On the Approximate Solution of D'Alembert Type Equation Originating from Number Theory

B. Bouikhalene ${ }^{1}$, E. Elqorachi ${ }^{2}$, A. Charifi ${ }^{1}$
${ }^{1}$ Sultan Moulay Slimane University, Polydisciplinaire Faculty, Beni-Mellal, Morocco
${ }^{2}$ Ibn Zohr University, Faculty of Sciences, Agadir, Morocco
bbouikhalene@yahoo.fr, elqorachi@yahoo.fr, charifi2000@yahoo.fr

Presented by David Yost
Received December 2, 2012

Abstract: We solve the functional equation
$E(\alpha): f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}-\alpha y_{1} y_{2}, x_{2} y_{1}-x_{1} y_{2}\right)=2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)$,
where $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}, f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ and α is a real parameter, on the monoid \mathbb{R}^{2}. Also we investigate the stability of this equation in the following setting:

$$
\begin{aligned}
\mid f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+ & f\left(x_{1} x_{2}-\alpha y_{1} y_{2}, x_{2} y_{1}-x_{1} y_{2}\right)-2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \mid \\
& \leq \min \left\{\varphi\left(x_{1}\right), \psi\left(y_{1}\right), \phi\left(x_{2}\right), \zeta\left(y_{2}\right)\right\} .
\end{aligned}
$$

From this result, we obtain the superstability of this equation.
Key words: D'Alembert functional equation, monoid \mathbb{R}^{2}, multiplicative function, stability, superstability.
AMS Subject Class. (2010): 47D09, 22D10, 39B82.

1. Introduction

For any $\alpha \in \mathbb{R}$, Berrone and Dieulefait [5] equipped \mathbb{R}^{2} with the multiplication rule $\cdot \alpha$, defined by

$$
\left(x_{1}, y_{1}\right) \cdot \alpha\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right), \quad\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2} .
$$

For $\alpha=-1$, the multiplication is the usual product of complex numbers in $\mathbb{C}=\mathbb{R}^{2}$. The rule makes \mathbb{R}^{2} into a commutative monoid with neutral element $(1,0)$ and $\sigma(x, y)=(x,-y)$ (complex conjugation) as an involution.

Berrone and Dieulefait [5, Theorem 1] studied the homomorphisms $m:\left(\mathbb{R}^{2}, \cdot \alpha\right) \longrightarrow(\mathbb{R},$.$) , i.e., the multiplicative, real-valued functions on the$ monoid $\left(\mathbb{R}^{2}, \cdot \alpha\right)$. We extend their investigations by finding the bigger set of all multiplicative, complex-valued functions $M:\left(\mathbb{R}^{2},{ }_{\alpha}\right) \longrightarrow(\mathbb{C},$.$) . Combining$
this information with Davison's work [9] about D'Alembert's functional equation on monoids, we obtain an explicit description of the solutions $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ of D'Alembert's functional equation

$$
E(\alpha): f\left(a \cdot{ }_{\alpha} b\right)+f\left(a \cdot{ }_{\alpha} \sigma(b)\right)=2 f(a) f(b), \quad a, b \in \mathbb{R}^{2},
$$

on the monoid $\left(\mathbb{R}^{2}, \cdot{ }_{\alpha}\right)$. The description falls into three different cases, according to whether $\alpha>0$ or $\alpha<0$. The equation $E(\alpha)$ is a common generalization of many functional equations of type D'Alembert

$$
\begin{equation*}
f(a b)+f(a \sigma(b))=2 f(a) f(b), \quad a, b \in \mathbb{R}^{2} \tag{1.1}
\end{equation*}
$$

on the monoid \mathbb{R}^{2}, like, e.g.,

1) If $\alpha=0$,

$$
E(0): f\left(x_{1} x_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}, x_{2} y_{1}-x_{1} y_{2}\right)=2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Setting $x_{1}=x_{2}=1$ and $F(y)=f(1, y)$ for any $y \in \mathbb{R}$ respectively $y_{1}=y_{2}=0$ and $m(x)=f(x, 0)$ for any $x \in \mathbb{R}$ in $E(0)$, we get the classical D'Alembert functional equation

$$
\begin{equation*}
F\left(y_{1}+y_{2}\right)+F\left(y_{1}-y_{2}\right)=2 F\left(y_{1}\right) F\left(y_{2}\right), \quad y_{1}, y_{2} \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

on \mathbb{R} (see [1], [4], [15] and [23]) respectively the classical Cauchy equation

$$
\begin{equation*}
m\left(x_{1} x_{2}\right)=m\left(x_{1}\right) m\left(x_{2}\right), \quad x_{1}, x_{2} \in \mathbb{R} \tag{1.3}
\end{equation*}
$$

on \mathbb{R}. We call m a multiplicative function on \mathbb{R} (see[1]).
2) If $\alpha=-1$,

$$
\begin{aligned}
E(-1): f\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}+y_{1} y_{2}\right. & \left., x_{2} y_{1}-x_{1} y_{2}\right) \\
& =2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
\end{aligned}
$$

$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. The equation $E(-1)$ is in connection with the identity

$$
\begin{array}{r}
\left(x_{1} x_{2}-y_{1} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2}+\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2}+\left(x_{2} y_{1}-x_{1} y_{2}\right)^{2} \\
=2\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right) \tag{1.4}
\end{array}
$$

for any $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$.
3) If $\alpha \neq 1$ is a square free integer and $\mathbb{Q}(\sqrt{\alpha})=\{x+y \sqrt{\alpha}: x, y \in \mathbb{Q}\}$ is the quadratic monoid equipped with the multiplicative rule

$$
\begin{equation*}
\left(x_{1}+y_{1} \sqrt{\alpha}\right)\left(x_{2}+y_{2} \sqrt{\alpha}\right)=\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{1} y_{1}\right) \sqrt{\alpha} \tag{1.5}
\end{equation*}
$$

then $E(\alpha)$ reduces to D'Alembert functional equation (1.1) on the monoid $\mathbb{Q}(\sqrt{\alpha})$. In [9] Davison solved the D'Alembert functional equation with involution on a monoid A : any solution $f: A \longrightarrow \mathbb{C}$ has the general form $f=\frac{M+M \circ \sigma}{2}$, where $M: A \longrightarrow \longrightarrow \mathbb{C}$ is a multiplicative function.

In 1940, Ulam [22] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

Question 1.1. Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{1}, \diamond, d\right)$ be a metric group with the metric d. Given $\varepsilon>0$, does there exist $\delta(\varepsilon)>0$ such that if a mapping $h: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(h(x * y), h(x) \diamond h(y))<$ δ for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \longrightarrow G_{2}$ with $d(h(x), H(x))<\delta(\varepsilon)$ for all $x \in G_{1}$?

In 1941, Hyers [12] answered this question for the case where G_{1} and G_{2} are Banach spaces. In 1978, Rassias [20] provided a generalization of Hyer's theorem which allows the Cauchy difference to be unbounded. The interested reader may refer to the book by Hyers, Isac, Rassias [13] for an in depth account on the subject of stability of functional equations. In 1982, Rassias [19] solved the Ulam problem by involving a product of powers of norms. Since then, the stability problems of various functional equations ha been investigated by many authors (see [10], [11] and [14]). In [3] and [7] Baker et al. and Bourgin respectively, introduced the notion that by now is frequently referred to as superstability or Baker's stability: if a function f satisfies the stability inequality $\left|E_{1}(f)-E_{2}(f)\right| \leq \varepsilon$, then either f is bounded or $E_{1}(f)=$ $E_{2}(f)$. The superstability of D'Alembert's functional equation $f(x+y)+$ $f(x-y)=2 f(x) f(y)$ was investigated by Baker [4] and Cholewa [8]. Badora and Ger [2], and $\operatorname{Kim}([16],[17]$ and [18]) proved its superstability under the condition $|f(x+y)+f(x-y)-2 f(x) f(y)| \leq \varphi(x)$ or $\varphi(y)$. In a previuos work, Bouikhalene et al. [6] investigated the superstability of the cosine functional equation on the Heisenberg group. Following this investigation we study the superstability of the functional equation $E(\alpha)$ on the monoid $\left(\mathbb{R}^{2}, \cdot \alpha\right)$. Also we say that a function $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ is of approximate a cosine type function,
if there is $\delta>0$ such that

$$
\begin{equation*}
\left|f\left(a \cdot{ }_{\alpha} b\right)+f\left(a \cdot{ }_{\alpha} i(b)\right)-2 f(a) f(b)\right|<\delta, \quad a, b \in \mathbb{R}^{2} \tag{1.6}
\end{equation*}
$$

In the case where $\delta=0, f$ satisfies the functional equation $E(\alpha)$. We call f a cosine type function on \mathbb{R}^{2}. The paper is organized as follows: In the first section after this introduction we solve the functional equation $E(\alpha)$. In the second section we study the superstability equation $E(\alpha)$.

2. Solution of equation $E(\alpha)$

According to [9] we drive the following lemma.
Lemma 2.1. The solution $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ of $E(\alpha)$ is of the form

$$
f=\frac{M+M \circ \sigma}{2}
$$

where $M:\left(\mathbb{R}^{2}, \cdot{ }_{\alpha}\right) \longrightarrow(\mathbb{C}, \cdot)$ is a multiplicative function.
By extending Berrone-Dieulefait's result [5] to complex-valued multiplicative functions, we get the following lemmas.

Lemma 2.2. The multiplicative functions $M:\left(\mathbb{R}^{2}, \cdot{ }_{1}\right) \longrightarrow(\mathbb{C}, \cdot)$ are the functions

$$
M(x, y)=m_{1}(x+y) m_{2}(x-y), \quad x, y \in \mathbb{R}
$$

where $m_{1}, m_{2}: \mathbb{R} \longrightarrow \mathbb{C}$ are multiplicative functions.
LEMMA 2.3. The multiplicative functions $M:\left(\mathbb{R}^{2},{ }_{0}\right) \longrightarrow(\mathbb{C}, \cdot)$ are the trivial function $M=1$ and $M(0, y)=0$ for any $y \in \mathbb{R}$ and $M(x, y)=$ $m(x) \gamma\left(\frac{y}{x}\right)$ for any $(x, y) \in \mathbb{R}^{2}$, with $x \neq 0$, where $m: \mathbb{R} \longrightarrow \mathbb{C}$ is a multiplicative function and $\gamma:(\mathbb{R},+) \longrightarrow \mathbb{C}$ is an arbitrary character.

Lemma 2.4. The multiplicative functions $M:\left(\mathbb{C},{ }_{-1}\right) \longrightarrow(\mathbb{C}, \cdot)$ are the trivial functions $M=0$ and $M=1$ and

$$
M(z)= \begin{cases}\widetilde{m}(|z|) \Gamma(\exp (i \theta)), & \text { for } z=|z| \exp (i \theta) \neq 0 \\ 0, & \text { for } z=0\end{cases}
$$

where $\widetilde{m}:\left(\mathbb{R}^{+}, \cdot\right) \longrightarrow \mathbb{C}^{*}$ and $\Gamma:\{\exp (i \theta), \theta \in \mathbb{R}\} \longrightarrow \mathbb{C}^{*}$ are arbitrary characters.

Proof. When $\alpha=-1$, the multiplicative rule \cdot_{-1} becomes the usual product numbers in \mathbb{C}. By using the polar decomposition $z=|z| \exp (i \theta)$ for any $z \in \mathbb{C}^{*}$ where $\theta=\arg (z)$, we get

$$
\begin{equation*}
M\left(\left|z_{1}\right|\left|z_{2}\right|\right)=M\left(\left|z_{1}\right|\right) M\left(\left|z_{2}\right|\right), \quad z_{1}, z_{2} \in \mathbb{C}^{*} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(\exp \left(i\left(\theta_{1}+\theta_{2}\right)\right)\right)=M\left(\exp \left(i \theta_{1}\right)\right) M\left(\exp \left(i \theta_{2}\right)\right), \quad \theta_{1}, \theta_{2} \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

By letting $\widetilde{m}(|z|)=M(|z|)$, for any $z \in \mathbb{C}^{*}$, and $\Gamma(\exp (i \theta))=M(\exp (i \theta))$ for any $\theta \in \mathbb{R}$ it follows that $\widetilde{m}:\left(\mathbb{R}^{+}, \cdot\right) \longrightarrow \mathbb{C}^{*}$ and $\Gamma:\{\exp (i \theta), \theta \in \mathbb{R}\} \longrightarrow \mathbb{C}^{*}$ are characters. If $z=0$, we set $M(z)=0$.

In the next corollary we give the set of all multiplicative complex-valued functions $M:\left(\mathbb{R}^{2}, \cdot{ }_{\alpha}\right) \longrightarrow \mathbb{C}$.

Corollary 2.5. The multiplicative functions $M:\left(\mathbb{R}^{2}, \cdot{ }_{\alpha}\right) \longrightarrow(\mathbb{C}, \cdot)$ are given by the following list:
I) If $\alpha>0$, then

$$
M(x, y)=m_{1}(x+y \sqrt{\alpha}) m_{2}(x-y \sqrt{\alpha}), \quad(x, y) \in \mathbb{R}^{2}
$$

II) If $\alpha=0$, then
a) $M(x, y)=1$, for any $(x, y) \in \mathbb{R}^{2}$.
b) $M(0, y)=0$, for any $y \in \mathbb{R}$.
c) $M(x, y)=m(x) \gamma\left(\frac{y}{x}\right)$, for any $(x, y) \in \mathbb{R}^{2}$ with $x \neq 0$.
III) If $\alpha<0$, then
a) $M(x, y)=0$, for any $(x, y) \in \mathbb{R}^{2}$.
b) $M(x, y)=1$, for any $(x, y) \in \mathbb{R}^{2}$.
c) $M(x, y)= \begin{cases}\widetilde{m}\left(\sqrt{x^{2}-\alpha y^{2}}\right) \Gamma(\arg (x+i y)), & \text { for }(x, y) \neq(0,0) \\ 0, & \text { for }(x, y)=(0,0) .\end{cases}$ where $m_{1}, m_{2}, m: \mathbb{R} \longrightarrow \mathbb{C}$ are multiplicative functions, and \widetilde{m} : $\left(\mathbb{R}^{+}, \cdot\right) \longrightarrow \mathbb{C}^{*}, \Gamma:\{\exp (i \theta), \theta \in \mathbb{R}\} \longrightarrow \mathbb{C}^{*}$ and $\gamma:(\mathbb{R},+) \longrightarrow \mathbb{C}$ are arbitrary characters.

The next theorem is the main result of this section.

THEOREM 2.6. The set of solutions of the functional equation $E(\alpha)$ consists of the following three cases:
A) If $\alpha>0$, then

$$
f(x, y)=\frac{m_{1}(x) m_{2}(y)}{2}\left\{m_{1}(y \sqrt{\alpha}) m_{2}(-y \sqrt{\alpha})+m_{1}(-y \sqrt{\alpha}) m_{2}(y \sqrt{\alpha})\right\}
$$

for any $(x, y) \in \mathbb{R}^{2}$.
B) If $\alpha=0$, then
a) $f(x, y)=1$, for any $(x, y) \in \mathbb{R}^{2}$.
b) $f(0, y)=0$, for any $y \in \mathbb{R}$.
c) $f(x, y)=\frac{m(x)}{2}\left\{\gamma\left(\frac{y}{x}\right)+\gamma\left(\frac{-y}{x}\right),(x, y) \in \mathbb{R}^{2}, x \neq 0.\right\}$
C) If $\alpha<0$, then $f(0,0)=0$ and

$$
f(x, y)=\frac{\widetilde{m}\left(\sqrt{x^{2}-\alpha y^{2}}\right)}{2}\left\{\Gamma(\arg (x+i y)),(x, y) \in \mathbb{R}^{2} \backslash(0,0)\right\}
$$

where $m_{1}, m_{2}, m: \mathbb{R} \longrightarrow \mathbb{C}$ are multiplicative functions, and $\widetilde{m}:\left(\mathbb{R}^{+}, \cdot\right)$ $\longrightarrow \mathbb{C}^{*}, \Gamma:\{\exp (i \theta), \theta \in \mathbb{R}\} \longrightarrow \mathbb{C}^{*}$ and $\gamma: \mathbb{R} \longrightarrow \mathbb{C}$ are arbitrary characters.

Proof. According to Lemma 2.1 and Corollary 2.5 we get the proof of theorem.

3. Superstability of equation $E(\alpha)$

In the next theorem we establish the stability of $E(\alpha)$.

Theorem 3.1. Let $\varphi, \psi, \phi, \zeta: \mathbb{R} \longrightarrow[0,+\infty[$ be functions and let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ be a function such that

$$
\begin{align*}
& \mid f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}-\alpha y_{1} y_{2}, x_{2} y_{1}-x_{1} y_{2}\right) \tag{3.1}\\
& -2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \mid \leq \min \left\{\varphi\left(x_{1}\right), \psi\left(y_{1}\right), \phi\left(x_{2}\right), \zeta\left(y_{2}\right)\right\}
\end{align*}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ and α is a real parameter. Then either f is bounded or f satisfies the functional equation

$$
\begin{aligned}
& E(\alpha): f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}-\alpha y_{1} y_{2}, x_{2} y_{1}-x_{1} y_{2}\right) \\
&=2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right)
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$.
Proof. For all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ and α a real parameter we get from the inequality (3.1) that

$$
\begin{align*}
& \mid f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)+f\left(x_{1} x_{2}-\alpha y_{1} y_{2}, x_{2} y_{1}-x_{1} y_{2}\right) \\
&-2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \mid \tag{3.2}\\
& \leq \varphi\left(x_{1}\right) \text { or } \psi\left(y_{1}\right) .
\end{align*}
$$

Since f is unbounded then we can choose a sequence $\left(x_{n}, y_{n}\right)_{n \geq 3}$ in \mathbb{R}^{2} such that $f\left(x_{n}, y_{n}\right) \neq 0$ and $\lim _{n \rightarrow+\infty}\left|f\left(x_{n}, y_{n}\right)\right|=+\infty$. Taking $\left(x_{2}, y_{2}\right)=\left(x_{n}, y_{n}\right)$ in (3.2) we obtain

$$
\begin{aligned}
& \mid f\left(x_{1} x_{n}+\alpha y_{1} y_{n}, x_{1} y_{n}+x_{n} y_{1}\right)+f\left(x_{1} x_{n}-\alpha y_{1} y_{n}, x_{n} y_{1}-x_{1} y_{n}\right) \\
&- 2 f\left(x_{1}, y_{1}\right) f\left(x_{n}, y_{n}\right) \mid \\
& \leq \varphi\left(x_{1}\right) \text { or } \psi\left(y_{1}\right)
\end{aligned}
$$

and

$$
\begin{array}{r}
\left|\frac{f\left(x_{1} x_{n}+\alpha y_{1} y_{n}, x_{1} y_{n}+x_{n} y_{1}\right)+f\left(x_{1} x_{n}-\alpha y_{1} y_{n}, x_{n} y_{1}-x_{1} y_{n}\right)}{2 f\left(x_{n}, y_{n}\right)}-f\left(x_{1}, y_{1}\right)\right| \\
\leq \frac{\varphi\left(x_{1}\right)}{2\left|f\left(x_{n}, y_{n}\right)\right|} \text { or } \frac{\psi\left(y_{1}\right)}{2\left|f\left(x_{n}, y_{n}\right)\right|} .
\end{array}
$$

That is we get

$$
\begin{align*}
& f\left(x_{1}, y_{1}\right) \\
& =\lim _{n \rightarrow+\infty} \frac{f\left(x_{1} x_{n}+\alpha y_{1} y_{n}, x_{1} y_{n}+x_{n} y_{1}\right)+f\left(x_{1} x_{n}-\alpha y_{1} y_{n}, x_{n} y_{1}-x_{1} y_{n}\right)}{2 f\left(x_{n}, y_{n}\right)} . \tag{3.3}
\end{align*}
$$

Setting $X_{n}=x_{2} x_{n}+\alpha y_{2} y_{n}, Y_{n}=x_{2} y_{n}+x_{n} y_{2}, \widetilde{X}_{n}=x_{2} x_{n}-\alpha y_{2} y_{n}, \widetilde{Y}_{n}=$ $x_{2} y_{n}-x_{n} y_{2}$. For any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ it follows that

$$
\begin{aligned}
& \mid f\left(\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) x_{n}+\alpha\left(x_{1} y_{2}+x_{2} y_{1}\right) y_{n},\right. \\
& \left.\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) y_{n}+x_{n}\left(x_{1} y_{2}+x_{2} y_{1}\right)\right) \\
& +f\left(\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) x_{n}-\alpha\left(x_{1} y_{2}+x_{2} y_{1}\right) y_{n},\right. \\
& \left.x_{n}\left(x_{1} y_{2}+x_{2} y_{1}\right)-\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) y_{n}\right) \\
& -2 f\left(x_{1}, y_{1}\right) f\left(x_{2} x_{n}+\alpha y_{2} y_{n}, x_{2} y_{n}+x_{n} y_{2}\right) \\
& +f\left(\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) x_{n}+\alpha\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{n}\right. \text {, } \\
& \left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) y_{n}+x_{n}\left(x_{2} y_{1}-x_{1} y_{2}\right) \\
& +f\left(\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) x_{n}-\alpha\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{n},\right. \\
& \left.x_{n}\left(x_{2} y_{1}-x_{1} y_{2}\right)-\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) y_{n}\right) \\
& -2 f\left(x_{1}, y_{1}\right) f\left(x_{2} x_{n}-\alpha y_{2} y_{n}, x_{2} y_{n}-x_{n} y_{2}\right) \mid \\
& \leq \mid f\left(\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) x_{n}+\alpha\left(x_{1} y_{2}+x_{2} y_{1}\right) y_{n}\right. \text {, } \\
& \left.\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) y_{n}+x_{n}\left(x_{1} y_{2}+x_{2} y_{1}\right)\right) \\
& +f\left(\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) x_{n}-\alpha\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{n},\right. \\
& \left.x_{n}\left(x_{2} y_{1}-x_{1} y_{2}\right)-\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) y_{n}\right) \\
& -2 f\left(x_{1}, y_{1}\right) f\left(x_{2} x_{n}+\alpha y_{2} y_{n}, x_{2} y_{n}+x_{n} y_{2}\right) \mid \\
& +\mid f\left(\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) x_{n}+\alpha\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{n}\right. \text {, } \\
& \left.\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) y_{n}+x_{n}\left(x_{2} y_{1}-x_{1} y_{2}\right)\right) \\
& +f\left(\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) x_{n}-\alpha\left(x_{1} y_{2}+x_{2} y_{1}\right) y_{n},\right. \\
& \left.x_{n}\left(x_{1} y_{2}+x_{2} y_{1}\right)-\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) y_{n}\right) \\
& -2 f\left(x_{1}, y_{1}\right) f\left(x_{2} x_{n}-\alpha y_{2} y_{n}, x_{2} y_{n}-x_{n} y_{2}\right) \mid \\
& =\mid f\left(x_{1} X_{n}+\alpha y_{1} Y_{n}, x_{1} Y_{n}+X_{n} y_{1}\right)+f\left(x_{1} X_{n}-\alpha y_{1} Y_{n}, X_{n} y_{1}-x_{1} Y_{n}\right) \\
& -2 f\left(x_{1}, y_{1}\right) f\left(X_{n}, Y_{n}\right) \\
& +\mid f\left(x_{1} \widetilde{X}_{n}+\alpha y_{1} \tilde{Y}_{n}, x_{1} \tilde{Y}_{n}+\widetilde{X}_{n} y_{1}\right)+f\left(x_{1} \widetilde{X}_{n}-\alpha y_{1} \tilde{Y}_{n}, \widetilde{X}_{n} y_{1}-x_{1} \tilde{Y}_{n}\right) \\
& -2 f\left(x_{1}, y_{1}\right) f\left(\widetilde{X}_{n}, \widetilde{Y}_{n}\right)
\end{aligned}
$$

$\leq 2 \varphi\left(x_{1}\right)$ or $2 \psi\left(y_{1}\right)$.

So that

$$
\left\lvert\, \frac{f\left(\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) x_{n}+\alpha\left(x_{1} y_{2}+x_{2} y_{1}\right) y_{n},\right.}{\left.\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) y_{n}+x_{n}\left(x_{1} y_{2}+x_{2} y_{1}\right)\right)}\right. \text { f(x,y)}
$$

$$
+\frac{f\left(\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) x_{n}-\alpha\left(x_{1} y_{2}+x_{2} y_{1}\right) y_{n},\right.}{\left.x_{n}\left(x_{1} y_{2}+x_{2} y_{1}\right)-\left(x_{1} x_{2}+\alpha y_{1} y_{2}\right) y_{n}\right)} ⿻ f\left(x_{n}, y_{n}\right) \quad, ~
$$

$$
f\left(\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) x_{n}+\alpha\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{n}\right.
$$

$$
+\frac{\left.x_{n}\left(x_{2} y_{1}-x_{1} y_{2}\right)+\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) y_{n}\right)}{f\left(x_{n}, y_{n}\right)}
$$

$$
+\frac{f\left(\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) x_{n}-\alpha\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{n},\right.}{\left.x_{n}\left(x_{2} y_{1}-x_{1} y_{2}\right)-\left(x_{1} x_{2}-\alpha y_{1} y_{2}\right) y_{n}\right)} ⿻ f\left(x_{n}, y_{n}\right) \quad .
$$

$$
\left.-2 f\left(x_{1}, y_{1}\right)\left\{\frac{f\left(x_{2} x_{n}+\alpha y_{2} y_{n}, x_{2} y_{n}+x_{n} y_{2}\right)}{+f\left(x_{2} x_{n}-\alpha y_{2} y_{n}, x_{2} y_{n}-x_{n} y_{2}\right)} \underset{f\left(x_{n}, y_{n}\right)}{\}}\right\} \right\rvert\,
$$

$$
\leq 2 \frac{\varphi\left(x_{1}\right)}{\left|f\left(x_{n}, y_{n}\right)\right|} \text { or } 2 \frac{\psi\left(y_{1}\right)}{\left|f\left(x_{n}, y_{n}\right)\right|}
$$

for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Since $\left|f\left(x_{n}, y_{n}\right)\right| \longrightarrow+\infty$ as $n \longrightarrow+\infty$ we get that f satisfies $E(\alpha)$.

By letting $\min \left\{\varphi\left(x_{1}\right), \psi\left(y_{1}\right), \phi\left(x_{2}\right), \zeta\left(y_{2}\right)\right\}=\delta$ we get the Baker's stability ([3], [4]) for the functional equation $E(\alpha)$.

Corollary 3.2. Let $\delta>0$ and let $f: \mathbb{R}^{2} \longrightarrow \mathbb{C}$ be a function such that

$$
\begin{aligned}
\mid f\left(x_{1} x_{2}+\alpha y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right) & +f\left(x_{1} x_{2}-\alpha y_{1} y_{2}, x_{2} y_{1}-x_{1} y_{2}\right) \\
& -2 f\left(x_{1}, y_{1}\right) f\left(x_{2}, y_{2}\right) \mid \leq \delta
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$ and α is a real parameter. Then either f is bounded and $|f(x, y)| \leq \frac{1+\sqrt{1+2 \delta}}{2}$ for all $(x, y) \in \mathbb{R}^{2}$ or f satisfies the functional equation $E(\alpha)$.

References

[1] J. Aczél, J. Dhombres, "Functional Equations in Several Variables", Encyclopedia of Mathematics and its Applications 31, Cambridge University Press, Cambridge, 1989.
[2] R. Badora, R. GER, On some trigonometric functional inequalities, in "Functional Equation-Results and Advances", Adv. Math. (Dordr.) 3, Kluwer Acad. Publ., Dordrecht, 2002, 3-15.
[3] J. Baker, J. Lawrence, F. Zorzitto, The stability of the equation $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc. 74 (2) (1979), 242-246.
[4] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (3) (1980), 411-416.
[5] L. R. Berrone, L. V. Dieulefait, A functional equation related to the product in a quadratic number field, Aequationes Math. 81 (1-2) (2011), 167-175.
[6] B. Bouikhalene, E. Elqorachi, J. M. Rassias, The superstability of d'Alembert's functional equation on the Heisenberg group, Appl. Math. Lett. 23 (1) (2010), 105-109.
[7] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke. Math. J. 16 (2) (1949), 385-397.
[8] P. W. Cholewa, The stability of sine equation, Proc. Amer. Math. Soc. 88 (4) (1983), 631-634.
[9] T. M. K. Davison, D'Alembert's functional equation on topological monoids, Publ. Math. Debrecen 75 (1-2) (2009), 41-66.
[10] Z. GAJDA, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (3) (1991), 431-434.
[11] P. GĂVruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (3) (1994), 431-436.
[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[13] D. H. Hyers, G. Isac, Th. M. Rassias, "Stability of Functional Equations in Several Variables", Progress in Nonlinear Differential Equations and their Applications 34, Birkhäuser Boston, Inc, Boston, 1998.
[14] S. M. Jung, J. H. BaE, Some functional equations originating from number theory, Proc. Indian Acad. Sci. Math. Sci. 113 (2) (2003), 91-98.
[15] Pl. Kannappan, On the functional equation $f(x+y)+f(x-y)=2 f(x) f(y)$, Amer. Math. Monthly 72 (1965), 374-377.
[16] G. H. Kim, On the stability of trigonometric functional equations, Adv. Difference Equ. (2007), Art. ID 90405, 10 pp.
[17] G. H. Kim, A stability of the generalized sine functional equations, J. Math. Anal. Appl. 331 (2) (2007), 886-894.
[18] G. H. Kim, On the stability of generalized D'Alembert and Jensen functional equations, Int. J. Math. Math. Sci. 2006, Article ID 43185, (2006), 1-12.
[19] J. M. Rassias, On approximation of approximately linear mapping by linear
mappings, J. Funt. Anal. 46 (1) (1982), 126-130.
[20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (2) (1978), 297-300.
[21] L. Székelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer. Math. Soc. 84 (1) (1982), 95-96.
[22] S. M. Ulam, "A Collection of Mathematical Problems", Interscience Tracts in Pure and Applied Mathematics 8, Interscience Publishers, New York-London, 1960.
[23] W. H. Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (7) (1920), 300-312.

