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Abstract 11 

This research aims to address a gap in our understanding of the mechanisms by which 12 

pharmaceutical tablets achieve highly reproducible and predictable drug release. The present 13 

industrial and regulatory practice is centred around tablet dissolution, i.e. what follows 14 

disintegration, yet the vast majority of problems that are found in formulation dissolution testing 15 

can be traced back to the erratic disintegration behaviour of the medicinal product. It is only due 16 

to the distinct lack of quantitative measurement techniques for disintegration analysis that this 17 

situation arises. Current methods involve costly, and time-consuming test equipment, resulting in 18 

a need for more simple, green and efficient methods which have the potential to enable rapid 19 

development and to accelerate routine solid drug formulation dissolution and disintegration 20 

testing. In this study, we present a novel approach to track several sequential tablet dissolution 21 

processes, including coating erosion, disintegration, deaggregation and dissolution using 22 

Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS). BARDS, in combination 23 

with minimal usage of UV spectroscopy, can effectively track these processes. The data also 24 

show that a solid oral dose formulation has an intrinsic acoustic signature which is specific to the 25 

method of manufacture and excipient composition.  26 
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1. Introduction 27 

 28 

Standard dissolution testing is a familiar, routine and regulatory test for product release for a 29 

wide range of formulations. Typical apparatus consists of ~6 stirred dissolution vessels which are 30 

sampled periodically either manually or automatically in order for drug concentration to be 31 

determined. The apparatus has been standardised and in use by the pharmaceutical industry for 32 

decades with little adaptation. The methodology of tablet disintegration and hardness testing are 33 

also rudimentary in design and operation. Traditional approaches to characterising tablets include 34 

visual observations of disintegration, tablet hardness testing and dissolution testing where the 35 

concentration of drug in solution is used to determine an endpoint via Ultra Violet-Visible 36 

Spectroscopy (UV-Vis) and/or High-Performance Liquid Chromatography (HPLC) 37 

measurements. There have been few if any disruptive technologies in this pharmaceutical 38 

physical testing space for many years, most likely due to regulatory protocols
1
 and this is likely 39 

to remain the status quo in the long term. However, given the time and expense of standard 40 

dissolution testing and associated delays with batch release, there is an onus on the industry to 41 

explore faster, greener and more data-rich complimentary dissolution methods to statistically and 42 

scientifically support current testing methods. 43 

Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) is one such approach which 44 

offers a complimentary and possible surrogate to standard dissolution testing based on the speed 45 

of real-time data acquisition and how the data can be extrapolated to match standard regulatory 46 

methods. BARDS is based on an acoustic phenomenon first described by A.B. Wood (1930) .
2
 It 47 

was most notably characterised by Frank S. Crawford in a series of papers published during the 48 

early 1980s, giving the phenomenon the title of the ‘hot chocolate effect’. 
2, 3

 Since its discovery, 49 

the effect has been intermittently discussed in the literature. 
4-9

 However, it was not until 2012 50 

that its significance as an investigative tool for the analysis of powders, tablets and compounds, 51 

in general, was realised with the development of BARDS. 
10, 11

 52 

The underlying principles of BARDS have been reported extensively in the literature summary,  53 

a BARDS signal results from reproducible changes in the compressibility of a solvent during the 54 

dissolution of a compound. The compressibility change alters the speed of sound, resulting in 55 
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frequency changes within the solution. The sound velocity (v) in a medium, whether in air or a 56 

liquid phase, is determined by eqn (1). 57 

          
 

  
   Equation 1 58 

where ρ =  mass density in kg/m
3
 and K = compressibility, the inverse of the bulk modulus, of 59 

the medium. Generation of micro gas bubbles in a liquid decreases the density in a negligible 60 

way in comparison to the significant increase in compressibility. The net effect is a substantial 61 

reduction of the sound velocity in the liquid. The relationship between the fractional bubble 62 

volume and sound velocity in water is given in eqn (2).
15

 63 

  

 
                     Equation 2 64 

where vw and v are the sound velocities in pure and bubble-filled water, respectively and fa is the 65 

fractional volume occupied by air bubbles. The factor, 1.49 x 10
4
, in eqn (2) was calculated, as 66 

shown in eqn (3): 67 

    
   

 

  
               Equation 3 68 

where ρw = the density of water, γ = the ratio of specific heats for dry air and ρ = the atmospheric 69 

air pressure. Eqn (2) is based on the approximation, which was initially presented by A. B. 70 

Wood
12

. BARDS analysis of an induced acoustic excitation of the containing vessel is focused 71 

on the lowest variable frequency-time course, i.e., the fundamental resonance mode of the liquid.  72 

The fundamental resonant frequency is determined by the sound velocity in the liquid and the 73 

approximate but fixed height of the liquid level, which corresponds to one-quarter of its 74 

wavelength. The frequency response is described as; 75 

     
     

              
   Equation 4 76 

where freqw and freq are the resonance frequencies of the fundamental resonance modes in pure 77 

and bubble-filled water, respectively. The transient total volume of the gas bubbles is determined 78 

by introduced entrained gas bubbles, bubbles evolving due to gas oversaturation, and bubbles 79 

disappearing due to elimination at the surface. A detailed and comprehensive outline of the 80 

principles and underlying processes involved in BARDS analysis is given by Fitzpatrick et al. .
10

 81 
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The acoustic profile of interest is called the fundamental curve. The frequency minimum (fmin) 82 

represents an equilibrium between the rate of formation of gas in solution and the rate of gas 83 

liberation at the surface. In BARDS analysis, the fundamental curve is used to make comparisons 84 

between individual experiments. As an example, Figure 1 shows a typical BARDS spectrum of 85 

the dissolution of sodium carbonate in 25 mL of deionised water. Note the overtones and 86 

harmonics also changing above the fundamental curve.  87 

Figure 1  88 

In general, entrained gas, between and within particles, are introduced into the solution, when a 89 

compound/sample is wetting and/or dispersing in an aqueous solvent. Also, a reduction in the 90 

solubility of gases in solution will take place during dissolution, resulting in gas oversaturation. 91 

This oversaturation is partly removed by the generation of gas bubbles where nucleation sites are 92 

available. The entrainment and liberation of gas bubbles and their subsequent escape from the 93 

solution causes a transient yet reproducible change in the compressibility of the solution which 94 

can be monitored acoustically, under standardised conditions.
13

  95 

BARDS is also applied initially in this study to give an indication of tablet coating thickness and 96 

consistency. The use of BARDS as an in-process technique to track coating thickness in real-97 

time has been previously reported 
13-16

. Current methods of monitoring coating thickness include 98 

scanning electron microscopy (SEM)
17

 energy dispersive X-ray imaging (EDX), 
18

 fluorescence 99 

microscopy 
19

, confocal laser scanning microscopy (CLSM) 
20

, atomic force microscopy (AFM), 100 

confocal Raman micro-imaging 
21, 22

 air-coupled acoustics 
23

, direct/contact ultrasonic methods
24

 101 

and Optical Coherence Tomography (OCT). The ability of terahertz pulsed imaging to analyse 102 

coatings have also been reported with the capability to interrogate single drug-containing pellets, 103 

yielding quantitative measurements 
25

.  104 

Pantoprazole is among the top twenty selling drugs in the world under various trade names
26

. It 105 

is an over the counter and prescription medication used in the treatment of symptomatic gastro-106 

oesophageal reflux disease, prophylaxis and treatment of gastroduodenal ulcers. It is 107 

administered as a racemic mixture of R‐ (+)‐ pantoprazole and S‐ (–)‐ pantoprazole
27

 with 108 

weakly basic and acidic properties. Pantoprazole is one of several approved irreversible proton 109 

pump inhibitors (PPIs) which have been used worldwide over the past 25+ years. PPIs suppress 110 
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gastric acid secretion through the irreversible inhibition of  H
+
 /K

+
 ‐ ATPase on the cell 111 

membranes of gastric parietal cells
28

.  112 

Pantoprazole is commercially available as an oral suspension and as enteric-coated tablets
29

. The 113 

stability of the drug in aqueous solution is pH-dependent, where the rate of degradation increases 114 

with decreasing pH. Pantoprazole is preferably absorbed in the small intestine
30

. Therefore, an 115 

enteric coating is utilised in formulations of the drug to prevent drug degradation in the stomach 116 

before its systemic absorption.  117 

Functional enteric coatings control the location of drug release within the digestive system from 118 

solid oral dosage forms
31

. The most commonly used enteric coating polymer classes are the 119 

poly(meth)acrylates known in general as Eudragit®, manufactured by Evonik 
®

. These polymers 120 

are chemically designed to target drug release within the gut depending on the pH environment.  121 

Tablets coated with enteric coating polymeric excipients are typically designed to dissolve to 122 

allow subsequent drug release in the small intestine which has an enteral alkaline pH of about 7-123 

9. The majority of currently used enteric coating polymers are weak acids (pKa typically ~5) 124 

which remain un-dissociated in the low pH environment of the stomach, depending on their pKa, 125 

but readily ionise in pH environments above their pKa.
32

 The polymer may be applied at very 126 

thin coating thicknesses to tablet or pellet surfaces. 127 

The pharmaceutical industry uses enteric coating for a variety of reasons including protecting 128 

both the stomach from the drug and the drug from the stomach, allowing the safe release of the 129 

drug further along the intestinal tract, protecting acid-liable drugs from gastric fluid and to 130 

impart a delayed-release effect to the formulation. It also protects formulations against light and 131 

oxidation, thus improving product stability. In this study, most of the tablets under investigation 132 

are coated with the 1:1 methacrylic acid-ethyl acrylate anionic copolymer Eudragit® L30 D-55, 133 

available commercially as a 30% aqueous dispersion and used to impart enteric protection to the 134 

surfaces of solid oral dosage forms.  135 

Several coated pantoprazole-containing branded formulations were procured, which were 136 

produced by the same manufacturer (product license holder). These medicinal products were also 137 

chosen due to their inclusion of the polymer coating excipient Eudragit L30 D-55. BARDS is 138 

employed in experiments throughout this study to demonstrate how the copolymer loading and 139 

the processes of disintegration, deaggregation and dissolution can be tracked for tablets produced 140 
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by three different companies but sold under six different brand names. The concept of an 141 

Erosion, Disintegration, Deaggreation, Dissolution and coating Integrity (EDDDI) Plot to track 142 

all these processes is also introduced. BARDS, in combination with minimal usage of UV 143 

spectroscopy, can effectively track EDDDI processes of the tablets understudy while also 144 

providing a new measure of medicinal product integrity. The data also shows that a solid oral 145 

dose formulation has an intrinsic acoustic signature which is specific to the method of 146 

manufacture and excipient composition. BARDS represents a possible future surrogate / 147 

orthogonal quality control and presumptive test for tablet dissolution mapping and fingerprinting 148 

prior to product market release. BARDS data correlate directly with the integrity of formulation 149 

enteric coating and also with drug release as validated by UV-Vis spectroscopy. 150 

  151 
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2. Experimental 152 

2.1 Materials 153 

Sodium hydroxide of analar grade was purchased from Sigma Aldrich and Riedel-de Haën, Lot 154 

number STBG9017. Doubly distilled water was used for all experiments. Pantoprazole-155 

containing tablets were purchased from a local pharmacy as outlined in Table 1 156 

Table 1: 157 

2.2 Instrumentation 158 

 159 

A BARDS spectrometer acquired from BARDS Acoustic Science Labs (BASL) was used to 160 

analyse all samples. The spectrometer consists of a chamber containing a glass dissolution 161 

vessel, stir bar, a magnetic stirrer and microphone. There is access at the front for the dissolution 162 

vessel and at the top to allow a sample in a weighing boat to be placed on a tipper motor for the 163 

introduction of the solute. The resonances of the liquid vessel are recorded in a frequency band 164 

of 0-20 kHz. The glass vessel containing 25 mL of 0.06 M aq. sodium hydroxide (NaOH) is 165 

placed on the stirrer plate. The stirrer motor is located underneath this plate and allows the stir 166 

bar to tap the side of the vessel gently. The stirrer rate is set to 500 rpm. The follower acts as a 167 

source of broadband acoustic excitation, thereby inducing various acoustic resonances in the 168 

glass, the liquid and the air column above the liquid. The induced acoustic resonances are 169 

registered by the microphone and converted to a spectrum using a computer with a sound card 170 

and generic software, as seen in Figure 3. 171 

 172 

2.3 Experimental Procedure 173 

 174 

In a typical experiment, the spectrometer records the steady-state resonances of the system as a 175 

reference for 30 seconds (s) once the stirrer is set in motion. The pitch of the resonance modes in 176 

the solution change when each pantoprazole-containing tablet under investigation is added, 177 

before gradually returning to a steady-state over 3000 s (50 minutes). The frequency-time course 178 

of the fundamental resonance is presented, as manually extracted data from the total acoustic 179 

response. All experiments were performed in triplicate, and an average reading with error bars 180 
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representing the standard deviation is presented. The time courses of the observed acoustic 181 

profiles are shown to be reproducible under standardised conditions (constant volume, mass, 182 

temperature and stirring rate). The steady-state frequency before the addition of the solute is 183 

designated as the ‘volume  184 

Figure 2 185 

 186 

3. Results and Discussion 187 

Pantoprazole tablets are commercially available in two typical dosage forms, containing either, 188 

20 mg or 40 mg of active pharmaceutical ingredient (API) (equivalent to 22.6 mg and 45.2 mg 189 

pantoprazole sodium sesquihydrate respectively). EDDDI analysis of a variety of formulations 190 

from multiple manufacturers (Table 1) was performed and described below.  191 

The analysis of Pantoprazole Mylan (40 mg) tablets was initially undertaken in various 192 

concentrations of aq. NaOH in order to investigate the effect of media concentration and pH on 193 

the erosion of the coating and the initial lag time in BARDS spectra. The lag time is the duration 194 

(in seconds) of the frequency-time course after the addition of the tablet, which remains 195 

unchanged as the coating erodes. Once the enteric coating has eroded, the tablet core begins to 196 

disintegrate, and there is a significant decrease in frequency due to evolution of entrained gas in 197 

the tablet and gas oversaturation of the dissolution medium as API and excipients dissolve. All 198 

experiments were carried out in triplicate.  199 

Figure 3 200 

Figure 3 shows the acoustic frequencies of the glass vessel remaining at steady state for all 201 

profiles for the first 30 s of the spectra until the addition of the sample. After that, the resonance 202 

frequency of all profiles at 9.4 kHz decreases insignificantly to 9.38 kHz after tablet addition due 203 

to the extra volume of the tablet, which increases the liquid level and so decreases the final 204 

volume line resonance frequency. The lag phase for the green profile (0.06 M aq. NaOH) 205 

continues until the enteric coating is eroded after 500 s, indicating a complete loss of the coating 206 

from the tablet surface, after which point a frequency minimum (fmin) of 8.4 kHz is reached due 207 
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to core disintegration. The curve then gradually returns to a steady state after approximately 2000 208 

seconds.  209 

A decreasing concentration of aq. NaOH causes the lag time to increase, i.e. the enteric coating 210 

erodes more slowly. Coating erosion is a chemical process due to the interaction of the basic 211 

media and the carboxylic acid groups on the polymer. The greater the rate at which the polymer 212 

carboxylic acid groups become deprotonated under the influence of base, the more highly ionised 213 

(and hydrophilic) the polymer becomes, thereby facilitating its dissolution into the basic medium 214 

and loss from the tablet surface. No gas evolution occurs due to this process but gas 215 

oversaturation increases. This can be tracked by dissolved oxygen measurement using a DO 216 

probe.
23 

Once disintegration takes place, the overpressure at the electrode decreases due to the 217 

smaller particulates acting as nucleation points for gas to evolve. 218 

Somac Control® and Pantoloc Control® are both manufactured by Takeda but marketed by 219 

Takeda and GlaxoSmithKline (GSK), respectively. The solvent used for the EDDDI BARDS 220 

analysis of these tablet formulations was 0.01 M aq. The time it takes for the enteric coating to 221 

erode is directly related to the hydroxide ion concentration in solution
15

. This relationship can be 222 

potentially used as a proxy to predict the erosion time, depending on the pH of the media.  223 

Figure 4 224 

Figure 4 (A) shows the two products, Somac Control® and Pantaloc Control®, producing 225 

identical EDDDI BARDS spectra. Both samples are the same formulation and contain the same 226 

excipients. Whereas GSK is the marketing authorisation holder in Ireland for the two products, 227 

the listed manufacturer of both is Takeda GmbH. An experiment where one or two tablets, of the 228 

same brand, were analysed simultaneously in 0.01 M aq. NaOH also yielded similar EDDDI 229 

profiles on a per tablet basis, as shown in Figures 4 (B) and (C).  230 

The lag time of the black profile for the single tablet analysis of Pantoloc Control® can be seen 231 

in Figure 4 (B) and is approximately the same as that of the two tablet analysis (blue profile). 232 

This result mirrors a previous study which shows the lag time is independent of the number of 233 

microspheres dissolved in basic solution which have the same coating
14

 The fmin is lower in the 234 

two tablet analysis due to the higher mass of API and excipients present in the dissolution media. 235 

However, the disintegration rate of both experiments appears the same as indicated by the 236 
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downward slope (~600 s) of the frequency spectra. No return to steady-state is observed for the 237 

two tablet experiment as the solution becomes saturated, resulting in a suspension of 238 

disintegrated tablet contents. At the endpoint of the single-tablet analysis, there was complete 239 

dissolution of the tablet, affording a clear, colourless solution.  240 

The data in Figure 4(C) for Somac Control® 20 mg tablets are also dose-related. Simultaneous 241 

disintegration of two tablets occurs at a similar rate to that of a single tablet. The fmin value is 242 

reached at the same time point (1200 s) irrespective of the number of tablets. However, the fmin 243 

value is sustained for longer with two tablets due to more disintegration and deaggregation 244 

taking place in solution. The lag time does not differ and is 600 s for both analyses.  245 

 246 

Figure 5 247 

 248 

Pantoprazole Bluefish 20 mg and 40 mg tablet formulations were also comparatively analysed to 249 

determine their respective EDDDI profiles by BARDS, as shown in Figure 5(A). Tablets were 250 

added after 30 s of initiating the acquisition of acoustic data. The lag time is similar for both the 251 

20 mg and 40 mg tablets indicating the same enteric coating thickness has been applied to both 252 

formulations. Figure 5 (B) compares the simultaneous addition of one (black profile), two (red 253 

profile) or three (blue profile) 20 mg tablets to the dissolution vessel. The lag time of 270 s 254 

indicates that tablet erosion time remains the same irrespective of the tablet number. This 255 

observation is also true of enteric-coated microspheres and is only expected as long as the basic 256 

solution is not the limiting reagent of the enteric polymer carboxylic acid deprotination.
22

 There 257 

is no buffer capacity available to maintain this trend with an increasing number of tablets.  258 

Similar trends can be seen in Figure 5 (C) for tablets with a higher content of pantoprazole 259 

(Pantoprazole Bluefish 40 mg tablets). The rate of gas evolution, denoted by the negative slopes 260 

post-coating erosion, increases with a greater number of tablets due to a greater amount of 261 

disintegrant present in solution. This trend is evident for all products tested. However, the 262 

standard deviation also increases with a greater tablet number. Three times the amount of coating 263 

is eroding in a three tablet experiment. This also has the effect of increasing the oversaturation of 264 

gas in solution threefold. The surface area for gas nucleation also increases three-fold in the 265 
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presence of three tablets. This allows for the nucleation of the increased gas concentration on 266 

surfaces sooner than a single tablet experiment as amplified in Figure 5 (D). This theory is 267 

reinforced by the data for a two tablet experiment which forms part of a trend in shorter lag time 268 

with increasing tablet number.
15

 269 

 270 

Figure 6 271 

Fig 6 (A) shows the analysis of Protium® 20 mg and 40 mg tablets (black and red profiles, 272 

respectively). The lag time of both formulations are the same (220 s). A similar assumption can 273 

be made to that observed for Pantoprazole Bluefish (Figure 5) – the loading of the functional 274 

enteric polymer is the same for both dosage forms. The 20 mg Protium® tablet reaches a 275 

minimum acoustic frequency at 542 s, sooner than the 40 mg tablet which reaches the frequency 276 

minimum at 662 s; indicating a shorter disintegration time. This may be due to a reduced amount 277 

of disintegrant in the 40 mg tablet relative to the amount of API present. There is a prolonged 278 

frequency plateau at 8.3 kHz for the 40 mg tablet evident in Figure 7A and is likely a result of 279 

the gas evolution rate being in equilibrium with the rate of gas loss at the surface, indicating a 280 

longer disintegration period of 600 s. The return to baseline steady state is not achieved for either 281 

tablet due to insoluble excipients retaining gas and oversaturation of the solution, and is more 282 

evident for the 40 mg tablet.  283 

Fig 6 (B) compares the spectrum of the two Takeda-manufactured formulations analysed – 284 

Protium® 20 mg and Somac Control® 20 mg tablets. The lag times are approximately the same 285 

for both formulations, indicating little or no difference in polymer thickness. Their fmin also differ 286 

statistically. However, a difference of ~300 Hz relates to a very small difference in the gas 287 

volume produced by the two formulations. 288 

Figure 7 289 

Figure 7 (A) compares the BARDS spectra of all four 20 mg pantoprazole formulations under 290 

investigation. Pantoprazole Bluefish 20 mg (black profile) has the longest lag time, indicating the 291 

thickest polymer loading of all four formulations. In general, the lag time is the same for the 292 

other three formulations made by Takeda. The Bluefish tablet exhibits a slower disintegration 293 

rate but faster deaggregation as it returns to steady-state by 1250 s. The other three profiles for 294 

the Takeda-manufactured products (red, green and blue profiles) are very similar apart from the 295 
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frequency minima (fmin) value. The small differences in this value may be interpreted as inter-296 

batch variability. 297 

In comparison, the acoustic profiles of 40 mg pantoprazole-containing tablets from three 298 

different manufacturers are concurrently shown in Figure 7 (B). Their lag times, frequency 299 

minima and return to steady-state times are significantly different for all three formulations. 300 

Pantoprazole Mylan 40 mg tablets (black profile) have the thickest enteric coating as indicated 301 

by the longest lag time of 336 seconds. Protium® 40 mg (red profile) has the thinnest enteric 302 

coating corresponding with the shortest coating erosion time. Meanwhile, Pantoprazole Bluefish 303 

40 mg tablets (blue profile) exhibited the fastest rate of disintegration and also the lowest fmin of 304 

the 40 mg formulations studied.  305 

Note Pantaloc 20 mg (Figure 7 A, green profile) and Protium® 40 mg (Figure 7 B, red profile) 306 

both display a plateau at the fmin. The plateau represents an equilibrium between the rate of gas 307 

evolution in solution and the rate of loss at the surface according to Henry’s law and does not 308 

represent a frequency cut-off. 309 

BARDS can be used to track the individual processes associated with dissolution. BARDS 310 

spectra of enteric-coated tablet and microsphere drug formulations may be mapped using an 311 

Erosion, Disintegration, Deaggreation, Dissolution and coating Integrity (EDDDI) Plot. These 312 

plots can also be used to track the dissolution of tablet formulations in general. Figure 8 shows 313 

an EDDDI plot for the Bluefish 20 mg formulation. The red profile represents the UV-Vis 314 

analysis during the BARDS experiment. The UV-Vis profile measures the concentration of 315 

dissolved pantoprazole released from the tablet.  316 

Figure 8 317 

Sample addition occurs at 30 s post start of acoustic data acquisition. The initial decrease in the 318 

fundamental curve is due to entrained gas in the outer functional tablet polymer coating, 319 

followed by a subsequent return to a depressed frequency plateau (lagtime) during the erosion of 320 

the polymer. Note there is no pantoprazole released during the lag time (the first 300 s) as 321 

demonstrated by the UV-Vis data (red profile). Once the coating erodes, and the inner tablet core 322 

disintegrates, there is an immediate increase in the concentration of API in solution as indicated 323 

by the downward slope of the BARDS spectra. The fmin indicates an approximate end of 324 



13 
 

disintegration with ~ 50 % pantoprazole release correlated by the UV-Vis data. The end of the 325 

disintegration process is followed by continuing deaggregation of tablet components to release 326 

the remainder of the API. The frequency profile is gradually returning to steady-state in the 327 

BARDS spectrum during the deaggregation phase. Technically, the dissolution bracket seen in 328 

the EDDDI plot could also encompass the erosion process but has been used to cover the 329 

disintegration and deaggregation steps only to reflect API release. 330 

Figure 7 331 

In Figure 9 (A) the fmin of a Bluefish 20 mg tablet correlates with ~ 50 % pantoprazole release. 332 

This is also exhibited in Fig 10 (B-E). However, the Pantoprazole Mylan 40 mg tablet EDDDI 333 

plot (F) shows a pantoprazole percentage release of 100% at the fmin, indicating a more rapid 334 

release of the drug. This leads to the hypothesis that the API of this formulation may be located 335 

in the outer section of the tablet and less so in the tablet core, i.e. the concentration of 336 

pantoprazole is greater away from the core. For the remaining formulations (A – E), 337 

deaggregation of tablet particles allows remaining pantoprazole to be released over a more 338 

extended time period relative to Pantoprazole Mylan.  339 

 340 

5. Conclusion 341 

In summary, BARDS analysis of tablets is of significant benefit for determining coating 342 

integrity, tablet disintegration,break-up and indicating drug release. A single BARDS 343 

measurement can provide data relevant to dissolution processesall data requirements in a time-344 

efficient manner. BARDS measurements have been cross-validated usingby the conventional 345 

technique UV-Vis Spectrometry, allowing for the plotting of the method of trackingcorrelation 346 

of all dissolution processes intoknow as an EDDDI plot. BARDS data has shown a correlation 347 

between the lag time for the erosion of the tablet coatings with the basicity of the solvent used. 348 

Similarities between different brands but made by the same manufacturer, were apparent when 349 

tested using BARDS, e.g., Somac and Pantaloc which are both made by Takeda. The erosion 350 

time was found to be independent of the number of tablets dissolved for small tablets with a 351 

small surface area. However, a slight reduction in the erosion time was noted for multiple tablets 352 

with a relatively larger surface area due to conditions favouring greater gas nucleation (Figure 5 353 
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C). A different BARDS response is evident when a different formulation is used for 354 

pantoprazole, as shown in Figure 6 (B) even though the same manufacturer makes the tablets. 355 

Figure 7 shows that BARDS can qualitatively discriminate between pantoprazole formulations. 356 

The data represents a potential new regulatory method for the quality assurance of tablet 357 

formulations and product performance. It is therefore highly relevant to the topical discussion 358 

surrounding the quality of medicines and specifically what constitutes so-called ‘critical quality 359 

attributes’. 360 
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Figure 1: BARDS spectrum of the dissolution of Sodium Carbonate in 25 mL of Deionised water. 

Note the sample addition at the 30 s time point. 
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Figure 2 (A) Top view schematic diagram representing the contents of the dissolution chamber. 

(B) Top view photograph of the BARDS dissolution chamber. (C) External view of the 

instrument. (D) Tipper motor with a tablet sample of pantoprazole in a weighing boat ready for 

addition to the stirred solution below. 
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Concentration of NaOH effect on Pantoprozole Mylan Dissolution
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Figure 3 (A) BARDS analysis of a Pantoprazole Mylan 40 mg tablet in various concentrations of 

aq. NaOH (B) Labelled and the adjusted x-axis of BARDS spectra Pantoprazole Mylan 40 mg 

tablet in various concentrations of aq. NaOH. The vertical lines indicate the end of the lag time 

for each concentration of NaOH. The black vertical line represents the time point of sample 

addition on the spectra (30 seconds)  

 

 

Figure 4 (A) BARDS analysis of Somac Control® (red) and Pantoloc Control® (black) 20 mg 

tablets in 0.01 M aq. NaOH, (B) BARDS multi-tablet analysis of Pantoloc Control® 20 mg 

tablets in 0.01 M aq. NaOH (one tablet – black; two tablets – blue) (C) BARDS multi-tablet 

analysis of Somac Control® 20 mg tablets in 0.01 aq. M NaOH (one tablet – red; two tablets – 

green). 
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Figure 5 (A) BARDS EDDDI analysis of Pantoprazole Bluefish 20 mg (black) and 40 mg (red) 

tablet formulations in 0.06 M aq. NaOH (B) BARDS multi-tablet analysis of Pantoprazole 

Bluefish 20 mg tablets in 0.06 M aq. NaOH (C) BARDS multi-tablet analysis of Pantoprazole 

Bluefish 40 mg tablets in 0.06 M aq. NaOH (D) BARDS analysis of Pantoprazole Bluefish 40 mg 

tablets in 0.06 M aq. NaOH indicating the differences in the lag time for the multi-tablet 

analysis. 
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Protium tablet analysis, single dose in 25 mL 0.06 M NaOH 
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Figure 6 (A) BARDS EDDDI acoustic spectra of Protium® 20 mg (black) and 40 mg (red) 

gastro-resistant tablets in 25 mL of 0.06 aq M NaOH (B) BARDS acoustic spectra of Takeda-

manufactured products, Protium® 20 mg (red) and Somac Control® 20 mg (blue) tablet 

analysis in 0.06 M aq. NaOH. 
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40 mg API tablet analysis
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Figure 7 BARDS spectra of a selection of (A) 20 mg and (B) 40 mg pantoprazole-containing 

enteric-coated tablet formulations in 25 mL of 0.06 M aq. NaOH. Note that the NaOH 

concentration is different from Figure 5(A).  
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Figure 8 EDDDI plot (black profile) of the dissolution of a Bluefish pantoprazole 20 mg tablet in 

25 mL of 0.06M aq. NaOH. Note: the red profile represents the UV-Vis analysis of the tablet, 

showing the percentage release of API during the BARDS analysis. 
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Figure 9 EDDDI plots of Bluefish 20 mg (A), Protium® 20 mg (B), Protium® 40 mg (C), Somac 

Control® 20 mg (D), Pantaloc® 20 mg (E) and Mylan 20 mg (F) pantoprazole tablets . All 

samples were dissolved in 25 mL of 0.06M aq. NaOH.  All BARDS measurements are in 

triplicate. The red profiles represent the UV-Vis data measured in duplicate. 

 

 

 

 

 

 



Table 1: Pantoprazole-containing tablets under investigation. 

Name Dosage Manufacturer Licensed by Batch 

Number 

Expiration 

Date 

Somac® Control 20 mg Takeda  Takeda 402042 10/2020 

Pantoloc® 

Control 

20 mg Takeda GlaxoSmithKline 11518723 04/2021 

Pantoprazole 

Mylan 

40 mg Gerard 

Laboratories 

Gerard 

Laboratories 

8075526 03/2021 

Protium® 20 mg Takeda  Takeda 08291 01/2021 

Protium® 40 mg Takeda  Takeda 08518 01/2021 

Pantoprazole 

Bluefish 

20 mg Bluefish 

Pharmaceuticals 

Bluefish 418678 05/2021 

Pantoprazole 

Bluefish 

40 mg Bluefish 

Pharmaceuticals 

Bluefish 428400 08/2021 

 

Table(s)



Declaration of interests 
 

☐ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☒The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

Drs. Seán McSweeney and Dara Fitzpatrick are directors of BARDS Acoustic Science Labs. 

*Conflict of Interest



Niamh O’Mahoney is a graduate student working under the supervision of Dara Fitzpatrick 

and carried out the majority of experiments using BARDS. Niamh also helped in drafting the 

manuscript and generation of Figures and Tables. 

 

John J Keating is a lecturer in Pharmacy and was involved in the conceptual discussions and 

experimental design of the research. He was involved in reviewing the manuscript and 

making significant improvements. 

 

Seán McSweeney is responsible for the development of the hardware and software of 

BARDS and it’s optimization. 

 

 Sam Hill  is a student at the David Jack Centre for R&D as a visiting undergraduate from 

Aston University, UK as part of the GSK Summer Work Experience. Sam worked on 

BARDS and EDDDI plots during his placement and applied the rationale to rapid 

disintegration tablets. 

 

Simon Lawrence worked on formulation studies at GSK which fed into this BARDS study. 

Simon supervised Sam on associated BARDS projects in GSK, Ware, UK. 

 

Dara Fitzpatrick is the originator of BARDS and supervises Niamh and was centrally 

involved in the development of the study and co-authoring the paper. 

 

*Credit Author Statement




