

Evaluation of explosion characteristics of 2methylfuran/air mixture

Oppong, F., Xu, C., Zhongyang, L., Li, X., Zhou, W. & Wang, C.

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

Oppong, F, Xu, C, Zhongyang, L, Li, X, Zhou, W & Wang, C 2019, 'Evaluation of explosion characteristics of 2-methylfuran/air mixture', Journal of Loss Prevention in the Process Industries, vol. 62, 103954.

https://dx.doi.org/10.1016/j.jlp.2019.103954

DOI 10.1016/j.jlp.2019.103954 ISSN 0950-4230

Publisher: Elsevier

NOTICE: this is the author's version of a work that was accepted for publication in Journal of Loss Prevention in the Process Industries. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Journal of Loss Prevention in the Process Industries*, 62, (2019) DOI: 10.1016/j.jlp.2019.103954

© 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.

Journal Pre-proof

Evaluation of explosion characteristics of 2-methylfuran/air mixture

Francis Oppong, Cangsu Xu, Luo Zhongyang, Xiaolu Li, Wenhua Zhou, Chongming Wang

PII: S0950-4230(19)30543-1

DOI: https://doi.org/10.1016/j.jlp.2019.103954

Reference: JLPP 103954

To appear in: Journal of Loss Prevention in the Process Industries

Received Date: 1 July 2019

Revised Date: 5 September 2019

Accepted Date: 5 September 2019

Please cite this article as: Oppong, F., Xu, C., Zhongyang, L., Li, X., Zhou, W., Wang, C., Evaluation of explosion characteristics of 2-methylfuran/air mixture, *Journal of Loss Prevention in the Process Industries* (2019), doi: https://doi.org/10.1016/j.jlp.2019.103954.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

e , ^c
ŗ ^C
r ^C
zhou,
,

33 Evaluation of explosion characteristics of 2-methylfuran/air mixture

35 Abstract

Herein, the explosion characteristics such as the peak explosion pressure, maximum pressure rise rate and deflagration index of 2-methylfuran (MF) /air mixture have been investigated at high pressures and temperatures. Knowledge of these parameters can be used in the safety assessment of MF explosions. The explosion experiments were performed at the initial pressure of 1, 2, 3, and 4 bar, the initial temperature of 333, 363, 393, and 423 K and the equivalence ratio of 0.7-1.4 using a constant volume combustion bomb. The pressure data obtained from the experiment were carefully processed to examine MF peak explosion pressure, maximum pressure rise rate, explosion time as well as the deflagration index. Explosion characteristics of MF were sensitive to the initial pressure and temperature conditions and the mixture concentration. An increment in the initial pressure triggered a dramatic growth in the peak explosion pressure, maximum rate of pressure rise and the deflagration index. Alternatively, an increment in the initial temperature decreased the peak explosion pressure, maximum pressure rise rate and the deflagration index. By and large, MF explosion parameters obtained in this investigation can offer firsthand information on MF explosion hazard assessment at high pressures and temperatures.

51 Keywords: 2-methylfuran (MF); Explosion characteristics; Explosion pressure; Pressure rise rate;
 52 Deflagration index; Explosion time

- ---

Journal Pre-proof				
Nomenclature		Subscript		
V	Combustion vessel volume,	max	Maximum	
	m ³			
T	Temperature, K	i	Initial	
p	Explosion pressure, bar	L	Laminar	
p_{max}	Peak explosion pressure, bar	c	Combustion	
dp/d _{max}	Maximum pressure rise rate, bar/s	e	End	
	Time after ignition, ms			
	Explosion time, ms	Greek Symbol		
е	End of explosion time, ms	ϕ	Equivalence ratio	
dp/d	Pressure rise rate, bar/s			
T_i	Initial temperature, K			
p_i	Initial pressure, bar			
S_L	Laminar burning velocity,			
	m/s			
K _G	Deflagration index, bar*m/s			
	Journal			

82 **1. Introduction**

Annually, chemical or gas explosion accident kill and injure hundreds of people globally (Beck, 83 2016; OECD, 2013; World Health Organization, 2009; Wu et al., 2019). As a matter of fact, an 84 explosion can occur in industries, household, confined and unconfined space, process equipment as 85 well as in offshore/marine structures when a flammable gas or highly evaporative liquid is 86 accidentally discharged into the atmosphere and meet a strong ignition source. In compliance with 87 this, the explosion characteristics of distinct flammable or highly evaporative fuels have to be 88 thoroughly studied. To this end, having knowledge of the explosion characteristics such as the peak 89 90 explosion pressure, maximum pressure rise rate, explosion time and deflagration index is useful to improve safety. In essence, the deflagration index is used as the foundation for the design of 91 pressure tanks and safety relief valves for chemical storage as well as vents, high pressure and 92 temperature combustors/furnace. The magnitude of the deflagration index characteristically 93 determines the severity of the explosion. Therefore, higher deflagration indices/values indicate the 94 possibility of extremely dangerous explosion. Considerable investigations have been performed in 95 96 the literature to study the explosive behavior of gaseous and liquid fuels in recent years. Just to mention a few, quite a bit of these investigations used hydrogen (Li et al., 2015; Li et al., 2018a, 97 2018b; Sun and Li, 2017), methane/methanol (Cui et al., 2018; Kundu et al., 2018; Mitu and 98 Brandes, 2015; Tang et al., 2014), ethanol (Mitu et al., 2018; Mitu and Brandes, 2017) and syngas 99 (Tran et al., 2017) fuels. The authors sought to investigate the impact of initial pressure, initial 100 temperature and equivalence ratio on the peak explosion pressure, maximum rate of pressure rise, 101 explosion time and deflagration index of these fuels. For instance, Hu et al. (2017) have 102 investigated the explosion characteristics of butanol/isooctane blends and corroborated that at rich 103 mixtures and elevated pressures the peak pressure exhibited oscillatory behaviour which reduced 104 the explosion time and increased the maximum pressure rise rate. In another study, Shen et al. 105 (2017b) showed that methane has a higher upper flammability limit than ethane. What's more, Li et 106 al. (2015) have evaluated the explosion characteristics of alcohol (ethanol, 1-butanol, 1-pentanol) 107 /air mixtures. Their results showed that 1-pentanol had the largest peak explosion pressure and 108 maximum pressure rise rate on the rich regime of the mixture when compared with ethanol and 1-109 butanol. They asserted that this occurrence was due to the difference in heat loss of the various 110 alcohols. On one hand, the maximum pressure rise rate was insensitive to the initial temperature 111 variation. More recently, Sun (2018) also studied the explosion properties of syngas and reported 112 that within his investigated conditions the deflagration index was below 30 MPa*m/s. 113

Laminar burning velocity (LBV) is another significant parameter which quantifies the 114 physicochemical properties of premixed flames/combustion. Essentially, it is used to validate the 115 chemical mechanism of a specific fuel and gives essential information about the burning process 116 and flame dynamics (Bao et al., 2017). The burning velocity of a premixture is somehow related to 117 the explosion pressure development, meanwhile, it is very influential in predicting explosion 118 hazards (Huzayyin et al., 2008). Several studies have been performed to study the burning speeds of 119 different fuels in the literature (Askari et al., 2017; Mannaa et al., 2015; Mitu et al., 2015; Reves et 120 al., 2018). Moreover, some of these studies evaluated the correlation between the burning velocity 121 and explosion parameters (Dahoe, 2005; Dahoe and de Goey, 2003; Saeed, 2017; Zhang et al., 122 2019b). Recently, Ma et al., (2013a, 2013b) studied the burning characteristics of 2-methylfuran 123 (MF) / air mixtures and reported that MF had unstable flames and higher burning velocities 124

compared to isooctane and 2,5-dimethylfuran. In another study, the following researchers (Somers
et al., 2013; Xu et al., 2018; Zhongyang et al., 2018) also studied the LBV of 2-methylfuran at
elevated pressures and temperatures and evaluated the correlation between the burning velocities
and the initial pressure and temperature.

In the meantime, in the long haul, 2-methylfuran has the potential as an alternative fuel. In 129 addition, it also used in the pharmaceutical industry and the manufacturing of pesticides. MF is 130 highly flammable, has a lower flash point and easy to vaporize, therefore, any leakage of MF poses 131 a potential threat to human life and properties. If MF is inappropriately handled during production, 132 transportation and storage it can cause a fire outbreak as well as an explosion if any leaked MF 133 meets a strong ignition source. Therefore, firsthand information about its explosion characteristics is 134 relevant for accident and safety evaluations. In spite of the progress made in the investigation of 135 explosion characteristics of many fuels in previous publications, to the best knowledge of the 136 authors, there is no information on MF explosion characteristics such as the peak explosion 137 138 pressure, maximum pressure rise rate, explosion time and deflagration index in the literature. In addition, the explosion characteristics of liquid fuels, most especially liquid biofuels are rarely 139 studied in the literature. Therefore, this work intends to examine the explosion features of 2-140 methylfuran at elevated pressures and temperatures. The main purpose of this work is to investigate 141 the influence of initial pressure, initial temperature and the equivalence ratio on MF explosion. 2-142 143 methylfuran explosion characteristics were experimentally determined using a constant volume combustion chamber (CVCC) at the initial temperature (333, 363, 393 and 423 K), initial pressure 144 (1, 2, 3, and 4 bar) and equivalence ratio (0.7-1.4). The experimental explosion pressure data were 145 well examined to determine MF peak explosion pressure, maximum pressure rise rate and explosion 146 time. Last but most definitely not least, 2-methylfuran LBV data were mapped against the 147 equivalence ratio. 148

149

150 2. Analysis of experimental device and method

The experimental instrumentation has been shown elsewhere (Zhongyang et al., 2018). The 151 experiment was done in a CVCC which has an inner length to diameter ratio of (L/D = 1.0). The 152 CVCC has an inner volume of 2.067 L. In addition, experimental data of the testing rig have been 153 validated in this paper (Zhongyang et al., 2018). The CVCC also comprises of a high-speed imaging 154 (Schlieren) system and a data recording system. It also has quartz windows which permits viewing 155 and recording of flame images. The CVCC has six heating units on its sides used to control the 156 initial temperature. Moreover, the initial mixture temperature was measured with a K-Type 157 thermocouple (WRNK-231) which is accurate to $\pm 0.75\%$. Altogether the combustion pressure was 158 recorded by a piezoelectric pressure sensor (Kistler 6115A) and a charge amplifier (Kistler 5018A). 159 Meanwhile, the initial pressure was determined with a high precision pressure gauge (Keller 160 LEX1). The resolution of the pressure sensor is 0.0001 MPa. Therefore, 0.1-3% of inaccuracy was 161 generated by the initial pressure. The sampling frequency of the pressure recording unit is 75MHz. 162 The mixture was ignited with two electrodes of diameter 0.4mm opposite with each other and the 163 ignition unit. The ignition or spark energy of the experiment is 10mJ (Xu et al., 2014). The mean of 164 three testing data was used for each ϕ in order to warrant 90-95% certitude. 165

- 166
- 167

170 **3. Results and discussion**

The experimentally recorded pressure data have some level of noise in the data; therefore, it is 171 difficult and inaccurate to determine the explosion parameters from the raw pressure data. In this 172 regard, the raw pressure history was filtered or smoothed using a low-pass band filter in Python. 173 Fig. 1 shows a typical example of smooth explosion pressure (p) and pressure rise rate (dp/d)174 cartography at the initial pressure (p_i) of 2 bar, the initial temperature (T_i) of 393 K and 175 stoichiometric fuel/air ratio of $\phi = 1.0$. As shown in Fig. 1, the pressure steadily increases after 176 ignition and reaches the peak at p_{max} . However, after obtaining p_{max} the pressure starts to drop due 177 to heat loss to the CVCC wall when the flame front reaches the wall. The combustion/explosion 178 179 time was attained at the time (). The maximum pressure rise rate was recorded at the point (dp/d_{max}) . At last, the combustion process was completed at the time ($_e$). It is worth to mention 180 that p_{max} , and dp/d_{max} are the important parameters typically used in the safety assessment of 181 a specific fuel/chemical, hence, herein they are the only parameters discussed. 182

183

184

Fig. 1. Illustration of in-chamber explosion pressure evolution and pressure rise rate contours at $T_i = 393$ K and $p_i = 2$ bar and $\phi = 1.0$.

187

188 **3.1. Explosion pressure and peak explosion pressure**

Fig. 2 shows p contours at $p_i = 4$ bar and $T_i = 423$ K for different ϕ . Similar contours were obtained 189 for the different p_i , T_i and ϕ values investigated in this document. With reference to Fig. 2, it can be 190 noticed that the value of p is sensitive to ϕ , therefore, the magnitude of p increases with increasing 191 ϕ . Parallel trends have been observed in previous studies (Li et al., 2015, Cui et al., 2018; Mitu and 192 Brandes, 2015; Tang et al., 2014). The reduced amount of fuel at $\phi = 0.7$ and 0.9 led to less heat 193 energy released from the combustion phenomena and lower p values. The opposite is true for $\phi =$ 194 1.0, 1.1 and 1.2. The peak value of p increased from 20.593 bar to 26.495 bar when ϕ increased 195 from 0.7 to 1.2. Fig. 3 displays p values at $p_i = 4$ bar, $T_i = 363-423$ K and $\phi = 1.0$. The magnitude 196

197 of p is lower at a higher T_i owing to a higher mass burning rate and flame speed at a higher T_i . Accordingly, the combustible mixture takes a shorter time to reach the peak of p. In addition to this, 198 the mass of MF/air unburnt mixture in the CVCC was decreased (less heat energy from 199 combustion) at a higher T_i , thence, leading to the decreased peak value of p. The peak values of p200 obtained at 363 K, 393 K and 423 K are 29.577 bar, 27.084 bar, and 25.364 bar. Furthermore, it can 201 be noticed in Fig. 4 that an increment in the value of p_i increased the magnitude of p due to the 202 robustness of the combustion process which generated a higher amount of heat energy. The highest 203 values of p increased from 6.077 bar to 25.364 bar when the value of p_i increased from 1 bar to 4 204 bar. 205

207

206

Fig. 2. In-chamber p evolution versus at $\phi = 0.7$ -1.2, $T_i = 423$ K and $p_i = 4$ bar.

Fig. 3. A plot of *p* versus at $T_i = 363-423$ K, $p_i = 4$ bar and $\phi = 1.0$.

215

Fig. 4. A plot of *p* against at $T_i = 423$ K, $p_i = 1-4$ bar and $\phi = 1.0$.

The peak explosion pressure (p_{max}) quantify the energy distribution of combustion propagating 216 waves (Shen et al., 2017b). Therefore, p_{max} can be used to determine the heat energy from the 217 explosion. Fig. 5 depicts the values of p_{max} as a function of ϕ at $p_i = 1-4$ bar and $T_i = 363-423$ K. In 218 219 general, the values of p_{max} increases with increasing ϕ . In lean mixtures, the amount of MF fuel in the CVCC is less leading to less release of heat energy and lower p_{max} . On the other hand, 220 221 combustion becomes more robust as ϕ increases, consequently, the value of p_{max} also increases. As 222 shown in Fig. 5, somewhat p_{max} decreases at some of the rich mixtures due to an insufficient amount of oxygen in the CVCC leading to incomplete combustion and a reduced amount of heat 223 released. 224

Furthermore, the values of p_{max} are somehow higher at a lower T_i and increases dramatically as p_i increases. The reason for a higher p_{max} at a lower T_i is due to the increased mass of the unburnt MF mixture in the CVCC (higher heat energy from MF explosion) which subsequently increased the value of p_{max} . Again, a total reduction in the burning mass of MF mixture and heat loss could also possibly cause a decrease in the explosion peak pressure when T_i was increased. On one hand, at a higher p_i MF explosion becomes more and more energetic leading to a higher release of thermal energy, and a higher p_{max} as depicted in Fig. 5.

The experimental p_{max} data are compared to simulated p_{max} data in Fig. 6. The numerical data 232 were obtained using constant-volume combustion in CANTERA (Goodwin et al., 2017) and MF 233 234 comprehensive chemical mechanism (Cheng et al., 2017). Comparatively, the experimental p_{max} values are lower than the simulated results. The disparity between the experiment and the simulated 235 p_{max} is attributable to heat loss (conduction and radiation) in the CVCC during the experiment 236 which reduces the pressure rise whereas the numerical analysis assumes adiabatic condition. In 237 addition, somehow some of the fuel could be stuck in the vessel due to adsorption and couldn't burn 238 during combustion, which could lead to reduced peak pressures (Zhang et al., 2019a). Moreover, 239 240 likewise, the observations made in Fig. 5, an increment in the initial pressure promotes strenuous combustion and the release of higher thermal energy and peak explosion pressures. 241

Fig. 5. A chart of p_{max} against ϕ at $T_i = 363-423$ K and $p_i = 1-4$ bar. Legend: p_i is led by T_i .

246

249

Fig. 6. Experimental and simulated p_{max} at $T_i = 363$, 393, and 423 K, $p_i = 1$, 2, and 4 bar and $\phi = 0.7$ -1.4. Legend: p_i is led by T_i . Exp and Sim refer to the experimental and simulated results.

Fig. 7 describes the effect of p_i on p_{max} at $\phi = 0.8$, 1.0, and 1.2 and T_i of 363 K. In conformity 250 251 with Fig. 7, it can be realized that in someway p_i increases linearly with p_{max} values. The explosion 252 becomes brisk when p_i is increased which will lead to a higher discharge of heat from the combustion and high pressure rise. Here, as the values of p_i increased from 1 bar to 4 bar, p_{max} 253 values also increased from 6.689-26.139 bar ($\phi = 0.8$), 7.388-29.577 bar ($\phi = 1.0$) and 7.388-254 31.041 bar at $\phi = 1.2$. Fig. 8 also illustrates the impact of T_i on p_{max} at p_i of 4 bar and $\phi = 0.8$, 1.0, 255 and 1.2. Similar correlations have been noticed in past studies (Mitu et al., 2012; Saeed, 2017) for 256 257 distinct fuels. As can be observed in Fig. 8, p_{max} values somehow decrease linearly with increasing T_i . When T_i was increased the density of MF mixture in the CVCC decreased which resulted in 258 rapid burning speed and decreased p_{max} values. When T_i increased from 333 K to 423 K, p_{max} 259

decreased from 28.057 bar to 22.285 bar at ($\phi = 0.8$). At the same time, p_{max} decreased from 31.553 bar to 25.364 bar at ($\phi = 1.0$) as well as 31.677 bar to 26.495 bar at ($\phi = 1.2$) when T_i increased from 333 K to 423 K.

263

264 265

267

Fig. 8. Effect of T_i on p_{max} at $\phi = 0.8$, 1.0, and 1.2 and $p_i = 4$ bar. The solid lines are linear fit.

269

270 3.2. Pressure rise rate, maximum pressure rise rate and deflagration index

Fig. 9 displays the plot of pressure rise rate (dp/d) versus at $\phi = 0.7$ -1.2, $p_i = 4$ bar and $T_i = 423$ K. As can be observed in Fig. 9, for each of the dp/d map ($\phi = 0.7$ -1.2), dp/d initially increases and reaches the maximum value and decrease afterwards. Moreover, due to excessive heat transfer to the CVCC wall the explosion pressure p decreases and the values of dp/d become

275 negative as illustrated in Fig.9. In accordance with Fig. 9, the values of dp/d somehow increases 276 with increasing ϕ , underlining the sensitivity of dp/d to ϕ . The peak of dp/d value increased 277 from 571.3 bar/s to 2147.3 bar/s when ϕ increased from $\phi = 0.7$ to 1.2, obtaining the highest value 278 at $\phi = 1.2$. Fig. 10 also shows the comparison of dp/d at $T_i = 363$, 393 and 423 K, $p_i = 1$ bar and 279 $\phi = 1.0$.

According to Fig. 10, the peak of dp/d increases with a lower T_i . Thus, increased MF burning 280 velocity or speed as well as decreased explosion pressure and maximum pressure rise rate depends 281 on increased T_i . The highest values of dp/d are 542.905 bar/s (363 K), 509.712 bar/s (393 K) and 282 444.523 bar/s for 423 K. Fig. 11 represents the variation of dp/d with p_i at $T_i = 423$ K and $\phi =$ 283 1.0. As shown in Fig. 11, the values of dp/d almost increased twofold with increased p_i . In 284 285 addition, when p_i increased from 1 bar to 4 bar the value of dp/d increased from 444.523 bar/s to 286 1668.99 bar/s. As aforementioned in Section 3.1, this could be due to more and more energetic MF explosion at increased p_i . 287

289

Fig. 9. A graph of pressure rise rate contours at $T_i = 423$ K, $p_i = 4$ bar and $\phi = 0.7$ -1.2. 291

293

Fig. 10. Pressure rise rate maps at $p_i = 1$ bar, $T_i = 363-423$ K and $\phi = 1.0$.

295

300

The maximum pressure rise rate dp/d_{max} is a significant parameter used to describe the 301 302 explosion build-up pressure. It is a very influential parameter in the estimation of the deflagration index (K_G). Fig. 12 compares dp/d_{max} at $T_i = 363-423$ K, $p_i = 1-4$ bar and $\phi = 0.7-1.4$. As 303 depicted in Fig. 12, dp/d_{max} values are fairly higher at a lower T_i when compared to dp/d_{max} 304 305 values at a higher T_i . Truly, increased T_i dictates higher burning velocity and reduced p_{max} . However, the combined effect of the burning velocity and p_{max} determines the magnitude of the 306 maximum pressure rise rate. In addition, the values of dp/d_{max} increases drastically when p_i 307 308 increases. As shown in Fig. 12, dp/d_{max} values are somehow insensitive to p_i at some of the 309 equivalence ratios.

The deflagration index (K_G) measures the intensity of the combustion or explosion process. 310 Therefore, the higher the value of the deflagration index the more intense the explosion risk. The 311 deflagration index forms the basis for the design of explosion devices and safety assessment. 312 Fundamentally, the deflagration index is quantified as, $K_{\rm G} = dp/d_{max} V^{1/3}$ (Dahoe and de Goey, 313 2003; Saeed, 2017). V denotes the CVCC inner volume. Invariably, explosion advancement is 314 influenced by the volume of a vessel. Accordingly, an increment in the volume (radius) of a vessel 315 results in an increment in the flame propagation time. Therefore, the pressure rise during the 316 explosion is volume-variant. However, according to the definition of cube-root law or $K_{\rm G}$, 317 multiplying dp/d_{max} by $V^{1/3}$ renders K_{G} volume-independent irrespective of the vessel size 318 (Dahoe, 2005; Dahoe and de Goey, 2003; Faghih et al., 2016; Xie et al., 2016). Thus, dp/d_{max} is 319 320 normalized by $V^{1/3}$.

321 Again, Fig. 12 shows K_G values graphed against ϕ at $T_i = 363-423$ K and $p_i = 1-4$ bar. The values of $K_{\rm G}$ have a similar tendency as dp/d_{max} due to its linear dependence on dp/d_{max} . The 322 magnitude of $K_{\rm G}$ values rise with increased ϕ . Besides, an increment in p_i dramatically increases 323 $K_{\rm G}$ values due to more vigorous combustion. Thus, at a higher p_i , the propagating flame front 324 becomes more vigorous and instable, hence, generating a higher p_{max} and dp/d_{max} as well as K_G . 325 Herein, $K_{\rm G}$ values of MF range from 200-300 bar*m/s at $p_i = 4$ bar, $T_i = 363$ K, 393 K and 423 K, 326 and $\phi = 1.0$ -1.4. Fig. 13 also depicts the variation of dp/d_{max} with p_i at $T_i = 393$ K and $\phi = 0.8$, 327 1.0, and 1.2. Fig. 13 discloses that MF dp/d_{max} values are greater at a higher p_i and to a certain 328 degree varies linearly with p_i values. Herein, dp/d_{max} increased from 315.645-886.725 bar/s ($\phi =$ 329 0.8), 509.712-1728.69 bar/s ($\phi = 1.0$), and 545.877-2192.92 bar/s ($\phi = 1.2$) when p_i increased from 330 1 bar to 4 bar. 331

332

Fig. 12. dp/d_{max} and K_G plots with ϕ at $p_i = 1-4$ bar and $T_i = 363-423$ K. Legend: p_i is led by T_i .

339

Fig. 13. A chart of dp/d_{max} against p_i at $T_i = 393$ K and $\phi = 0.8$, 1.0, and 1.2. The solid lines are linear fit.

340 **3.3. Explosion time**

Herein, the explosion time () describes the time at which p_{max} was obtained. The explosion time is very crucial in safety assessment and design of combustion devices. Fig. 14 shows values at the investigated conditions, $p_i = 2$ and 4 bar and $T_i = 393$ and 423 K at different ϕ . The values of

decreases with increasing ϕ until it attains the minimum value and starts to increase again with ϕ . 344 Due to less quantity of fuel in lean fuel mixtures, the explosion was not brisk, therefore, the 345 combustion time was prolonged. Moreover, reverse reflection is true for increased ϕ . Here values 346 347 presented in Fig. 14 are in someway sensitive to p_i and T_i . By and large, the values of somehow increased with increased p_i and decreased with increased T_i . An increment in T_i caused a decrease 348 owing to a faster flame speed. However, at rich mixtures the influence of T_i on the explosion 349 in time is somewhat insignificant. This could be as a consequence of equivalence ratio effects on the 350 explosion pressure rise in rich mixtures. Fig. 15 also shows the relationship between p_i and 351 at Ø 352 = 0.8, 1.0, and 1.2 and T_i = 423 K. According to Fig. 15, somewhat p_i exhibits a close linear 353 correlation with at the different equivalence ratios. Explosion time is closely associated with the flame speed, so, the fastness of the flame speed determines the explosion time. In this study, the 354 explosion time was relatively longer when p_i increased. Thus, when p_i was increased the mass or 355 density of MF mixture also increased which extended the explosion time due to low flame speed. A 356 parallel remark was made in these treatises (Cui et al., 2018; Hu et al., 2017; Xu et al., 2019). 357

Fig. 14. A plot of with ϕ at $p_i = 2$ and 4 bar and $T_i = 393$ and 423 K. Legend: p_i is led by T_i . 361

362

Fig. 15. A graph of against p_i at $\phi = 0.8, 1.0$, and 1.2 and $T_i = 423$ K.

364

365 3.4. 2-methylfuran LBV

Using the well-established burning velocity relation in equation (1), the pressure history data were used to determine the experimental burning velocities of MF at the investigated conditions. The LBVs at the initial conditions were evaluated from the $S_L(p)$ curve employing extrapolation (Dahoe and de Goey, 2003; Omari and Tartakovsky, 2016; Shen et al., 2017a).

$$S_{L} = \frac{1}{(p_{\max} - p_{i})} \frac{1}{3} \left(\frac{4\pi}{3V}\right)^{-1/3} \left(\frac{p_{i}}{p}\right)^{1/\gamma} \left[1 - \left(\frac{p_{i}}{p}\right)^{1/\gamma} \left(\frac{p_{\max} - p_{i}}{p_{\max} - p_{i}}\right)\right]^{-2/3} \frac{dp}{dt}$$
(1)

 p_{max} and p denote the peak explosion pressure and explosion pressure whereas p_i and γ refer to the 371 initial pressure and the specific heat of the unburnt mixture. V and dp/d refer to the CVCC inner 372 volume and the explosion pressure rise rate. Fig. 16(a)-(b) compares the experimental and simulated 373 burning velocities of MF at $p_i = 1$ bar and 2 bar as well as $T_i = 393$ K and 423 K. The simulated 374 LBVs were computed with CANTERA thermochemical code (Goodwin et al., 2017) using Cheng 375 et al. (2017) MF mechanism. It is worth noting that the LBV data of this work at $T_i = 363$ K have 376 377 been compared to literature data (Ma et al., 2013a) in (Zhongyang et al., 2018) to validate the accuracy of this investigation. In conformity with Fig. 16(a)-(b), the experimental and the simulated 378 LBVs have a parallel tendency. However, the experimental burning velocities are somehow 379 underpredicted compared to the calculated results. 380

382

385

Fig. 16. Comparison of MF experimental and simulated burning velocities. The solid lines representa polynomial fit.

386 **4.** Conclusions

The explosion characteristics of 2-methylfuran have been evaluated at high pressure (1, 2, 3, and 387 4 bar) and temperature (333-423 K) conditions and equivalence ratio ($\phi = 0.7-1.4$) in a constant 388 volume combustion chamber. The important explosion parameters were determined from well-389 processed pressure data obtained from the experiment. The experimental peak explosion pressure 390 data were compared to simulated data. It was found that the simulated results were higher than the 391 392 experimental data due to heat loss to the chamber walls during the combustion process in the experiment. The explosion parameters were sensitive to the initial pressure, initial temperature and 393 equivalence ratio. 2-methylfuran peak explosion pressure, maximum pressure rise rate and the 394 deflagration index decreased with increased initial temperature, however, they increased with 395 increased initial pressure. In addition, the magnitude of the explosion parameters increased as the 396 equivalence ratio increased. The deflagration index of 2-methylfuran was found to be quite higher 397 at higher pressures, reactive, and rich mixtures. In conclusion, the explosion time somehow 398 decreased with increased initial temperature and increased with a higher initial pressure. 399

- 400
- 401
- 402

403 Acknowledgements

- 404 The authors are grateful to the National Key R&D Program of China (No. 2018YFB1501405), the 405 National Natural Science Foundation of China (No. 91741203), and the Hangzhou Science
- 406 Committee (No.20162013A06) of China for funding this work.
- 407

408 **References:**

- Askari, M.H., Ashjaee, M., Karaminejad, S., 2017. Experimental and numerical investigation of the
 laminar burning velocity and combustion characteristics of biogas at high pressures. Energy
 and Fuels 31, 14169–14179.
- Bao, X., Jiang, Y., Xu, H., Wang, C., Lattimore, T., Tang, L., 2017. Laminar flame characteristics
 of cyclopentanone at elevated temperatures. Appl. Energy 195, 671–680.
- Beck, M., 2016. The risk implications of globalisation: An exploratory analysis of 105 major
 industrial incidents (1971-2010). Int. J. Environ. Res. Public Health 13, 1–21.
- Cheng, Z., Niu, Q., Wang, Z., Jin, H., Chen, G., Yao, M., Wei, L., 2017. Experimental and kinetic
 modeling studies of low-pressure premixed laminar 2-methylfuran flames. Proc. Combust.
 Inst. 1295–1302.
- Cui, G., Wang, S., Liu, J., Bi, Z., Li, Z., 2018. Explosion characteristics of a methane/air mixture at
 low initial temperatures. Fuel 234, 886–893.
- 421 Dahoe, A.E., 2005. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas
 422 explosions. J. Loss Prev. Process Ind. 18, 152–166.
- Dahoe, A.E., de Goey, L.P.H., 2003. On the determination of the laminar burning velocity from
 closed vessel gas explosions. J. Loss Prev. Process Ind. 16, 457–478.
- Di Sarli, V., Benedetto, A. Di, 2012. Sensitivity to the presence of the combustion submodel for
 large eddy simulation of transient premixed flame-vortex interactions. Ind. Eng. Chem. Res.
 51, 7704–7712.
- Faghih, M., Gou, X., Chen, Z., 2016. The explosion characteristics of methane, hydrogen and their
 mixtures: A computational study. J. Loss Prev. Process Ind. 40, 131–138.
- Goodwin, D.G., Moffat, H.K., Speth, R.L., 2017. Cantera: An Object-oriented Software Toolkit for
 Chemical Kinetics, Thermodynamics, and Transport Processes.
- Hu, E., Tian, H., Zhang, X., Li, X., Huang, Z., 2017. Explosion characteristics of n-butanol/isooctane-air mixtures. Fuel 188, 90–97.
- Huzayyin, A.S., Moneib, H.A., Shehatta, M.S., Attia, A.M.A., 2008. Laminar burning velocity and
 explosion index of LPG-air and propane-air mixtures. Fuel 87, 39–57.
- Kundu, S.K., Zanganeh, J., Eschebach, D., Badat, Y., Moghtaderi, B., 2018. Confined explosion of
 methane-air mixtures under turbulence. Fuel 220, 471–480.
- Li, D., Zhang, Q., Ma, Q., Shen, S., 2015. Comparison of explosion characteristics between
 hydrogen/air and methane/air at the stoichiometric concentrations. Int. J. Hydrogen Energy 40,
 8761–8768.
- Li, Q., Cheng, Y., Huang, Z., 2015. Comparative assessment of the explosion characteristics of
 alcohol-air mixtures. J. Loss Prev. Process Ind. 37, 91–100.
- Li, Y., Bi, M., Huang, L., Liu, Q., Li, B., Ma, D., Gao, W., 2018a. Hydrogen cloud explosion
 evaluation under inert gas atmosphere. Fuel Process. Technol. 180, 96–104.
- Li, Y., Bi, M., Li, B., Zhou, Y., Gao, W., 2018b. Effects of hydrogen and initial pressure on flame

446	Journal Pre-proof characteristics and explosion pressure of methane/hydrogen fuels, Fuel 233, 269–282.
447	Ma. X., Jiang, C., Xu, H., Ding, H., Shuai, S., 2013a. Laminar burning characteristics of 2-
448	methylfuran and isooctane blend fuels. Fuel 116, 281–291.
449	Ma. X., Jiang, C., Xu, H., Shuai, S., Ding, H., 2013b. Laminar burning characteristics of 2-
450	methylfuran compared with 2.5-dimethylfuran and isooctane. Energy and Fuels 27, 6212–
451	6221.
452	Mannaa, O., Mansour, M.S., Roberts, W.L., Chung, S.H., 2015, Laminar burning velocities at
453	elevated pressures for gasoline and gasoline surrogates associated with RON. Combust Flame
454	162. 2311–2321.
455	Mitu, M., Brandes, E., 2017. Influence of pressure, temperature and vessel volume on explosion
456	characteristics of ethanol/air mixtures in closed spherical vessels. Fuel 203, 460–468.
457	Mitu, M., Brandes, E., 2015, Explosion parameters of methanol-air mixtures, Fuel 158, 217–223.
458	Mitu, M., Brandes, E., Hirsch, W., 2018, Mitigation effects on the explosion safety characteristic
459	data of ethanol/air mixtures in closed vessel. Process Saf. Environ. Prot. 117, 190–199.
460	Mitu, M., Giurcan, V., Razus, D., Oancea, D., 2012. Temperature and pressure influence on ethane-
461	air deflagration parameters in a spherical closed vessel. Energy and Fuels 26, 4840–4848.
462	Mitu, M., Razus, D., Giurcan, V., Oancea, D., 2015. Normal burning velocity and propagation
463	speed of ethane-air: Pressure and temperature dependence. Fuel 147, 27–34.
464	OECD, 2013. 25 years of chemical accident prevention at OECD.
465	Omari, A., Tartakovsky, L., 2016. Measurement of the laminar burning velocity using the confined
466	and unconfined spherical flame methods - A comparative analysis. Combust. Flame 168, 127–
467	137.
468	Reyes, M., Tinaut, F. V., Horrillo, A., Lafuente, A., 2018. Experimental characterization of burning
469	velocities of premixed methane-air and hydrogen-air mixtures in a constant volume
470	combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130, 684–697.
471	Saeed, K., 2017. Determination of the explosion characteristics of methanol - Air mixture in a
472	constant volume vessel. Fuel 210, 729–737. https://doi.org/10.1016/j.fuel.2017.09.004
473	Shen, X., Xiu, G., Wu, S., 2017a. Experimental study on the explosion characteristics of
474	methane/air mixtures with hydrogen addition. Appl. Therm. Eng. 120, 741–747.
475	Shen, X., Zhang, B., Zhang, X., Xiu, G., 2017b. Explosion characteristics of methane-ethane
476	mixtures in air. J. Loss Prev. Process Ind. 45, 102–107.
477	Somers, K.P., Simmie, J.M., Gillespie, F., Burke, U., Connolly, J., Metcalfe, W.K., Battin-Leclerc,
478	F., Dirrenberger, P., Herbinet, O., Glaude, P.A., Curran, H.J., 2013. A high temperature and
479	atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl
480	furan oxidation. Proc. Combust. Inst. 34, 225–232.
481	Sun, Z.Y., 2018. Laminar Explosion Properties of Syngas. Combust. Sci. Technol. 1–16.
482	Sun, Z.Y., Li, G.X., 2017. Turbulence influence on explosion characteristics of stoichiometric and
483	rich hydrogen/air mixtures in a spherical closed vessel. Energy Convers. Manag. 149, 526-
484	535.
485	Tang, C., Zhang, S., Si, Z., Huang, Z., Zhang, K., Jin, Z., 2014. High methane natural gas/air
486	explosion characteristics in confined vessel. J. Hazard. Mater. 278, 520-528.
487	Tran, M.V., Scribano, G., Chong, C.T., Ho, T.X., 2017. Influence of hydrocarbon additions and

dilutions on explosion behavior of syngas/air mixtures. Int. J. Hydrogen Energy 42, 27416–
27427.

- World Health Organization, 2009. Manual for the public health management of chemical incidents,World Health Organization.
- Wu, Y.-C., Laiwang, B., Shu, C.-M., 2019. Investigation of an explosion at a styrene plant with
 alkylation reactor feed furnace. Appl. Sci. 9, 503.
- Xie, Y., Wang, J., Cai, X., Huang, Z., 2016. Pressure history in the explosion of moist syngas/air
 mixtures. Fuel 185, 18–25.
- Xu, C., Fang, D., Luo, Q., Ma, J., Xie, Y., 2014. A comparative study of laser ignition and spark
 ignition with gasoline-air mixtures. Opt. Laser Technol. 64, 343–351.
- Xu, C., Wang, H., Li, X., Zhou, W., Wang, C., Wang, S., 2019. Explosion characteristics of a
 pyrolysis biofuel derived from rice husk. J. Hazard. Mater. 369, 324–333.
- Xu, C., Zhong, A., Wang, H., Jiang, C., Sahu, A., Zhou, W., Wang, C., 2018. Laminar burning
 velocity of 2-methylfuran-air mixtures at elevated pressures and temperatures: Experimental
 and modeling studies. Fuel 231, 215–223.
- Zhang, L., Ma, H., Pan, J., Shen, Z., Wang, L., Liu, R., Zhao, K., 2019a. Effects of hydrogen addition on the explosion characteristics of n-hexane/air mixtures. Int. J. Hydrogen Energy 44, 2029–2038.
- Zhang, L., Ma, H., Shen, Z., Wang, L., Liu, R., Pan, J., 2019b. Influence of pressure and
 temperature on explosion characteristics of n-hexane/air mixtures. Exp. Therm. Fluid Sci. 102,
 52–60.
- Zhongyang, L., Oppong, F., Wang, H., Li, X., Xu, C., Wang, C., 2018. Investigating the laminar
 burning velocity of 2-methylfuran. Fuel 234, 1469–1480.

Journal

Highlights

- Explosion characteristics of 2-methylfuran were studied at elevated pressures and temperatures.
- The influence of initial pressure, initial temperature and equivalence ratio on 2methylfuran explosion characteristics were assessed.
- The connexion between 2-methylfuran laminar burning velocity and the explosion indices such as the peak explosion pressure, maximum pressure rise rate and the severity factor were examined.

Journal Prevention