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Abstract
Marine sponges host diverse communities of microbial symbionts that expand the metabolic capabilities of their host, but the
abundance and structure of these communities is highly variable across sponge species. Specificity in these interactions may
fuel host niche partitioning on crowded coral reefs by allowing individual sponge species to exploit unique sources of carbon
and nitrogen, but this hypothesis is yet to be tested. Given the presence of high sponge biomass and the coexistence of
diverse sponge species, the Caribbean Sea provides a unique system in which to investigate this hypothesis. To test for
ecological divergence among sympatric Caribbean sponges and investigate whether these trends are mediated by microbial
symbionts, we measured stable isotope (δ13C and δ15N) ratios and characterized the microbial community structure of
sponge species at sites within four regions spanning a 1700 km latitudinal gradient. There was a low (median of 8.2 %)
overlap in the isotopic niches of sympatric species; in addition, host identity accounted for over 75% of the dissimilarity in
both δ13C and δ15N values and microbiome community structure among individual samples within a site. There was also a
strong phylogenetic signal in both δ15N values and microbial community diversity across host phylogeny, as well as a
correlation between microbial community structure and variation in δ13C and δ15N values across samples. Together, this
evidence supports a hypothesis of strong evolutionary selection for ecological divergence across sponge lineages and
suggests that this divergence is at least partially mediated by associations with microbial symbionts.

Introduction

Associations with microbial symbionts allow their hosts to
exploit novel pools of nutrients and expand into ecological
niches that would otherwise be inhospitable [1, 2]. The
presence of reef-building corals on oligotrophic reefs that

are the nutritional equivalent of “marine deserts” has long
been a model for how these symbioses influence the eco-
logical success of their animal hosts [3–5]. Nutritional
symbioses are also widespread in other dominant organisms
in reef ecosystems [4, 6, 7]. For instance, marine sponges
are prolific filter feeders of live pico- and nanoplankton
(2 μm or less) and detritus [8–10] on coral reefs, but they
also host a microbial diversity that is unrivaled among other
invertebrates [11, 12]. These microbial communities supply
some sponge species with photosynthate [6, 13, 14],
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mediate the generation and recycling of nitrogen, a critical
limiting nutrient on coral reefs [6, 9, 15–17], and facilitate
the assimilation of dissolved sources of organic matter
(DOM) [8–10, 18, 19].

The expansion of host metabolic capacity is likely a
crucial feature of these interactions [20], but there is sub-
stantial variation in the abundance, diversity, and structure
of these microbial communities across sponge species
[21, 22]. In fact, pioneering work grouped sponges into one
of two categories based on the overall abundance of their
microbial communities (later referred to as high or low
microbial abundance [HMA or LMA]) [23–25]. Fine scale
analyses of sponge microbiomes, however, tend to paint a
more nuanced picture of these communities. For example
Easson and Thacker [26] found striking host specificity in
microbiomes associated with 20 sponge species (both LMA
and HMA) from the Caribbean coast of Panama, with even
closely related species hosting significantly different
microbiomes. The evidence for host specificity in these
interactions has now been extended to include sponge
species from other regions [27] and across a global scale
[12], implying the presence of strong evolutionary selection
for divergent microbiomes among sponge lineages.

Host sponge reliance on microbial metabolism also var-
ies among sponge species. For instance, there is a con-
tinuum of host dependence on photosymbiont-derived
carbon as some sponges host abundant and productive
photosymbiont communities that supply their host with over
50% of its carbon (termed phototrophic sponges; sensu
[28]) while other species lack these symbionts and rely on
heterotrophic feeding to meet their energy demands
[6, 14, 29–31]. In addition, while some symbiont commu-
nities are capable of producing new nitrogen via N2 fixation,
oxidizing host-derived ammonium, or rapidly assimilating
NO3

−, sponge species that lack these symbiont groups are
limited in their access to microbially mediated nitrogen
transformations [6, 9, 15, 16, 24]. Finally, although dis-
solved organic carbon (DOC) can make up to 90% of the
organic matter in seawater, sponge reliance on portions of
three major pools of carbon (DOC, LPOC: living particulate
organic carbon; and detritus) appears to be related to both
microbial symbiont abundance and the physiology of each
sponge species [8–10]. Previous work therefore highlights
that sponge microbiomes facilitate the exploitation of novel
resources, but that the specific resources acquired via these
associations can depend on microbial abundance and host
identity [1, 26].

Ecological theory predicts that high biodiversity within
crowded ecosystems like coral reefs can be maintained (1)
when competition among species is rare; for example, if
resources do not limit populations or (2) when competition for
limiting resources is prolific, leading to the exclusion of
competitively inferior species and/or selection for adaptive

traits that limit interspecific competition and promote coex-
istence [32, 33]. Sponges have expanded across ecological
niches in marine ecosystems on a global scale, but they have
been particularly successful on reefs within the Caribbean
Sea, where there is high biomass, an average percent cover
exceeding that of reef-building corals (15.9% [range of
~2–75%]), and high species diversity (>500 species) [34–36].
High biomass in the Caribbean was originally ascribed to
elevated levels of organic carbon that favored heterotrophic
feeding over sponge reliance on photosymbiont-derived
nutrition [13, 29]; this proposed lack of carbon limitation in
the Caribbean has been revisited and debated in recent years
(see references within [37]). Despite the reported abundance
of carbon resources, there is increasing evidence that micro-
bial symbionts mediate resource use in Caribbean sponges by
providing access to new sources of both carbon (DOC and
photosynthate) and nitrogen (N2 fixation, assimilation of
inorganic vs. organic, and recycling) [6, 10, 15, 16].

Although some studies have documented divergence in
broad-scale resource use (measured as differences in the
stable isotope ratios of carbon and nitrogen [δ13C and δ15N])
among Caribbean sponges that have variable associations
with microbial symbionts, these studies are limited to specific
locations or to only a few species, and have neither quanti-
tatively tested for metabolic divergence across host phylogeny
nor determined the relationship between microbial commu-
nity structure and δ13C and δ15N values [24, 26, 31, 38–40].
Marine sponges are not amenable to classic experimental
methods testing for competition and competitive exclusion
[32, 41], and it would be difficult to isolate the influence that
one sponge species has on another, coexisting species in situ.
Thus, instead of testing for evidence of resource limitation or
competition, our aim is to investigate evolutionary trends of
ecological divergence across coexisting sponge species within
the Caribbean. Based on the gaps in our understanding out-
lined above, our specific objectives are to (1) test for diver-
gence in microbial community structure and δ13C and δ15N
values of tissue from coexisting sponge species on individual
reefs in the Caribbean; (2) investigate the stability of this
divergence across large spatial scales in this ocean basin; (3)
assess whether divergence in δ13C and δ15N values and
microbiome diversity is linked to host phylogeny; and (4)
investigate whether trends in δ13C and δ15N values across
sponge samples mirror those for microbiome community
structure or diversity.

Materials and methods

Sponge collection

Sponge species were collected from at least one site within
four geographic regions spanning more than 15° of latitude
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(~1700 km) within the Caribbean Sea (Supplementary
Tables S1 and S2; Supplementary Figs. S1, S2). Individual
regions included the Bocas del Toro archipelago of Panama,
the Miskito Cays of Honduras, the Mesoamerican barrier
reef of Belize, and the Florida Keys (Supplementary
Fig. S2). At each site, replicate small (3–5 ml) samples of
dominant and conspicuous sponge species (Supplementary
Table S1) were collected by SCUBA using a dive knife and
placed into individual bags containing seawater for trans-
port back to the laboratory. Sponge samples always inclu-
ded a cross section with both inner and outer tissue regions
to standardize collections and sample across the entire body
of the sponge. Collections frequently included eight of the
ten most dominant Caribbean species [36] and species
previously designated as both HMA and LMA sponges
[24]. Samples were preserved, processed, and prepared for
δ13C and δ15N analysis [31, 38]; see Supplementary Meth-
ods S1 for more details; Supplementary Table S3. Sponges
were identified to species and, if necessary, identities were
verified via tissue histology and spicule preparations.
Replicate subsamples of each sponge species were
also preserved in 95% EtOH in 5 ml cryovials and frozen at
−20 °C for analyses of microbial community structure.

Stable isotope and chlorophyll a analyses

Stable isotope values (δ13C and δ15N) of bulk sponge tissue
serve as a time-integrated record of the sources of carbon
and nitrogen assimilated by a holobiont (including activities
of both sponge and microbial cells) and any fractionation
associated with symbiont or host metabolism or nutrient
recycling. Within an individual reef, δ13C and δ15N values
of sponge tissue therefore act as a metabolic “fingerprint”
that integrates the physiological, metabolic, and ecological
differences present across individual sponges
[24, 38, 40, 42]; see Supplementary Methods S2 for addi-
tional discussion of the utility of δ13C and δ15N for studying
resource use in sponges. Bulk sponge tissue samples were
analyzed in the Stable Isotope Ratio Mass Spectrometry
Laboratory at the University of Hong Kong as in [38]. Mean
(±SE) precision during analysis was 0.1 (0.001) ‰ and 0.2
(0.03) ‰ for δ13C and δ15N, respectively. Isotope values are
expressed in delta (δ) notation in units per mille (‰).
Values of the elemental composition (%C, %N, and C:N) of
each sample of sponge tissue were also provided. Elemental
values provide important information about how biomass-
associated pools of carbon and nitrogen vary across sponge
species and allowed us to test whether our trends in δ13C
and δ15N values were strongly influenced by structural
differences in sponge tissue. Photosymbiont abundance (as
determined by chlorophyll a [chl a] concentration) was
quantified in sponges from sites in Honduras, Panama, and
the Florida Keys as in [31] and expressed as μg chl a [g dry

sponge tissue]−1. Scopalina ruetzleri samples were not
analyzed for chl a because they were too small to provide
tissue for both isotope and chl a analyses.

Analyses of microbiomes

We surveyed the microbiomes within 294 individuals of the
14 most dominant sponge species from our isotope surveys
within the Caribbean (Supplementary Table S4). Sponge
sampling was most comprehensive within sites in the Bocas
del Toro archipelago of Panama (10–13 species within each
site) and on Wonderland Reef in the Florida Keys (12 spe-
cies). Sponges from sites within three regions (Belize and
North and South sites in Honduras [see [38] and Supple-
mentary Fig. S2 for map and description of sites]) were
pooled to provide a regional assessment of microbiome
structure across species. For additional details of sample
preparation, processing, and bioinformatics for these analyses,
please see Supplementary Methods S3. In short, polymerase
chain reaction was performed on extracted total genomic
DNA following the 16S Illumina Amplicon protocol of the
Earth Microbiome project (earthmicrobiome.org) and with
barcoded 16S rRNA primers (515F and 806R; [43, 44]);
sequencing on an Illumina MiSeq resulted in paired-end 250
base pair amplicons. Bioinformatics processing was con-
ducted in R using the DADA2 pipeline [45, 46] and taxo-
nomic assignments of amplicon sequence variants (ASVs)
were carried out using the Silva database release 128 [47].
Prior to analysis, singleton reads were removed and ASV
abundance was transformed to relative abundance (See Sup-
plemental Methods S3 for more information).

Statistical analyses

Statistical analyses and visualizations used the R packages
[46] picante [48], vegan [49], RVAidMemoire [50], and
ggplot2 [51]. To test for ecological divergence across
coexisting sponges, we assessed isotopic dissimilarity by
calculating the Euclidean distance [38] between samples.
Dissimilarity in microbial community structure (presence/
absence+ relative abundance of taxa) was calculated using
the Bray–Curtis dissimilarity index. From these dissim-
ilarity matrices, we measured the influence of sponge spe-
cies, collection site, and microbial abundance groups (HMA
or LMA) on dissimilarity in isotope values and microbial
community structure across samples using a permutational
multivariate analysis of variance (PERMANOVA) with the
adonis function in vegan [49]. We included HMA/LMA
categories in this and additional analyses below because this
dichotomy has been used extensively to group structurally
and functionally similar sponge species. To form the null
model for the PERMANOVA, we controlled for between-
site variation of individual sponge species by restricting
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shuffling during permutations to within sites. For isotope
analysis, a PERMANOVA was carried out at each of
12 sites where at least seven sponge species were collected
(Supplementary Tables S2, S3). All pairwise PERMA-
NOVA analyses included a false discovery rate correction
for multiple comparisons [50]. The PERMANOVA analysis
provided an estimate of the proportion of overall dissim-
ilarity across samples (via R2 values) that was attributed to
host identity, collection site, and microbial abundance.

Ecological divergence within a site was also calculated
by using intraspecific dispersion in δ13C and δ15N values to
measure and visualize the isotopic “niche” of each species
and calculate the overlap of this isotopic “niche” with those
of other sympatric species within that site [52, 53]. This was
carried out for 14 common Caribbean sponge species and
visualized at four sites (the most diverse site in each geo-
graphic region) in bivariate (δ13C and δ15N) plots with
isotopic niches represented as standard ellipse area (SEAc)
according to [52]. The mean pairwise isotopic niche overlap
among these species was also measured at eight of the most
diverse sites using methods from [53] and visualized on a
heatmap (see Supplementary Methods S4 for additional
details). Unlike geometric estimates of isotopic niche
overlap that characterize the boundaries of niche space (e.g.,
[52, 54] these methods allow for a probabilistic estimate of
pairwise, directional niche overlap based on a Bayesian
framework [53].

The alpha diversity of the microbial community within
each sample was calculated as the observed richness (S),
Shannon index (H′), and inverse Simpson’s index (D) using
the vegan package [49].

To investigate ecological divergence across host phylo-
geny, we tested for a phylogenetic signal in δ13C and δ15N
values, chl a concentration, ASV richness (S), Shannon
index (H′), inverse Simpson’s index (D), and elemental
composition (%C, %N, and C:N). To do this, we used mean
values of species that were well represented in sampling
across sites within at least two regions of the Caribbean.
Monanchora arbuscula was not included in analyses for S,
H′, and D due to low microbiome sample size. Bayesian
phylogeny of sponge species was constructed using
sequences from the small ribosomal subunit (18S) and the
large ribosomal subunit (28S) downloaded from Genbank to
assess genetic relatedness using methods similar to previous
research [12]; see Supplementary Methods S5 and Supple-
mentary Table S5 for details. Phylogenetic signal was cal-
culated using the phylosignal function in the R package
picante. This analysis assesses whether more closely related
organisms possess more similar traits; higher values for K
(Blomberg’s K) indicate trait patterns that are strongly
linked to the evolutionary history of the organisms and low
K values indicate trait patterns shaped by stochastic changes
over evolutionary time [55].

Mantel tests were used to identify correlations between
dissimilarity patterns in microbial community structure
(Bray–Curtis dissimilarity) and isotope values (Euclidean
distance). To test for relationships between elemental
composition (%C, %N, and C:N) and isotope values (δ13C
and δ15N) of sponge tissue, as well as between the mean
δ13C and δ15N values of sponge tissue and microbiome
community richness and diversity, we used linear regres-
sions. In addition, we used an analysis of variance
(ANOVA) to test for differences in the δ13C and δ15N
values of sponge tissue between HMA and LMA groups.
Both of these analyses were carried out in JMP (Ver 14).

Results

Ecological divergence across sponge species: δ13C
and δ15N and chlorophyll a

We collected individuals of 21 sponge species across
25 sites in the Caribbean that had variable species compo-
sitions (Supplementary Tables S1, S2, and S3 and Supple-
mental Figs S1, S2). Isotope values varied across sponge
species, with host species identity accounting for ~59% of
the dissimilarity in δ13C and δ15N values across samples
from all sites within the Caribbean (PERMANOVA: df=
20, F= 61.01, R2= 0.59, p= 0.001; Supplementary
Table S6), and a range of 76–93% of the dissimilarity in
δ13C and δ15N values within individual sites (Table 1).
Collection site accounted for 16% of dissimilarity in isotope
values across samples (PERMANOVA, df= 24, F= 39.05,
R2= 0.16, P= 0.001). Although δ13C and δ15N values
varied between HMA and LMA groups, overall microbial
abundance (HMA vs. LMA) accounted for only 20% of the
dissimilarity among individual samples from across the
Caribbean (PERMANOVA: df= 1, F= 219.49, R2= 0.20,
p < 0.001) and from 5 to 64% of the dissimilarity in δ13C
and δ15N values at individual sites (Table 1). Isotopic niches
(as shown as SEAc; [52] varied in their size due to differ-
ences in intraspecific dispersion of δ13C and δ15N, but, in
general, isotopic niches were small within a site, leading to
low overlap of sympatric sponges (Fig. 1). In fact, the
average pairwise isotopic niche overlap among 14 common
Caribbean sponges varied from 0 to 52%, with a median
value of 8.2% (±SE 0.96%). Over 40% (75 out of 182) of
these pairwise comparisons had a mean isotopic niche
overlap of <5%, and 60% (108 out of 182) of tests had a
mean isotopic niche overlap of <10% (Supplementary
Fig. S3).

Species varied in their mean chl a concentration, with a
range from over 450 μg chl a [g sponge tissue]−1 for Ircinia
campana to 12 μg chl a [g sponge tissue]−1 for Agelas
conifera (Supplementary Fig. S4). Seven species (all
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considered HMA) had high chl a values (>125 μg chl a
[g sponge tissue]−1; [14]); the remaining low chl a species
included both HMA and LMA species (Supplementary
Fig. S4).

Ecological divergence across sponge species:
microbial community structure

The data for this study are available in the sequence read
archive at NCBI (accession numbers: SAMN11832602–
SAMN11833237; [56] BioProject number PRJNA544301).
The 294 individuals of 14 sponge species collected as part
of this study yielded 21,253 unique ASVs (17,539 after
singleton reads were removed) that represented 80 micro-
bial phyla according to the Silva taxonomic classification.
Unique ASVs in a single sample ranged from 9 (in
C. vaginalis) to 449 (in M. laevis). Only ten phyla had an
average relative abundance of at least 1% (Supplementary
Table S8).

There was a continuum of microbiome richness (median
number of unique ASVs: range of 129 in C. caribensis to
305 in A. cauliformis) and diversity (Shannon index: range
of 1.03 for I. birotulata to 4.72 for A. cauliformis and
Inverse Simpson’s Index: range of 1.42 for I. birotulata to

65.36 for A. cauliformis) among these sponge species
(Supplementary Table S7). The microbiomes of some
sponge species were dominated by a single ASV that was
absent within other species (Fig. 2). For instance, of the top
100 ASVs found in Caribbean sponges as part of this pro-
ject, the microbiomes within I. birotulata, C. vaginalis, and
A. compressa were dominated (81, 64, and 55%) by a single
ASV (Fig. 2 and Supplementary Table S9).

We observed high host specificity in microbiome com-
munity structure (the presence and relative abundance of
ASVs) at the level of the Caribbean, with 67% of the dis-
similarity in microbial community structure across all
samples explained by host identity (PERMANOVA: df=
13, F= 68.80, R2= 0.67, p= 0.001). Collection site was
significantly but weakly related to community structure
(PERMANOVA, df= 6, F= 7.00, R2= 0.03; p= 0.001),
and host species and site exhibited a significant interaction
(PERMANOVA, df= 54, F= 3.14, R2= 0.13; p= 0.001).
Microbial abundance classification (HMA or LMA)
accounted for ~19% of the dissimilarity in microbial com-
munity structure across all samples (PERMANOVA, df=
1, F= 245.92, R= 0.19, P= 0.001). There was also a
significant effect of host identity within individual sites or
geographic regions, with a range of 79–88% (PERMA-
NOVA) of the dissimilarity in microbial community struc-
ture across samples being driven by host identity (Table 2),
and significant pairwise differences in microbial community
structure between sympatric sponges (pairwise PERMA-
NOVA; P ≤ 0.05 with FDR correction) except for C. vagi-
nalis and E. ferox in Belize (P= 0.10) and A. cauliformis
and A. crassa at Isla Pastores in Panama (P= 0.06). In
contrast to host identity, microbial abundance (HMA vs.
LMA) accounted for less of the dissimilarity in microbial
community structure within sites (range of 19–36%;
Table 2).

Ecological divergence across host phylogeny

There was a strong phylogenetic signal for δ15N across the
Caribbean (K= 0.84, P= 0.001), with evidence of diver-
gence in δ15N values across lineages of the subclasses
Verongimorpha and Keratosa (depleted δ15N values) and
species in the subclass Heteroscleromorpha (more enriched
δ15N values) (Fig. 3). In contrast, variation in δ13C across
sponge species was weakly linked with host phylogeny at
the scale of the Caribbean (K= 0.38, P= 0.061; Fig. 3).
Chl a values were tied to host phylogeny across the Car-
ibbean (K= 0.75, P= 0.007), with generally elevated chl a
values in members of the subclasses Verongimorpha and
Keratosa and lower values in the subclass Hetero-
scleromorpha (Fig. 3). Elemental values (%C and %N)
varied across host lineages (K= 0.41, P= 0.03 for %C and
K= 0.44, P= 0.02 for %N), but there was only a weak

Table 1 R2 values (effect sizes) from permutational multivariate
analysis of variance (PERMANOVA) showing the proportion of
dissimilarity in stable isotope (δ15N and δ13C) values within a site
explained by host species identity and overall microbial abundance
(HMA or LMA).

Site (abbreviation) Host species
identity

Microbial abundance
(HMA vs. LMA)

Saigon Bay (SB; BDT) 0.85*** 0.16***

Crawl Cay (CC; BDT) 0.76*** 0.27***

Isla Pastores (IP; BDT) 0.84*** 0.33***

Caratasca #1 (C1; MC) 0.87*** 0.48***

Media Luna #2
(ML2; MC)

0.87*** 0.32***

Media Luna #3
(ML3; MC)

0.90*** 0.26***

Glovers #1 (GS1; MR) 0.87*** 0.05ns

Glovers #2 (GS2; MR) 0.85*** 0.10ns

Raph’s Wall (RW; MR) 0.87*** 0.15***

SW/CB Channel
(SWCB; MR)

0.93*** 0.38***

Tobacco Shallow
(TS; MR)

0.92*** 0.64***

Wonderland Reef
(WR; FK)

0.76*** 0.19***

Region of each site is denoted by: BDT Bocas del Toro, Panama, MC
Miskito Cays, Honduras, MR Mesoamerican Reef, Belize, FK
Florida Keys.
nsP > 0.05, ***P < 0.001 indicating a significant effect of host ID or
microbial abundance on the isotopic differences between samples.
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phylogenetic signal for C:N (K= 0.40, P= 0.06; Fig. 3).
There was evidence of divergence in microbiome richness
across host phylogeny, but these trends were relatively
weak (K= 0.40, P= 0.055) compared with those of
microbiome diversity (measured via the Inverse Simpson’s
index: K= 1.81, P= 0.001 and Shannon Index: K= 0.66,
P= 0.011; Fig. 3).

Link between ecological divergence and microbial
community structure and diversity

Dissimilarity in microbial community structure was cor-
related with dissimilarity patterns in δ15N and δ13C values
together (Mantel test: r= 0.20, P= 0.001), as well as
with dissimilarity patterns in δ15N values (Mantel test:
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(as SEAc) of 14 common sponge species within the most diverse site
within each of the four geographic regions of the Caribbean.
Clockwise from upper left the sites are Wonderland Reef in the Florida
Keys, South Water/Carrie Bow Channel on the Mesoamerican reef of

Belize, Saigon Bay in Bocas del Toro, Panama, and Media Luna #2
from the Miskito Cays of Honduras. The figure from ML#2 was
adapted from data in Freeman et al. [38]. Replicates of each species are
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Fig. 2 Mean relative abundance heatmap of the 100 most abun-
dant microbial ASVs (organized from most to least abundant from
left to right on X-axis) in each host species at each collection site or
region within the Caribbean. These data are square-root transformed

for ease of visualization. Site/region abbreviations are: SB Saigon Bay,
IP Isla Pastores, HS Honduras South, HN Honduras North, WR
Wonderland Reef, CC Crawl Cay, BE Belize.

Table 2 R2 values (effect sizes)
from permutational multivariate
analysis of variance
(PERMANOVA) showing the
proportion of overall
dissimilarity in microbial
symbiont community structure
within a site (top rows) or within
a larger geographic region that
includes multiple sites (bottom
rows) explained by host species
identity or overall microbial
abundance (HMA or LMA).

Site (abbreviation; region; N) Host species identity Microbial abundance
(HMA vs. LMA)

Sites

Saigon Bay (SB; BDT; 13) 0.79*** 0.23***

Crawl Cay (CC; BDT; 13) 0.81*** 0.19***

Isla Pastores (IP; BDT; 10) 0.83*** 0.19***

Wonderland Reef (WR; FK; 12) 0.86*** 0.19***

Regions

North Miskito Cays, Honduras
(HN; MC; 8)

0.83*** 0.36***

South Miskito Cays, Honduras
(HS; MC; 8)

0.88*** 0.35***

Belize (BE; MR; 10) 0.81*** 0.20***

Region of each site is denoted by: BDT Bocas del Toro, Panama, MC Miskito Cays, Honduras, MR
Mesoamerican Reef, Belize, FK Florida Keys, N number of species.

***P < 0.001.

Microbial symbionts and ecological divergence of Caribbean sponges: A new perspective on an ancient. . .



r= 0.24, P= 0.001) and, to a lesser extent, δ13C values
(Mantel test: r= 0.04, P= 0.03). Mean δ13C and δ15N
values of LMA sponges were higher than HMA sponges
(ANOVA: df= 1, F= 106.9, p < 0.001 for δ13C and df=
1, F= 382.2, p < 0.001 for δ15N; Supplementary Fig. S5).
Mean δ15N values were negatively related to microbiome
diversity (mean Inverse Simpson’s Index; linear regres-
sion: r2 = 0.32, p= 0.03), but δ15N values were not
influenced by microbiome richness (mean ASV richness;
linear regression: r2 < 0.01, p > 0.05) (Supplementary
Fig. S6). Mean δ13C values were not linked to micro-
biome diversity or richness (linear regression: r2= 0.12,
p= 0.22 and: r2 = 0.22, p= 0.09 for mean Inverse
Simpson’s Index and mean ASV richness, respectively;
Fig. S6).

The elemental composition of bulk sponge tissue var-
ied across species, with a range from 9.2 [M. laevis] to
34.7 [A. cauliformis] for %C, from 2.4 [M. laevis] to 9.2
[A. crassa] for %N, and from 3.6 [C. vaginalis] to 5.4 [E.
ferox]) for C:N (Supplementary Table S6 and Fig. 3).
There were some significant, but weak relationships
between the elemental composition of sponge tissue and
δ13C and δ15N (Supplementary Fig. S7). Elemental values
accounted for between 2 and 9% of the variation in δ13C
and δ15N values across samples (Supplementary Fig. S7).
There was also a strong positive relationship between
elemental values, with the %C of sponge tissue explaining
almost 90% of the variation in %N (Supplementary
Fig. S7).

Discussion

Ecological divergence across individual sponge
species

Our results show evidence of ecological divergence among
coexisting sponge species on Caribbean reefs. On individual
reefs and across the Caribbean, host sponge identity was the
strongest determinant of dissimilarity in δ15N and δ13C
values. In addition, although the isotopic niches (visualized
as SEAc) of all species within a site were widespread across
the δ15N and δ13C space, individual sponge species gen-
erally had narrow isotopic niches, with a median of <10%
overlap between coexisting species [52, 53]. The segrega-
tion of common Caribbean sponge species across the niche
axes represented by δ15N and δ13C values provides evidence
of broad-scale partitioning of resources [38, 40]. Our find-
ings, along with recent evidence of variation in host sponge
reliance on nutrients from organic (both dissolved and
particulate) and inorganic sources [6, 10, 24, 30, 57], are in
agreement with ecological theory predicting increased
selection, over evolutionary time, for adaptive traits that
reduce competition through niche differentiation [32, 33]. In
addition, with a stronger influence of host species identity
than microbial abundance (HMA vs. LMA) (average across
12 sites of 88% for host species compared with 28% for
microbial abundance), it is increasingly apparent [38, 40]
that selective forces are driving ecological divergence at the
level of host species within this ocean basin [58–60].
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Fig. 3 Phylogeny of Caribbean
sponge species. To the right of
the phylogeny, columns of
circles represent the mean
values of stable isotopes (δ15N
and δ13C), chlorophyll a,
elemental measurements (%N,
%C, and C:N), and
microbiome diversity (ASV
richness, Shannon index, and
inverse Simpson’s index) from
all sites in the Caribbean
where that species was
collected. The size of the circle
is proportional to the value of
the particular metric. Taxonomic
groups (to subclass) are shown
for reference. The phylosignal
function of the R package
picante was used to test whether
each trait displayed a significant
phylogenetic signal. *P < 0.05,
**P < 0.01.
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Coexisting species also had distinct microbiomes
[12, 26], with a strong influence (range of 79–88 % within
sites and 67% from across Caribbean) of host species
identity on dissimilarity in microbiome community structure.
In contrast, microbial abundance only accounted for between
19–36% of the variation within sites and 19% from across
the Caribbean. Although microbial community structure was
not strongly influenced by site (only 3% of total variance
explained), more variation in microbiome community
structure at larger spatial scales led to a reduction in the
influence of host identity when tested across all of our sites.
This variation is likely due to the presence of some site-
specific microbes that could be commensals [12]. There was
also a continuum of variation in microbiome diversity across
these Caribbean sponge species, with the most striking
trends in the values of the inverse Simpson’s Index. At one
end of this continuum were species with a more even dis-
tribution of diverse microbial taxa (as in V. rigida, A. crassa,
and Aplysina spp.), but at the other end of this continuum
were I. birotulata, C. vaginalis, and A. compressa. In all
three of these species, a single, unique ASV dominated the
microbial community at all collection sites in the Caribbean.
Striking host specificity in microbial community structure
and diversity in Caribbean sponges [26] thus appears to be
conserved across large spatial scales in this ocean basin.

Divergence across host phylogeny

The evolutionary history of the host had a significant impact
on broad-scale microbiome diversity (measured as the
Inverse Simpson’s and Shannon Index), with more closely
related species having more similar patterns of diversity
than would be expected under a Brownian motion model of
evolution (random walk). Although photosymbiont abun-
dance was also linked to the phylogenetic history of the
sponge host, this trait is not always a reliable proxy for host
sponge reliance on photosynthate [6, 31]. Instead, reliance
on photosymbiont-derived carbon is impacted by a combi-
nation of symbiont abundance, specificity, and productivity,
and even closely related hosts have unique interactions with
their photosymbiont communities [30, 31, 39]. The fact that
δ13C values are not tightly constrained across host phylo-
geny may therefore be driven by variation in the depen-
dence of sponge species on spatially and temporally
variable sources of organic carbon (picoplankton, detritus,
and DOC; [10, 37, 40, 61]).

The lack of a strong correlation between δ13C values and
the phylogenetic history of host sponges makes the trends in
δ15N values from these same sponge samples even more
striking. Microbial symbionts mediate the nitrogen cycle
within sponges, allowing transformations like N-fixation,
nitrification, denitrification, and anaerobic ammonium oxi-
dation [8, 17]. It is difficult to identify specific metabolic

pathways that are driving divergence in the δ15N values
across host phylogeny within this study, but higher δ15N
values are generally associated with trophic enrichment
from heterotrophic feeding and consistently depleted δ15N
(−2 ‰ to ~0 ‰) values in some species (members of the
genus Ircinia in the current study) are indicative of biolo-
gical nitrogen fixation by diazotrophic bacteria [16]. Nitri-
fication is likely a central function of some microbiomes
[21, 62, 63], so nitrogen recycling within these symbioses
may also be influencing δ15N trends across host species. For
instance, nitrate release (as a proxy for nitrification) has
been reported from in situ or laboratory-based experiments
for some (Aplysina sp., Ircinia sp., Aiolochroia crassa,
Verongula rigida, Chondrilla caribensis, and Xestospongia
muta), but not all (not in Callyspongia vaginalis, Niphates
erecta, and Amphimedon compressa) sponges from this
study [15, 24, 64].

Our trends in δ13C and δ15N values across host phylogeny
are especially interesting considering pioneering and recent
work focused on organic carbon as the limiting nutrient on
Caribbean reefs [29, 37, 65]. Microbiome richness, diversity,
or structure may mediate carbon use by providing unique
pathways for efficient carbon acquisition (DOC and photo-
synthate) that supplement host feeding on LPOC and detritus,
but there is evidence of flexibility in carbon metabolism based
on resource availability [37] and a lack of a relationship
between microbiome composition and carbon flux [66]. This,
along with data from our study suggest that there is relaxed
selection pressure for physiological constraints in carbon
metabolism across large spatial scales, and this may be
influenced by high levels of carbon within the Caribbean
[13, 29, 37]. Unlike carbon, nitrogen inputs into the Car-
ibbean from rivers are thought to be generally low and pro-
ductivity may therefore be nitrogen limited [61, 67]. Unique
solutions to the challenge of nitrogen acquisition or proces-
sing across host lineages may therefore provide an adaptive
advantage by reducing competition for this resource [66].
This, coupled with flexibility in carbon metabolism may also
ensure that carbon skeletons are available for the production
of biomolecules when nitrogen is available.

Correlation between δ15N and δ13C values and
microbiome community structure

δ13C and δ15N values differed between HMA and LMA
groups, supporting the contention that sponges hosting
abundant communities of microbial symbionts can more
efficiently exploit and transform nutrients on these reefs
[9, 10, 24]. Despite this pattern, within individual sites
where coexisting sponge species have access to a similar
pool of resources, microbial abundance accounted for a
lower proportion of the overall dissimilarity in δ13C and
δ15N values compared with host identity (microbial
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abundance: 28%, host identity: 88%). Therefore, it is unli-
kely that microbial biomass had a substantial influence on
the isotope values of bulk sponge tissue. Instead, we iden-
tified a relationship between δ15N values and broad trends in
microbiome diversity, with the inverse Simpson’s index
explaining about 30% of the variation in mean δ15N values
across host species. In addition, at an even finer scale,
microbiome dissimilarity was strongly correlated with δ15N
and δ13C dissimilarity across host sponges. Associations
with specific symbionts can drive divergence in host
resource use in terrestrial [68], deep-sea hydrothermal vent
[69], and coral reef ecosystems [4, 70]. On coral reefs,
ecological divergence at the level of host species has been
reported in scleractinian corals, gorgonians, and sponges
[4, 6, 29, 59], but these studies have focused mainly on
carbon metabolism and fitness tradeoffs associated with
adaptations that maximize light exposure and productivity.
Interestingly, correlations between microbiome structure
and trends in δ15N values across species were stronger than
between δ13C alone or δ15N and δ13C together, supporting
trends from our phylogenetic signal analysis that show
divergence in nitrogen metabolism due to associations with
microbial symbionts. Thus, although δ15N values of bulk
sponge tissue are at least partially influenced by microbial
biomass, our data also provide evidence that different
sponge lineages are obtaining nitrogen in fundamentally
different ways and that this variation is coupled to micro-
biome community structure. These results act as an
important reminder that carbon is not the only nutrient
shaping sponge holobiont evolution, and as our under-
standing of the complex nutrient cycling (C, N, S, and P)
within and across sponge species increases [20], it is likely
that additional life history patterns will emerge.

The values of δ13C and, to a lesser extent, δ15N can be
influenced by variation in the biochemical (lipids, proteins,
and carbohydrates) or structural (overall density and the
proportion of skeletal elements like collagen fibers and
spicules) composition of tissue [71]. Although the compo-
sition of sponge tissue (%C, %N, and C:N) varied across
individual host species and also host phylogeny, there were
only weak relationships between biomass-associated pools
of elements (%C, %N, and C:N values) and δ13C and δ15N
values (all less than 10% of variance). Thus, it is unlikely
that the interspecific trends we observe in our δ15N and δ13C
values are being strongly influenced by variation in the
composition of sponge tissue [71–74].

Conclusion

The high biomass and successful coexistence of diverse
sponge species with different life history traits (morpholo-
gies, associations with microbial symbionts, and feeding

strategies) has been cited as evidence of a lack of resource
limitation on Caribbean reefs, as no single sponge type has
gained a competitive advantage [13, 29, 37, 65]. Although
there is no apparent evidence of competition leading to
competitive exclusion in modern Caribbean sponge com-
munities, sponge species in this ocean basin vary in the way
that they exploit resources and this appears to be linked to
microbial community structure [6, 10, 26, 60, 66, 75]. This
ecological divergence and the conserved structural and
functional traits reported across sponge species in this study
may certainly have been shaped by past competition for
limiting resources [32, 33, 58], but we recognize that pro-
cesses besides competition could also drive these trends.
For instance, because energetic and physiological con-
straints prevent individual sponge species from efficiently
utilizing all available resources on a coral reef, different
species might optimize their utilization of a particular
resource over evolutionary time. In this case, ecological
divergence and specialization in microbiome community
structure and resource use could be the result of fitness
tradeoffs associated with host sponge traits, feeding strate-
gies, and members of the sponge microbiome. Indeed,
mounting evidence suggests that sponge–microbe interac-
tions have been shaped both by the evolutionary legacy of
their hosts and current species-specific selective pressures to
maintain these interactions. It is therefore likely that the
metabolic divergence we observed is more strongly influ-
enced by selective forces such as competition than by sto-
chastic processes or random invasions of commensal
microbes. However, these hypotheses should be investi-
gated in future research.

Based on our observations, we posit that, over evolu-
tionary time, the acquisition of novel symbiont taxa (or
perhaps even shifts in the abundance of specific taxa shared
across particular sponge species) allowed Caribbean spon-
ges to exploit novel resources and expand into available
niche space afforded by a combination of diverse sources of
organic carbon and reduced competition with reef-building
corals compared with other ocean basins [13, 61]. This
expansion likely contributed to speciation and the coloni-
zation of diverse habitats in the Caribbean, leading to the
formation of morphologically and trophically complex
sponge communities [76]. In order to determine how
resource use is influenced by both host and symbiont
metabolism and test for fitness tradeoffs between divergent
metabolic strategies across host phylogeny [4], future work
should be carried out in disparate locations [9, 13, 29]
using a standardized, integrative, and high-resolution
approach [6, 9].
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