likeli-

hood of another suffering an attack. This is an issue that clearly war-

rants more study, particularly in terms of the practical steps a policy

maker could take to internalize the externalities. For instance, is it

best for governments to legislate on requirements for backup and de-

terrence or to use positive incentives such as subsidies for virus pro-

tection. This can feed into the general debate on how to encourage

better cyber practice in a world of boundedly rational individuals

[38, 39].

There is also more that we can learn from the game theoretic lit-

erature on kidnapping [40, 41]. From the perspective of a criminal,

the main issue (if we set aside the more technical aspects of launch-

ing successful attacks) is to maximize ransom revenue. As we dis-

cussed above, this is best achieved by the criminal ‘tying his hands’.

First, the optimal ransom demand needs to be determined [19].

Then, it is in the criminal’s interest to not negotiate. Irrational ag-

gression is a key part of the mix here because that provides the

threat of files being destroyed. This threat (real or perceived) is im-

portant to motivating the victim to pay the ransom and ‘do as the

criminals want’.15

The key thing to appreciate here is the criminal’s need to build a

reputation of being tough but fair.16 If victims don’t deliver the ran-

som, then the criminals should be tough. But if the victims pay up,

then they should get their files back. Note that this approach is con-

sistent with the criminals providing a ‘customer service’ for victims

because it provides a clear and credible set of rules for customers

[26]. If the criminals can build a reputation, work out the optimal

ransom demands and launch successful attacks, then they are going

to make a large profit. However, building reputation may not be

easy. For instance, the recent WannaCry and NotPetya attacks got

huge publicity and spread the message that there is no point in pay-

ing the ransom. This is not good for those running profit-motivated

attacks. We can expect, therefore, to see a push towards building a

‘brand’ that victims can ‘trust’.

For potential victims the picture is less bright. The spillovers be-

tween individuals mean that it is very difficult for any one individual

to ‘win’. Spending on deterrence, particularly in terms of regular

backups, is a strategy to minimize loss. But we should not lose sight

of the fact that this is still a loss. The victim has to spend resource

on deterrence and then potentially also to restore systems after at-

tack. The key problem is the cheapness of the criminal for launching

an attack. This means that as long as some victims are willing to pay

the ransom, everyone faces the threat of attack. And that means that

everyone needs to consider deterrence. Crucially, this means that

ransomware has a significant cost even if there are relatively few

instances where a ransom is actually paid.

Another element that aids the criminals is patience. In bargaining

situations, the more patient party stands to benefit most [42]. In a

ransomware attack the victim is almost certainly going to be in a

hurry to recover their files while the criminals have little to lose

from delay. The almost universal use of fixed deadlines and count-

down timers in ransomware attacks presumably heightens the vic-

tim’s sense of urgency [43]. Another thing that can work to the

criminal’s advantage is the lack of attention a particular attack

brings. For instance, Gaibulloev and Sandler [42] and Sandifort and

Sandler [44] find that the capture of a protected person weakens the

negotiating position of terrorists because of the public scrutiny it

generates. Similarly, we can expect that ransomware attacks that fly

under the radar of mass media will be more successful because the

resources to help and advise victims are going to be less readily

available.

Conclusion

In this article we have applied and extended two seminal models

from the game theoretic literature on kidnapping to the issue of ran-

somware. The first model (due to Selten [10]) informs on the bar-

gaining process between criminal and victim. The second model

(adapted from Lapan and Sandler [11]) informs on the optimal de-

terrence of potential victims. There is, as we have discussed, much

work that could be done to extend the models further. For example,

our approach does not explicitly take into account that there is a

large population of victims with whom the criminals interact simul-

taneously. Moreover, we do not take account of potential ‘competi-

tion’ between different criminal gangs. Even so, our analysis has

yielded some key findings, which we summarize below. We expect

these findings are robust to more general analysis.

• The optimal ransom demand is increasing in the willingness of

the victim to pay to recover her files. This means that it is in the

criminal’s interest to be as informed as possible about the vic-

tim’s willingness to pay.
• The bargaining power of the criminal is enhanced by the likeli-

hood of irrational aggression, i.e. the destruction of files if a ran-

som demand is not met. One way to achieve this is to not allow

any counter-offers from the victim or to build a reputation of

refusing any counter-offer.
• The bargaining power of the criminal is enhanced by a credible

commitment to return files to any victim who pays the required

ransom. The most likely way to achieve this is for the criminal to

build a reputation of honouring ransom payments.
• Criminals will only be deterred from launching attacks if the

measures to prevent successful attack, whether that be anti-virus

software or personal vigilance, are near perfect. This seems

unlikely.
• There are important spillover effects between potential victims.

For instance, if the victims who value their files most spend

enough to deter attack, then this benefits all users. Similarly,

those who regularly back up files may still be vulnerable to attack

and losses (even if small) because there are others who do little to

deter attack. This suggests that it may be optimal to subsidize

spending on cyber security or good backup practices.
• Deterrence is costly. Any estimate of the costs of ransomware,

therefore, should take into account all the costs of deterrence

and costs of dealing with an attack. The payment of ransoms is

likely to be a relatively small fraction of the total social and eco-

nomic costs of ransomware.

As things stand, we would suggest that ransomware is still in the

early stages of its development. While the technological know-how

exists, there is still a lot that the criminals can do to maximize their eco-

nomic profit. And similarly, awareness of ransomware on the side of

potential victims still appears rudimentary. Over time, therefore, we can

15 We could also think of ‘irrational aggression’ on the victim side in refusing to

pay. But the credibility of this is questionable, given that it does not benefit

the victim in a one-off interaction. Lee [38], for instance, finds that

democratic governments are more likely to pay terrorist ransom demands be-

fore elections (because a threat to not pay becomes non-credible).

16 Wilson [39] provides evidence that this type of approach is also successful

in terrorist hostage-taking scenarios.
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expect a process of evolution as criminals and potential victims adopt

‘better’ strategies. Given that ransomware provides a viable long-term

business model for the criminals, it is likely to be a crime that will be

around for some time to come. Our analysis gives insight onto how ran-

somware will evolve and the costs it will impose on potential victims.
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