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ABSTRACT 

Two crystalline and five amorphous benzimidazole polymers (BINP) were synthesized and 

conjugated to porous silica via amine and aldehyde-based materials by a simple reflux procedure. 

The resulting polymers were subject to thermal analysis for monitoring and quantification of the 

adsorption and desorption of CO2.  All the polymers were capable of adsorbing CO2 from a flowing 

stream of only 80 mL/min at 25 oC. The adsorbed CO2 onto the polymers were effectively desorbed 

at room temperature, illustrating the potential application of such polymers for repeated 

adsorption/desorption of CO2. The CO2 adsorption capacities of these polymers were dependent 

upon their nitrogen content, specific surface area, and pore size. The available nitrogen atoms for 

binding to the carbon of CO2 via tetrel bonds also plays an important role in the capture of this 

gas. Minimal and much lower CO2 adsorption was also noted with two crystalline polymers, 

compared to the five amorphous counterparts. Intermolecular hydrogen bonding and π-π 

interaction effectively prevented the polymer N sites of the crystalline polymers from interacting 

with polarized CO2 molecules.    
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Introduction 

The greenhouse effect by CO2, CH4, and N2O has become a serious issue over the past 20 

years.1-2 Among them, CO2 contributes to 60% to the global warming due to its enormous emission 

amount from the utilization of carbon-based fuels. The quantity of CO2 in the atmosphere is almost 

404 ppm, which is pointedly over the preindustrial value of 280 ppm.3-4 Some climate skeptics also 

claim that an increase of 45 percent is mainly caused by humans and their associated activities. 

Several adsorbents are used to adsorb or capture the CO2, followed by the release of this gas, 

enabling the reuse of the adsorbents.5–8 Two types of materials can be distinguished in terms of 

the CO2 adsorption: i) solid adsorbents and ii) liquid adsorbents. Albeit the liquid adsorbents 

including popular monoethanolamine are the most convenient and simple method, the operation 

requires a large adsorbent volume and suffers from a high corrosion rate.  Intensive energy is also 

needed to recover and regenerate the large quantities of water and liquid adsorbents as the heat 

treatment must be performed at >100 C to release the chemically adsorbed CO2.  Organic or 

organic-inorganic mesoporous or microporous based materials are used to overcome these 

shortcomings and the key appealing feature is their significant energy saving.9,10 Inorganic based 

materials are silica-coated polyaziridine, zeolites, inorganic capillary membranes, iridium based 

complex, silica, etc.10–12 Porous organic-based materials with different functional groups include 

microporous carbons, metal-organic frameworks (MOFs), porous organic molecules, and covalent 

organic polymers.13,14 These organic materials exhibit desirable properties such as high surface 

area, thermal stability, chemical stability, facile synthesis, lightweight and diverse availability. 3,15–
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17 The amine groups are playing major in the adsorption of CO2 via the binding or interaction 

between the amine and CO2.
18, 19 

This study describes the synthesis of amorphous and crystalline nitrogen-enriched porous 

benzimidazole-linked polymers with conjugated imine functional groups. Such nitrogen-enriched 

porous benzimidazole-linked polymers are conjugated to porous silica to enable the use of 

thermogravimetric analysis (TGA) for probing the adsorption and desorption of CO2 at ambient 

temperature. A systematic study is then conducted to investigate the adsorption capacity of these 

polymers for CO2 with respect to their surface area, pore size, nitrogen content, and crystallinity. 

The rationale behind the adsorption/desorption of CO2 by the silica-based polymers is proposed in 

corroboration with the experimental data.  

 

Materials and methods 

Chemicals 

4-Aminophenyl sulfone, 4,4-oxydianiline, 1,2,4,5-benzenetetramine tetrahydrochloride, tris(4-

formylphenyl)amine, dimethylformamide (DMF), 4,4-diaminodiphenylmethane, 4-(4-

formylphenoxy)benzaldehyde, melamine, and tetraethyl orthosilicate. 

Preparation of SiO2 

Deionized water (10 mL) containing 1 g of tetraethyl orthosilicate was added to 90 mL of ethanol 

in a 100 mL beaker. The reaction mixture was sonicated 5 min until the temperature reaches 60 

°C. Ammonium hydroxide (28 %, 2 mL) was added to the reaction mixture to control pH 8–9. The 

clear solution turned white turbid and sonicated for 40 min in a sonicated cell placed in an ice bath. 

The solid product was filtered and washed several times with deionized water, followed by vacuum 

drying.  

 

Page 3 of 23

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

4 
 

Synthesis of amine functionalized silica (A-f-Si) 

SiO2 (0.5 g) and 1.2 mL of (3-aminopropyl) triethoxysilane were added to 50 mL of toluene in a 

100 mL- round bottom flask.  The reaction mixture was refluxed in an oil bath for 24 h at 120 oC 

under the N2 atmosphere. The product (designated as A-f-Si) was filtered, washed several times 

with ethanol, and vacuum dried. 

Synthesis of benzimidazole-linked polymers 

BINP-1 polymer. A-f-Si (0.15 g) and 0.5 g of tris(4-formylphenyl) amine were added to 30 mL of 

DMF in a 100 mL three-necked flask. After refluxing at 90 oC for 45 min, 0.6 g of 1,2,4,5-

benzenetetramine tetrahydrochloride was added and the reflux was continued at 180 oC for 24 h 

under the N2 atmosphere. The final product was washed with methanol and vacuum dried. 

Similarly, other BINP polymers were synthesized using the same procedure with pertinent 

chemicals unless otherwise stated. 

BINP-2 polymer. 0.35 g of 4-(4-formylphenoxy) benzaldehyde, 25 mL of DMF and 0.6 g of 

1,2,4,5-benzenetetramine tetra hydrochloride. 

BINP-3 polymer. 0.35 g of tris(4-formylphenyl) amine and 0.3 g melamine.  

BINP-4 polymer. 0.5 g of 4-(4-formylphenoxy) benzaldehyde and 0.4 g melamine. 

BINP-5 polymer. 0.5 g of 4-(4-formylphenoxy) benzaldehyde and 0.4 g 4,4-oxydianiline. 

BINP-6 polymer. 0.5 g of 4-(4-formylphenoxy) benzaldehyde and 0.5 g 4-aminophenyl sulfone. 

BINP-7 polymer. 0.35 g of 4-(4-formylphenoxy) benzaldehyde and 0.4 g 4,4-diaminodiphenyl 

methane.  
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Instrumentation and procedure for the CO2 capture 

Thermogravimetric analysis (TGA) was performed with the PerkinElmer ‘Pyris 1’ TGA 

instrument. The TGA instrument is equipped with the additional built-in gas inlet to switch the 

nitrogen gas to the CO2 gas and vice versa. 9,11 Each polymer (~5-11 mg) was placed in an alumina 

crucible before the analysis in the TGA oven. The materials were dried at 105 °C with a heating 

rate of 40 °C/min under the N2 atmosphere, followed by nitrogen-purging for 20 min. The system 

was cooled to 20 °C at 40°C /min and kept at 20 °C for 10 min. For the capture of CO2, the flowing 

gas was switched to CO2 and hold under the gas pressure for 40 min. For the desorption process, 

the gas was switched again to nitrogen and hold at 20 °C for 40 min. The CO2 capture was analyzed 

by the weight increase of the sample upon switching from N2 to CO2. Once the CO2 capture on the 

samples approached equilibrium, the gas was switched back to N2 for the desorption of CO2. These 

steps were repeated 3 times (balance purge 80 mL/min; sample purge 20 mL/min). The chemical 

structures of the BINP polymers are shown in Scheme 1.  
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Scheme 1. (a) and (b), the chemical reactions of all seven BINP polymers 

 

Analysis 

 FTIR spectra were acquired by a Transon 27 instrument, from Bruker Inc. (Germany), equipped 

with a diamond tip. The polymer morphology was probed by high resolution scanning electron 

microscopy (HRSEM) using an FEI Megallon 400 L microscope. The polymers for HRSEM were 

prepared by placing a small amount of the dried powder on a carbon tape attached to a copper 

plate, followed by sputtering a thin gold film coating on top of the powder (working distance is 6-

7.1 mm and accelerating voltage is 5 kV). The solid-state properties of the synthesized polymer 

materials were recorded using a Bruker Inc. (Germany) AXS D8 Advance diffractometer with a 

reflection of θ-geometry, 40 kV and 30 mA using Cu Kα (λ=1.5418 Å) as the radiation source, 

with a receiving slit of 0.2 mm and a high-resolution energy-dispersive detector. All MAS NMR 

measurements were conducted on a Bruker Advance III 5000 MHz narrow-bore spectrometer, 

using a 4 mm double-resonance MAS probe. 13C CPMAS was carried out at a spinning rate of 8 

kHz, using a 2.5 µs 1H 90o pulse, 2 ms mixing time and a 3 s recycle delay between acquisitions. 

NMR spectra were acquired using a Bruker 5000 Ultra Shield spectrometer with 400 MHz NMR 

(Bruker, Billerica, MA, USA). Thermal properties of the polymers were conducted by a 

thermogravimetric analyzer (model Pyris 1, TGA, Perkin Elmer). The BET measurements for the 

specific surface area, pore volume, and pore size distribution were measured using a Nova 3200e 

Quantachrome analyzer. Before analysis, the samples were subjected to heating at 120 oC under 

vacuum for 2 h. The surface area was calculated from the linear part of the BET plot. The pore 

size distribution was estimated using the Barrett–Joyner–Halenda (BJH) model and the Halsey 
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equation whereas the pore volume was measured at the P/P0 0.9947 signal point. X-ray 

photoelectron spectroscopy (XPS) analysis was carried out using a Nexsa spectrometer (England) 

equipped with a monochromatic, micro-focused, low power Al Ka X-ray source (photon energy 

1486.6 eV). Survey and high-resolution spectra were acquired at pass energy of 200 eV and 50 

eV, respectively. Source power was normally 72W. The binding energies of all of the elements 

were recalibrated by setting the CC/CH component of the C 1s peak at 285 eV unless otherwise 

specified. Quantitative surface chemical analysis was performed using high-resolution core-level 

spectra after the removal of a nonlinear Smart background. The measurements were performed 

under UHV conditions, at a base pressure of 9.9x10-10 mBar (and no higher than 1.0x10-7 mBar). 

The spectra obtained were analyzed and deconvoluted using Advantage Software. Overlapping 

signals were analyzed after the deconvolution into Gaussian/Lorentzian-shaped components 

 

Result and discussion 

FT-IR analysis  

A broad peak around 3500-3000 cm-1
 of the benzimidazole polymers confirmed the polymerization 

of benzimidazole (Figure 2a), in agreement with the literature report. The sharp peaks at 3383, 

3060, 1585, and 1455 cm-1 were attributed to the symmetrical and asymmetrical amine (N-H) 

stretching vibrations. The peaks between 1400 and 1600 cm-1 were assigned to C=C aromatic 

stretching vibrations. The peaks at 2915 and 2851 cm-1 represented the C-H aromatic stretching 

vibration and the peaks at 1585 and 1533 cm-1 were ascribed to the C=C stretching vibration. The 

stretching vibration peak at 1318 cm-1 was attributed to the C-N functional group. The peak at 822 

cm-1 represented the out-of-plane bending vibration of amine.20–22 The N=C peak at 1608 cm-1 was 

assigned to the vibration of the benzimidazole linkage. The intensity of 1698 cm-1 carbonyl 

stretching vibration was significantly attenuated in the BINP polymers, suggesting the complete 
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formation of the polymers. All significant IR peaks and the corresponding functional groups are 

given in Table 1. 

 

 

Figure 1. a) FTIR-spectra of the synthesized BINP polymers. 
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Table 1: The peaks in the IR absorption frequency region of benzimidazole polymers and its 

functional groups 

 

BINP-Polymers 

 

Major functional    groups 

Absorption frequency (cm-1) 

 

3383 

3060 

1455 

1283 

 

1400, 1600 

2901, 2851 

1318 

824 

1608 

 

N-H (symmetrical and asymmetrical stretching vibration)  

 

 

C=C (aromatic stretching vibration) 

C-H (stretching vibration) 

C=C (stretching vibration) 

out-of-plane bending vibration mode of N-H 

N=C- imine stretching vibration 

 

XRD analysis 

The broad diffraction peaks of BINP-1 to BINP-5 were almost identical as shown in Figure 2. 

Each XRD spectrum includes a broad peak around 2θ = 15.4o- 32.9o, representing the repeated 

units of benzimidazole linkage. The sharp diffraction peaks of BINP6 and BINP-7 around 15.2o- 

35o, were not observed for the other BINP polymers and the peaks were attributed to the periodicity 

parallel to the polymer chains20, 23. These very broad diffraction peaks indicated that the BINP-1 

to BINP-5 polymers were amorphous whereas the polymers of BINP-6 and BINP-7 were 

crystalline.24  
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Figure 2. XRD-diffraction patterns of the synthesized BINP polymers. The broad peaks (a) 

indicated the polymers (BINP-1 to BINP-5) were amorphous, compared to (b) crystalline BINP-6 

and BINP-7 with very sharp diffraction peaks.  

 

Solid-state 13C-NMR  

The solid-state NMR spectra of BINP polymers except BINP-3 and BINP-4 (Figure 3a) displayed 

a broad peak around 110-150 ppm, a feature of the aromatic carbons in the BINP polymers (d, e, 

f, g, and h).23–27 The peak “a” s at 40 ppm was assigned to the aliphatic carbon in the polymer ethyl 

chain. Concerning the peak corresponding to carbon singly-bound to nitrogen in the aliphatic 

chain, a peak “b” around 60-70 ppm represented carbon singly bound to nitrogen, and peak “c” 

around 158-162 ppm was attributed to aromatic carbonalkylated with nitrogen. The sharp peak at 

162 ppm (BINP-3 and BINP-4) was denoted to the triazine ring 26 whereas the peak at 152 

corresponded to the carbon singly bound to the oxygen atom. For BINP-3 and BINP-4, (Figure 
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3a), a broad peak “j” between 160-175 ppm was observed,27 denoting the aromatic carbons bonded 

with nitrogen in the polymer chain. Moreover, only one broad peak was observed in BINP-3 and 

BINP-4 due to the equivalent protons, which were in the same environment and attached to the 

same atoms. For these two polymers, the environment for carbon is fewer than the member of 

symmetrical carbon atoms. The peak “i” around 45-65 ppm was designated to the aliphatic carbons 

in the chain. All the BINP polymer structures were provided in the Supporting Information. The 

broad peaks were initiated by large molecules with slow tumbling times relative to the time scale 

of NMR relaxation. Overall, these solid-state 13C NMR spectra confirmed the formation of the 

seven polymers, five amorphous and two crystalline.  
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Figure 3. (a) Solid-state 13C NMR spectra of all synthesized BINP polymers and (b) The chemical 

structures of the BINP polymers. 

 

Morphology and dimension  

SEM images and SEM-EDS basic elemental mapping of the benzimidazole polymers are shown 

in Figure 4a. The benzimidazole polymers exhibited irregular morphology with an average size of 

4 µm. The EDX spectra and SEM-EDX elemental mapping spectra of the benzimidazole polymers 

displayed the elementary components (C, N, and Au) with uniform distribution.  For SEM analysis, 

a small amount of the material was placed on a carbon tape attached to a copper strip, and the 
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benzimidazole polymers were coated with a thin layer of gold to enhance the polymer conductivity. 

The presence Si in the benzimidazole polymers was confirmed by SEM-EDS elemental mapping 

spectra. (Fig. 3b). 
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Figure 4. (a) SEM images of the BINP polymers, and (b) SEM-EDX of the BINP polymers. 

 

Adsorption of CO2  

The CO2 adsorption and desorption behavior of the polymers is shown in Figure 5.  After the initial 

treatment step as described in the Experimental section, the BINP polymers were subjected to a 

flow of the CO2 gas at room temperature for 80 min. The CO2 adsorption onto the polymers was 

estimated by the weight increase of the materials upon their contact with CO2. When the adsorption 

attained equilibrium, the CO2 was switched back to the N2 gas to initiate the desorption process 
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and this process was prolonged for 40 min. The desorption quantity of CO2 was estimated from 

the polymer weight loss. 

 

   

 

 

 

 

 

 

 

 

 

Figure 5. (a and b) Weight losses of the BINP polymers examined by TGA. The BINP polymers 

were exposed to a flow of N2 at 25 0C for 40 min. then at 600 °C for 5 h. The system was then set 

back to 25 0C and the polymers were subjected to a flowing stream of CO2 for 20 min (adsorption) 

and then switched to an N2 stream for 20 min to invoke the desorption step.  

 

All examined BINP polymers were treated by the same procedure for the adsorption with various 

CO2 gas adsorption response on their surface, the CO2 response for all the BINP polymers are 

shown in Figure 5 as a function of time. A gradual weight loss of the treated polymer was observed 

during the preliminary treatment of N2 flow owing to the water and CO2 desorption at ambient 

temperature. Such results illustrated the adsorption of CO2 on the polymer surface whereas the 

weight loss signified the desorption of the CO2 once the TGA system was switched back to the N2 

gas.   
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The CO2 adsorption capacity 

At first glance, the solid polymers must have adsorption capacities well above 3-4 mmol CO2/g 

adsorbent (132-176 mg/g) to be competitive to the conventional scrubbing technology using 

monoethanolamine. However, the reusability, fast adsorption/desorption kinetics and the cost of 

adsorbents also play an important role to dictate the economic feasibility for large-scale operations. 

The CO2 adsorption capacity of the BINP polymers was estimated from the TGA curves. The 

adsorption quantity of CO2 for each BINP polymer as a function of time, AdsCO2 (t), and the 

quantity of the CO2 adsorption by per unit gram of the BINP polymers were calculated. In 

equations 1-2,   ms (t0) is the initial mass of the BINP polymers before switching the CO2 flow and 

mCO2-ads(t) is the mass of CO2 adsorbed onto the BINP polymers as a function of time, 28.  The 

difference of the initial mass ms(t0) of the polymer from its final mass represents the maximal 

amount of adsorbed CO2 on the polymer.  

𝑚CO2−𝑎𝑑𝑠 = 𝑚𝑠 (𝑡0 ) − 𝑚𝑠(𝑡𝑚)                                                                                 (1)                                                                                                                            

 𝐴𝑑𝑠CO2
(𝑡) = 

100 ∗ 𝑚CO2−𝑎𝑑𝑠
𝑚𝑠(𝑡0)⁄                                                                      (2) 

Thus, the adsorption capacity of CO2 via the BINP polymers as a function of time 𝐴𝑑𝑠CO2
(𝑡) was 

calculated as the ratio of the mass of carbon dioxide adsorbed by the BINP polymers over the mass 

at t0 in equation 2. The maximum adsorption 𝐴𝑑𝑠CO2
(𝑡) of the CO2 and the CO2 quantity adsorbed 

on the BINP polymer were provided in Figure S1 (Supporting Information). Moreover, nearly 20 

min were required to reach the maximum adsorption (𝐴𝑑𝑠CO2  in mg CO2/g of polymers) of CO2 

over the BINP polymers. This phenomenon was controlled through the thermodynamics of the 

CO2-BINP polymers and the diffusion kinetics of CO2 in the polymer matrix. Worth noting was a 

significant quantity of CO2 that remained adsorbed on the polymer surface after a few hours of N2 
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flow treatment at 25 oC. A broad range in the system could be due to the CO2-BINP polymer 

interaction during the adsorption of CO2 flow at 25 oC. Besides, some of CO2 was desorbed 

spontaneously at 25 oC when the flow of CO2 was stopped as the desorption was effectuated from 

the bridged carbonates and hydrogenocarbonates. However, the monodenate, bidentate and 

polydentate carbonates are required more than 600 oC to desorb from the polymer surface. As a 

result, there are two types of CO2 interaction onto the BINP polymer to adsorb the maximum 

quantity of CO2. The first interaction is the bridged carbonates and hydrogenocarbonates forms a 

weak interaction at 25 oC and desorbed by switched back to N2 onto the BINP polymers. The 

second type, monodenate, bidentate and polydentate carbonates are forming a strong interaction 

with BINP polymer, it’s impossible to desorb these carbonates at 25 oC. The adsorption of Adsmax 

and Adsstrong are plotted as a function of the adsorption quantity of CO2 BINP polymer in Fig. S1 

(Supporting Information).   

Adsorption mechanism vs polymer physicochemical properties  

There are two types of adsorption; physisorption and chemisorption, which are governed by the 

pore structure characteristics and the chemical structure of the sorbents, respectively. The BINP 

polymer was supported by functionalized silica for the suitable orientation of the polymer chain. 

The -NH of the polymers would form hydrogen bonding with the oxygen of CO2 whereas the N 

atom of the five or six carbon ring exhibits interaction with the C atom of CO2, known as tertrel 

bonds 29.  The nitrogen-enriched BINP and triazine based polymer show a better adsorption 

quantity of CO2 with a minimum quantity of balance purge of 80 mL/min for the CO2 capture. The 

triazine based polymers of BINP-3 and BINP-4 exhibited the maximum adsorption quantity of 

CO2, compared to other BINP polymers. The better adsorption on BINP-3 and BINP-4 could be 

due to the triazine based chain and more nitrogen contents as well as the surface area of the 
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polymers. Apparently, such results were ascribed to N sites in the triazine rings, which facilitated 

the interaction with the polarizable CO2 via the tetrel bonds as mentioned earlier. The triazine 

based polymers of BINP-4 and BINP-4 were adsorbed maximum amount of CO2 on their surface 

as reflected by their highest content of nitrogen the capture of 13.2 and 7.7 mg/g, compared to 7.9 

mg/g of BINP-1 (Fig. 6 b,c). In contrast, two crystalline polymers; BINP-6 and BINP-7 exhibited 

the lowest adsorption capacity for CO2 and such results were corroborated with their lowest 

nitrogen contents (Table S2). There were minimal N atoms available for binding to CO2 because 

they formed intermolecular hydrogen bonding with their adjacent O atoms of the SO2 moiety. 

Furthermore, π-π interaction effectively prevented the polymer N sites to interact with polarized 

CO2 molecules.  BINP-7 has a lower pore size, compared to BINP-6.  Thus, the adsorption capacity 

for CO2 of BINP-7 (3.2 mg/g) with a surface area of 99 m2/g was even lower than that of BINP-6 

(4 mg/g) with a surface area of only 23 m2/g). Similarly, BINP-5 with low pore sizes showed the 

minimum quantity of the CO2 adsorption. BINP-1, BINP-2, and BINP-3 with large pores 

possessed the noticeable adsorption of CO2. Such collective results illustrated that the binding of 

CO2 was strongly dependent upon the participation of the N and N-H sites and the pore size of the 

polymer.  

The high adsorption of CO2 on the polymer is also due to the high specific surface area determined 

by adsorption of N2 as shown in Figure 6d. The BET results are given in Table S1 (Supporting 

Information). The adsorption of CO2 on the polymers corresponds to the following order BINP-4 

> BINP-3 > BINP-1 > BINP-2, in corroboration with their specific surface area:  281, 108, 64, 32 

m2/g. The highest adsorption of CO2 of BINP-4 was expected due to its highest surface area and 

the largest pores size (Table S1). From the N2 adsorption-desorption isotherm presented in Fig. 

S2, the porous structure of BINP-4 corresponds to class II isotherm of H3 hysteresis loop (JUPAC 
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classification) typical for macrospores.  The plot of adsorbed CO2 vs pore size was linear with an 

acceptable correlation coefficient (R2 = 0.892), signifying the role of the pore size in the adsorption 

of CO2 (Supporting Information Figure S3). 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (a) The adsorption of CO2 onto the BINP polymers, (b) The adsorption of CO2 (mg) 

estimated from equation 2, (c) the adsorption quantity of CO2 per unit gram of the BINP polymers 

and (d) The adsorption amount of CO2 vs the surface area of the BINP polymers by BET.  

 

The operating temperature would be anticipated to play an important role in the CO2 

adsorption/desorption process. However, this option was not attempted here to avoid the use of 

extra energy. To date, inorganic materials have been extensively used for CO2 

adsorption/desorption processes such as CeO2 nanopowders, 30 PEI+TEPA, 31 CaO/CaCO3, 
5 
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copper hexacynanoferrate, 11 and solvothermal synthesized CeO2 nanopowders. 9 However, these 

materials are expensive and the adsorption process requires a high amount of gas flow (200 

mL/min) and involves a large quantity of these adsorbents.  

 

Conclusion 

The silica-supported polymers were synthesized and investigated for the studies of the CO2 

adsorption by thermogravimetric analysis. The surface area, pore size as well as the nitrogen 

enrichment of the polymers, revealed the efficient adsorption capacity of CO2 over the polymer 

surface. The adsorption of CO2 gas onto the BINP polymers was partially reversible at room 

temperature and providing the quantification of the BINP-CO2 types that was desorbed by 

switching the N2 gas and CO2 leftover on the polymer surface of. The BINP polymers were 

regenerated for repeated adsorption/desorption of CO2 without diminishing their performance 

properties. Work is in progress to investigate high pressure gas uptake towards the improvement 

of CO2 adsorption capacity considering the quantity of gas uptake is highly dependent on the gas 

pressure 32. 

Associated content 

Supporting Information 

Detailed information to show the maximum adsorption capacity of CO2 onto the polymers, BET 

results of the polymers, a linear plot of the pore size vs the adsorption amount of CO2 onto the 

BINP polymers, and the XPS spectra of the polymers.  
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