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Gene expression profiling has revealed molecular heterogeneity of diffuse large B cell

lymphoma (DLBCL) in both humans and dogs. Two DLBCL subtypes based on cell

of origin are generally recognized, germinal center B (GCB)-like and activated B cell

(ABC)-like. A pilot study to characterize the transcriptomic phenotype of 11 dogs with

multicentric BCL yielded two molecular subtypes distinguished on the basis of genes

important in oxidative phosphorylation. We propose a metabolic classification of canine

BCL that transcends cell of origin and shows parallels to a similar molecular phenotype

in human DLBCL. We thus confirm the validity of this classification scheme across widely

divergent mammalian taxa and add to the growing body of literature suggesting cellular

and molecular similarities between human and canine non-Hodgkin lymphoma. Our data

support a One Health approach to the study of DLBCL, including the advancement of

novel therapies of relevance to both canine and human health.

Keywords: diffuse large B cell lymphoma, dog, animal model, gene expression, metabolism, oxidative

phosphorylation

INTRODUCTION

Diffuse large B cell lymphoma (DLBCL), an aggressive malignancy of mature B lymphocytes,
comprises the most common subtype of non-Hodgkin lymphoma (NHL) (1). Variable clinical
characteristics and treatment response of patients with DLBCL have prompted investigations
into its molecular heterogeneity (1–3). Gene expression profiling has classified DLBCL into
multiple subtypes: the cell-of-origin (COO) classification identifies three subsets named germinal
center B (GCB)-like, activated B cell (ABC)-like, and “undefined,” while the consensus cluster
classification (CCC) identifies three subsets named “oxidative phosphorylation (OxPhos),” “B
cell receptor/proliferation,” and “host response” (2, 3). The COO and CCC classification schemes
yield complementary information and differentially stratify patients, with little correlation or
overlap (3, 4).
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Dogs have been increasingly gaining traction as an animal
model in comparative oncology, attributed to their spontaneous
development of cancer, intact immune system, and shared
living environment with humans, with common exposure to
xenobiotics (5). Canine DLBCL mirrors human DLBCL in
clinical presentation, therapeutic modalities, and molecular
pathogenesis (6, 7). A number of studies have set out to dissect
the molecular signature of canine DLBCL, aiming to better
diagnose this cancer and predict treatment outcome for patients
of both species. For instance, our previous study showed that
overexpression of FoxP3 by intratumoral T cells in canine
multicentric BCL correlates with shorter survival (8). A gene
profiling study has revealed GCB-like and ABC-like subtypes in
canine DLBCL, the latter of which shows less favorable survival,
thus resembling the human disease (9). The same study also
proposed a list of 1,180 genes to distinguish GCB-DLBCL and
ABC-DLBCL in dogs, prompting us to question whether a
shorter list of selective classifiers may serve the same purpose.We
therefore undertook a pilot study to analyze the transcriptomic
phenotype of dogs with multicentric BCL, all with the cytological
characteristics of DLBCL, hypothesizing that molecular subtype
may be identified by a selective subset of gene identifiers.

MATERIALS AND METHODS

Sample Collection
Samples of 11 canine lymphoma cases (Supplementary Data 1)
were collected in a sterile fashion by qualified veterinarians prior
to chemotherapy, with signed informed consent of the owner
and approval of the Royal Veterinary College (RVC) Ethics
and Welfare Committee (Permit Number: URN 2014 1285) in
the United Kingdom (UK). Dogs of any age, breed, gender, or
neutering status were recruited to minimize selection bias. Cells
aspirated from enlarged peripheral lymph nodes were flushed
into 100% fetal bovine serum (Biosera, East Sussex, UK) for
immunophenotyping by flow cytometry. Board-certified clinical
pathologists undertook contemporaneous cytological review. All
11 cases were confirmed to be BCL, with cytological features
of DLBCL.

Cell Isolation
Aspirated lymph node cells were labeled by a mixture of R-
phycoerythrin (PE)-conjugated anti-dog CD5 (clone YKIX322.3;
Bio-Rad, UK), Alexa Fluor 647 R©-conjugated anti-dog CD21
(clone CA2.1D6; Bio-Rad) and 4′,6-diamidino-2-phenylindole
(DAPI; BioLegend, San Diego, CA, USA). CD5−CD21+ cells,
the majority of which comprised neoplastic B cells, were
isolated using fluorescence-activated cell sorting (FACSTM). RNA
extraction, sequencing, and read processing of the isolated B cells
were performed in accordance with our previous protocols (10).

RNA Extraction and Sequencing
Total RNA was extracted from FACSTM-isolated CD5−CD21+

cells using RNA Bee (AMS Biotechnology, Abingdon, UK) and
Direct-zolTM RNA MicroPrep Kit (Zymo Research, Irvine, CA,
USA), according to the manufacturer’s instructions. All samples
were treated with DNase I during extraction and examined by
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, USA), with an RNA Integrity Number of greater than or
equal to 6.5. Seventy-five-bp, paired-end RNA sequencing (RNA-
seq) was performed using the HiSeq.4000 System (Illumina, San
Diego, CA, USA) at the Oxford Genomics Centre, University of
Oxford (Oxford, UK). RNA-seq read processing and expression
quantification followed methods used in our previous study
(10). Quality control was performed by the Oxford Genomics
Centre to assess sample processing and data integrity. Transcript
reads were mapped and annotated to the canine genome,
CanFam3.1 (Ensembl Genes, release 91). Read counts were
all normalized to transcripts per million (TPM) values for
subsequent data analyses.

Data Analyses
Hierarchical cluster analysis was conducted onMorpheus (Broad
Institute, USA) using the one minus Pearson correlation and
average linkage method. Principal component analysis (PCA),
volcano plot creation, and survival analysis were all undertaken
in R (version 3.4.2; R code provided in Supplementary Data 2).
Differential expression analysis was performed using the
Bioconductor package edgeR (Bioconductor version 3.6) (11).
Differentially expressed genes with a false discovery rate (FDR) of
<0.05 were input into the software Ingenuity Pathway Analysis
(IPA; Ingenuity Systems Inc., Redwood City, CA, USA) to
identify biological pathways affected by the altered expression of
these genes (p < 0.05, |Z| score ≥ 2). Overall survival time post-
diagnosis was estimated for nine of the 11 dogs using Kaplan-
Meier curves and Cox regression analysis in R. (Dogs 7 and
11 received no chemotherapy for BCL and were excluded from
survival analysis.)

Comparison With Human Dataset
Processed microarray data of 203 human DLBCL samples
analyzed by Affymetrix Human Genome U133 Plus 2.0 Array
(GEO accession number GSE11318) were downloaded (12). To
combine the 11 canine RNA-seq and 203 human microarray
data, a list of 14,224 consensus genes were identified between
the two datasets based on annotated gene symbols. Canine RNA-
seq data were z-transformed, and human microarray data were
log2-transformed followed by z-transformation. Normalized
expression data of 22 genes were retrieved from the combined
datasets on the basis of the previously identified 27-gene
classifiers that distinguish human GCB- and ABC-DLBCL (2, 9),
and analyzed on Morpheus using K-means (K = 2) and average
linkage hierarchical clustering.

RESULTS

Gene Expression Profiling Reveals Two
Molecular Subtypes of Canine B Cell
Lymphoma With Distinct Metabolic
Signatures
Unsupervised hierarchical clustering using genome-wide
expression data of the neoplastic B cells segregated the 11 cases
into two major clusters (Figure 1A). Their distinct expression
signatures were confirmed by PCA (Figure 1B). We then set out
to analyze genes differentially expressed between the two clusters
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and identified a list of 527 genes (FDR< 0.05), of which 162 were
of lower transcript abundance and 365 were of higher transcript
abundance in cluster 2 compared to cluster 1 (Figure 1C). One
hundred and forty-six (∼28%) of the 527 genes are involved in
mitochondrial metabolism or function, of which 50 were of lower
transcript abundance and 96 were of higher transcript abundance
in cluster 2 vs. cluster 1 (Supplementary Data 3). To identify
genes with interesting functional implications, we narrowed
down this list of 527 genes on the basis of two criteria. We first
identified genes differentially expressed with high significance
(FDR < 0.01). We then identified genes in this curated list that
were most variably expressed, i.e., in the top or bottom third
of the list. As a result, five genes of lower transcript abundance
and six genes of higher transcript abundance in cluster 2 were
selected (Figure 1C). Of the 11 selected genes, uchl1, s100a8, and
s100a12 are of particular interest, all correlating with oxidative
stress (13, 14). Seven of the remaining eight genes have been
associated with various cancer contexts, consonant with their
association with subsets of canine DLBCL. Hence, ccr4 (15, 16),
myoz2 (17), and clec3b (18, 19) are adverse prognosis biomarkers,
while vwa5a (20) and sult1b1 (21) serve a tumor suppressor
role in human solid tumors. The gene ffar2 encodes a short
chain fatty acid receptor that may inhibit metastasis of human
breast cancer cells (22), and cathepsin-G encoded by ctsg is
a neutrophil protease that facilitates cell adhesion in human
breast cancer cells (23). The remaining gene slc6a5 encodes a
glycine transporter protein whose loss of function is implicated
in human hyperekplexia (24, 25).

Ingenuity Pathway Analysis of the 527 differentially expressed
genes revealed that both OxPhos and eukaryotic initiation factor
(EIF) 2 signaling pathways were enriched and activated in
cluster 2 (Figure 1D). Overall survival time post-diagnosis was
analyzed: dogs from cluster 1 had an estimated median survival
time of 137 days, while those from cluster 2 had a median
survival time of 356 days, with a hazard ratio of 0.26 (cluster
2 vs. cluster 1; 95% confidence interval: 0.05–1.44; p = 0.12;
Figure 1E). Furthermore, among the 131 genes functionally
annotated in “OxPhos” in the human database (Systematic name:
M19540, Gene Set Enrichment Analysis, Broad Institute), 80
genes were annotated in the canine genome (CanFam3.1), of
which six were of higher transcript abundance and four were
of lower transcript abundance in canine cluster 2 vs. cluster
1 (Supplementary Data 4). These results collectively suggest
that the 11 dogs with multicentric BCL in our study fell into
two molecular subgroups with distinct metabolic signatures
characterized by OxPhos, with no significant difference in
survival. We therefore designated cluster 1 as “non-OxPhos” and
cluster 2 as “OxPhos” subgroups in the remainder of this study.

Cell of origin and Metabolic Molecular
Classification Schemes of B Cell
Lymphoma in Dogs Differentially
Segregate Cases
We then compared our 527 genes with the published 1,180
canine DLBCL COO subtype-classifiers, following the exclusion
of redundant and un-annotated data (Figure 2A). The paucity of

consensus genes, numbering only 16, suggested limited overlap
between the two lists (Supplementary Data 5). Unsupervised
hierarchical clustering using the published 1,180 classifiers failed
to segregate our transcriptomic data into two major clusters
(Figure 2B), further confirming the lack of consensus and
inability of the COO classification scheme to stratify our cases.
We speculated that this could have reflected the limited number
of cases, with a majority bias toward one COO subtype or the
other. Therefore, we co-clustered our 11 canine RNA-seq and 203
human DLBCL microarray data on the basis of the previously
identified 27-gene classifiers that distinguish human GCB- and
ABC-DLBCL (2, 9). Five of the 27 genes were excluded from this
analysis: tbc1d27 had no canine homolog; c1orf186, mme, and
serpina9were expressed in none or fewer than two of the 11 dogs;
and ighm had a predominant expression in some of the dogs that
biased the clustering (9). K-means (K= 2) clustering partitioned
the combined 11 canine and 203 human samples into two groups:
two dogs co-clustered with 106 human samples in group 1,
and the other nine dogs co-clustered with remaining 97 human
samples in group 2 (Figure 2C). Hierarchical clustering on the
basis of the 22 human GCB/ABC classifier genes revealed distinct
expression patterns of the two groups: genes highly expressed
in GCB-DLBCL were enriched in group 1, while genes highly
expressed in ABC-DLBCL were enriched in group 2 (Figure 2C).
Taken together, these results suggested that the two dogs in group
1 were more likely to be of GCB phenotype, while the remaining
nine dogs in group 2 were more likely to be of ABC phenotype,
consistent with a skewed COO phenotypic distribution of the
canine patients.

DISCUSSION

This pilot study set out to characterize the transcriptomic
signature of 11 dogs with DLBCL, aiming to refine the
previously published canine DLBCL-subtyping COO classifier
list. Our results suggest that multicentric BCL in dogs may
be stratified in an alternative, non-overlapping manner based
on metabolic signatures rather than COO characteristics. One
of the two identified subtypes resembles the “OxPhos”-DLBCL
subtype in human patients (4). We therefore propose a novel,
complementary molecular classification of canine BCL, named
OxPhos and non-OxPhos, with an understanding of several
caveats to be addressed by future work. First, the small sample
size of cases in our study may not adequately represent the
diversity of canine DLBCL. Distinction of the two subtypes
needs prospective validation in a larger cohort of cases using
the 527 differentially expressed genes. Second, genes involved
in oxidative metabolism are not all enriched in the proposed
canine OxPhos subtype, as they are in the human counterpart.
Third, the COO classification scheme has been refined in human
DLBCL: four gene expression signatures, termed as “germinal
center B cell,” “proliferation,” “major histocompatibility complex
(MHC) class II,” and “lymph node” correlate with prognosis of
patients treated by CHOP chemotherapy (26). The parallelism
of these molecular subtypes in the two species therefore
needs further, rigorous investigation. Survival times between
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FIGURE 1 | Gene expression profiling of canine B cell lymphoma with distinct metabolic signatures distinguished by oxidative phosphorylation. (A) Unsupervised

hierarchical clustering classifies genome-wide expression data of 11 dogs with multicentric BCL into two major clusters. Each row represents one gene, color intensity

positively correlating with TPM values presented by rows in relative value from 0 to 1. Numbers 1–11 represent each of the dogs. The two major clusters are

designated 1 (left) and 2 (right). (B) Principal component analysis of genome-wide expression data of 8,855 genes from the same 11 dogs confirms spatial

(Continued)
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FIGURE 1 | segregation of the two major clusters (cluster 1: orange; cluster 2: teal). (C) A volcano plot of expression data of differentially expressed genes of dogs in

cluster 2 (n = 6) vs. dogs in cluster 1 (n = 5) identifies genes of particular interest. The threshold line (red) indicates a false detection rate of 0.05; each dot represents

one gene (to facilitate visualization, gene symbols are designated in upper case). (D) Ingenuity Pathway Analysis of differentially expressed genes (cluster 2 vs. cluster

1) reveals significant enrichment of two biological pathways (p < 0.05), one focusing on oxidative phosphorylation (orange color represents activated status). (E)

Overall survival time post-diagnosis was compared between clusters 1 and 2 using Kaplan-Meier curves and Cox regression analysis (p = 0.12).

FIGURE 2 | Cell of Origin and Metabolic molecular classification schemes of B cell lymphoma in dogs differentially segregate cases. (A) A Venn diagram of common

and distinct differentially expressed genes between our dataset (n = 527 genes) and the published canine GCB/ABC-DLBCL gene classifier dataset (n = 1,180

genes) reveals minimal overlap of the two classification methods. (B) Hierarchical cluster analysis of B cell gene expression data from dogs recruited in this study using

the published 1,180 canine GCB/ABC-DLBCL gene classifiers fails to stratify the cases into two major subtypes, suggesting a lack of distinction on the basis of cell of

origin (numbers 1–11 represent each of the dogs. Colors indicate the original cluster of the 11 dogs, as identified in Figure 1. Redundant and un-annotated genes

were excluded from all analyses). (C) Co-clustering of B cell gene expression data from 11 canine RNA-seq data in this study and published human microarray data (n

= 203). The heatmap was generated via clustering combined datasets by columns using K-means (K = 2) and by rows using average linkage hierarchical clustering.

Each column represents one sample, and each row represents one gene (color intensity positively correlating with z-transformed expression values presented by value

from 0 to 1; gene symbols are designated in upper case to facilitate visualization). Sample names are annotated on top of the heatmap, with the 11 canine samples

highlighted by red boxes. Dogs 1 and 5 co-clustered with 106 human samples falling into group 1, whereas the remaining nine dogs co-clustered with 97 human

samples falling into group 2. Yellow circles annotate subtype-classifying genes highly expressed in human GCB-DLBCL, and purple circles annotate genes highly

expressed in human ABC-DLBCL.

the two subgroups showed no significant difference in this
study, although the small sample size introduced the possibility
of a type II error. Moreover, several dogs received non-
CHOP chemotherapy, further confounding analysis of survival.
Correlation of metabolic signature with prognosis is still
unclear in human DLBCL: one study showed similar five-
year survival between patients with OxPhos- and non-OxPhos-
DLBCL (3), whereas another revealed poor response to rituximab
(R)-CHOP treatment in human OxPhos-DLBCL (27). The
prognosis of the OxPhos signature in canine DLBCL, and
its resemblance to the human counterpart, therefore needs
further characterization in a larger and more homogeneous
cohort of cases.

Neoplastic cells reprogram their metabolism to sustain high
proliferation (28, 29) and to resist apoptosis induced by
oxidative stress (30). Numerous studies have been conducted
to investigate the metabolic reprogramming of neoplastic cells,
aiming to identify potential therapeutic targets (31). Major ATP
production shifts from mitochondrial respiration to aerobic
glycolysis in a number of tumors, a process termed the

Warburg phenomenon (32, 33). However, some tumors rely
on oxidative metabolism as their main energy source in
certain contexts (34), including melanomas (35), lymphomas
(36), and pancreatic (37) and pulmonary carcinomas (38). A
variety of common Food and Drug Administration-approved
drugs, such as metformin, arsenic trioxide, and atovaquone,
act as OxPhos inhibitors and have potential as anti-neoplastic
drugs, especially in the setting of tumors with unregulated
oxidative phosphorylation (39). Moreover, mammalian target
of rapamycin (mTOR) is a pivotal serine/threonine kinase
upstream of metabolic pathways, including OxPhos, and thus
also constitutes a novel therapeutic target (40, 41). One
of its complex forms, mTORC1, is deregulated in DLBCL
(42). mTORC1 inhibitors, known as rapalogs, kill DLBCL
cell lines in vitro, but unfortunately show limited efficacy
in patients with DLBCL, underlining the continuing unmet
need for novel treatments targeting this molecular pathway
(42). The three genes uchl1, s100a8, and s100a12, enriched in
the canine OxPhos subgroup of our study, have interesting
functional implications. Uchl1 encodes ubiquitin C-terminal
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hydrolase L1 (UCHL1), a de-ubiquinating enzyme that plays
a pivotal role in maintaining cellular homeostasis under
physiological conditions of oxidative stress (13). UCHL1 has
variable roles in cancers, depending on histotype: for instance,
the expression of UCHL1 correlates with poor prognosis in
patients with multiple myeloma (43), mammary carcinoma (44),
and pulmonary carcinoma (44), but has tumor suppressive
properties in nasopharyngeal (45) and prostatic carcinoma
(46). Both S100A8 and S100A12 are members of the calcium-
binding S100 protein family (47), expression of which correlates
with inflammation-associated carcinogenesis (48). However,
S100A8 may also be anti-inflammatory and acts as an oxidant
scavenger during oxidative stress and inflammation (14).
Moreover, high expression of S100A8 and S100A12 has a
positive prognostic impact on oropharyngeal squamous cell
carcinoma (48). The functions of S100A8 and S100A12 are
therefore broad and context-dependent. Taken together, these
three genes may be potential biomarkers and therapeutic
targets of OxPhos-DLBCL in both dogs and humans, given
their prognostic impact in other cancers and correlation
with oxidative stress imposed by an abundance of reactive
oxygen species as a consequence of vigorous OxPhos (49).
Furthermore, EIF2 signaling is induced by various cellular
stresses, including those of oxidative origin, consolidating
the view that this molecular subtype is distinguished by
overactive OxPhos.

Future work will aim to provide additional insight into the
genes uchl1, s100a8, and s100a12 in both canine and human
DLBCL to confirm observations made in the current pilot
study. First, distinction of OxPhos- and non-OxPhos-DLBCL
will be validated in a larger cohort of canine cases using the
527 differentially expressed genes. Second, protein expression
of the three genes will be examined in OxPhos- vs. non-
OxPhos-DLBCL in both species, using immunohistochemistry
in conjunction with flow cytometry and Western blots. The
genes with a conserved expression pattern may be investigated
for their functional impact in knockdown studies performed
in vitro and in vivo, the latter requiring rodent models.
Third, expression of the three genes may also be examined
in DLBCL subtypes identified by the COO scheme to further
interrogate the degree of overlap and prognostic significance of
these two classification schemes. For instance, high expression
of uchl1 identifies human GCB-DLBCL patients likely to
have a poor outcome (50). Meticulous longitudinal studies
in both species will ultimately yield a better understanding
of the prognostic impact of uchl1, s100a8, and s100a12
in DLBCL.

In summary, our study has revealed hitherto
unrecognized metabolic heterogeneity of multicentric
BCL in dogs that resembles that of human DLBCL.
These data yield potentially interesting therapeutic
targets for canine lymphoma and substantiate the dog
as a model for human NHL, further validating its use
in the advancement of novel therapies of relevance to
human health.
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