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33 Evaluation of explosion characteristics of 2-methylfuran/air mixture 

34 

35 Abstract 

3  Herein, the explosion characteristics such as the peak explosion pressure, maximum pressure rise 
37 rate and deflagration index of 2-methylfuran (MF) /air mixture have been investigated at high 
38 pressures and temperatures. Knowledge of these parameters can be used in the safety assessment of 
39 MF explosions. The explosion experiments were performed at the initial pressure of 1, 2, 3, and 4 
40 bar, the initial temperature of 333, 363, 393, and 423 K and the equivalence ratio of 0.7-1.4 using a 
41 constant volume combustion bomb. The pressure data obtained from the experiment were carefully 
42 processed to examine MF peak explosion pressure, maximum pressure rise rate, explosion time as 
43 well as the deflagration index. Explosion characteristics of MF were sensitive to the initial pressure 
44 and temperature conditions and the mixture concentration. An increment in the initial pressure 
45 triggered a dramatic growth in the peak explosion pressure, maximum rate of pressure rise and the 
4  deflagration index. Alternatively, an increment in the initial temperature decreased the peak 
47 explosion pressure, maximum pressure rise rate and the deflagration index. By and large, MF 
48 explosion parameters obtained in this investigation can offer firsthand information on MF explosion 
49 hazard assessment at high pressures and temperatures. 
50 

51 Keywords: 2-methylfuran (MF); Explosion characteristics; Explosion pressure; Pressure rise rate; 
52 Deflagration index; Explosion time 
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Nomenclature Subscript 

� Combustion vessel volume, max Maximum 
3m

� Temperature, K i Initial 
� Explosion pressure, bar L Laminar 

Peak explosion pressure, bar c Combustion ���� 
Maximum pressure rise rate, e End  �/  ��� 
bar/s 
Time after ignition, ms 
Explosion time, ms Greek Symbol 
End of explosion time, ms � Equivalence ratio � 

 �/  Pressure rise rate, bar/s 
�
 Initial temperature, K 
�
 Initial pressure, bar 
�� Laminar burning velocity, 

m/s 
�� Deflagration index, bar*m/s 

75 

7  

77 

78 

79 

80 

81 

3 



 

 

   

               

                  

              

               

               

               

                

               

                 

                 

          

             

            

                  

                    

                 

                  

                 

               

                

             

             

                 

                 

             

               

                 

                  

                

               

             

            

             

               

                  

             

                 

                    

               

                

              

                

82 1. Introduction 

83 Annually, chemical or gas explosion accident kill and injure hundreds of people globally (Beck, 
84 2016;  ECD, 2013; World Health  rganization, 2009; Wu et al., 2019). As a matter of fact, an 
85 explosion can occur in industries, household, confined and unconfined space, process equipment as 
8  well as in offshore/marine structures when a flammable gas or highly evaporative liquid is 
87 accidentally discharged into the atmosphere and meet a strong ignition source. In compliance with 
88 this, the explosion characteristics of distinct flammable or highly evaporative fuels have to be 
89 thoroughly studied. To this end, having knowledge of the explosion characteristics such as the peak 
90 explosion pressure, maximum pressure rise rate, explosion time and deflagration index is useful to 
91 improve safety. In essence, the deflagration index is used as the foundation for the design of 
92 pressure tanks and safety relief valves for chemical storage as well as vents, high pressure and 
93 temperature combustors/furnace. The magnitude of the deflagration index characteristically 
94 determines the severity of the explosion. Therefore, higher deflagration indices/values indicate the 
95 possibility of extremely dangerous explosion. Considerable investigations have been performed in 
9  the literature to study the explosive behavior of gaseous and liquid fuels in recent years. Just to 
97 mention a few, quite a bit of these investigations used hydrogen (Li et al., 2015; Li et al., 2018a, 

98 2018b; Sun and Li, 2017), methane/methanol (Cui et al., 2018; Kundu et al., 2018; Mitu and 
99 Brandes, 2015; Tang et al., 2014), ethanol (Mitu et al., 2018; Mitu and Brandes, 2017) and syngas 

100 (Tran et al., 2017) fuels. The authors sought to investigate the impact of initial pressure, initial 
101 temperature and equivalence ratio on the peak explosion pressure, maximum rate of pressure rise, 
102 explosion time and deflagration index of these fuels. For instance, Hu et al. (2017) have 
103 investigated the explosion characteristics of butanol/isooctane blends and corroborated that at rich 
104 mixtures and elevated pressures the peak pressure exhibited oscillatory behaviour which reduced 
105 the explosion time and increased the maximum pressure rise rate. In another study, Shen et al. 
10  (2017b) showed that methane has a higher upper flammability limit than ethane. What’s more, Li et 
107 al. (2015) have evaluated the explosion characteristics of alcohol (ethanol, 1-butanol, 1-pentanol) 
108 /air mixtures. Their results showed that 1-pentanol had the largest peak explosion pressure and 
109 maximum pressure rise rate on the rich regime of the mixture when compared with ethanol and 1-
110 butanol. They asserted that this occurrence was due to the difference in heat loss of the various 
111 alcohols. On one hand, the maximum pressure rise rate was insensitive to the initial temperature 
112 variation. More recently, Sun (2018) also studied the explosion properties of syngas and reported 
113 that within his investigated conditions the deflagration index was below 30 MPa*m/s. 
114 Laminar burning velocity (LBV) is another significant parameter which quantifies the 
115 physicochemical properties of premixed flames/combustion. Essentially, it is used to validate the 
11  chemical mechanism of a specific fuel and gives essential information about the burning process 
117 and flame dynamics (Bao et al., 2017). The burning velocity of a premixture is somehow related to 
118 the explosion pressure development, meanwhile, it is very influential in predicting explosion 
119 hazards (Huzayyin et al., 2008). Several studies have been performed to study the burning speeds of 
120 different fuels in the literature (Askari et al., 2017; Mannaa et al., 2015; Mitu et al., 2015; Reyes et 
121 al., 2018). Moreover, some of these studies evaluated the correlation between the burning velocity 
122 and explosion parameters (Dahoe, 2005; Dahoe and de Goey, 2003; Saeed, 2017; Zhang et al., 
123 2019b). Recently, Ma et al., (2013a, 2013b) studied the burning characteristics of 2-methylfuran 
124 (MF) / air mixtures and reported that MF had unstable flames and higher burning velocities 
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125 compared to isooctane and 2,5-dimethylfuran. In another study, the following researchers (Somers 
12  et al., 2013; Xu et al., 2018; Zhongyang et al., 2018) also studied the LBV of 2-methylfuran at 
127 elevated pressures and temperatures and evaluated the correlation between the burning velocities 
128 and the initial pressure and temperature. 
129 In the meantime, in the long haul, 2-methylfuran has the potential as an alternative fuel. In 
130 addition, it also used in the pharmaceutical industry and the manufacturing of pesticides. MF is 
131 highly flammable, has a lower flash point and easy to vaporize, therefore, any leakage of MF poses 
132 a potential threat to human life and properties. If MF is inappropriately handled during production, 
133 transportation and storage it can cause a fire outbreak as well as an explosion if any leaked MF 
134 meets a strong ignition source. Therefore, firsthand information about its explosion characteristics is 
135 relevant for accident and safety evaluations. In spite of the progress made in the investigation of 
13  explosion characteristics of many fuels in previous publications, to the best knowledge of the 
137 authors, there is no information on MF explosion characteristics such as the peak explosion 
138 pressure, maximum pressure rise rate, explosion time and deflagration index in the literature. In 
139 addition, the explosion characteristics of liquid fuels, most especially liquid biofuels are rarely 
140 studied in the literature. Therefore, this work intends to examine the explosion features of 2-
141 methylfuran at elevated pressures and temperatures. The main purpose of this work is to investigate 
142 the influence of initial pressure, initial temperature and the equivalence ratio on MF explosion. 2-
143 methylfuran explosion characteristics were experimentally determined using a constant volume 
144 combustion chamber (CVCC) at the initial temperature (333, 363, 393 and 423 K), initial pressure 
145 (1, 2, 3, and 4 bar) and equivalence ratio (0.7-1.4). The experimental explosion pressure data were 
14  well examined to determine MF peak explosion pressure, maximum pressure rise rate and explosion 
147 time. Last but most definitely not least, 2-methylfuran LBV data were mapped against the 
148 equivalence ratio. 
149 

150 2. Analysis of experimental device and method 

151 The experimental instrumentation has been shown elsewhere (Zhongyang et al., 2018). The 
152 experiment was done in a CVCC which has an inner length to diameter ratio of (L/D = 1.0). The 
153 CVCC has an inner volume of 2.067 L. In addition, experimental data of the testing rig have been 
154 validated in this paper (Zhongyang et al., 2018). The CVCC also comprises of a high-speed imaging 
155 (Schlieren) system and a data recording system. It also has quartz windows which permits viewing 
15  and recording of flame images. The CVCC has six heating units on its sides used to control the 
157 initial temperature. Moreover, the initial mixture temperature was measured with a K-Type 
158 thermocouple (WRNK-231) which is accurate to ±0.75%. Altogether the combustion pressure was 
159 recorded by a piezoelectric pressure sensor (Kistler 6115A) and a charge amplifier (Kistler 5018A). 
1 0 Meanwhile, the initial pressure was determined with a high precision pressure gauge (Keller 
1 1 LEX1). The resolution of the pressure sensor is 0.0001 MPa. Therefore, 0.1-3% of inaccuracy was 
1 2 generated by the initial pressure. The sampling frequency of the pressure recording unit is 75MHz. 
1 3 The mixture was ignited with two electrodes of diameter 0.4mm opposite with each other and the 
1 4 ignition unit. The ignition or spark energy of the experiment is 10mJ (Xu et al., 2014). The mean of 
1 5 three testing data was used for each � in order to warrant 90-95% certitude. 
1   

1 7 
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170 3. Results and discussion 

171 The experimentally recorded pressure data have some level of noise in the data; therefore, it is 
172 difficult and inaccurate to determine the explosion parameters from the raw pressure data. In this 
173 regard, the raw pressure history was filtered or smoothed using a low-pass band filter in Python. 
174 Fig. 1 shows a typical example of smooth explosion pressure (�) and pressure rise rate ( �/  ) 
175 cartography at the initial pressure (�
) of 2 bar, the initial temperature (�
) of 393 K and 
17  stoichiometric fuel/air ratio of � = 1.0. As shown in Fig. 1, the pressure steadily increases after 
177 ignition and reaches the peak at ����. However, after obtaining ���� the pressure starts to drop due 
178 to heat loss to the CVCC wall when the flame front reaches the wall. The combustion/explosion 
179 time was attained at the time ( ). The maximum pressure rise rate was recorded at the point 
180 ( �/  ���). At last, the combustion process was completed at the time ( �). It is worth to mention 
181 that ����, , and  �/  ��� are the important parameters typically used in the safety assessment of 
182 a specific fuel/chemical, hence, herein they are the only parameters discussed. 
183 
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185 Fig. 1. Illustration of in-chamber explosion pressure evolution and pressure rise rate contours at �
 = 
18  393 K and �
 = 2 bar and � = 1.0. 
187 

188 3.1. Explosion pressure and peak explosion pressure 

189 Fig. 2 shows � contours at �
 = 4 bar and �
 = 423 K for different �. Similar contours were obtained 
190 for the different �
, �
 and � values investigated in this document. With reference to Fig. 2, it can be 
191 noticed that the value of � is sensitive to �, therefore, the magnitude of � increases with increasing 
192 �. Parallel trends have been observed in previous studies (Li et al., 2015, Cui et al., 2018; Mitu and 
193 Brandes, 2015; Tang et al., 2014). The reduced amount of fuel at � = 0.7 and 0.9 led to less heat 
194 energy released from the combustion phenomena and lower � values. The opposite is true for � = 
195 1.0, 1.1 and 1.2. The peak value of � increased from 20.593 bar to 26.495 bar when � increased 
19  from 0.7 to 1.2. Fig. 3 displays � values at �
 = 4 bar, �
 = 363-423 K and � = 1.0. The magnitude 
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197 of � is lower at a higher �
 owing to a higher mass burning rate and flame speed at a higher �
. 
198 Accordingly, the combustible mixture takes a shorter time to reach the peak of �. In addition to this, 
199 the mass of MF/air unburnt mixture in the CVCC was decreased (less heat energy from 
200 combustion) at a higher �
, thence, leading to the decreased peak value of �. The peak values of � 
201 obtained at 363 K, 393 K and 423 K are 29.577 bar, 27.084 bar, and 25.364 bar. Furthermore, it can 
202 be noticed in Fig. 4 that an increment in the value of �
 increased the magnitude of � due to the 
203 robustness of the combustion process which generated a higher amount of heat energy. The highest 
204 values of � increased from 6.077 bar to 25.364 bar when the value of �
 increased from 1 bar to 4 
205 bar. 
20  
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208 Fig. 2. In-chamber � evolution versus at � = 0.7-1.2, �
 = 423 K and �
 = 4 bar. 
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211 Fig. 3. A plot of � versus at �
 = 363-423 K, �
 = 4 bar and � = 1.0. 
212 
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214 Fig. 4. A plot of � against at �
 = 423 K, �
 = 1-4 bar and � = 1.0. 
215 

21  The peak explosion pressure (����) quantify the energy distribution of combustion propagating 
217 waves (Shen et al., 2017b). Therefore, ���� can be used to determine the heat energy from the 
218 explosion. Fig. 5 depicts the values of ���� as a function of � at �
 = 1-4 bar and �
= 363-423 K. In 
219 general, the values of ���� increases with increasing �. In lean mixtures, the amount of MF fuel in 
220 the CVCC is less leading to less release of heat energy and lower ����. On the other hand, 
221 combustion becomes more robust as � increases, consequently, the value of ���� also increases. As 
222 shown in Fig. 5, somewhat ���� decreases at some of the rich mixtures due to an insufficient 
223 amount of oxygen in the CVCC leading to incomplete combustion and a reduced amount of heat 
224 released. 
225 Furthermore, the values of ���� are somehow higher at a lower �
 and increases dramatically as 
22  �
 increases. The reason for a higher ���� at a lower �
 is due to the increased mass of the unburnt 
227 MF mixture in the CVCC (higher heat energy from MF explosion) which subsequently increased 
228 the value of ����. Again, a total reduction in the burning mass of MF mixture and heat loss could 
229 also possibly cause a decrease in the explosion peak pressure when �
 was increased. On one hand, 
230 at a higher �
 MF explosion becomes more and more energetic leading to a higher release of 
231 thermal energy, and a higher ���� as depicted in Fig. 5. 
232 The experimental ���� data are compared to simulated ���� data in Fig. 6. The numerical data 
233 were obtained using constant-volume combustion in CANTERA (Goodwin et al., 2017) and MF 
234 comprehensive chemical mechanism (Cheng et al., 2017). Comparatively, the experimental ���� 

235 values are lower than the simulated results. The disparity between the experiment and the simulated 
23  ���� is attributable to heat loss (conduction and radiation) in the CVCC during the experiment 
237 which reduces the pressure rise whereas the numerical analysis assumes adiabatic condition. In 
238 addition, somehow some of the fuel could be stuck in the vessel due to adsorption and couldn’t burn 
239 during combustion, which could lead to reduced peak pressures (Zhang et al., 2019a). Moreover, 
240 likewise, the observations made in Fig. 5, an increment in the initial pressure promotes strenuous 
241 combustion and the release of higher thermal energy and peak explosion pressures. 
242 
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247 Fig. 6. Experimental and simulated ���� at �
 = 363, 393, and 423 K, �
 = 1, 2, and 4 bar and � = 
248 0.7-1.4. Legend: �
 is led by �
. Exp and Sim refer to the experimental and simulated results. 
249 

250 Fig. 7 describes the effect of �
 on ���� at � = 0.8, 1.0, and 1.2 and �
 of 363 K. In conformity 
251 with Fig. 7, it can be realized that in someway �
 increases linearly with ����values. The explosion 
252 becomes brisk when �
 is increased which will lead to a higher discharge of heat from the 
253 combustion and high pressure rise. Here, as the values of �
 increased from 1 bar to 4 bar, ���� 

254 values also increased from 6.689-26.139 bar (� = 0.8), 7.388-29.577 bar (� = 1.0) and 7.388-
255 31.041 bar at � = 1.2. Fig. 8 also illustrates the impact of �
 on ���� at �
 of 4 bar and � = 0.8, 1.0, 
25  and 1.2. Similar correlations have been noticed in past studies (Mitu et al., 2012; Saeed, 2017) for 
257 distinct fuels. As can be observed in Fig. 8, ���� values somehow decrease linearly with increasing 
258 �
. When �
 was increased the density of MF mixture in the CVCC decreased which resulted in 
259 rapid burning speed and decreased ���� values. When �
 increased from 333 K to 423 K, ���� 
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2 0 decreased from 28.057 bar to 22.285 bar at (� = 0.8). At the same time, ���� decreased from 
2 1 31.553 bar to 25.364 bar at (� = 1.0) as well as 31.677 bar to 26.495 bar at (� = 1.2) when �
 
2 2 increased from 333 K to 423 K. 
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 on ���� at � = 0.8, 1.0, and 1.2 and �
 = 4 bar. The solid lines are linear fit. 
2 9 

270 3.2. Pressure rise rate, maximum pressure rise rate and deflagration index 

271 Fig. 9 displays the plot of pressure rise rate ( �/  ) versus at � = 0.7-1.2, �
 = 4 bar and �
 = 
272 423 K. As can be observed in Fig. 9, for each of the  �/  map (� = 0.7-1.2),  �/  initially 
273 increases and reaches the maximum value and decrease afterwards. Moreover, due to excessive heat 
274 transfer to the CVCC wall the explosion pressure � decreases and the values of  �/  become 
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275 negative as illustrated in Fig.9. In accordance with Fig. 9, the values of  �/  somehow increases 
27  with increasing �, underlining the sensitivity of  �/  to �. The peak of  �/  value increased 
277 from 571.3 bar/s to 2147.3 bar/s when � increased from � = 0.7 to 1.2, obtaining the highest value 
278 at � = 1.2. Fig. 10 also shows the comparison of  �/  at �
 = 363, 393 and 423 K, �
 = 1 bar and 
279 � = 1.0. 
280 According to Fig. 10, the peak of  �/  increases with a lower �
. Thus, increased MF burning 
281 velocity or speed as well as decreased explosion pressure and maximum pressure rise rate depends 
282 on increased �
. The highest values of  �/  are 542.905 bar/s (363 K), 509.712 bar/s (393 K) and 
283 444.523 bar/s for 423 K. Fig. 11 represents the variation of  �/  with �
 at �
 = 423 K and � = 
284 1.0. As shown in Fig. 11, the values of  �/  almost increased twofold with increased �
. In 
285 addition, when �
 increased from 1 bar to 4 bar the value of  �/  increased from 444.523 bar/s to 
28  1668.99 bar/s. As aforementioned in Section 3.1, this could be due to more and more energetic MF 
287 explosion at increased �
. 
288 
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290 Fig. 9. A graph of pressure rise rate contours at �
 = 423 K, �
 = 4 bar and � = 0.7-1.2. 
291 

292 

293 

294 

d
p

/d
t 

[b
ar

/s
] 

0 20 40 60 80 100 120 

φ = 0.7 
φ = 0.9 
φ = 1.0 
φ = 1.1 
φ = 1.2 

p
i 
= 4 bar, T

i 
= 423 K 

11 



 

 

    

    

    

 

 

      

  

                     

  

    

    

    

 
 

 

      

  

      	            

  

     	           

                

     	                 

    	 	            	   

                

                

         	       

      	             

    

0 20 40 60 80 100 120 
-200 

-100 

0 

100 

200 

300 

400 

500 

600 

T
i 
= 363 K 

T
i 
= 393 K 

T
i 
= 423 K 

d
p

/d
t 

[b
ar

/s
] p

i 
= 1 bar, φ = 1.0 

t [ms] 
295 

29  Fig. 10. Pressure rise rate maps at �
 = 1 bar, �
 = 363-423 K and � = 1.0. 
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299 Fig. 11. Effects of �
 on  �/  at �
 = 423 K and � = 1.0. 
300 

301 The maximum pressure rise rate  �/  ��� is a significant parameter used to describe the 
302 explosion build-up pressure. It is a very influential parameter in the estimation of the deflagration 
303 index (��). Fig. 12 compares  �/  ��� at �
 = 363-423 K, �
 = 1-4 bar and � = 0.7-1.4. As 
304 depicted in Fig. 12,  �/  ��� values are fairly higher at a lower �
 when compared to  �/  ��� 

305 values at a higher �
. Truly, increased �
 dictates higher burning velocity and reduced ����. 
30  However, the combined effect of the burning velocity and ���� determines the magnitude of the 
307 maximum pressure rise rate. In addition, the values of  �/  ��� increases drastically when �
 
308 increases. As shown in Fig. 12,  �/  ��� values are somehow insensitive to �
 at some of the 
309 equivalence ratios. 
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The deflagration index (��) measures the intensity of the combustion or explosion process. 
Therefore, the higher the value of the deflagration index the more intense the explosion risk. The 
deflagration index forms the basis for the design of explosion devices and safety assessment. 
Fundamentally, the deflagration index is quantified as, �� =  �/  ���. �

�/� (Dahoe and de Goey, 
2003; Saeed, 2017). � denotes the CVCC inner volume. Invariably, explosion advancement is 
influenced by the volume of a vessel. Accordingly, an increment in the volume (radius) of a vessel 
results in an increment in the flame propagation time. Therefore, the pressure rise during the 
explosion is volume-variant. However, according to the definition of cube-root law or ��, 

by ��/�multiplying  �/  ��� renders �� volume-independent irrespective of the vessel size 
(Dahoe, 2005; Dahoe and de Goey, 2003; Faghih et al., 2016; Xie et al., 2016). Thus,  �/  ��� is 
normalized by ��/�. 

Again, Fig. 12 shows �� values graphed against � at �
 = 363-423 K and �
 = 1-4 bar. The 
values of �� have a similar tendency as  �/  ���due to its linear dependence on  �/  ���. The 
magnitude of �� values rise with increased �. Besides, an increment in �
 dramatically increases 
�� values due to more vigorous combustion. Thus, at a higher �
, the propagating flame front 
becomes more vigorous and instable, hence, generating a higher ���� and  �/  ��� as well as ��. 
Herein, �� values of MF range from 200-300 bar*m/s at �
 = 4 bar, �
 = 363 K, 393 K and 423 K, 
and � = 1.0-1.4. Fig. 13 also depicts the variation of  �/  ��� with �
 at �
 = 393 K and � = 0.8, 
1.0, and 1.2. Fig. 13 discloses that MF  �/  ��� values are greater at a higher �
 and to a certain 
degree varies linearly with �
 values. Herein,  �/  ��� increased from 315.645-886.725 bar/s (� = 
0.8), 509.712-1728.69 bar/s (� = 1.0), and 545.877-2192.92 bar/s (� = 1.2) when �
 increased from 
1 bar to 4 bar. 
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334 Fig. 12.  �/  ��� and �� plots with � at �
 = 1-4 bar and �
 = 363-423 K. Legend: �
 is led by �
. 
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337 Fig. 13. A chart of  �/  ��� against �
 at �
 = 393 K and � = 0.8, 1.0, and 1.2. The solid lines are 
338 linear fit. 
339 

340 3.3. Explosion time 

341 Herein, the explosion time ( ) describes the time at which ���� was obtained. The explosion time 
342 is very crucial in safety assessment and design of combustion devices. Fig. 14 shows values at 
343 the investigated conditions, �
 = 2 and 4 bar and �
 = 393 and 423 K at different �. The values of 
344 decreases with increasing � until it attains the minimum value and starts to increase again with �. 
345 Due to less quantity of fuel in lean fuel mixtures, the explosion was not brisk, therefore, the 
34  combustion time was prolonged. Moreover, reverse reflection is true for increased �. Here values 
347 presented in Fig. 14 are in someway sensitive to �
 and �
. By and large, the values of somehow 
348 increased with increased �
 and decreased with increased �
. An increment in �
 caused a decrease 
349 in owing to a faster flame speed. However, at rich mixtures the influence of �
 on the explosion 
350 time is somewhat insignificant. This could be as a consequence of equivalence ratio effects on the 
351 explosion pressure rise in rich mixtures. Fig. 15 also shows the relationship between �
 and at � 
352 = 0.8, 1.0, and 1.2 and �
 = 423 K. According to Fig. 15, somewhat �
 exhibits a close linear 
353 correlation with at the different equivalence ratios. Explosion time is closely associated with the 
354 flame speed, so, the fastness of the flame speed determines the explosion time. In this study, the 
355 explosion time was relatively longer when �
 increased. Thus, when �
 was increased the mass or 
35  density of MF mixture also increased which extended the explosion time due to low flame speed. A 
357 parallel remark was made in these treatises (Cui et al., 2018; Hu et al., 2017; Xu et al., 2019). 
358 
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3 4 

3 5 3.4. 2-methylfuran LBV 

3   Using the well-established burning velocity relation in equation (1), the pressure history data were 
3 7 used to determine the experimental burning velocities of MF at the investigated conditions. The 
3 8 LBVs at the initial conditions were evaluated from the ��(�) curve employing extrapolation (Dahoe 
3 9 and de Goey, 2003; Omari and Tartakovsky, 2016; Shen et al., 2017a). 
370 
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371 ���� and � denote the peak explosion pressure and explosion pressure whereas �
 and � refer to the 
372 initial pressure and the specific heat of the unburnt mixture. � and  �/  refer to the CVCC inner 
373 volume and the explosion pressure rise rate. Fig. 16(a)-(b) compares the experimental and simulated 
374 burning velocities of MF at �
 = 1 bar and 2 bar as well as �
 = 393 K and 423 K. The simulated 
375 LBVs were computed with CANTERA thermochemical code (Goodwin et al., 2017) using Cheng 
37  et al. (2017) MF mechanism. It is worth noting that the LBV data of this work at �
 = 363 K have 
377 been compared to literature data (Ma et al., 2013a) in (Zhongyang et al., 2018) to validate the 
378 accuracy of this investigation. In conformity with Fig. 16(a)-(b), the experimental and the simulated 
379 LBVs have a parallel tendency. However, the experimental burning velocities are somehow 
380 underpredicted compared to the calculated results. 
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383 Fig. 16. Comparison of MF experimental and simulated burning velocities. The solid lines represent 
384 a polynomial fit. 
385 

38  4. Conclusions 

387 The explosion characteristics of 2-methylfuran have been evaluated at high pressure (1, 2, 3, and 
388 4 bar) and temperature (333-423 K) conditions and equivalence ratio (� = 0.7-1.4) in a constant 
389 volume combustion chamber. The important explosion parameters were determined from well-
390 processed pressure data obtained from the experiment. The experimental peak explosion pressure 
391 data were compared to simulated data. It was found that the simulated results were higher than the 
392 experimental data due to heat loss to the chamber walls during the combustion process in the 
393 experiment. The explosion parameters were sensitive to the initial pressure, initial temperature and 
394 equivalence ratio. 2-methylfuran peak explosion pressure, maximum pressure rise rate and the 
395 deflagration index decreased with increased initial temperature, however, they increased with 
39  increased initial pressure. In addition, the magnitude of the explosion parameters increased as the 
397 equivalence ratio increased. The deflagration index of 2-methylfuran was found to be quite higher 
398 at higher pressures, reactive, and rich mixtures. In conclusion, the explosion time somehow 
399 decreased with increased initial temperature and increased with a higher initial pressure. 
400 

401 

402 
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Highlights 

• Explosion characteristics of 2-methylfuran were studied at elevated pressures and 
temperatures. 

• The influence of initial pressure, initial temperature and equivalence ratio on 2-
methylfuran explosion characteristics were assessed. 

• The connexion between 2-methylfuran laminar burning velocity and the explosion 
indices such as the peak explosion pressure, maximum pressure rise rate and the 
severity factor were examined. 
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