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Abstract 

We are concerned with the local linear convective instability of the incompressible boundary-

layer flows over rough rotating disks for non-Newtonian fluids. Using the Carreau model for 

a range of shear-thinning and shear-thickening fluids, we determine, for the first time, steady-

flow profiles under the partial-slip model for surface roughness. The subsequent linear stability 

analyses of these flows (to disturbances stationary relative to the disk) indicate that isotropic 

and azimuthally-anisotropic (radial grooves) surface roughness leads to the stabilisation of both 

shear-thinning and -thickening fluids. This is evident in the behaviour of the critical Reynolds 

number and growth rates of both Type I (inviscid cross flow) and Type II (viscous streamline 

curvature) modes of instability. The underlying physical mechanisms are clarified using an 

integral energy equation. 

Keywords: Laminar boundary layer, non-Newtonian, Carreau fluid, Convective instability 

1. Introduction 

The hydrodynamic instability of the rotating-disk system has long been used to investigate 

the fundamental transition mechanisms of three-dimensional boundary layers. The pioneering 

study of the steady incompressible flow induced by the rotation of a smooth, infinite plane with 

a fixed angular velocity was performed by von Kármán [1]. He showed that the flow is an exact 

solution of the Navier–Stokes equations and is characterised by a negligible centrifugal force 

close to the disk surface. The centrifugal force and the pressure gradient on the fluid are not 

balanced and the flow spirals outwards, with mass conservation maintained by a downwards 

axial flow that entrains fluid into the boundary layer. The resulting velocity distribution in the 

boundary layer is three-dimensional and has an inflectional profile in the radial direction. 
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Gregory et al. [2] investigated the stability of the von Kármán flow and performed exper-

imental and theoretical studies at high Reynolds numbers. This led to the discovery of spiral 

vortex disturbances within the boundary layer. Later, Malik [3] computed the neutral curves 

associated with disturbances stationary relative to the disk surface and found two instability 

modes: one governed by an inviscid crossflow mechanism and the other by viscous streamline-

curvature mechanisms. At a similar time, Hall [4] conducted a rigorous asymptotic study of the 

two stability branches and found complete agreement with Malik’s neutral curve in the high 

Reynolds-number limit. The inviscid and viscous modes have subsequently been designated 

Type I and Type II modes, respectively. 

Two theoretical models exist in the literature for the steady boundary-layer flow over rough 

rotating disks. These were introduced by Miklavčič and Wang [5] and Yoon et al. [6] and are 

henceforth referred to as the MW and YHP models, respectively. Both models demonstrate 

how surface roughness could lead to modifications to the classic von Kármán solution over 

a smooth disk. The two models are, however, fundamentally different in their formulation. 

The YHP model imposes a surface roughness function on the disk surface along the radial 

direction and assumes rotational symmetry. This model therefore leads to a particular case 

of anisotropic roughness composed of concentric grooves; the roughness is felt as one traverses 

the disk in the radial direction. In contrast, the MW approach models the surface roughness 

by replacing the usual no-slip conditions at the disk surface with partial-slip conditions. By 

modifying the boundary conditions in the radial and azimuthal directions, the MW approach 

can independently model roughness in these two directions. This leads to isotropic roughness 

when the roughness parameters are identical in both directions, and anisotropic roughness when 

they differ. Owing to its greater flexibility, the MW approach has received detailed attention 

for Newtonian fluids and will be used throughout this investigation. 

Under the MW formulation, Cooper et al. [7] examined the possibility of delaying the 

onset of instability within the rotating-disk system via the introduction of distributed surface 

roughness. Their convective stability analysis considered both isotropic and anisotropic surface 

roughnesses and led to the clear conclusion that surface roughness stabilises the Type I mode. 

In contrast, the Type II mode is destabilised significantly by anisotropic roughness in the form 

of the concentric grooves. Following this, Garrett et al. [8] considered the effects on the stability 

predictions of using the two roughness models. Similar results were found under the MW and 

YHP models for the Type I modes, but differences in the response of the Type II mode were 

observed. In particular, Reynolds-stress energy production increases with the roughness level 

and the increase is slightly less pronounced for the YHP model than for the MW model. 
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Complementary research continues using the MW model. For example, Stephen [9] has 

recently confirmed the neutral curve of Cooper et al. using a rigorous asymptotic approach. 

Furthermore, Alveroglu et al.[10, 11] has extended Cooper et al.’s work to the entire BEK family 

of boundary-layer flows (i.e., Bödewadt, Ekman and von Kármán). Again surface roughness is 

found to be universally stabilising for the dominant Type I mode. However, increased concentric 

grooves causes destabilisation of the Type II mode as it moves upstream and eventually becomes 

the critical mode at the lowest Reynolds number. 

Returning to smooth rotating disks, the literature shows a growing interest in the effects of 

non-Newtonian boundary-layer flows. Fundamental to the modelling of non-Newtonian flows 

is the underlying viscosity model and a good overview of the most widely used models can be 

found in Bird et al. [12]. Mitschka [13] was the first to generalise the von Kármán solution 

to non-Newtonian flows and used a power-law fluid. More recently, the base flows for vari-

ous generalised Newtonian models have been derived by Griffiths [14]. He then proceeds to 

explore convective instability characteristics of the models[15, 16], utilising both asymptotic 

and numerical methods. In particular, the power-law studies are extended to include more so-

phisticated models due to Bingham [17] and Carreau [18]. Griffiths demonstrates that, unlike 

the power-law and Bingham models, the Carreau model preserves the von Kármán similarity 

solution which has mathematical advantages within the formulation. Furthermore, the Carreau 

model is adopted here due to the limitation of the power-law especially for very low and very 

high shear rates. In general, linear stability analyses investigated in the rotating disk boundary 

layer have revealed that different results are reached when power-law shear-thinning results are 

compared to those owing from the Carreau fluid model [19]. Thereby, the growing interest in 

the Carreau fluids has been the motivation for the current investigation. 

The objective of this investigation is to examine the linear convective instability of the non-

Newtonian boundary-layer flow over rough rotating disks. The MW (partial-slip) model for 

surface roughness and Carreau viscosity model will be used. Section 2 presents the complete 

mathematical formulation of our study. This includes the steady flow, perturbation equations 

and derivation of the energy analysis equations. The resulting mean-flow velocity profiles and 

stability analysis are presented and discussed in §3. Our conclusions are drawn in §4. 

2. Mathematical formulation 

2.1. Mean flow 

We follow the approach developed by Griffiths [14] to obtain the mean-flow flow profiles 

under the Carreau [18] viscosity model. However, modifications are made to incorporate the 
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partial-slip approach to surface roughness. The disk is assumed to be of an infinite radius 

and rotating at a constant angular velocity, Ω∗, within an incompressible Carreau fluid. We 

work with cylindrical polar co-ordinates within the rotating reference frame and the governing 

equations are given by 

r · u ∗ = 0, (1a) 

∂u ∗ 1 1∗ ∗ ∗ ∗ + u · ru + Ω ∗ × (Ω ∗ × r ∗ ) + 2Ω ∗ × u = − rp + r · τ ∗ . (1b)
∂t∗ ρ∗ ρ∗ 

Here u ∗ = (U∗, V ∗,W ∗) is the total velocity vector; t ∗ is time; p ∗ is the fluid pressure; 

r ∗ = (r ∗ , 0, z ∗) is the position vector in space; Ω∗ = (0, 0, Ω∗) is the constant angular velocity; 

and ρ∗ is the fluid density. An asterisk, where used, refers to dimensional variable. 

The stress tensor for generalised Newtonian models is given by τ ∗ = µ ∗γ̈∗, where µ ∗ = 

µ ∗(γ̈∗) is the non-Newtonian viscosity. The magnitude of the rate of strain tensor is given by p
γ̈∗ = (γ̈∗ : γ̈∗)/2 and, for a Carreau fluid, we have 

� �(n−1)/2∗ ∗ ∗ µ ∗ (γ̈∗) = µ∞ + (µ0 − µ∞) 1 + (λ ∗ γ̈∗ )2 . (2) 

Here the power index n characterises the fluid behaviour such that it is shear-thinning when 

n < 1, Newtonian when n = 1 and shear-thickening when n > 1. The quantities µ ∗ 
0 and µ ∗∞ 

denote the zero-shear-rate and infinite-shear-rate viscosities, respectively, and λ∗ is referred to 

as the time constant or ‘relaxation time’. In practical applications, the zero-shear-rate viscosity 

is typically three to four orders of magnitude larger than the infinite-shear-rate viscosity and, 

in view of this, µ∞
∗ is neglected in the current analysis. 

Under the boundary-layer approximation, Eq. 1 is expressed at leading order as 

∗U∗ ∗1 ∂(r ) 1 ∂V ∗ ∂W 0 0 0+ + = 0, (3a) 
r ∗ ∂r∗ r ∗ ∂θ ∂z∗ 

� � 
∂U∗ ∂U∗ V ∗ ∂U∗ ∂U∗ (V ∗ + r ∗Ω∗)2 1 ∂P ∗ 1 ∂ ∂U∗ 

0 0 0 0 0 0 0 0+ U ∗ + ∗ 
+ W ∗ − ∗ 

= + µ , (3b)
∂t∗ 0 ∂r∗ r ∂θ 0 ∂z∗ r ρ∗ ∂r∗ ρ∗ ∂z∗ ∂z∗ 

� � 
∂V ∗ ∂V ∗ V ∗ ∂V ∗ ∂V ∗ U∗V ∗ 1 ∂P ∗ 1 ∂ ∂V ∗ 

0 0 0 0 0 0 0 0 0+ U0 
∗ + + W0 

∗ + + 2Ω ∗ U ∗ = + µ , (3c)∗ ∗ ∗∂t∗ ∂r∗ r ∂θ ∂z∗ r ρ∗ r ∂θ∗ ρ∗ ∂z∗ ∂z∗ 

∗ ∗ ∗ ∗∂W ∗ ∂W V ∗ ∂W ∂W 1 ∂P 0 0 0 0 ∗ 0 1+ U0 
∗ + + W0 = − 

∂t∗ ∂r∗ r ∗ ∂θ ∂z∗ ρ∗ ∂z∗ � � � � � � 
1 ∂ ∂U∗ 1 ∂ ∂V ∗ 2 ∂ ∂W ∗ 

∗ 0 0 0+ µr + µ + µ , (3d)
ρ∗ r ∗ ∂r∗ ∂z∗ ρ∗ r ∗ ∂θ ∂z∗ ρ∗ ∂z∗ ∂z∗ 
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where (U∗, V ∗,W ∗) are the leading-order velocities, (P ∗, P ∗) are the pressure components and 0 0 0 0 1 

the viscosity function µ ∗ is given by ( "� #)(n−1)/2�2 � �2
∂U∗ ∂V ∗ 

∗ 0 0 µ = µ 1 + (λ ∗ )2 + . (4)0 ∂z∗ ∂z∗ 

Following Griffiths [20], Eq. 4 can be normalised with respect to µ0 
∗ in order to facilitate direct 

quantitative comparisons with the corresponding Newtonian mean-flow profiles. 

The dimensionless steady and axisymmetric mean-flow components are scaled as 

U∗ V ∗ W ∗ P ∗ 
0 0 0 1U(z) = , V (z) = , W (z) = , P (z) = ,∗Ω∗ ∗Ω∗ l∗Ω∗ ρ∗l∗2Ω∗2r r � 

ν∗ �(1/2)
where l∗ = 

Ω∗ is a characteristic length scale. These lead to the following non-dimensional 

equations for the mean flow 

2U + W 0 = 0, (5a) 

U2 − (V + 1)2 + WU 0 − (µU 0)0 = 0, (5b) 

2U (V + 1) + WV 0 − (µV 0)0 = 0, (5c) 

WW 0 + P 0 − qU 0 + 2µ 0U − (µW 0)0 = 0. (5d) 

where a prime denotes a derivative with respect to z and nk2(n − 1)µ[(U 0)2 + (V 0)2] o(n−1)/2 
q = , µ = 1 + k2[(U 0)2 + (V 0)2] , k = r ∗ λ ∗ Ω ∗ (ν/Ω)−1/2 . 

1 + k2[(U 0)2 + (V 0)2] 

Note that under the Carreau model, viscosity is a function of r which technically prohibits 

such a similarly-type solution. However, we proceed to conduct local stability analyses at fixed 

positions and, in practice, the variable r will take particular fixed values. The use of the 

similarity solution is therefore permitted as an approximation; this approach was also used in 

Griffiths [20]. 

We now proceed to use the MW model [5] for surface roughness to determine the boundary 

conditions at the disk surface. This approach assumes that roughness can be modelled using 

partial-slip conditions instead of the usual no-slip conditions at the disk surface, whereas the 

boundary condition at the upper edge of the boundary layer is identical to the smooth-disk 

formulation. To derive the boundary conditions we adopt the method proposed by Navier [21], 

from which the partial-slip condition in the radial and azimuthal directions are respectively 

given by 

U |z=0 = λτ z |z=0, V |z=0 = ητ z |z=0 .r θ 
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Here λ and η are the respective the slip coefficients defined as, s s 
Ω∗l∗2 Ω∗l∗2 

λ = λ1µ and η = η1µ . (6)
ν∗ ν∗ h i 

owhere ν∗ = µ
ρ∗

∗ 

. Using the above transformations, Eq. 6 enables the boundary conditions to 

be determined as ⎫ 
U = λ U 0[1 + k2(U 02 + V 02)](n−1)/2⎪⎪⎪⎪⎬ 
V = η V 0[1 + k2(U 02 + V 02)](n−1)/2 atz = 0, (7)⎪⎪⎪⎪⎭W = 0 

and 

U = 0, V = −1 as z →∞. (8) 

The coefficients λ and η give a measure of the roughness in the radial and azimuthal direc-

tions, respectively. When λ = η = 0 the boundary conditions reduce to the no-slip boundary 

conditions for a smooth disk. The scenario of anisotropic roughness is exemplified by concen-

tric grooves (η > 0, λ = 0) and radial grooves (η = 0, λ > 0); whereas isotropic roughness 

corresponds to the case λ = η > 0. 

In the particular case that n = 1 and λ = η = 0, the system defined by Eqs. (5), (7) and 

(8) reduces to the standard von Kárm´ = 1 and λ 6 0, η =6an system. Similarly, when n = 0 we 

recover the governing equations for the standard MW model [5] for Newtonian fluids. 

2.2. Convective instability 

A local linear instability analysis will be conducted on the steady mean-flow system. As dis-

cussed in [7, 10], the partial-slip boundary conditions do not affect the perturbation equations; 

that is, the governing stability equations are unaffected by surface roughness within the MW 

model. However, the perturbation equations are affected by the underlying viscosity model 

and we present their detailed derivation here. The system of Eq. 3 is used here to derive the 

perturbations equations for the Carreau fluid. Perturbations are applied at a specific radius by 

imposing sufficiently small disturbances on the steady-mean flow at some fixed local Reynolds 

number, defined as 
Ω∗ r ∗l∗ 

Re = a = ra. (9)
ν∗ 

The velocity, pressure and time are cast in dimensionless form using the scalings ra
∗Ω∗ , ρ∗(ra

∗Ω∗) 

and l∗/(ra
∗Ω∗), respectively. The instantaneous non-dimensional velocities and pressure compo-

nent including the mean values and small perturbations are therefore given by 

r 
U0(r, θ, z, t) = U(z) + u(r, θ, z, t), (10a)

Re 
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r 
V0(r, θ, z, t) = V (z) + v(r, θ, z, t), (10b)

Re 
1 

W0(r, θ, z, t) = W (z) + w(r, θ, z, t), (10c)
Re 
1 

P0,1(r, θ, z, t) = P (z) + p(r, θ, z, t), (10d)
Re2 

where u,v, w and p are small perturbation quantities. At this stage it is necessary to apply 

the so called parallel-flow approximation to ensure the linearised equations are separable in r, θ 

and t. This involves replacing the variable r with the local Reynolds number and neglecting all 

terms O(Re−2), leading to 

u ∂u 1 ∂v ∂w 
+ + + = 0, (11a)

Re ∂r Re ∂θ ∂z � � � � 
Uu − 2(V + 1)v ∂p 1 0 ∂u ∂w ∂(µ̃U 0ψ)

Δ1u + U 0 w + = − + µΔ2u + µ + + , (11b)
Re ∂r Re ∂z ∂r ∂z � � � � 

Uv + 2(V + 1)u 1 ∂p 1 0 ∂v 1 ∂w ∂(µ̃V 0ψ)
Δ1v + V 0 w + = − + µΔ2v + µ + + ,

Re Re ∂θ Re ∂z Re ∂θ ∂z 

(11c) � � � � 
W 0w ∂p 1 ∂w ∂ V 0 ∂ 

Δ1w + = − + µΔ2w + 2µ 0 + µ̃ U 0 + ψ ,
Re ∂z Re ∂z ∂r Re ∂θ 

(11d) 

where 

∂ ∂ V ∂ W ∂ 
Δ1 = + U + + ,

∂t ∂r Re ∂θ Re ∂z 
∂2 1 ∂2 ∂2 

Δ2 = + + ,
∂r2 Re2 ∂θ2 ∂z2 

k2(n − 1)µ 
µ̃ = ,

1 + k2[(U 0)2 + (V 0)2]� � 
∂u ∂v 

ψ = U 0 + V 0 . 
∂z ∂z 

In Eq. 11, the terms containing ψ are associated with the perturbation of viscosity induced by 

the velocity perturbations. 

We then proceed by assuming the normal-mode form for the perturbing quantities 

i(αr+βθ−ωt)(u, v, w, p) = (û, ̂ w, ˆ .v, ˆ p)(z; α, β, ω; Re, k)e

Here α = αr +iαi is the radial wave number, β is the azimuthal wave number (which is real) and 

ω is the frequency of the disturbances expressed in the rotating frame. We therefore rewrite 

Eq. 11 in the form of a nonlinear eigenvalue problem as � � 
û

α(iû) + + iβv̂ + ŵ 0 = 0, (12a)
Re 
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� � � � �� 
µû µ0ŵ

α2 + α i Uû− + p̂ + r0 = 0, (12b)
Re Re � � 

µv̂
α2 + α(iUv̂) + θ0 = 0, (12c)

Re � � � � �� 
µŵ (û0FUU + v̂

0FUV )
α2 + α i Uŵ − + z0 = 0, (12d)

Re Re 

where � � 
W − µ0 −F 0 2(V + 1)v̂ û00(µ + FUU ) + (v̂0FUV )

0 
r0 = ûHU + UU û0 − + U 0 ŵ − ,

Re Re Re � � � � 
W − µ0 −F 0 0 u iβµ0 v̂00(µ + FV V ) + (ˆ0FUV )

0 
V V 2(V + 1)ˆ u

θ0 = v̂HU + v̂ + + V 0 − ŵ + iβp̂− ,
Re Re Re Re � � 

W − 2µ0 iβ(û0FUV + v̂
0FV V ) µŵ00 

z0 = ŵHW 0 + ŵ0 − + p̂ 0 − ,
Re Re Re 

and 

FRS = ˜ ,µRe0S 0 � � 
T β2µHT = iβV + + . 
Re Re 

Here, the radial wavenumber α is the eigenvalue. The orientation angle of the stationary vortices 

with respect to a circle centred on the axis of rotation and the mode number (i.e.,number of 

spiral vortices on the disk surface) are given, respectively, as � � � �β̄ π αr 
φ = tan−1 ⇔ tan − φ = , (13)

ᾱ 2 β 

¯n̄ = βRe. (14) 

The perturbation quantities imposed on the steady flow arising from the rough surface are 

subject to zero boundary conditions at both the disk surface and in the far-field. This ensures 

that the perturbations are contained within the boundary layer. The choice not to impose 

partial-slip conditions on the perturbing quantities at z = 0 is deliberate and is taken to avoid 

double-counting the surface boundary condition at this position; this is consistent with [7, 9, 22]. 

In any event, the qualitative effect of imposing these conditions on the perturbations has been 

found to be negligible in all situations. The perturbation Eq. 12 are subject to 

û(z = 0) = v̂(z = 0) = ŵ(z = 0) = p̂(z = 0) = ŵ0(z = 0) = 0 (15a) 

û (z → z∞) = v̂ (z → z∞) = ŵ (z → z∞) = 0 (15b) 
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2.3. Energy Analysis 

Following various studies in the literature [23, 7, 8], an integral energy equation for distur-

bances within the Carreau model is now derived to analyse the underlying physical mechanisms 

behind the effects of surface roughness. The derivation of the governing energy equations be-

gins by multiplying the linearised momentum Eq. 11 by the disturbance quantities u, v and w, 

respectively. The sum of the resulting expressions leads to the kinetic-energy equation for the 

disturbances, 

U(u2 + v2) + W 0w2 

− Δ1K = (uU 0 + vV 0)w + 
Re � � 

∂(up) 1 ∂(vp) ∂(wp) up µ ∂ ∂uj
+ + + + − (uj σij ) − σij

∂r Re ∂θ ∂z Re Re ∂xi ∂xi� � 
µ0 ∂K µ0 ∂(uw) 1 ∂(vw) ∂(ww) uw − − + + + 
Re ∂z Re ∂r Re ∂θ ∂z Re 
(µ̃U 0U 0)0 ∂u2 (µ̃V 0V 0)0 ∂v2 (µ̃U 0V 0)0 ∂(uv)− − − 
2Re ∂z 2Re ∂z Re ∂z " # " #� � � �2 � � � �2

(µ̃U 0U 0) ∂ ∂u ∂u (µ̃V 0V 0) ∂ ∂v ∂v − u − − v − 
Re ∂z ∂z ∂z Re ∂z ∂z ∂z � � � � � � 

(µ̃U 0V 0) ∂ ∂u ∂ ∂v ∂u ∂v − v + u − 2 
Re ∂z ∂z ∂z ∂z ∂z ∂z � � � � � � � � 

µU˜ 0U 0 ∂ ∂u ∂w ∂u ˜ ∂ ∂v ∂w µU 0V 0 ∂v − w − − w − 
Re ∂z ∂r ∂z ∂r Re ∂z ∂r ∂z ∂r � � � � � � � � 

µU˜ 0V 0 ∂ 1 ∂u ∂w 1 ∂u ˜ ∂ 1 ∂v ∂w 1µV 0V 0 ∂v − w − − w − . (16)
Re ∂z Re ∂θ ∂z Re ∂θ Re ∂z Re ∂θ ∂z Re ∂θ 

where K = (1/2)(u2 + v2 + w2) is the disturbances kinetic energy and σij are the viscous stress 

terms due to velocity perturbations, � � 
1 ∂ui ∂uj

σij = + . 
Re ∂xj ∂xi � � 

The O 1/Re2 terms have been omitted, consistent with the neglect of the O (1/Re2) terms 

in the linearised perturbation Eq. 11. The perturbations are averaged over a single time period 

and azimuthal mode and then integrated across the entire boundary layer. 

Z ∞� 0 � 
∂K ∂ (up) µ ∂(uσ11 + vσ12 + wσ13) µ ∂(uw) (µ̃U 0U 0) ∂(wσ31)

U + −− − − 
∂r Re ∂r Re ∂r Re ∂r 0 | {z } | ∂r{z } | {z }
a b c Z ∞� � Z ∞ � 

(µ̃U 0V 0) ∂(wσ32) ∂U ∂V 1 ∂W µ ∂uj− dz = −uw − vw − w2 dz − σij dz 
Re ∂r 0 ∂z ∂z Re ∂z 0 Re ∂xi| {z } | {z } | {z }Z ∞ 

c I II 
1 [µ(uσ31 + vσ32 + wσ33)]w− up dz + (wp)w − 
Re Re |0 {z } | {z }

IVIII 
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Z ∞ Z ∞ Z ∞ u2U v2U ∂K W − dz − dz − dz 
Re Re ∂z Re 0 0 0| {z }

VZ ∞ Z ∞ 0 0 Z ∞ 00Kµ0(uσ31 + vσ32 + wσ33) µ uw (µ0K)w (µ w2)w µ− dz + dz − − − dz 
Re Re2 Re Re Re 0 0 0| {z }Z ∞ 00 2 Z ∞ � VI � 

µ w (µ̃U 0U 0)0 ∂u2 (µ̃V 0V 0)0 ∂v2 (µ̃U 0V 0)0 ∂(uv)− dz + − − dz . 
Re 2Re ∂z 2Re ∂z Re ∂z | 0 0 {z }

VIZ ∞ � � Z ∞ � � 
(µ̃U 0U 0) ∂(uσ31) (µ̃V 0V 0) ∂(vσ32)

+ − σ2 + − σ2 dz .31 32Re ∂z Re ∂z | 0 {z 0 }Z ∞ � VI � Z ∞ Z ∞(µ̃U 0V 0) ∂(uσ32 + vσ31) (µ̃U 0U 0)σ31 ∂w (µ̃U 0V 0)σ32 ∂w 
+ − 2σ31σ32 dz − dz − dz . 

Re ∂z Re ∂r Re ∂r 0 0 0| {z }
VI 

(17) 

Here an overbar denotes a period-averaged quantity, such that uv = uv ∗ +u ∗ v (where ∗ indicates 

the complex conjugate), and the subscript W denotes quantities evaluated at the wall. Terms 

on the left-hand side of Eq. 17 can be identified as: (a) the average disturbance kinetic energy 

convected by the radial mean flow; (b) work done by the perturbation pressure; and (c) work 

done by the viscous stresses across the boundary layer. On the right-hand side we have: (I) 

the Reynolds-stress energy production term; (II) the viscous dissipation energy term; (III) 

pressure work terms; (IV) contributions from work done on the wall by viscous stresses; (V) 

terms arising from streamline curvature effects and the three-dimensionality of the mean flow; 

and (VI) the non-Newtonian viscosity terms. The energy equation is then normalized by the 

integrated mechanical energy flux to give 

−2ᾱi = (P1 + P2 + P3)+ D +(PW1 + PW2)+ (S1 + S2 + S3)| {z } |{z} | {z } | {z }
II I III IV 

+ (G1 + G2 + G3)+ (N) . (18)| {z } |{z}
V V I 

3. Results and discussion 

3.1. Mean flow 

The steady mean-flow equations Eqs. 5 are solved using shooting method. The resulting 

profiles are depicted in Figs. 1–3 at three examples of surface roughness for various values of 

n. We fix the value of k parameter at 100 in order to maintain consistency throughout the 

remainder of this study; and this is consitent with [19]. Our numerical code for the steady flow 
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has been validated against various prior studies in the literature. In particular, our numerical 

values reported in Table 1 agree entirely with [22, 7] when n = 1, and with [24] when n 6= 1. In 

all calculations we use the integration domain 0 < z < 20 up through the boundary layer. We 

find that this leads to converged far-field values at all n and λ, η, and further increases beyond 

z∞ = 20 have no material effect on the results. This domain is consistent with related studies 

in the literature [25, 14, 26]. 
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Figure 1: Mean-flow components of the Carreau flow over an isotropically rough disk for shear-thinning and 

-thickening fluids, λ = η = 0.25. 

Fig. 1 shows the mean-flow profiles for isotropic roughness (λ = η = 0.25). The radial-flow 

profiles reveal that increasing n results in the wall jet moving outwards along the z-axis. That 

is, the boundary-layer thickness increases with n > 1 (shear thickening) and narrows for n < 1 

(shear thinning). Furthermore, the growth in the peak value shows an increased jet effect for 

shear-thickening fluids. In the azimuthal velocity profile, the wall value of V increases with 

n; further evidence of an increasing/narrowing boundary-layer thickness. With regards the 

normal velocity component, we observe that increasing n leads to greater fluid entrainment 

into the boundary layer. That is, shear-thickening fluids act to entrain a greater volume of 

fluid into the boundary layer and shear-thinning a lesser volume. This is consistent with the 

boundary-layer thickening/thinning effects observed in radial and azimuthal flow components. 
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Parameters n U 0(0) −V 0(0) −W (z∞) 

Isotropic roughness 

η = λ = 0.25 0.8 0.4016 0.8658 0.6447 

0.9 0.3633 0.7008 0.7503 

1.0 0.4170 0.5034 0.8269 

1.1 0.2873 0.4689 1.0005 

1.2 0.2542 0.3897 1.1424 

Radially-anisotropic roughness (concentric grooves) 

η = 0.25 0.8 0.5904 0.7522 0.6137 

0.9 0.4953 0.6128 0.7134 

1.0 0.4170 0.5034 0.8269 

1.1 0.3534 0.4178 0.9531 

1.2 0.3020 0.3507 1.0906 

Azimuthally-anisotropic roughness (radial grooves) 

λ = 0.25 0.8 0.5736 1.3277 0.7074 

0.9 0.4786 0.9629 0.8190 

1.0 0.4018 0.7251 0.9425 

1.1 0.3401 0.5635 1.0769 

1.2 0.2906 0.4498 1.2211 

Table 1: Numerical values of the mean-flow boundary values U 0(0), V 0(0) and W (z∞) for shear-thinning and 

-thickening fluids, n = 0.8, 0.9, 1, 1.1, 1.2, at illustrative values of roughness. 
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Fig. 2 shows that the effects of increasing the power index for a radially-anisotropic surface 

roughness (η = 0.25, λ = 0) are similar to those in the isotropic case. 

Figure Fig. 3 shows the case of radial grooves (λ = 0.25, η = 0) and we see mostly similar 

responses to n in the azimuthal and normal flow components. However, there is some subtly 

different behaviour observed in the radial profile: while a shear-thickening fluid again acts to 

thicken the boundary layer, the radial jet is in fact accelerated for shear-thinning fluids. 
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Figure 2: Mean-flow components of the Carreau flow over a radially-anisotropically rough disk for shear-thinning 

and -thickening fluids, η = 0.25, λ = 0. 
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Figure 3: Mean-flow components of the Carreau flow over a radially-anisotropically rough disk for shear-thinning 

and -thickening fluids, η = 0.25, λ = 0. 
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3.2. Convective stability 

The eigenvalue problem defined by Eqs. 12 and 15 is solved by implementing a Galerkin 

projection method based on the collocation approach in terms of the Chebyshev polynomials. 

All calculations use a Gauss–Lobatto grid with 100 points distributed via an exponential map 

for the domain between the lower disk surface z = 0 and the top of the domain z = z∞ = 20. 

Further increases in the resolution and spatial extent of this grid were found to have negligible 

numerical effect on the results of the stability analysis. For further details of this method, 

the interested reader is referred to Alveroglu et al. [10]. We are concerned with stationary 
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Figure 4: Neutral curves and the angle for the convective instability for n = 0.8, 0.9, 1.0, 1.1, 1.2 with η = 0.25, 

λ = 0. 

vortices that rotate with the rough surface and so set ω = 0 throughout the analysis. We 
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proceed to investigate the structure of the spatial branches by solving the dispersion relation 

D(α, β; Re, λ, η, k, n) = 0 for α whilst marching through values of β at fixed Re. 

For all n in the particular range of interest, two spatial branches are found to determine the 

convective instability characteristics of the system. Neutral curves, defined by neutral spatial 

growth αi = 0, have been calculated for a variety of shear-thinning and -thickening fluids 

using the Carreau viscosity model with the rough surfaces. The Type I mode results from the 

(inviscid) inflectional behaviour of mean-flow components and appears as the upper lobe in 

neutral curves. The Type II mode arises from the (viscous) streamline curvature and Coriolis 

effects and appears as a smaller lower lobe. Example neutral curves resulting from our analyses 

are shown in Figs. 4 and critical Reynolds numbers for the onset of instabilities are shown in 

Table 2. 

Figs. 4 show that stability of the boundary layers over isotropic and azimuthally-anisotropic 

rough surfaces is dominated by the Type I mode; this is evident from their single-lobed struc-

ture. The data presented in Table 2 further suggests that further movement in n either side of 

this acts to stabilise the boundary layer in terms of increasing the critical Reynolds number. 

However, it is clear that shear-thinning fluids have the greatest stabilising effect. 

In contrast, both Type I and II modes are important over radially-anisotropic rough surfaces, 

as shown by the distinct lobes in Fig. 5. Furthermore, we see that shear-thinning fluids are 

de-stabilising over such surfaces and the critical Reynolds numbers of both modes are increased 

with increased n. Although our results are only presented for λ, η = 0.25, similar qualitative 

behaviour is obtained at all other roughness levels. They do, however, show a substantial 

decrease in the vortex angle φ along both the upper and lower branches of the neutral curves 

with increased roughness; this is alongside the strong stabilising effect on the Type I mode. 

It is also important to consider the influence of roughness on the neutral curves for shear-

thinning and thickening Carreau fluids respectively. As shown in Figs. 5 (a), (b), (e) and (f), 

increasing the levels of isotropic and azimuthally-anisotropic roughness has strong stabilising 

effects on both the Type I and Type II instability modes of both shear-thinning and thickening 

flows. On the other hand, one can see from Figs. 5 (c) and (d) that the effect of increasing 

anisotropic roughness in a concentrically grooved disk is to diminish the Type I lobe whilst 

destabilising the Type II mode. 

The growth rates of the Type I instability mode are presented for shear-thinning and -

thickening Carreau fluids for the three cases of the roughness at Re = Rec + 25; that is, at 

a fixed distance into the neutral curve. Note that the growth rate of the instability mode 

is measured as the absolute value of the negative imaginary part of the radial wavenumber, 
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Figure 5: Neutral curves for the convective instability for shear-thinning and thickening with the three cases of 

roughness with η = 0.25, λ = 0. 
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|αi|, at particular values of the mode number n̄. The Type II mode vanishes at even modest 

levels of all surface roughness under our model and so is not considered here. Fig. 6(a) and 

(c) reveal the stabilising effect on the growth rates of the Type I mode for both isotropic and 

azimuthally-anisotropic roughness. That is, even though there appears to be some stabilising 

effect in terms of the onset of instability (Rec) when moving n either side of n = 1.1, the 

subsequent development of that instability is quelled only by shear-thinning fluids. In contrast, 

Fig. 6(b) shows shear-thickening fluids to be the most stable in terms of the delayed onset of 

instability and the weakest subsequent development for radially-anisotropic surface roughness. 

It is also interesting to note the effect that shear-thinning and -thickening fluids have on the 

mode number (number of spiral vortices) n̄ under all roughness types: the number of spiral 

vortices is reduced with increased n. 

Parameters n Re n̄ φ 

Isotropic roughness 

λ = η = 0.25 0.8 408.49(−) 39.81(−) 12.11(−) 

0.9 392.20(−) 32.44(−) 12.24(−) 

1.0 385.36(−) 27.04(−) 12.11(−) 

1.1 385.11(−) 22.98(−) 11.71(−) 

1.2 389.45(−) 20.12(−) 11.36(−) 

Radially-anisotropic roughness (concentric grooves) 

η = 0.25 0.8 298.51(273.67) 22.54(12.32) 8.11(13.77) 

0.9 303.65(319.19) 20.21(12.81) 8.71(14.79) 

1.0 313.09(358.72) 18.35(13.03) 9.07(15.60) 

1.1 323.12(391.33) 16.76(12.97) 9.26(15.94) 

1.2 338.80(417.76) 15.45(12.74) 9.33(16.21) 

Azimuthally-anisotropic roughness (radial grooves) 

λ = 0.25 0.8 444.46(−) 78.18(−) 24.15(−) 

0.9 398.21(−) 51.18(−) 19.84(−) 

1.0 380.68(−) 37.31(−) 17.31(−) 

1.1 377.04(−) 29.23(−) 15.58(−) 

1.2 380.86(−) 24.03(−) 14.31(−) 

Table 2: The values of the critical Reynolds number Re, n̄ and wave angle φ on the both modes type I and 

(type II). 
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Figure 6: Growth rates of Type I instability at Re = Rec + 25 for n = 0.8, 0.9, 1.0, 1.1, 1.2 for η = 0.25, λ = 0. 

3.3. Energy analysis Results 

The energy balance calculation is carried out at the location of maximum amplifications of 

the both Type I mode at Re = Rec +25. Here Rec is the critical Reynolds number for the onset 

of the Type I mode of instability for the particular rough surface being considered. Results for 

various levels of roughness are compared to Newtonian case in Fig. 7. 

Fig. 7 (a) demonstrates the energy balance calculation for isotropic roughness. Clearly a 

stabilization effect obtained in the Type I mode due to a strong decrease in total energy of 

the flow as n parameter is increased. The main reason of this effect is the large reductions in 

the energy production term P 2 and the energy dissipation term D . The changes in the other 

terms seem to be negligible. Fig. 7 (b) shows a similar stabilizing effect of radially-anisotropic 

roughness on the Type I mode. 

In contrast to isotropic and radially-anisotropic cases, Fig. 7(c) indicates a destabilization 

effect on the Type I mode in case of azimuthally-anisotropic roughness. In particular, increased 

power index n leads to growth in the energy production term P2. 
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Figure 7: Energy balance of Type I instability at Re = Rec + 25 for n = 0.8, 0.9, 1.0, 1.1, 1.2 for η = 0.25, 

λ = 0. 

4. Conclusion 

We have studied the convective instability of the boundary-layer flow over rough rotating 

disks for a category of non-Newtonian fluids abiding by the generalised viscosity law due to 

Carreau. The main focus has been to examine the effects on the stability of this flow over 

rough surfaces. To this end, partial-slip boundary conditions have been applied under the MW 

approach to model a rotating disk with isotropic, radially- and azimuthally-anisotropic surface 

roughness. The problem has been formulated in a rotating reference frame attached to the disk; 

all disturbances are assumed to be stationary in this frame. 

Mean-flow profiles have been obtained for a range of shear-thinning and -thickening flows 

over the three surface conditions A subsequent linear stability analysis is then performed on 

each that solves the radial-wave-number eigenvalue problem with a collocation approach based 

on Chebychev polynomials. Neutral curves have been calculated that prescribe the parameter 

regions for instability and critical values of the Reynolds number, spiral vortex number and 

spiral vortex orientation angles have been computed. Furthermore, the growth rates of the 

dominant instability mode have been considered a fixed distance into the neutral curve and a 

complimentary energy analysis completed. 
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Similar to the von Kármán Newtonian boundary-layer flow over smooth surfaces, the non-

Newtonian flow over rough surfaces exhibits two types of instability: the Type I mode origi-

nating inviscid effects, and the Type II mode viscous effects. It is found that the introduction 

of surface roughness has an obvious stabilising effect on both shear-thinning and -thickening 

flows in general. Each of the three types of surface roughness considered here postpone the 

onset of the Type I instability by increasing the critical Reynolds number, and both isotropic 

and azimuthally-anisotropic surface roughness eliminates entirely the Type II mode instability. 

This is consistent with the results of Cooper et al. [7], Alveroglu et al. [10] for Newtonian flows. 

The response of the instability modes to changing the shear-thinning and -thickening prop-

erties of the fluid is more subtle. For both isotropic and azimuthally-anisotropic surface rough-

ness, there appears to be a particular value of n > 1 (that is, shear-thickening fluid) that gives 

the minimum critical Reynolds number. Any changes to n either side of this lead to delayed 

instability, with particular sensitivity observed for shear-thinning fluids. The maximum growth 

rates within the unstable regime are found to reduce linearly with increasingly shear-thinning 

fluids. In contrast, shear-thickening fluids are more stable for radially-anisotropic roughness, 

in-terms of both the delayed onset of instability and its subsequent linear growth. 

Our study has revealed that radially-anisotropic roughness (concentric grooves) and isotropic 

roughness acts to reduce energy production of the Type I mode. Conversely, azimuthally-

anisotropic roughness (radial grooves) is found to have the opposite destabilization effect on 

the Type I mode. The results of this study show that a carefully designed surface roughness 

with the effect of n parameter led to a stabilization in the flows that can be encountered in 

many engineering applications. 

In view of the results of the current theoretical study, it will be instructive to conduct rele-

vant experiments in future research to verify the analysis presented here. Of additional interest 

would be an investigation of the non-parallel effects for Carreau flows using the approaches 

developed by, for example, Davies and Carpenter [27]. 
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