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Abstract: For an absolutely continuous operator valued measure in weak sense, we give a
necessary and sufficient condition to have a density in strong sense. This result is used to
obtain an operator valued version of the F. and M. Riesz theorem. We also give some related
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1. Preliminaries

A basic result of the classical harmonic analysis is the theorem of F. and M.
Riesz, which states that if the Fourier-Stieltjes coefficients of a Borel measure
µ on [0, 2π) satisfy µ̂(n) = 0 for all n < 0, then µ is absolutely continuous
with respect to the Lebesgue measure.

The Radon-Nikodym theorem is a fundamental result in measure theory.
It establishes that, given a measurable space (Ω, Σ), if a σ-finite measure ν on
(Ω, Σ) is absolutely continuous with respect to a σ-finite measure µ on (Ω, Σ),
then there exists a measurable function f on Ω and taking values in [0, ∞),

∗The first two authors were partially supported by the CDCH of the Universidad Central
de Venezuela. The third author was partially supported by Dirección de Investigación y
Postgrado de la UNEXPO.

37

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dehesa. Repositorio Institucional de la Universidad de Extremadura

https://core.ac.uk/display/304324056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


38 r. bruzual, m. domínguez, j. suárez

such that
ν(A) =

∫
A

f dµ

for any set A ∈ Σ.
Several extensions of this two results have been given, see for example

[7, 8, 11, 10, 9] for extensions of the F. and M. Riesz theorem and [1, 4, 5] for
extensions of the Radon-Nikodym theorem.

In [2] Arocena and Cotlar considered some vectorial moment and weighted
problems related with dilation of generalized Toeplitz kernels and they com-
mented about the possibility of extending the F. and M. Riesz theorem for
operator valued measures. This paper was motivated by that comment, for
more details see Section 4.

In Section 2 of this paper we give an operator valued extension of the
Radon-Nikodym theorem and in Section 4 we use this result to establish an
operator valued version of the F. and M. Riesz theorem.

2. Hilbert space operator valued measures and a version
of the Radon-Nikodym theorem.

Let B be the Borel σ-algebra of [0, 2π) and let m be the Lebesgue measure
on [0, 2π). By dx we denote the differential of the Lebesgue measure, with Lp

the usual Lebesgue spaces and with Hp the usual Hardy spaces, for 1 ≤ p < ∞.
Throughout this paper (G, ⟨ , ⟩G) is a separable Hilbert space, ∥.∥G is the

associated norm and L(G) stands for the space of the continuous linear oper-
ators on G.

Definition 2.1. Let µ : B → L(G) be a function.
We say that µ is an L(G)-valued measure on [0, 2π), in weak sense, if for

each ζ, ξ ∈ G the function µζξ : B → C given by

µζξ(∆) = ⟨µ(∆)ζ, ξ⟩G

is a scalar finite Radon measure on [0, 2π).
We say that µ is an L(G)-valued measure on [0, 2π), in strong sense, if

µ

(+∞∪
n=1

∆n

)
=

+∞∑
n=1

µ(∆n),

convergence in norm, for any disjoint sequence {∆n} ⊂ B. This property is
also known as strong additivity.
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In both cases µ is bounded if

sup
∆∈B

∥µ(∆)∥L(G) < +∞

and µ has finite variation if

+∞∑
n=1

∥µ(∆n)∥L(G) < +∞,

for any disjoint sequence {∆n} ⊂ B.
The set of the bounded L(G)-valued measures on [0, 2π) in weak sense and

the set of the bounded L(G)-valued measures on [0, 2π) in strong sense, will
be denoted by Mw(L(G)) and Ms(L(G)), respectively.

It is clear that Ms(L(G)) ⊂ Mw(L(G)), it also holds that Ms(L(G)) $
Mw(L(G)) as the following example shows.

Let G = L2 and let µ : B → L(G) be defined by µ(∆)ξ = ξ 1∆, where 1∆
is the characteristic function of the set ∆.

For ζ, ξ ∈ G and ∆ ∈ B we have

µζξ(∆) =
∫
∆

ζ(x) ξ(x) dx.

So µ is an L(G)-valued measure on [0, 2π), in weak sense.
On the other hand, if ∆, ∆′ ∈ B are such that ∆′ ⊂ ∆ and the Lebesgue

measure of ∆ \ ∆′ is positive then

∥µ(∆) − µ(∆′)∥2
L(G) = sup

∥ξ∥G=1
∥µ(∆)ξ − µ(∆′)ξ∥2

G = sup
∥ξ∥G=1

∫
∆\∆′

|ξ(x)|2 dx = 1.

So µ is not strongly additive.

Remark 2.2. For µ ∈ Ms(L(G)) it holds that µ has finite variation if and
only if

sup
+∞∑
n=1

∥µ(∆n)∥L(G) < +∞,

where the supremum is taken over all the partitions {∆n} of [0, 2π) such that
{∆n} ⊂ B.

This property is usually expressed by saying that µ is of bounded variation.
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Definition 2.3. A function F : [0, 2π) → L(G) is said to be weakly mea-
surable if for every ζ, ξ ∈ G the complex valued function

x 7→ ⟨F (x)ζ, ξ⟩G

is measurable.

For a function F : [0, 2π) → L(G) it holds that

∥F (x)∥L(G) = sup
∥ζ∥G=∥ξ∥G=1

|⟨F (x)ζ, ξ⟩G |,

for x ∈ [0, 2π). Since we are considering a separable Hilbert space G, if F is
weakly measurable, we have that the function

x 7→ ∥F (x)∥L(G)

is measurable in the usual sense.
With L1,w

L(G) we will denote the set of all weakly measurable functions F :
[0, 2π) 7→ L(G) such that ∫ 2π

0
∥F (x)∥L(G) dx < ∞.

Note that for F ∈ L1,w
L(G), the sesquilinear functional BF : G × G → C

defined by

BF (ζ, ξ) =
∫ 2π

0
⟨F (x)ζ, ξ⟩G dx

is bounded. Therefore, from the Riesz representation theorem, it follows that
there exists a unique bounded linear operator IF : G → G such that

⟨IF ζ, ξ⟩G =
∫ 2π

0
⟨F (x)ζ, ξ⟩G dx,

for all ζ, ξ ∈ G. We say that IF is the weak integral of F .

Remark 2.4. Note that if G is infinite dimensional, then L(G) is nonsepa-
rable, so this integral is not necessarily the Bochner integral.

If F : [0, 2π) → L(G) is a weakly measurable function, for each ζ, ξ ∈ G we
define the function Fζξ : [0, 2π) → C by

Fζξ(x) = ⟨F (x)ζ, ξ⟩G .
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Let µ ∈ Mw(L(G)) be absolutely continuous with respect to the Lebesgue
measure, that is if m(A) = 0, then µ(A) = 0 for A ∈ B. In this case for
each ζ, ξ ∈ G there exists a, unique a.e., Lebesgue integrable function hζξ :
[0, 2π) → C such that

dµζξ(x) = hζξ(x) dx.

A natural question is to determine under what conditions there exists a weakly
measurable function F : [0, 2π) → L(G) such that for all ζ, ξ ∈ G

hζξ(x) = Fζξ(x).

Theorem 2.5 gives a necessary and sufficient condition for an affirmative
answer.

Theorem 2.5. Let µ ∈ Mw(L(G)) be absolutely continuous with respect
to the Lebesgue measure. For ζ, ξ ∈ G, let hζξ be the integrable function such
that dµζξ(x) = hζξ(x) dx.

Then the following conditions are equivalent

(a) µ ∈ Ms(L(G)) and µ has finite variation.
(b) There exists a function F ∈ L1,w

L(G), unique a.e., such that

hζξ(x) = Fζξ(x) a.e.(x).

(c) There exists an integrable function y : [0, 2π) → [0, +∞) such that for
each ζ, ξ ∈ G

|hζξ(x)| ≤ y(x) ∥ζ∥G ∥ξ∥G a.e.(x).

Proof. (a) ⇒ (b) This part follows from a result of Alvarez de Araya
(Theorem 2.4 of [1]), see also the book of Diestel and Uhl [5].

(b) ⇒ (c) If hζξ(x) = Fζξ(x) where F ∈ L1,w
L(G), then

|hζξ(x)| = |⟨F (x)ζ, ξ⟩G | ≤ ∥F (x)∥L(G) ∥ζ∥G ∥ξ∥G ,

so it is enough to take y(x) = ∥F (x)∥L(G).
(c) ⇒ (a) We have to show that µ is σ-additive in strong sense and that

µ has finite variation.
Let ζ, ξ ∈ G be such that ∥ζ∥G = ∥ξ∥G = 1, then for any ∆ ∈ B we have

|⟨µ(∆)ζ, ξ⟩| =
∣∣∣∣∫

∆
hζξ(x) dx

∣∣∣∣ ≤
∫

∆
y(x) dx.
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Therefore

∥µ(∆)∥L(G) = sup
∥ζ_G|=∥ξ∥G=1

|⟨µ(∆)ζ, ξ⟩| ≤
∫

∆
y(x) dx,

Let {An} ⊂ B be a disjoint sequence, let A =
∪+∞

n=1 An and, for N ∈ N, let
BN =

∪N
n=1 An. We have

+∞∑
n=1

∥µ(An)∥L(G) ≤
+∞∑
n=1

∫
An

y(x) dx =
∫

A
y(x) dx < +∞.

We also have

|⟨(µ(A) − µ(BN ))ζ, ξ⟩| =
∣∣∣∣∣
∫

A\BN

hζξ(x) dx

∣∣∣∣∣ ≤
∫

A\BN

y(x) dx.

Therefore

∥µ(A) − µ(BN )∥L(G) = ∥µ(A \ BN )∥L(G) ≤
∫

A\BN

y(x) dx,

since y is integrable
∫

A\BN
y(x) dx → 0 as N → ∞, so µ ∈ Ms(L(G)).

2.1. An example of a measure µ ∈ Mw(L(G)) for which it does
not exist F ∈ L1,w

L(G) such that hζξ(x) = Fζξ(x) a.e.(x)
Consider a function ϕ : [0, 2π) → C such that:

(a) ϕ ∈ L1.

(b) ϕ is continuous on (0, 2π).

(c) ϕ is not bounded.

Let {xk}∞
k=1 ⊂ (0, 2π) be a dense set and let {τk}∞

k=1 be an orthonormal
basis of G.

Let ζ, ξ ∈ G given by ζ =
∑∞

k=1 akτk, ξ =
∑∞

k=1 bkτk. For a Borel set
∆ ⊂ [0, 2π), let Ω∆ : G × G → C be defined by

Ω∆(ζ, ξ) =
∞∑

k=1
akbk

∫
∆

ϕ(x − xk) dx.
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We have that Ω∆ is a sesquilinear form. Also

|Ω∆(ζ, ξ)| ≤
∞∑

k=1
|akbk| ∥ϕ∥1

≤ ∥ϕ∥1

( ∞∑
k=1

|ak|2
)1/2( ∞∑

k=1
|bk|2

)1/2

= ∥ϕ∥1 ∥ζ∥G ∥ξ∥G .

Therefore there exists a function µ : B → L(G) such that

Ω∆(ζ, ξ) = ⟨µ(∆)ζ, ξ⟩G .

From the last inequality, clearly

∥µ(∆)∥L(G) ≤ ∥ϕ∥1.

Now consider a sequence of disjoint Borel sets ∆1, ∆2, . . . ⊂ [0, 2π) and let

∆ =
∞∪

n=1
∆n.

In order to prove that µ is a L(G)-valued measure in weak sense we need
to consider iterated series. We have that

⟨µ(∆)ζ, ξ⟩G =
∞∑

k=1
akbk

∫
∆

ϕ(x − xk) dx

=
∞∑

k=1
akbk

∞∑
n=1

∫
∆n

ϕ(x − xk) dx

=
∞∑

n=1

∞∑
k=1

akbk

∫
∆n

ϕ(x − xk) dx

=
∞∑

n=1
⟨µ(∆n)ζ, ξ⟩G ,
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because
∞∑

n=1

∞∑
k=1

∣∣∣∣akbk

∫
∆n

ϕ(x − xk) dx

∣∣∣∣ ≤
∞∑

k=1
|akbk|

∞∑
n=1

∫
∆n

|ϕ(x − xk)| dx

=
∞∑

k=1
|akbk|

∫
∆

|ϕ(x − xk)| dx

≤
∞∑

k=1
|akbk| ∥ϕ∥1

≤ ∥ϕ∥1 ∥ζ∥G ∥ξ∥G .

So µ ∈ Mw(L(G)).
From the definition of µ it follows that

µζξ(∆) =
∞∑

k=1
akbk

∫
∆

ϕ(x − xk) dx

and
|µζξ(∆)| ≤ c ∥ζ∥G ∥ξ∥G .

Thus

dµζξ(x) =
( ∞∑

k=1
akbk ϕ(x − xk)

)
dx,

so the corresponding function hζξ for this measure is given by

hζξ(x) =
∞∑

k=1
akbk ϕ(x − xk).

Note that
hτkτk(x) = ϕ(x − xk) a.e.(x) k = 1, 2, . . .

Now we will show that it does not exist F ∈ L1,w
L(G) such that hζξ(x) =

Fζξ(x) a.e.(x).
Suppose there exists a weakly measurable function F : [0, 2π) → L(G) such

that for each ζ, ξ ∈ G

hζξ(x) = Fζξ(x) a.e.(x).

Then it would hold that

|hζξ(x)| = |⟨F (x)ζ, ξ⟩G | ≤ ∥F (x)∥L(G)∥ζ∥G ∥ξ∥G a.e.(x).
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In particular,

|ϕ(x − xk)| = |hτkτk(x)| ≤ ∥F (x)∥L(G) a.e.(x) k = 1, 2, . . .

This is not possible because ∥F (·)∥L(G) must be finite a.e., ϕ is continuous
except in 0, ϕ is unbounded and {xn}∞

n=1 is a dense set in (0, 2π).

3. Fourier transform of operator valued measures

Let F ∈ L1,w
L(G) and ζ, ξ ∈ G, then we have that Fζξ ∈ L1. Let F̂ζξ be

the usual Fourier transform of Fζξ. By linearity for every n ∈ Z there is
F̂ (n) ∈ L(G) such that

F̂ζξ(n) =
⟨
F̂ (n)ζ, ξ

⟩
G

.

More generally it is possible to consider the Fourier transform of operator
valued measures, as the following construction shows.

Let P denote the linear space of all scalar valued trigonometric polynomi-
als.

Proposition 3.1. Let µ ∈ Mw(L(G)) and let c = sup∆∈B(T) ∥µ(∆)∥L(G).
There exists a unique linear operator Tµ : P → L(G) such that:

(a) For all p ∈ P and ζ, ξ ∈ G we have that

⟨Tµ(p)ζ, ξ⟩G =
∫
T

p(x) d⟨µ(x)ζ, ξ⟩G .

(b) ∥Tµ(p)∥G ≤ 4 c ∥p∥∞ for all p ∈ P.

Proof. For ζ, ξ ∈ G let

B(ζ, ξ) =
∫
T

p(x) d⟨µ(x)ζ, ξ⟩G .

Then B is a sesquilinear form on G × G. Using the Hahn decomposition of
the real part of µ and of the imaginary part of µ we obtain that

|B(ζ, ξ)| ≤ 4 c ∥p∥∞∥ζ∥G ∥ξ∥G .

So the result follows from the Riesz representation theorem.



46 r. bruzual, m. domínguez, j. suárez

Given a measure µ ∈ Mw(L(G)), the Fourier transform of µ is the function
µ̂ : Z → L(G) defined by

µ̂(n) = Tµ(e−n) (n ∈ Z),

where en(x) = einx.
It holds that

⟨µ̂(n)ζ, ξ⟩G =
∫ 2π

0
e−inx d⟨µ(x)ζ, ξ⟩G = µ̂ζξ(n)

for every ζ, ξ ∈ G and n ∈ Z.

Remark 3.2. Note that if dµ(x) = F (x)dx, where F ∈ L1,w
L(G), then µ̂(n) =

F̂ (n).

More details about the definition of µ̂(n) can be seen in [3].

4. An operator valued version of the F. and M. Riesz theorem

The following comment appears on a paper of Arocena and Cotlar [2]: if
µ ∈ Mw(L(G)), µ̂(n) = 0 for n < 0 and ζ, ξ ∈ G then for the scalar measure
µζξ we have that µ̂ζξ(n) = 0 for n < 0, so there exists hζξ ∈ H1 such that
dµζξ(x) = hζξ(x) dx. But though

|µζξ(∆)| ≤ c ∥ζ∥G ∥ξ∥G

we cannot say that there exists an operator F (x) ∈ L(G) such that

⟨F (x)ζ, ξ⟩G = hζξ(x) a.e.(x).

This remark was a motivation for this paper.
As it is natural, we define

H1,w
L(G) = {F ∈ L1,w

L(G) : F̂ (n) = 0 if n < 0}.

Theorem 4.1. Let µ ∈ Ms(L(G)) be a measure that has finite variation
such that µ̂(n) = 0 if n < 0. Then there exists F ∈ H1,w

L(G) such that

dµ(x) = F (x) dx.
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Proof. It follows that, for each ζ, ξ ∈ G, µ̂ζξ(n) = 0 for all n < 0. So from
the F. and M. Riesz theorem, it follows that each of the measures µζξ are
absolutely continuous with respect to the Lebesgue measure.

Therefore µ is absolutely continuous with respect to the Lebesgue measure.
From Theorem 2.5 it follows that there exists a function F ∈ L1,w

L(G), unique
a.e., such that

hζξ(x) = Fζξ(x) a.e.(x).

Finally it is clear that F ∈ H1,w
L(G).

Remark 4.2. The hypothesis in the last theorem can not be omitted, as is
shown by the following example.

For the example given in Subsection 2.1 consider the following function

ϕ(x) = 1
1 − eix

( 1
eix

log 1
1 − eix

)−2
,

for x ̸= 0 and x ̸= 2π.
It holds that ϕ ∈ H1, see [6, pag. 13, exer. 3].
With the same notation of Subsection 2.1 we have that

hζξ(x) =
∞∑

k=1
akbk ϕ(x − xk).

Since
∞∑

k=1

∥∥∥akbk ϕ(· − xk)
∥∥∥

1
≤ ∥ϕ∥1 ∥ζ∥G ∥ξ∥G ,

we have that hζξ ∈ H1 for each ζ, ξ ∈ G.
So the corresponding operator valued measure µ belongs to Mw(L(G))

and µ̂(n) = 0 if n < 0. But, as proved in Subsection 2.1, it does not exist
F ∈ L1,w

L(G) such that hζξ(x) = Fζξ(x) a.e.(x).
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