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Abstract : In this paper, the notion of (λ, µ)-Hankel operators on the space H2 is introduced.
Along with discussion of some of its properties, the paper also presents a result for (λ, µ)-
Hankel operators which is similar to the classical theorem of Kronecker known for Hankel
operators.
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1. Historical background

The Hardy spaceH2 of analytic functions in the open unit disk D is defined
as

H2 =

{
f(z) =

∞∑
n=0

anz
n : ∥f∥2 =

∞∑
n=0

|an|2 < ∞

}
.

It is clear that the function f(z) =
∑∞

n=0 anz
n of H2 is identified with the

vector f = (a0, a1, a2, . . .) of ℓ2, the Hilbert space of all one-sided square
summable complex sequences and vice-versa. Let {en}∞n=0 denote the standard
basis of ℓ2, where en is the sequence consisting of value zero at every place
except the nth place, where its value is 1. The space ℓ2 can be identified
with the Hardy space H2 and we write en = en(z) = zn. Let µ denote the
normalized Lebesgue measure on the unit circle T (the boundary of D) and
L2 the Hilbert space of all complex-valued measurable functions f defined on
T satisfying ∫

|f |2dµ < ∞.

It is customary to identify the functions ofH2 with the space of their boundary
functions (see [1, 11]). The boundary functions correspond to those functions
in L2 whose negative Fourier coefficients vanish. With this identification, H2
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is a closed subspace of L2. We denote the orthogonal complement of H2 in L2

by H2⊥, that is, L2 = H2 ⊕H2⊥. A function f ∈ L2 is said to be analytic if
f ∈ H2 and co-analytic if f ∈ L2 ⊖ zH2. The space of all essentially bounded
measurable functions on T is denoted by L∞ and the space of all bounded
analytic functions on T by H∞. For basic facts and details about these spaces
we refer to [5], [7], [10] and [11].

The unilateral shift U on H2 is the multiplication operator induced by
ϕ(z) = z, i.e., given by Uf(z) = zf(z). This on ℓ2 act as the unilateral
forward shift given by Uen = en+1, n ≥ 0, whose adjoint is the backward shift
defined as U∗en = en−1 for n ≥ 1 and U∗e0 = 0.

A Hankel operator H is a bounded linear operator on H2 whose matrix
with respect to the orthonormal basis {en}∞n=0 is constant along each diagonal
perpendicular to the main one. In fact, the definition of Hankel operators on
H2 turns out as (see Nehari Theorem in [14]): A Hankel operator H on H2 is
defined as H = PJMϕ for some ϕ ∈ L∞, where P is the orthogonal projection
of L2 to H2, J is the operator on L2 given by Jf(z) = f(z) and Mϕ is the
multiplication operator defined as Mϕf(z) = ϕ(z)f(z). In this terminology H
is said to be induced by the symbol ϕ ∈ L∞ and is denoted as H = Hϕ.

An intimate class to the class of Hankel operators is the class of Toeplitz
operators introduced by Toeplitz [13], which have the matrices with respect
to the orthonormal basis {en}∞n=0 constant along each diagonal parallel to the
main one. It can be shown [4] that a Toeplitz operator T on H2 is always
expressed as T = PMϕ for some ϕ ∈ L∞ and represented as T = Tϕ. Toeplitz
operator T = Tϕ is called analytic (co-analytic) if the symbol ϕ is analytic
(co-analytic).

It is also seen that (see [4, 11]) Hankel and Toeplitz operators are defined
in term of operator equations as follows:

An operator H on H2 is Hankel if and only if it satisfies the equation

U∗H = HU.

An operator T on H2 is Toeplitz if and only if it satisfies the equation

U∗TU = T.

These characterizations of Hankel and Toeplitz operators lead to the study
of various generalizations. Douglas [6] and Pták [9] discussed the solutions
of the equations S∗XT = X and S∗X = XT respectively when S and T
are contractions. Barŕıa and Halmos [3] in 1982 focussed the attention of
mathematicians towards a new direction by proposing the operator equation
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U∗XU = λX for an arbitrary complex number λ. In particular, when λ = 1,
the solutions of this operator equation are nothing but the Toeplitz operators.
In 1984, this equation was solved completely by Sun [12]. Motivated by the
work of Barŕıa and Halmos, Avendaño [1] described the solutions of the equa-
tions λU∗X = XU and U∗X−XU = λX. The solutions of latter equation are
named as λ-Hankel operators by Avendaño [1]. Clearly a 0-Hankel operator
is a Hankel operator. The following result of Avendaño [1] is quite useful in
our study.

Proposition 1.1. Let A be an operator on H2 with ∥A∥ < 1. Then an
operator X on H2 is a solution of the equation AX = XU if and only if X is
compact and has the following form

X =
∞∑
n=0

(Anϕ)⊗ en

for some ϕ ∈ H2.

Motivated by the study of these mathematicians, we consider the operator
equation µU∗X−XU = λX for complex numbers λ and µ and call an operator
X satisfying this equation as (λ, µ)-Hankel operator.

For the last few years, many interesting results have been obtained about
various generalizations of Hankel operators. A complete characterization of
compact Hankel operators is given by Hartman [8]. One of the earliest results
on Hankel operators is Kronecker’s theorem that describes the Hankel oper-
ators of finite rank as the Hankel operators with rational symbols. We refer
to [10], [11], [13] and the references therein to provide a nice survey over the
historical growth, details and applications of these operators. This paper iden-
tifies the complex numbers λ and µ for which the equation µU∗X−XU = λX
admits of a non-zero solution. It presents some properties of the solutions of
this equation and also provides a theorem similar to the Kronecker’s theorem
for (λ, µ)-Hankel operators. Connections between (λ, µ)-Hankel operators and
λ-Hankel operators are derived which also provide alternate method to prove
the main results of the paper. Solutions of the equations on some other set-
ting of U and its adjoint are also discussed and at the end we present some
problems that are yet to be answered.

Throughout the paper, the word operator is used in reference to a bounded
linear transformation on a Hilbert space. For an operator A on a Hilbert space,
the symbols Ker(A) and Ran(A) are respectively used to denote the kernel
and range spaces of A.
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2. On a generalization of Hankel operator

Let Kω denote the reproducing kernel function of H2 at ω ∈ D, that is,

Kω(z) =
1

1− ω̄z
=

∞∑
n=0

ω̄nzn.

Then for each f ∈ H2, f(z) =
⟨
f,Kz

⟩
and it is easy to verify that U∗Kzen =

zKzen for each n. Given two functions f and g in H2, f ⊗ g denotes the rank
one operator on L2 defined as

(f ⊗ g)(h) =
⟨
h, g
⟩
f

for h ∈ L2. Then ∥f ⊗ g∥ = ∥f∥2∥g∥2 and (f ⊗ g)∗ = g ⊗ f . Also, if S and T
are operators on H2, then S(f ⊗ g)T = Sf ⊗ T ∗g.

Now, in this section we try to investigate the solutions of some equations
that involve U , the shift operator and its adjoint. The solutions of one of
such equations are defined as (λ, µ)-Hankel operators and we formulate the
definition as:

Definition 2.1. For a fixed pair (λ, µ) of complex numbers, an operator
X on H2 is said to be (λ, µ)-Hankel operator if it is a solution of the equation
µU∗X −XU = λX.

It is customary to talk of many other symmetric ways to the equation
µU∗X −XU = λX, like, the equation µU∗X − λXU = X. The only solution
to the latter equation for λ = µ = 0 is the zero operator, however the existence
of non-zero (λ, µ)-Hankel operators can be seen in this situation. This allows
us to talk of the equation µU∗X − XU = λX for having a wider range of
non-zero solutions.

It is clear that (0, λ)-Hankel operators are the solutions of the equation
λU∗X = XU discussed by Avendaño [1]. Also, the class of (0, 1)-Hankel oper-
ators is the class of Hankel operators and the class of (λ, 1)-Hankel operators
is precisely the class of λ-Hankel operators.

We point out that reversing the order of U and its adjoint in the equation
µU∗X −XU = λX results in only trivial solutions.

Theorem 2.2. If X is an operator satisfying µUX − XU∗ = λX for a
pair (λ, µ) of complex numbers then X = 0.
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Proof. If (λ, µ) = (0, 0) then we have XU∗ = 0 and hence X = 0. Suppose
that (λ, µ) ̸= (0, 0). Now we apply [1, Theorem 2.1] on the facts (µU−λI)X =
XU∗ and Ker(µU − λI) = {0} to conclude that X = 0.

It is also seen that there is no non-zero (λ, µ)-Hankel operator, when µ = 0
and |λ| ≥ 1. We need the following lemma to prove this.

Lemma 2.3. If X is an operator on H2 satisfying XU = λX for some
complex number |λ| = 1 then X = 0.

Proof. XU = λX implies Xen+1 = λn+1Xe0 for each n ≥ 0. If possible
Xe0 ̸= 0. Let ak be a non-zero Fourier coefficient of Xe0. Then the sequence
formed by the kth row of the matrix of X does not converge to zero. This
contradicts the boundedness of X. This proves Xe0 = 0 and hence X = 0.

Theorem 2.4. If X is an operator satisfying µU∗X − XU = λX for
complex numbers |λ| ≥ 1 and µ = 0, then X = 0.

Proof. Let −XU = λX. If |λ| > 1 then −λ does not belong to the
spectrum of U . Now U+λI is an invertible operator and hence X(U+λI) = 0
providesX = 0. If |λ| = 1 then we use the above lemma to concludeX = 0.

Now we make a look over the equations µUX−XU = λX. If |λ|+ |µ| < 1
then on substituting A = µU−λI in Proposition 1.1, we have that an operator
X is a solution of µUX −XU = λX if and only if X is compact and has the
following form

X =

∞∑
n=0

(µeiθ − λ)nϕ⊗ en

for some ϕ ∈ H2. However, for the study of the case when |λ| + |µ| > 1,
we need the following lemma, the ideas for which we got through the ideas
suggested to Avendaño [1] by Peter Rosenthal.

Lemma 2.5. Suppose the numbers λ and 0 ̸= µ are such that |λ|+ |µ| > 1.
If f ∈ H2 is such that ∥(µU −λ)nf∥ ≤ K for all n and some fixed K > 0 then
f = 0.

Proof. We choose ϵ > 0 (which is always possible) such that the set
Aϵ

(λ,µ) = {θ ∈ [0, 2π) : |µeiθ − λ| > 1 + ϵ} has positive measure. Then for
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each n,

K2 ≥ ∥(µU − λ)nf∥2 = 1

2π

2π∫
0

|µeiθ − λ|2n|f(eiθ)|2dθ

≥ 1

2π

∫
Aϵ

(λ,µ)

|µeiθ − λ|2n|f(eiθ)|2dθ ≥ 1

2π
(1 + ϵ)2n

∫
Aϵ

(λ,µ)

|f(eiθ)|2dθ

This yields that
∫
Aϵ

(λ,µ)
|f(eiθ)|2dθ = 0 and so f(eiθ) = 0 for θ ∈ Aϵ

(λ,µ). Since

Aϵ
(λ,µ) has positive measure and f ∈ H2 hence it is possible only if f = 0.

Theorem 2.6. Suppose the numbers λ and 0 ̸= µ are such that |λ|+|µ| >
1. Then the only solution of µUX −XU = λX is the zero solution.

Proof. If X satisfies the equation µUX −XU = λX then we have (µU −
λI)nX = XUn for each n ≥ 0. It means (µU−λI)nXe0 = Xen for all n. Thus
Xe0 satisfies the hypothesis of Lemma 2.5 with K = ∥X∥. Hence Xe0 = 0,
which implies Xen = 0 for n ≥ 0. This completes the proof.

If X is an operator on H2 that satisfies Xem = (−λ)mXe0 for m ≥ 0
and Xe0 ∈ [e0], the closed linear subspace generated by e0, for some com-
plex number λ (certainly |λ| < 1) then it can be seen that X is a solution of
the equation µU∗X −XU = λX for each complex number µ. This observa-
tion motivates to find the pairs (α, β) and (λ, µ) of complex numbers so that
we have unique operator ( the zero operator) satisfying both the equations
µU∗X −XU = λX and βU∗X −XU = αX. The following theorem provides
a sufficient condition for this.

Theorem 2.7. Let (α, β) and (λ, µ) be distinct pairs of complex numbers.

1) If |λ − α| ≥ |µ − β| then a non-zero (λ, µ)-Hankel operator can not be
(α, β)-Hankel.

2) If |λ−α| < |µ−β| and X is both (λ, µ)-Hankel and (α, β)-Hankel then it
is a compact operator of the form X =

∑∞
n=0 γ

nen ⊗ϕ for some ϕ ∈ H2

and |γ| < 1.

Proof. If X satisfies µU∗X − XU = λX and βU∗X − XU = αX then
β̂U∗X = α̂X, where α̂ = λ − α and β̂ = µ − β. First we consider part (1),
i.e., when |α̂| ≥ |β̂|. We consider the following two subcases.
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Subcase (i): Let β̂ = 0. Then α̂ ̸= 0 and hence α̂X = 0, which implies X = 0.

Subcase (ii): Let β̂ ̸= 0 and α̂ ̸= 0. Then we have U∗X = γX, where γ = α̂
β̂

satisfies |γ| ≥ 1. Now by applying Theorem 2.4, we get X∗ = 0 and so X = 0.

Now we consider part (2), i.e., |α̂| < |β̂|. Then X satisfies γX∗ =
X∗U , where γ = α̂

β̂
. Hence, by applying Proposition 1.1, we get that X =∑∞

n=0 γ
nen ⊗ ϕ for some ϕ ∈ H2.

Now we discuss some basic properties of (λ, µ)-Hankel operators. It is
evident that the class of (λ, µ)-Hankel operators is a subspace of B(H2), the
space of all bounded operators on H2. Moreover, it is easy to verify that the
class of (λ, µ)-Hankel operators is closed in the strong operator topology. The
following result shows that adjoint of a (λ, µ)-Hankel operator is an operator
of same type for some other values of λ and µ.

Theorem 2.8. The adjoint of a (λ, µ)-Hankel operator, µ ̸= 0, is a (−λ̄
µ̄ , 1

µ̄)-
Hankel operator.

Proof. Proof follows on taking the adjoint of the operators on both sides
in the equation µU∗X −XU = λX.

An immediate result that follows by using Theorem 2.8 and Theorem 2.7
is the following.

Corollary 2.9. If X is a self adjoint (λ, µ)-Hankel operator then either
X = 0 or X is a compact operator given by X =

∑∞
n=0 γ

nen ⊗ ϕ for some
ϕ ∈ H2 and complex number γ.

Proof. Using Theorem 2.8, if X is self adjoint operator then it is (λ, µ)-

Hankel as well as (α, β)-Hankel operator, where α = −λ
µ and β = 1

µ . Now we
apply Theorem 2.7 to complete the proof.

Theorem 2.10. The kernel of a (λ, µ)-Hankel operator, µ ̸= 0, is an in-
variant subspace of U and the closure of its range is an invariant subspace of
U∗.

Proof. LetX be satisfying µU∗X−XU = λX. Then for each f ∈ Ker(X),
XUf = (µU∗ − λI)Xf = 0 so that U(Ker(X)) ⊆ Ker(X).

Now X∗ is (−λ̄
µ̄ , 1

µ̄)-Hankel operator and by the arguments used earlier,

Ker(X∗) is invariant under U . Thus Ker(X∗)⊥ = Ran(X) is invariant sub-
space of U∗.
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It is interesting to see that a non-zero (λ, µ)-Hankel operator cannot be
invertible. In fact, in the next result, it is shown that both, the spectrum and
the essential spectrum of a non-zero (λ, µ)-Hankel operator contain 0.

Theorem 2.11. Let X be a non-zero (λ, µ)-Hankel operator. Then 0 ∈
σ(X) ∩ σe(X), where σ(X) and σe(X) denote the spectrum and the essential
spectrum of X respectively.

Proof. Suppose X is a non-zero (λ, µ)-Hankel operator. Then XU =
(µU∗ − λI)X. Now invertibility of X implies U and µU∗ − λI are similar,
which is not feasible. Hence X cannot be invertible or 0 ∈ σ(X).

Again, if we suppose that σe(X) does not contain 0, then X is essentially
invertible ( i.e. X + K(H2) is invertible in the Calkin algebra B(H2)/K(H2),
where K(H2) is the collection of all compact operators on H2). Now XU =
(µU∗ − λI)X gives that U and µU∗ − λI are essentially similar. This is
not possible being σe(U) = σe(U

∗) = T, the unit circle. This proves that
0 ∈ σe(X).

Theorem 2.12. Let X be a (λ, µ)-Hankel operator. If T is a analytic
Toeplitz operator then XT is a (λ, µ)-Hankel operator.

Proof. T , being analytic Toeplitz, satisfies UT = TU . A simple compu-
tation verifies that µU∗(XT ) − (XT )U = (µU∗X − XU)T = λ(XT ). This
completes the proof.

If T ′ is a co-analytic Toeplitz operator then U∗T ′ = T ′U∗. Hence, along
the lines of the proof of Theorem 2.12, we can show that the product T ′X of
T ′ and a (λ, µ)-Hankel operator X is a (λ, µ)-Hankel operator.

Theorem 2.13. Let α, β, λ, µ be complex numbers all of modulus one.
If X is a (λ, µ)-Hankel operator then Y = D 1

αλβµ
XD 1

αλ
is a (α, β)-Hankel

operator, where Da is the diagonal unitary operator defined as Daen = anen
for n ≥ 0.

Proof. For each complex number a with |a| = 1, D 1
a
satisfies D 1

a
U∗ =

aU∗D 1
a
and UD 1

a
= aD 1

a
U . Now using these properties, a routine computa-

tion shows that

D 1
αλβµ

(µU∗X −XU)D 1
αλ

= D 1
αλβµ

(µU∗X)D 1
αλ

−D 1
αλβµ

(XU)D 1
αλ

= αλ(βU∗Y − Y U)
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and
D 1

αλβµ
(λX)D 1

αλ
= λD 1

αλβµ
XD 1

αλ
= λY.

IfX is a (λ, µ)-Hankel operator then µU∗X−XU = λX yields that αλ(βU∗Y−
Y U) = λY equivalently βU∗Y − Y U = αY . This completes the proof.

3. Main results

For an operator T on a Hilbert space, we denote the spectrum of T by
σ(T ). We begin this section with an attempt to find the existence of solutions
of the equation µU∗X−XU = λX for given λ and µ. The main result provides
the locations of complex numbers λ and µ for which the operator equation
µU∗X −XU = λX must admit of a bounded solution. However, in the next
section, we discuss an alternate method to handle these situations.

Theorem 3.1. The operator equation µU∗X −XU = λX has a solution
in each of the following cases:

1) µ = 0, |λ| < 1;

2) 0 < |µ| ≤ 1, |λ| < 2|µ|;
3) |µ| > 1, |λ| < 2;

4) |µ| < 1, |λ| > 1 + |µ|;
5) |µ| > 1, |λ| > 1 + |µ|.

In fact, in the cases (4) and (5), the only solution is the zero solution.

Proof. Case (1): Let µ = 0 and |λ| < 1. In this case solutions are assured
by Proposition 1.1 and are of the form X =

∑∞
n=0(−λ)nϕ ⊗ en for some

ϕ ∈ H2.

Case (2): Let 0 < |µ| ≤ 1 and |λ| < 2|µ|. Pick a complex number a with
|a| < 1 and |µa − λ| < 1 (this is possible). Now the rank one operator
X = Ka ⊗Kµa−λ satisfies

µU∗X −XU = µa(Ka ⊗Kµa−λ)− (µa− λ)(Ka ⊗Kµa−λ) = λX.

Case (3): Let |µ| > 1 and |λ| < 2. If X is a solution of the equation µU∗X −
XU = λX then it satisfies the equation βU∗X∗−X∗U = αX∗, where α = −λ

µ

and β = 1
µ . Now we apply case (2) and find that X∗ = Ka ⊗Kβa−α for some

complex number a ∈ D. As a consequence X = K a
µ
+λ

µ

⊗Ka.
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Case (4): Let |µ| < 1 and |λ| > 1 + |µ|. It is clear from case (2) that for
|µ| < 1, each complex number λ with |λ| < 2|µ| is an eigen value of the
operator τµ : B(H2) 7→ B(H2) defined as

τµ(X) = µU∗X −XU

for each X ∈ B(H2). Thus{
z ∈ C : |z| < 2|µ|

}
⊆ σ(τµ) ⊆

{
z ∈ C : |z| ≤ |µ|+ 1

}
.

It turns out if λ is such that |λ| > 1 + |µ| then it can not be in the spectrum
of τµ. This provides that the only solution of the equation µU∗X−XU = λX
is the zero solution.

Case (5): Let |µ| > 1 and |λ| > 1+ |µ|. In this case, we consider the operator
τ 1
µ
: B(H2) 7→ B(H2) defined as

τ 1
µ
(X) = U∗X − 1

µ
XU

for each X ∈ B(H2). Then

σ(τ 1
µ
) ⊆

{
z ∈ C : |z| ≤ 1

|µ|
+ 1

}
.

Now |λµ | >
1
|µ| +1 and hence (τ 1

µ
− λ

µI)(X) = 0 implies that X = 0. This gives

that µU∗X −XU = λX means that X = 0.

An immediate observation to the cases (4), (5) of the above theorem is the
following.

Corollary 3.2. There are no non-zero (λ, µ)-Hankel operators in each
of the following cases:

1) |µ| < 1, |λ| ≥ 2;

2) |µ| > 1, |λ| ≥ 2|µ|.

Now, observe that, given µ ̸= 0 and λ ∈ C one can find a ∈ D such that
µa−λ ∈ D if and only if |λ| < 1+ |µ|. We have been suggested by the referee
about this observation, which provide the following result.

Theorem 3.3. If µ ̸= 0 and |λ| < 1 + |µ|, then there are non-zero (λ, µ)-
Hankel operators.
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Proof. Choose a ∈ D such that µa−λ ∈ D. Then Ka⊗Kµa−λ is a non-zero
(λ, µ)-Hankel operator.

At the end of this section, we present a result for (λ, µ)-Hankel operators
similar to the classical theorem of Kronecker, which states that a Hankel
matrix is of finite rank if and only if its symbol is a rational function. Theorem
4.6 presents an alternative proof for this result. Now we drop the assumption
of bounded on using the word operator i.e. the operator X satisfying µU∗X−
XU = λX is not necessarily assumed to be bounded.

Theorem 3.4. Let X be a (λ, µ)-Hankel operator. Then the matrix rep-
resentation of X with respect to the orthonormal basis {en}n≥0 of H2 has
finite rank if and only if Xe0 is a rational function.

Proof. Let X be a (λ, µ)-Hankel operator. Then Xen = (µU∗ − λ)nϕ for
each n ≥ 0, (hence X, as a densely defined operator on the polynomials, is
uniquely determined by Xe0) where ϕ = Xe0. A simple computation shows
that ⟨

Xem, en
⟩
=
⟨
XUme0, en

⟩
=
⟨
Xe0, (µU − λ)men

⟩
=

m∑
k=0

dm,k(−λ)m−kµk
⟨
Xe0, en+k

⟩
where dm,k = m(m−1)···(m−k+1)

k(k−1)···2·1 . Also, Xen = (µU∗ − λ)nϕ implies that the

columns of the matrix of X are just the vectors (µU∗ − λ)nϕ. Hence, the
matrix of X is of finite rank at most N if and only if there exist constant
numbers a0, a1, a2, . . . , aN , not all zero, such that

N∑
n=0

an(µU
∗ − λ)nϕ = 0.

Now

N∑
n=0

an(µU
∗ − λ)nϕ =

N∑
n=0

an

N∑
k=0

dn,k(−λ)n−kµkU∗kϕ

=

N∑
k=0

(
N∑

n=k

andn,k(−λ)n−kµk

)
U∗kϕ

=

N∑
k=0

dkU
∗kϕ
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where dk =
∑N

n=k andn,k(−λ)n−kµk. Thus we have d0 = d1 = d2 = · · · =
dN = 0 if and only if a0 = a1 = a2 = · · · = aN = 0.

As a consequence, we get that the vectors {U∗kϕ}Nk=0 are linearly depen-
dent if and only if the vectors {(µU∗−λ)kϕ}Nk=0 are so. But, the matrix whose
columns are formed by the vectors {U∗kϕ} is a Hankel operator with symbol
ϕ and hence the Hankel operator with symbol ϕ is of finite rank if and only if
X is of finite rank. Now the result follows by applying the classical theorem
of Kronecker for Hankel operators.

In the Theorem 3.2, boundedness ofX is not discussed so it is quite appeal-
ing to know ϕ = Xe0 so that X (densely defined on polynomials) satisfying
µU∗X −XU = λX is bounded.

4. Connection between (λ, µ)-Hankel and λ-Hankel operators

In this section, we begin with the results that form bridges between the
notions of (λ, µ)-Hankel and λ-Hankel operators. Most of the results obtained
in this section are communicated to us by the referee. If µ ∈ C then Dµ given
by Dµen = µnen, satisfies

DµU
∗en =

{
0 if n = 0

µn−1en−1 if n ≥ 1

=
1

µ
U∗Dµen

and

UDµen = µnen+1 =
1

µ
DµUen.

For the boundedness of Dµ, we need |µ| ≤ 1. Now we have the following.

Theorem 4.1. Let µ ∈ C and 0 < |µ| ≤ 1.

1) If X is a (λ, µ)-Hankel operator then DµX is a λ-Hankel operator.

2) If Y is a λ
µ -Hankel operator then Y Dµ is a (λ, µ)-Hankel operator.

Proof. We use the properties of Dµ, in the equations obtained by multi-
plying the equations µU∗X −XU = λX and U∗Y − Y U = λ

µY respectively
on left and right by Dµ. It provide the proof of (1) and (2).

Analogously, it can be shown that
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Theorem 4.2. Let µ ∈ C and |µ| ≥ 1.

1) If X is a (λ, µ)-Hankel operator then XD 1
µ
is a λ

µ -Hankel operator.

2) If Y is a λ-Hankel operator then D 1
µ
Y is a (λ, µ)-Hankel operator.

We use these theorems to see the existence of (λ, µ)-Hankel operators al-
ready discussed in Theorem 3.1(2),(3).

Corollary 4.3. There exist non-zero (λ, µ)-Hankel operators in each of
the situations 0 < |µ| ≤ 1, |λ| < 2|µ| and |µ| > 1, |λ| < 2.

Proof. In one situation |λµ | < 2 and in other |λ| < 2. Existence of λ
µ -Hankel

operators and λ-Hankel operators follow by applying [1, Theorem 4.3]. Now
results follow on utilizing Theorem 4.1(2) and Theorem 4.2(2) in respective
situations.

For a fixed λ, a λ-Hankel operator can be generated from a (λ, µ)-Hankel
operator by taking µ = 1, but it can be seen that there is a large choice of
values for µ to get a λ-Hankel operator from the (λ, µ)-Hankel operators.

Corollary 4.4. ([1]) There exist infinite λ-Hankel operators for |λ| < 2.

Proof. It is evident that for a fixed λ with |λ| < 2, we can find µ in
abundance satisfying |λ| < 2|µ|, |µ| ≤ 1. Now by Theorem 3.1(2), we find
a (λ, µ)-Hankel operator Xµ corresponding to each µ and we apply Theorem
4.1(1) to find λ-Hankel operators in abundance as each DµXµ is a λ-Hankel
operator.

Further applications of these theorems, provide an alternative, in fact, a
shorter proof of Theorem 3.3.

Alternate proof of Theorem 3.3: We prove that a (λ, µ)-Hankel operator
is of finite rank if and only if Xe0 is a rational function. We divide the proof
in two cases.

Case 1: Suppose that 0 < |µ| ≤ 1. If X is of finite rank, then DµX, which is
a λ-Hankel operator, is also of finite rank. Now by applying [1, Theorem 5.3],
DµXe0 is a rational function and hence Xe0 is a rational function.

Conversely, assume that Xe0 is a rational function. Then DµXe0 is a
rational function and hence the λ-Hankel operator DµX has finite rank. Since
Dµ has dense range, we have X has finite rank.
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Case 2: Suppose |µ| > 1. Now Xe0 is rational if and only if XD 1
µ
e0 = Xe0

is rational. Also, X is of finite rank if and only if XD 1
µ
is of finite rank. The

result follows using the fact that Dµ has dense range. This completes the
proof.

Theorem 3.1 and Theorem 3.2 do not discuss the existence of (λ, µ)-Hankel
operators once |λ| = 1 + |µ|. In this case if |µ| = 1 then |λ| = 2 and as the
only λ-Hankel operator for |λ| = 2 is the zero operator [2], so in the light of
Theorem 4.1(1) we get that there are only zero (λ, µ)-Hankel operators once.
But it is yet not known whether there exist non-zero (λ, µ)-Hankel operators
or not if |λ| = 1 + |µ| and |µ| ̸= 1.

As the solutions that are found in each of the cases discussed in Theorem
3.1, are compact operators so it is interesting to know whether non-compact
solutions exist or not, particularly, in cases (2) and (3) of the Theorem 3.1. If
µ = 1 then the case shifts to find the λ-Hankel operator and it is seen in [1]
that if λ with |λ| < 2 is a purely imaginary complex number then we have non-
compact solutions. Further, if |µ| = 1 and λ with |λ| < 2 is a purely imaginary
complex number then existence of non-compact (λ, µ)-Hankel operators can
be seen by using Theorem 4.2(2).
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