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Abstract  19 

This paper is focused on traffic-induced turbulence (TIT) analysis from a field 20 

campaign performed in 2011, using ultrasonic anemometers deployed in the M-12 21 

Highways, Madrid (Spain). The study attempts to improve knowledge about the 22 

influence of traffic-related parameters on turbulence. Linear relationships between 23 

vehicle speed and turbulent kinetic energy (TKE) values are found with coefficients of 24 

determination (R2) of 0.75 and 0.55 for the lorry and van respectively. The vehicle-25 

induced fluctuations in the wind components (u’, v’ and w’) showed the highest values 26 

for the longitudinal component (v) because of the wake-passing effect. In the analysis of 27 

wake produced by moving vehicles it is indicated how the turbulence dissipates in 28 

relation to a distance d and height h.  The TKE values were found to be higher at the 29 

measuring points closer to the surface during the wake analysis. 30 

Keywords: Vehicle-induced turbulence; parameterization; highway turbulence; turbulence intensity  31 

 32 

1. Introduction 33 

Pollutant emissions from vehicles are a significant issue in relation to the environment 34 

and human health. Occasionally these contaminants are dispersed by the wind from 35 

roads to population centers. Therefore, better knowledge of the turbulence processes 36 

that are involved in the environment of roads is valuable in the definition of new 37 

pollutant diffusion models. One of the sources in the generation of turbulence is vehicle 38 
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traffic (Rao et al., 1979). Some researchers have shown that the pollutant dispersion 39 

models that consider in detail the traffic-induced turbulence (TIT) effects provide a 40 

better fit with field measurements, than other models as CALINE4 and CFD models 41 

without this consideration (Wang and Zhang, 2009  and Sahlodin et al., 2007). In 42 

conditions of low wind velocity and wind direction perpendicular to the road, the traffic 43 

contribution to diffusion of pollutants still remains above 50% at 30m away downwind 44 

of the road (Sedefian et al., 1981). 45 

 46 

As a result, some researchers have studied TIT from different perspectives. A 47 

theoretical analysis of the vehicle wake was carried out by Eskridge and Hunt (1979). 48 

This research proposes some equations for velocity of the vehicle wake from 49 

fundamental motion equations. Hider et al. (1997) extended the wake formulation in 50 

conditions of lateral and vertical wind using the main equations of Eskridge and Hunt 51 

(1979). Field experiments were also carried out in which the vehicle wake is analyzed 52 

according to different methodologies (Chock, 1980; Rao et al., 2002). Rao et al. (2002) 53 

installed anemometers on the back of moving vehicles to measure the turbulence just 54 

behind of the vehicle while Chock (1980) located anemometers on both sides of the 55 

road to measure turbulence parameters in the lee/windward side of the highway. They 56 

found that wind direction perpendicular to the road increases TIT effects. 57 

 58 

TIT was also analyzed in wind tunnel installations (Eskridge and Thomson, 1982) 59 

although turbulence generation systems required improvement since occasional 60 

differences between measurements in field campaigns and in wind tunnels have been 61 

found (Cooper and Campbell, 1981). Cooper and Campbell (1981) used wind-tunnel 62 

and full-scale measurements of the aerodynamic drag on trucks to show the influence of 63 

wind turbulence. In addition a quasi-steady theory is developed to consider the effects 64 

of turbulence. Watkins et al. (1995) explained how to improve the similarity between 65 

turbulence levels in wind tunnels and in the field through structural elements. 66 

 67 

Urban street canyons in cities are locations with high concentrations of contaminants 68 

because the air flows are smooth in these sheltered zones (Jicha et al., 2000; Vachon et 69 

al., 2000; Kastner-Klein et al., 2001; Longley et al., 2004). Kastner-Klein et al. (2001) 70 

showed how traffic affects the turbulent airflow in canyons by means of wind tunnel 71 

tests. Recently, some researchers (Jicha et al., 2000; Katolicky and Jicha 2005; Dong 72 
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and Chan 2006; Xia et al., 2006; Sahlodin et al., 2007) have studied the turbulent 73 

process relative to the traffic using CFD (Computational Fluid Dynamics) codes 74 

because of the good fit with field measurements. Katolicky and Jicha (2005) showed 75 

that if TIT is included in atmospheric turbulence models (e.g. using a k-ε model), the air 76 

flow in canyons increases by 10%, so pollutant concentrations decrease.  77 

 78 

In addition to TIT, the roads themselves influence and modify the flow and turbulence, 79 

the additionally generated turbulence being of significance for pollutant dispersion 80 

(Kalthoff et al., 2005).  81 

 82 

Thermally induced turbulence can also be produced due to the presence of highways, as 83 

sensitive and latent heat fluxes are different compared to those coming from natural 84 

environments (Oke, 1987; Kalthoff et al., 1991). However, the influence on the 85 

production of turbulent kinetic energy (TKE) seems to be smaller compared to dynamic 86 

effects (Wei, 2002; Kalthoff et al., 2005). 87 

 88 

In this paper, TIT is analyzed in a field experiment. The experiment shows the 89 

relationship of turbulent parameters with vehicle type and speed and how TIT varies 90 

with the perpendicular distance to vehicles on their leeward side. The first part of the 91 

paper describes the experimental setup and the turbulence measurement, and the second 92 

part presents and discusses the results of the experiment. The main goal is to improve 93 

knowledge about TIT in space near vehicles and how different parameters affect it. 94 

 95 

2. Methodology and experimental setup 96 

Wind velocity variances () registered from fixed points on the highway are produced 97 

by ambient and vehicle turbulence (Kalthoff et al., 2005). The ambient turbulence, 98 

produced within the so-called Atmospheric Boundary Layer (ABL), is caused 99 

mechanically by wind shear and buoyancy induced by thermals (Stull, 1988). It is 100 

common practice in turbulent flows to express variables (temperature, velocity, etc.) as 101 

sums of mean and fluctuating parts (Arya, 2001): 102 

uuu  '  (1)

Two kinds of velocity fluctuations are recorded by a fixed anemometer on road when 103 

moving vehicles pass by it: the wake when the wind hits the vehicle as an obstacle and 104 
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the wake-passing effect which is specifically generated by moving vehicles, even in the 105 

absence of wind (Eskridge and Rao, 1983). Parameters such as the turbulent momentum 106 

fluxes (e.g. ''vu ) involving covariance between velocity component fluctuations, and the 107 

TKE defined as: 108 

)(5.0 222
wvuTKE    (2)

may be interesting to analyze TIT. Variances of wind components ( u
2 , v

2  and w
2 ) 109 

are directly related to the three wind component perturbations: 110 
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Where u, v and w are the perpendicular, longitudinal and vertical directions relative to 111 

the highway. The TIT measuring campaign presented in this work was supported by the 112 

first Spanish project on future highway design, OASIS (www.cenitoasis.com).  113 

 114 

2.1. Experimental setup: M-12 115 

Highway M-12 near Madrid airport was the location to carry out the experiment from 2 116 

to 4th August 2011. This highway has two lanes running from North (0º) to South 117 

(180º) and is limited by guardrails (Fig. 1). A toll booth with twelve lanes is located on 118 

the east side of the experimental setup and flat land is found to the west. The 119 

surroundings are quite flat with small embankments. The location was chosen because it 120 

has low traffic density and a long straight section, which facilitates the different 121 

experimental procedures. The Spanish Meteorological Agency (AEMET) has a 122 

measuring station situated approximately at 2.4km from the experimental site. In this 123 

station (Barajas Airport), the climatological (1971-2000) wind direction in August is 124 

from NE with a 3m s-1 mean wind velocity. 125 

 126 

The M-12 experiment was divided into three different tests. In all tests, four Gill 127 

ultrasonic anemometers (Wind Master model) with a maximum sample frequency of 128 

20Hz and a resolution of 0.01m s-1 were used. Three of them were installed on the 129 

guardrails maintaining a distance among them of 4m and their heights h and distances d 130 

(Fig. 1) were set depending on the test being done. The fourth anemometer was located 131 

at a height of 6.7m in order to measure ambient wind (Fig. 1), this height is beyond the 132 

influence of traffic according to Eskridge and Thompson (1982). 133 
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 134 

Test-1 studies how the wake-passing effect behaves at different heights. Anemometers 135 

1, 2 and 3 were installed at heights h (Fig. 1) of 0.25Hvehicle, 0.75Hvehicle and 1.25Hvehicle 136 

(Hvehicle is the vehicle height), respectively (Table 1). The vehicle heights for car and 137 

lorry are respectively 1.4m and 3.2m. The minimum horizontal distance between the 138 

vehicle trajectory and anemometer d (Fig. 1) was approximately 1m. For this test, a car 139 

and a lorry (Fig. 2a and Fig. 2c) were used; both vehicles performed 3 runs at 90km/h.  140 

 141 
Fig. 1. Sketch of the experiment with the position of four ultrasonic anemometers on the highway 142 
M-12.  (a) Perspective view and (b) frontal view. 143 

 144 
Fig. 2. Vehicle classes used in the experiment: (a) Car, (b) Van and (c) Lorry. 145 
 146 

Test-2 was designed to show how vehicle speed and vehicle type relate with turbulence 147 

parameters. Anemometers 1, 2 and 3 were installed at a level of 0.7m and the distance 148 

was the same as for Test-1 for all anemometers (Table 1). A van with a Hvehicle of 2.6m 149 

(Fig. 2b) a car and a lorry, were included in the experiment, to establish the influence of 150 

an intermediate size. All vehicles performed 3 runs each, at speeds of 90km/h, 80km/h, 151 

70km/h and 60km/h.  152 

 153 

Test-3 aimed to analyze how TIT ranges with the distance, d (Fig. 1). Anemometers 1, 2 154 

and 3 were placed at a height of 0.7m while the separation distances were 1m, 2.2m and 155 

3.4m respectively (Table 1). The lorry was chosen to perform 3 runs at 90km/h, because 156 

it had caused the strongest turbulence in the previous tests.  157 
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Table 1 158 
Position of anemometers on highway M-12 during each test. 159 

Test )(1 md a  )(2 md a  )(3 md a  )(1 mhb  )(2 mhb  )(3 mhb  

1 1 1 1 0.25Hvehicle 0.75Hvehicle 1.25Hvehicle 

2 1 1 1 0.7 0.7 0.7 

3 3.4 2.2 1 0.7 0.7 0.7 
aMinimum horizontal distance between the anemometers and the trajectory of vehicles (Fig. 1). 
bHeight over ground (Fig. 1). 

The anemometers were sampled at 20Hz during a period of 120sec. The maximum 160 

fluctuating components ( maxmaxmax ',',' wvu ), TKE and turbulent momentum fluxes were 161 

obtained in the time range from when the vehicle passed anemometer 1 (Fig. 1) until the 162 

vehicle covered 230m. Some parameters were normalized with the average of the 163 

perpendicular component, U from anemometer 4 (Fig. 1). A correlation analysis 164 

between study parameters was carried out for all tests with SPSS (statistical software). 165 

The Pearson correlation was obtained to reflect the degree to which the variables are 166 

related. This parameter ranges from +1 to -1. A correlation value equal to +1 means that 167 

there is a perfect positive linear relationship between variables. Sometimes vehicles not 168 

involved in the test coincided with the test vehicles and these runs were rejected. Other 169 

runs were not analyzed because of signal errors.  170 

 171 

3. Results and discussion 172 

Unlike other studies, such as Kalthoff et al. (2005) and Chock (1980), the present 173 

research is oriented to analyzing TIT near traffic.  174 

As was indicated (Experimental setup: M-12), three tests were run within the 175 

experiment. Now the results of these different tests will be analyzed. 176 

 177 

3.1. Test-1: Height dependence 178 

This test attempts to illustrate how the wake-passing effect changes at different heights. 179 

Therefore, the relationship between turbulence parameters and height will be studied.  180 

TKE values significantly correlated well with the height parameter, h (Fig. 1) in the car 181 

and lorry cases, where the Pearson correlation coefficients were -0.84 and -0.94 182 

respectively (Fig. 3). The turbulence is stronger near the road surface, which may be 183 

due to ground roughness and the guardrail’s effect. The larger size of the lorry induces a 184 

higher momentum interchange between it and the surrounding air and the TKE values 185 

obtained during lorry runs were about 10 times higher than in car runs. The slope for the 186 
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lorry fit is larger than that corresponding to the car, indicating the stronger vertical 187 

gradient in the TKE for the lorry case. Two simple linear models describe the 188 

relationship between the TKE parameter and height, h for both kinds of vehicles. The 189 

coefficient of determination R2 for the lorry model is 0.89 and in the case of the car is 190 

0.70 (Fig. 3). The linear fits obtained for the lorry and the car are 191 

lorryHhUTKE /30.466.5/ 2   (4)

and 192 

carHhUTKE /58.077.0/ 2   (5)

 193 
Fig. 3. Normalized TKE values depending on the height ratios (Table 1) of both the lorry (a) and the 194 
car (b). 195 

Fig. 4 shows how the longitudinal component (v) undergoes the maximum fluctuation 196 

compared to the other components (u, w). This is caused by the wake-passing effect. 197 
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Thus turbulence originated from vehicles exhibits a strong anisotropy. In the lorry case 198 

both the longitudinal and perpendicular components significantly correlate with the 199 

height ratio, while in the car case only with the longitudinal component (Fig. 4). In 200 

addition the vertical fluctuating component is independent of the height for both 201 

vehicles. Moreover, Eskridge and Rao (1983) also found that the fluctuating component 202 

with highest values was longitudinal. Therefore, the highest proportion of TKE is 203 

caused by the turbulent flow induced in the vehicle path. The coefficient of 204 

determination, R2 is not shown in some graphics (Fig. 4) because the correlation 205 

between those variables is not significant. 206 

 207 
Fig. 4. Relationship between maximum fluctuation of components and height ratio for both the 208 
lorry (a) and the car cases (b). 209 
 210 
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3.2. Test-2: Speed and volume dependence 211 

The total drag on a vehicle essentially consists of the friction and pressure drags 212 

(Geropp and Odenthal, 2000) and it increases with vehicle speed. Therefore, the 213 

momentum transfer from vehicle to air through friction and pressure drags must also 214 

increase with speed and vehicle size. This test includes an intermediate vehicle size in 215 

relation to Test-1: Height dependence, a van. Values of wake-passing effect are 216 

obtained from 3 anemometers located at a height of 0.7m. Both the lorry and the van 217 

show a significant Pearson correlation between TKE and vehicle speed, whose values 218 

are 0.86 (lorry) and 0.74 (van). The linear models obtained from the fits to the data (Fig. 219 

5) for the lorry and van, are 220 

VTKE 27.060.11   (6)

and 221 

VTKE 06.019.3   (7)

where V is vehicle speed and the coefficients of determination R2 are 0.75 and 0.55 222 

respectively. The TKE values obtained for the lorry are much larger than those reached 223 

with the van and car, the increase produced as the vehicle increases its speed also being 224 

greater, so the turbulence produced by the lorry becomes much more influential than the 225 

other two vehicles as the speed increases. Even, for the car case TKE values do not 226 

exhibit distinct functional relationship with vehicle speed. The differences of TKE 227 

values between lorry and the other vehicles will diminish if the lorry has a better 228 

aerodynamics with lower drag coefficient. Since the streamlines could keep better close 229 

to lorry’s surface. 230 
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 231 
Fig. 5. TKE depending on the vehicle speed for different kinds of vehicles. 232 

Turbulent momentum fluxes involve covariance between velocity fluctuations in 233 

different directions (Arya, 2001). The matrix is shaped by the nine momentum fluxes in 234 

relation to combinations among components. In order to analyze the covariance between 235 

the three components of the flow, only off-diagonal components: ''uw , ''vw  and ''uv , 236 

have been calculated. These components contribute to the transport of mean momentum 237 

while diagonal components are related to TKE, as was described in eq. (2) (Tennekes 238 

and Lumley, 1972). 239 

 240 

The longitudinal fluxes of vertical and perpendicular momentum ( ''vw , ''vu ) have the 241 

highest values and better correlation both for the lorry and van (Fig. 6). Again, this is 242 

because of the higher fluctuations in the longitudinal component (v’).  243 

As, in a non-perturbed ABL (Atmospheric Boundary Layer), vertical transfer of 244 

momentum (v’w’, u’w’) is usually much larger than horizontal fluxes (u’v’), especially 245 

in homogeneous terrain (Stull, 1988; Arya, 2001; Wyngaard, 2010), the results obtained 246 

are clearly influenced by TIT. All momentum fluxes smoothly increase with vehicle 247 

speed, but all coefficients of determination R2 are quite low. Results from the car case 248 

are not shown because no correlation is found (R2 <0.009). The vertical fluxes of 249 

longitudinal momentum, ''wv  exhibit the highest differences between the lorry and van. 250 

 251 
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 252 
Fig. 6. Variation of normalized turbulent momentum fluxes with vehicle speed for the lorry (a) and 253 
van case (b). 254 
 255 

The normalized turbulent fluxes that show highest Pearson correlations with vehicle 256 

speed are WVvw /'' for the van and VUuv /''  for the lorry (Table 2). 257 

  258 

Table 2 259 
Pearson correlation between normalized turbulent momentum fluxes and vehicle speed. 260 
 Pearson Correlation 

 WUuw /''  WVvw /''  VUuv /''  

Vehicle speed (Lorry) 0.48 0.65a 0.76a 

Vehicle speed (Van) 0.61a 0.70a 0.69a 

aThe correlation is significant with 95% probability. 
 261 

3.3. Test-3: Distance dependence 262 

The lorry was chosen for this test because it helps to better distinguish the vehicle 263 

turbulence from ambient turbulence; moreover, it produces much more turbulence. This 264 
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test attempts to demonstrate how the wake from a moving vehicle dissipates over 265 

distance, d (Fig. 7). TKE values that were obtained at closer points to the vehicle 266 

trajectory are higher than at farther points, as would be expected (Fig. 7). The 267 

dissipation rate of TKE values with distance is -3.4m-1 s-2. On the other hand, the 268 

average of the perpendicular component, U from anemometer 4 was used to obtain the 269 

turbulence intensities components. The longitudinal turbulence intensity (v/U) 270 

contributes a higher proportion to TKE values (Fig. 8). In addition this component 271 

shows the highest coefficient of determination R2, 0.78. Although all turbulence 272 

intensities are correlated significantly with distance from the vehicle trajectory, the 273 

longitudinal component decreases faster than the other components (Fig. 8). The values 274 

of perpendicular and vertical turbulence intensity (u/U and w/U) are quite similar. 275 

 276 
Fig. 7. Relationship between normalised TKE values and the distance, d (Fig. 1) for the lorry case. 277 
 278 
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 279 
Fig. 8. Turbulence intensity components depending on the distance, d (Fig. 1) for the lorry case. 280 
 281 

4. Summary and Conclusions 282 

Results from a field campaign to study traffic-induced turbulence (TIT) are presented in 283 

this work. The field campaign was carried out in August 2011, with the aim of studying 284 

the relationship between TIT and different parameters. First, the influence of parameters 285 

related to vehicles, such as speed and size were analyzed. Second, the spatial variation 286 

of the TIT along the perpendicular and vertical direction to vehicle trajectory is 287 

determined. The wake-passing effect produced by the vehicles causes the longitudinal 288 

direction to contribute the highest proportion to the TKE values for the three tests 289 

performed. Both the turbulent momentum fluxes and the TKE values correlated well 290 

with the vehicle speed for the lorry and the van, but not for the car, where the turbulence 291 

produced is much lower. As would be expected, the TKE values and the coefficient of 292 

determination R2, found for the different fits, are higher for the lorry than for the van 293 

and the car. The turbulent momentum fluxes, which depend on fluctuations in the 294 

longitudinal component, are higher compared to the other directions. The Pearson 295 

correlation coefficients between the values of TKE and the height parameter for the car 296 

and the lorry are -0.84 and -0.94 respectively, indicating that the turbulence level 297 

increased as the distance to the road decreases. The intensity of turbulence from the 298 

vehicles decreases significantly with the distance perpendicular to the vehicle trajectory. 299 

Moreover, the dissipation energy rate in the longitudinal component is higher than the 300 

other components. 301 

 302 
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This analysis shows clearly that TIT can be an important source of turbulence, in 303 

addition to the natural turbulence produced in the surface layer, and it should be 304 

considered in air quality models simulating pollutant concentrations. The study also 305 

confirmed that TIT could be modelled taking into account some parameters relative to 306 

the vehicles. 307 

 308 
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