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Evaluation of explosion characteristics of 2-methylfuran/air mixture

Abstract

Herein, the explosion characteristics such as the peak explosion pressure, maximum pressure rise
rate and deflagration index of 2-methylfuran (MF) /air mixture have been investigated at high
pressures and temperatures. Knowledge of these parameters can be used in the safety assessment
MF explosions. The explosion experiments were performed at the initial pressure of 1, 2, 3, and 4
bar, the initial temperature of 333, 363, 393, and 423 K and the equivalence ratio of 0.7-1.4 using a
constant volume combustion bomb. The pressure data obtained from the experiment were carefully
processed to examine MF peak explosion pressure, maximum pressure rise rate, explosion time as
well as the deflagration index. Explosion characteristics of MF were sensitive to the initial pressure
and temperature conditions and the mixture concentration. An increment in the initial pressure
triggered a dramatic growth in the peak explosion pressure, maximum rate of pressure rise and the
deflagration index. Alternatively, an increment in the initial temperature decreased the peak
explosion pressure, maximum pressure rise rate and the deflagration index. By and large, MF
explosion parameters obtained in this investigation can offer firsthand information on MF explosion
hazard assessment at high pressures and temperatures.

Keywords. 2-methylfuran (MF) Explosion characteristicExplosion pressutePressure rise rate
Deflagration indexExplosion time
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T
p

pmax

dp/d max

Combustion vessel volume
3

m

Temperature, K

Explosion pressure, bar

Peak explosion pressure, bar

Subscript
, Mmax
[
L
c

Maximum pressure rise rate, e

bar/s

Time after ignition, ms
Explosion time, ms

End of explosion time, ms
Pressure rise rate, bar/s
Initial temperature, K

Initial pressure, bar

Laminar burning velocity,
m/s

Deflagration index, bar*m/s

Greek Symbol
¢

Maximum

Initial
Laminar
Combustion
End

Equivalence ratio
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1. Introduction

Annually, chemical or gas explosion accident kill and injure hundreds of people globally (Beck,
2016; OECD, 2013; World Health Organization, 2009; Wu et al., 2019). As a matter of fact, an
explosion can occur in industries, household, confined and unconfined space, process equipment as
well as in offshore/marine structures when a flammable gas or highly evaporative liquid is
accidentally discharged into the atmosphere and meet a strong ignition source. In compliance with
this, the explosion characteristics of distinct flammable or highly evaporative fuels have to be
thoroughly studied. To this end, having knowledge of the explosion characteristics such as the peak
explosion pressure, maximum pressure rise rate, explosion time and deflagration index is useful to
improve safety. In essence, the deflagration index is used as the foundation for the design of
pressure tanks and safety relief valves for chemical storage as well as vents, high pressure and
temperature combustors/furnace. The magnitude of the deflagration index characteristically
determines the severity of the explosion. Therefore, higher deflagration indices/values indicate the
possibility of extremely dangerous explosion. Considerable investigations have been performed in
the literature to study the explosive behavior of gaseous and liquid fuels in recent years. Just to
mention a few, quite a bit of these investigations used hydrdgest al., 2015; Li et al., 2018a,

2018b; Sun and Li, 2017), methane/methandiCui et al., 2018; Kundu et al., 2018; Mitu and

Brandes, 2015; Tang et al., 2014), ethanol(Mitu et al., 2018; Mitu and Brandes, 2017) and syngas

(Tran et al., 2017) fuels. The authors sought to investigate the impact of initial pressure, initial
temperature and equivalence ratio on the peak explosion pressure, maximum rate of pressure rise,
explosion time and deflagration index of these fuels. For instance, Hu et al. (2017) have
investigated the explosion characteristics of butanol/isooctane blends and corroborated that at rich
mixtures and elevated pressures the peak pressure exhibited oscillatory behaviour which reduced
the explosion time and increased the maximum pressure rise rate. In another study, Shen et al.
(2017b) showed that methane has a higher upper flammability limit than ethane. What's more, Li et
al. (2015) have evaluated the explosion characteristics of alcohol (ethanol, 1-butanol, 1-pentanol)
/air mixtures. Their results showed that 1-pentanol had the largest peak explosion pressure and
maximum pressure rise rate on the rich regime of the mixture when compared with ethanol and 1
butanol. They asserted that this occurrence was due to the difference in heat loss of the various
alcohols. On one hand, the maximum pressure rise rate was insensitive to the initial temperature
variation. More recently, Sun (2018) also studied the explosion properties of syngas and reported
that within his investigated conditions the deflagration index was below 30 MPa*m/s.

Laminar burning velocity (LBV) is another significant parameter which quantifies the
physicochemical properties of premixed flames/combustion. Essentially, it is used to validate the
chemical mechanism of a specific fuel and gives essential information about the burning process
and flame dynamics (Bao et al., 2017). The burning velocity of a premixture is somehow related to
the explosion pressure development, meanwhile, it is very influential in predicting explosion
hazards (Huzayyin et al., 2008). Several studies have been performed to study the burning speeds of
different fuels in the literature (Askari et al., 2017; Mannaa et al., 2015; Mitu et al., 2015; Reyes et
al., 2018). Moreover, some of these studies evaluated the correlation between the burning velocity
and explosion parameters (Dahoe, 2005; Dahoe and de Goey, 2003; Saeed, 2017; Zhang et al.,
2019b). Recently, Ma et al., (2013a, 2013b) studied the burning characteristics of 2-methylfuran
(MF) / air mixtures and reported that MF had unstable flames and higher burning velocities
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compared to isooctane and 2,5-dimethylfuran. In another study, the following researchers (Somers
et al., 2013; Xu et al., 2018; Zhongyang et al., 2018) also studied the LBV of 2-methylfuran at
elevated pressures and temperatures and evaluated the correlation between the burning velocities
and the initial pressure and temperature.

In the meantime, in the long haul, 2-methylfuran has the potential as an alternative fuel. In
addition, it also used in the pharmaceutical industry and the manufacturing of pesticides. MF is
highly flammable, has a lower flash point and easy to vaporize, therefore, any leakage of MF poses
a potential threat to human life and properties. If MF is inappropriately handled during production,
transportation and storage it can cause a fire outbreak as well as an explosion if any leaked MF
meets a strong ignition source. Therefore, firsthand information about its explosion characteristics is
relevant for accident and safety evaluations. In spite of the progress made in the investigation of
explosion characteristics of many fuels in previous publications, to the best knowledge of the
authors, there is no information on MF explosion characteristics such as the peak explosion
pressure, maximum pressure rise rate, explosion time and deflagration index in the literature. In
addition, the explosion characteristics of liquid fuels, most especially liquid biofuels are rarely
studied in the literature. Therefore, this work intends to examine the explosion features of 2-
methylfuran at elevated pressures and temperatures. The main purpose of this work is to investigate
the influence of initial pressure, initial temperature and the equivalence ratio on MF explosion. 2-
methylfuran explosion characteristics were experimentally determined using a constant volume
combustion chamber (CVCC) at the initial temperature (333, 363, 393 and 423 K), initial pressure
(1, 2, 3, and 4 bar) and equivalence ratio (0.7-1.4). The experimental explosion pressure data were
well examined to determine MF peak explosion pressure, maximum pressure rise rate and explosion
time. Last but most definitely not least, 2-methylfuran LBV data were mapped against the
equivalence ratio.

2. Analysisof experimental device and method

The experimental instrumentation has been shown elsewhere (Zhongyang et al.,, 2018). The
experiment was done in a CVCC which has an inner length to diameter ratio of (L/D = 1.0). The
CVCC has an inner volume of 2.067 L. In addition, experimental data of the testing rig have been
validated in this paper (Zhongyang et al., 2018). The CVCC also comprises of a high-speed imaging
(Schlieren) system and a data recording system. It also has quartz windows which permits viewing
and recording of flame images. The CVCC has six heating units on its sides used to control the
initial temperature. Moreover, the initial mixture temperature was measured with a K-Type
thermocouple (WRNK-231) which is accurate to +0.75%. Altogether the combustion pressure was
recorded by a piezoelectric pressure sensor (Kistler 6115A) and a charge amplifier (Kistler 5018A).
Meanwhile, the initial pressure was determined with a high precision pressure gauge (Keller
LEX1). The resolution of the pressure sensor is 0.0001 MPa. Therefore, 0.1-3% of inaccuracy was
generated by the initial pressure. The sampling frequency of the pressure recording unit is 75MHz.
The mixture was ignited with two electrodes of diameter 0.4mm opposite with each other and the
ignition unit. The ignition or spark energy of the experiment is 10mJ (Xu et al., 2014). The mean of
three testing data was used for egdhn order to warrant 90-95% certitude.
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3. Resultsand discussion

The experimentally recorded pressure data have some level of noise in the data; therefore, it is
difficult and inaccurate to determine the explosion parameters from the raw pressure data. In this
regard, the raw pressure history was filtered or smoothed using a low-pass band filter in Python.
Fig. 1 shows a typical example of smooth explosion preggyrand pressure rise ra{dp/d )
cartography at the initial pressufg;) of 2 bar, the initial temperatur€l;) of 393 K and
stoichiometric fuel/air ratio ofp = 1.0. As shown in Fig. 1, the pressure steadily increases after
ignition and reaches the peakpgf,,. However, after obtaining,p,, the pressure starts to drop due

to heat loss to the CVCC wall when the flame front reaches the wall. The combustion/explosion
time was attained at the time ). The maximum pressure rise rate was recorded at the point
(dp/d max)- At last, the combustion process was completed at the(tynelt is worth to mention
thatpmax, » anddp/d ., @re the important parameters typically used in the safety assessment of
a specific fuel/chemical, hence, herein they are the only parameters discussed.

T T T T T T T T
14tdp/dt 1 Poa 1000
r I
I
12 ! ~800
L I
, ]
10 F ! p,=2bar, T,=393 K {600
I - v
— ! =
T 8f ' 3
=, i E Pressure, p 1400 =
Q 5 ! Pressure rise rate, dp/dt 1 !g_
| : 4200 ©
4 ' 1
- 40
2 |
! | ! \ll ! | ! | ! | ! _200
0 20 40 60 80 100 120

t [ms]

Fig. 1. lllustration of in-chamber explosion pressure evolution and pressure rise rate conpers at
393 K andp; = 2 bar andp = 1.0.

3.1. Explosion pressure and peak explosion pressure

Fig. 2 show® contours ap; = 4 bar and’; = 423 K for differentp. Similar contours were obtained

for the differentp;, T; and ¢values investigated in this document. With reference to Fig. 2, it can be
noticed that the value @f is sensitive tap, therefore, the magnitude pfincreases with increasing

¢. Parallel trends have been observed in previous studies (Li et al., 2015, Cui et al., 2018; Mitu and
Brandes, 2015; Tang et al., 2014). The reduced amount of fgeta.7 and 0.9 led to less heat
energy released from the combustion phenomena and jowaues. The opposite is true fgr=

1.0, 1.1 and 1.2. The peak valuepoincreased from 20.593 bar to 26.495 bar wheimcreased

from 0.7 to 1.2. Fig. 3 displaysvalues ap; = 4 bar,T; = 363-423 K andp = 1.0. The magnitude
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of p is lower at a highef; owing to a higher mass burning rate and flame speed at a Higher
Accordingly, the combustible mixture takes a shorter time to reach the peakaiddition to this,

the mass of MF/air unburnt mixture in the CVCC was decreased (less heat energy from
combustion) at a highdrt;, thence, leading to the decreased peak valge ©he peak values gf

obtained at 363 K, 393 K and 423 K are 29.577 bar, 27.084 bar, and 25.364 bar. Furthermore, it can
be noticed in Fig. 4 that an increment in the valug,ahcreased the magnitude pfdue to the
robustness of the combustion process which generated a higher amount of heat energy. The highest
values ofp increased from 6.077 bar to 25.364 bar when the valpe iotreased from 1 bar to 4

bar.

30 T T T T T T T T
L p,=4bar, T.=423K
251 Il' e ]
A
20 | lid ~=
! / .
T 15} i
o ! '
= . — =07 |
10 - / -~ -9=09
®=1.0
- p=11 |
St p=12
0 1 1 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120

t [ms]

Fig. 2. In-chambemp evolution versus at¢ = 0.7-1.2, T= 423 K andp; = 4 bar.

30 .-

25

Ne-o
. —

20
p,=4bar, =1.0

S 15 i
o ’ T
10 - --T=363K
' ——T=393K
S —— T =423K
O L 1 L 1 L 1 L 1 L 1 L
0O 20 40 60 80 100 120

t [ms]

Fig. 3. Aplot of p versus atT; = 363-423 K, p=4 bar and ¢= 1.0.

7



213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

30 s e
T.=423K,0=10

25 T |
/ “‘-‘\
! ---_
)
- !
20 ] —p. =1 bar
, i
—_ / —-=--p,=2 bar
8 15r ! - - - p =4 bar
= s ]

0 20 40 60 80 100 120
t [ms]

Fig. 4. Aplot of p against af; = 423 K,p; = 1-4 bar and ¢ 1.0.

The peak explosion pressuig,..,) quantify the energy distribution of combustion propagating
waves (Shen et al., 2017b). Therefarg,,, can be used to determine the heat energy from the
explosion. Fig. 5 depicts the valuespgf,, as a function ot atp; = 1-4 bar and’;= 363-423 K. In
general, the values @f,,,, increases with increasingy. In lean mixtures, the amount of MF fuel in
the CVCC is less leading to less release of heat energy and tgwer On the other hand,
combustion becomes more robustfaimcreases, consequently, the valug,gf, also increases. As
shown in Fig. 5, somewhat,,,, decreases at some of the rich mixtures due to an insufficient
amount of oxygen in the CVCC leading to incomplete combustion and a reduced amount of heat
released.

Furthermore, the values pf,,, are somehow higher at a lowBrand increases dramatically as
p; increases. The reason for a highgy,, at a lowerT; is due to the increased mass of the unburnt
MF mixture in the CVCC (higher heat energy from MF explosion) which subsequently increased
the value of,,... Again, a total reduction in the burning mass of MF mixture and heat loss could
also possibly cause a decrease in the explosion peak pressur; wtaenincreased. On one hand,
at a higherp; MF explosion becomes more and more energetic leading to a higher release of
thermal energy, and a highey,,, as depicted in Fig. 5.

The experimentap,,,, data are compared to simulated,, data in Fig. 6. The numerical data
were obtained using constant-volume combustion in CANTERA (Goodwin et al., 2017) and MF
comprehensive chemical mechanism (Cheng et al., 2017). Comparatively, the expemmgntal
values are lower than the simulated results. The disparity between the experiment and the simulated
Pmax 1S attributable to heat loss (conduction and radiation) in the CVCC during the experiment
which reduces the pressure rise whereas the numerical analysis assumes adiabatic condition. In
addition, somehow some of the fuel could be stuck in the vessel due to adsorption and couldn’t burn
during combustion, which could lead to reduced peak pressures (Zhang et al., 2019a). Moreover,
likewise, the observations made in Fig. 5, an increment in the initial pressure promotes strenuous
combustion and the release of higher thermal energy and peak explosion pressures.

8
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244  Fig. 5. A chart ofp,,., @gainsip atT; = 363-423 K angh; = 1-4 bar. Legendp; is led by T.
245
30F ' ' - T m 0m O 363 K/1 bar, Exp
- = % @ 363 K/1 bar, Sim
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g
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247  Fig. 6. Experimental and simulateg,,, atT; = 363, 393, and 423 K; = 1, 2, and 4 bar andl =
248 0.7-1.4. Legendp; is led by T. Exp and Sim refer to the experimental and simulated results.
249
250 Fig. 7 describes the effect pf on p,,., at¢ = 0.8, 1.0, and 1.2 ari§ of 363 K. In conformity
251 with Fig. 7, it can be realized that in somewgyncreases linearly witp,,, ., values. The explosion
252 becomes brisk whem; is increased which will lead to a higher discharge of heat from the
253  combustion and high pressure rise. Here, as the valugsiméreased from 1 bar to 4 bat,,,,
254  values also increased from 6.689-26.139 lgar=(0.8), 7.388-29.577 bak(= 1.0) and 7.388-
255  31.041 bar ap = 1.2. Fig. 8 also illustrates the impactlpbn p,,,, atp; of 4 bar andp = 0.8, 1.0,
256 and 1.2. Similar correlations have been noticed in past studies (Mitu et al., 2012; Saeed, 2017) for
257  distinct fuels. As can be observed in Figp8,, values somehow decrease linearly with increasing
258 T;. WhenT; was increased the density of MF mixture in the CVCC decreased which resulted in
259 rapid burning speed and decreageg, values. Wherf; increased from 333 K to 423 Ko,,,4x
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decreased from 28.057 bar to 22.285 bargat(0.8). At the same timey,,,, decreased from
31.553 bar to 25.364 bar ap € 1.0) as well as 31.677 bar to 26.495 bar¢at=(1.2) whenT;
increased from 333 K to 423 K.

35 T T T T T T T T

30

25

20

P Par]

15

10

1.0 15 20 25 30 35 40

5 | L | L |

p, [bar]
Fig. 7. Effect of p; on p. @t = 0.8, 1.0, and 1.2 arfid = 363 K. The solid lines are linear fit.

35 i T " T T T T T
30 .
1
. 25 1 i
o I
“é p, = 4 bar 1
o 20 .
A 9=0.8
o ¢=1.0
15 [m} ®= 1.2 a

10 — :
320 340 360 380 400 420 440
T, [K]

Fig. 8. Effect of T; on p,,., at¢ = 0.8, 1.0, and 1.2 ang = 4 bar. The solid lines are linear fit.

3.2. Pressureriserate, maximum pressureriserate and deflagration index

Fig. 9 displays the plot of pressure rise ralgp/d ) versus at¢ = 0.7-1.2,p; = 4 bar andl; =

423 K. As can be observed in Fig. 9, for each of thgd map ¢ = 0.7-1.2),dp/d initially

increases and reaches the maximum value and decrease afterwards. Moreover, due to excessive hee
transfer to the CVCC wall the explosion pressprdecreases and the valuesdpf/d become
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negative as illustrated in Fig.9. In accordance with Fig. 9, the valu&s/df somehow increases
with increasingg, underlining the sensitivity ofp/d to ¢. The peak ofdp/d value increased
from 571.3 bar/s to 2147.3 bar/s whgrnncreased fromp = 0.7 to 1.2, obtaining the highest value
at¢ = 1.2. Fig. 10 also shows the comparisonpfd atT; = 363, 393 and 423 Ky; = 1 bar and

¢ =1.0.

According to Fig. 10, the peak dp/d increases with a lowef;. Thus, increased MF burning
velocity or speed as well as decreased explosion pressure and maximum pressure rise rate depend
on increased;. The highest values alfp/d are 542.905 bar/s (363 K), 509.712 bar/s (393 K) and
444,523 bar/s for 423 K. Fig. 11 represents the variatiafpgfl with p; atT; = 423 K andg =
1.0. As shown in Fig. 11, the values @f/d almost increased twofold with increasgd In
addition, wherp; increased from 1 bar to 4 bar the valuelpfd increased from 444.523 bar/s to
1668.99 bar/s. As aforementioned in Section 3.1, this could be due to more and more energetic MF
explosion at increasey).

2500 T T T T T . . I ;
p,=4bar, T.=423 K — =07
2000 | A TTT =09
1 ¢=1.07
i : - ¢=1.1|

1000

dp/dt [bar/s]

500

_500 1 | ! | ! | ! | ! | !
0 20 40 60 80 100 120

t [ms]

Fig. 9. A graph of pressure rise rate contour8;at 423 K, p = 4 bar andp = 0.7-1.2.
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299  Fig. 11. Effects ofp; on dp/d atT; = 423 K andp = 1.0.
300
301 The maximum pressure rise radp/d . IS @ significant parameter used to describe the

302 explosion build-up pressure. It is a very influential parameter in the estimation of the deflagration
303 index (Kg). Fig. 12 comparedp/d ;4 at T; = 363-423 K,p; = 1-4 bar andp = 0.7-1.4. As

304 depicted in Fig. 12dp/d ,.., Values are fairly higher at a low& when compared tdp/d ,,4x

305 values at a highef;. Truly, increasedr; dictates higher burning velocity and reduged,,.

306 However, the combined effect of the burning velocity apd, determines the magnitude of the

307 maximum pressure rise rate. In addition, the valuedpgid ,,,, iNncreases drastically whemy

308 increases. As shown in Fig. 12p/d ,,4, Values are somehow insensitivepgpat some of the
309 equivalence ratios.
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The deflagration indeXK;) measures the intensity of the combustion or explosion process.
Therefore, the higher the value of the deflagration index the more intense the explosion risk. The
deflagration index forms the basis for the design of explosion devices and safety assessment.
Fundamentally, the deflagration index is quantifiedgs= dp/d 4. V'/® (Dahoe and de Goey,

2003; Saced, 2017). V denotes the CVCC inner volume. Invariably, explosion advancement is
influenced by the volume of a vessel. Accordingly, an increment in the volume (radius) of a vessel
results in an increment in the flame propagation time. Therefore, the pressure rise during the
explosion is volume-variant. However, according to the definition of cube-root law;por
multiplying dp/d e by V3 rendersK; volume-independent irrespective of the vessel size
(Dahoe, 2005; Dahoe and de Goey, 2003; Faghih et al., 2016; Xie et al., 2016}pl/lals,,, iS
normalized by/1/3,

Again, Fig. 12 shows values graphed againgt at T; = 363-423 K andy; = 1-4 bar. The
values ofK; have a similar tendency a@®/d ,,.due to its linear dependence @p/d ;.. The
magnitude ofK; values rise with increasefl. Besides, an increment  dramatically increases
K¢ values due to more vigorous combustion. Thus, at a highehe propagating flame front
becomes more vigorous and instable, hence, generating a pjgheanddp/d ;.4 as well ask;.
Herein,K; values of MF range from 200-300 bar*m/spat 4 bar,T; = 363 K, 393 K and 423 K,
and¢ = 1.0-1.4. Fig. 13 also depicts the variationdpyd ,,,,, With p; atT; = 393 K andg = 0.8,

1.0, and 1.2. Fig. 13 discloses that MiF/d .., Values are greater at a highgrand to a certain
degree varies linearly with; values. Hereindp/d .4, increased from 315.645-886.725 batps
0.8),509.712-1728.6%ar/s ¢ = 1.0), andb45.877-2192.9Bar/s ¢p = 1.2) wherp; increased from
1 bar to 4 bar.

2700 - - T - . ' . : ' 1330 0o 363K/1bar
2400 L ] ®m 363 K/2bar
L 2 .300 O 363 K/4bar
2100 - 2 ] 270 393 K/1bar
i 1 4240 393 K/ 2 bar
— 1800 g @ © 393K/4bar
E 1500 L I ‘_210;5 * 423 K/ 1 bar
Q, g {180 @ A 423K/2bar
J O
_E1200( 2 B 8 B lgge & 423K/4bar
° I = ; = 2 A A X
S 900+ B g 2 = {120
600f o & e BB g 1%
. n ¥ % % 460
30 B B =% g
. *T N R R R R SRR S B 30
06 07 08 09 10 11 12 13 14 15

¢
Fig. 12. dp/d .4x @and K; plots with ¢atp; = 1-4 bar and’; = 363-423 K. Legend; is led byT;.
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Fig. 13. A chart ofdp/d ;4 @gainst; atT; = 393 K andp = 0.8, 1.0, and 1.2. The solid lines are
linear fit.

3.3. Explosion time

Herein, the explosion timg ) describes the time at whigh,,, was obtained. The explosion time

is very crucial in safety assessment and design of combustion devices. Fig. 14 shows values at
the investigated conditiong; = 2 and 4 bar anfl, = 393 and 423 K at differeit. The values of
decreases with increasigguntil it attains the minimum value and starts to increase againgwith

Due to less quantity of fuel in lean fuel mixtures, the explosion was not brisk, therefore, the
combustion time was prolonged. Moreover, reverse reflection is true for incigadede  values
presented in Fig. 14 are in someway sensitive; BandT;. By and large, the values of somehow
increased with increases] and decreased with increasd An increment irf; caused a decrease

in  owing to a faster flame speed. However, at rich mixtures the influeriGeoafthe explosion

time is somewhat insignificant. This could be as a consequence of equivalence ratio effects on the
explosion pressure rise in rich mixtures. Fig. 15 also shows the relationship bejveeen ato

= 0.8, 1.0, and 1.2 anfi = 423 K. According to Fig. 15, somewhpt exhibits a close linear
correlation with  at the different equivalence ratios. Explosion time is closely associated with the
flame speed, so, the fastness of the flame speed determines the explosion time. In this study, the
explosion time was relatively longer whepincreased. Thus, whers was increased the mass or
density of MF mixture also increased which extended the explosion time due to low flame speed. A
parallel remark was made in these treatises (Cui et al., 2018; Hu et al., 2017; Xu et al., 2019).
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Fig. 15. A graph of againsp; at¢ = 0.8,1.0, and 1.2 anq £ 423 K.

3.4. 2-methylfuran LBV

Using the well-established burning velocity relation in equation (1), the pressure history data were
used to determine the experimental burning velocities of MF at the investigated conditions. The
LBVs at the initial conditions were evaluated from $hép) curve employing extrapolation (Dahoe

and de Goey, 2003; Omari and Tartakovsky, 2016; Shen et al., 2017a).

- K& 1
o - 1 1‘(4_77} 1/3(ﬂjl/y 1_(BJJ/V( P~ pj ﬂ) 1)
pmax_ F)I 3 3\/ p p pmax_ Fll dt
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Pmax @Ndp denote the peak explosion pressure and explosion pressure wheaedsg refer to the

initial pressure and the specific heat of the unburnt mixtt@nddp/d refer to the CVCC inner

volume and the explosion pressure rise rate. Fig. 16(a)-(b) compares the experimental and simulated
burning velocities of MF ab; = 1 bar and 2 bar as well &= 393 K and 423 K. The simulated

LBVs were computed with CANTERA thermochemical code (Goodwin et al., 2017) using Cheng

et al. (2017) MF mechanism. It is worth noting that the LBV data of this wdfk=a363 K have

been compared to literature data (Ma et al., 2013a) in (Zhongyang et al., 2018) to validate the
accuracy of this investigation. In conformity with Fig. 16(a)-(b), the experimental and the simulated
LBVs have a parallel tendency. However, the experimental burning velocities are somehow
underpredicted compared to the calculated results.
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)
0.6 | 0.8 |
0.7+
— 0.5 S — .
L Y
S € 0.6
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> 04+ o E ; - > °© ’ i
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- o Simulated - 05¢
0.3r E E
0.4+ - -
p,=2bar, T, =393 K i p;=1bar, T, = 423K
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(0} ®

Fig. 16. Comparison of MF experimental and simulated burning velocities. The solid lines represent
a polynomial fit.

4. Conclusions

The explosion characteristics of 2-methylfuran have been evaluated at high pressure (1, 2, 3, and
4 bar) and temperature (333-423 K) conditions and equivalence ¢atio0(7-1.4) in a constant
volume combustion chamber. The important explosion parameters were determined from well
processed pressure data obtained from the experiment. The experimental peak explosion pressure
data were compared to simulated data. It was found that the simulated results were higher than the
experimental data due to heat loss to the chamber walls during the combustion process in the
experiment. The explosion parameters were sensitive to the initial pressure, initial temperature and
equivalence ratio. 2-methylfuran peak explosion pressure, maximum pressure rise rate and the
deflagration index decreased with increased initial temperature, however, they increased with
increased initial pressure. In addition, the magnitude of the explosion parameters increased as the
equivalence ratio increased. The deflagration index of 2-methylfuran was found to be quite higher
at higher pressures, reactive, and rich mixtures. In conclusion, the explosion time somehow
decreased with increased initial temperature and increased with a higher initial pressure.
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Highlights

» Explosion characteristics of 2-methylfuran were studied at elevated pressures and
temperatures.

» The influence of initia pressure, initia temperature and equivalence ratio on 2-
methylfuran explosion characteristics were assessed.

* The connexion between 2-methylfuran laminar burning velocity and the explosion
indices such as the peak explosion pressure, maximum pressure rise rate and the
severity factor were examined.
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