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As low student enrollment and high attrition among col-
lege students in science, technology, engineering, or
mathematics (STEM) fields challenge STEM education
and career growth (Sithole et al., 2017), the need to in-
vestigate what helps students successfully transition
from high school mathematics to single variable college
calculus is critical. For many college students, college
level calculus functions as a crucial gatekeeper in the
STEM fields as well as other fields that draw upon math-
ematics. Bressoud, Mesa, & Rasmussen (2015) confirm:
This course requirement often proves to be an “insur-
mountable obstacle or—more subtly—a great discour-
ager from the pursuit of fields that build upon the
insights of mathematics” (p. v).

The many challenges that high school mathematics
teachers face as they prepare their students for future
success in college level mathematics has led researchers
to study the school-to-college transition, often referred
to as the secondary-tertiary transition. This transition be-
gins the junior year in high school and extends across
the first two years of college (Wade, Sonnert, Sadler,
Hazari & Watson, 2016; Gueudet, 2008). The extent and
quality of high school preparation during the secondary-
tertiary transition in mathematics has been shown 
to contribute to students’ decisions to persist in or 
move out of STEM majors once they are in college
(Wade, Sonnert, Wilkens, & Sadler, 2017; Ellis, Fosdick
& Rasmussen, 2016). 

ABSTRACT Quantitative analysis of the Factors Influencing College Success in Mathematics
(FICSMath) Survey data indicates that high school mathematics teachers’ abilities to teach for
conceptual understanding is a significant and positive predictor of student performance in single-
variable college calculus. To explore these findings further, we gathered and analyzed interview
data gained from a representative sample of high school precalculus teachers from across the U.S.,
identified by their students as requiring high levels of conceptual understanding (n=13). Seventeen
themes were identified and then combined into five overarching phenomenological themes. These
overarching themes suggest that teachers who teach for high conceptual understanding (a) support
relational understanding during problem solving, (b) require students to learn how to study to
build on prior knowledge and learn from mistakes, (c) use mathematical language and ask critical
questions to support learning, (d) focus on content knowledge necessary to make connections, and
(e) use technology to support learning concepts but limit calculator use. Comparison of these
results to quantitative findings further illuminate that intentional development of disciplinary
knowledge, cognition, and language are noteworthy points of intersection for teachers and
researchers alike.  

KEYWORDS conceptual understanding, mathematics, high school teachers, pedagogical practices,
precalculus, college calculus
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While a handful of studies identify possible causes
and detail challenges specific to the transition from high
school mathematics to college level calculus (Clark &
Lovric, 2008; Selden & Selden, 2001), few examine what
can be done to effectively prepare high school students
for success in college level calculus. A growing body of
research identifies teaching for high conceptual under-
standing as a significant and positive predictor of future
performance in tertiary calculus (Wade, Sonnert, Sadler,
& Hazari, 2017). This study draws on this research and
investigates what high school precalculus and calculus
teachers—identified as teaching for high conceptual un-
derstanding—do to prepare students for future success
in college level calculus

The FICSMath Project

The Factors Influencing College Success in Mathematics
(FICSMath) Project remains the largest and most recent
national study of the secondary-tertiary transition. In the
fall semester of 2009, college freshmen enrolled in single
variable college calculus at public and private colleges
and universities across the U.S. completed the FICSMath
Survey. A total of 10,492 surveys were collected from 134
two- and four-year post-secondary institutions. On this
survey, students responded to questions about their ed-
ucational experiences in their last high school mathemat-
ics course. Professors secured students’ completed
surveys until the end of the semester. Before returning
the surveys to the Harvard-Smithsonian Center for As-
trophysics, professors recorded final grades for each stu-
dent on the student’s respective survey. The collection
of this data allowed the relationship between students’
high school instructional experiences and actual per-
formance in college-level calculus to be examined. 

Quantitative analysis of this data found the concep-
tual understanding survey item to be a significant pre-
dictor of future performance in tertiary calculus (Wade,
Sonnert, Sadler, & Hazari, 2017). That is, among respon-
dents who (a) took secondary precalculus or calculus
courses in the spring of their senior year in high school,
and (b) took tertiary calculus in the fall semester, those
who reported experiencing high school mathematics in-
struction requiring high conceptual understanding per-
formed better in their tertiary calculus course. This
research advances understanding of the secondary-ter-
tiary transition from the students’ perspective. What re-
mains unknown, however, is the relationship between
what students reportedly experienced and what their
high school teachers actually did to teach for high con-
ceptual understanding in their classrooms. 

Our interest in understanding what high school
teachers do to successfully prepare secondary students
for future success in tertiary calculus led us to contact
teachers identified as teaching for high conceptual un-
derstanding on the FICSMath Survey. Because the FIC-
SMath Survey asked respondents to provide their most
recent high school mathematics teachers’ names, we
were able to interview a systematically-selected national
sample of precalculus and calculus teachers. These
teachers described how they defined and promoted con-
ceptual understanding in their classrooms as well as
what they did to prepare students for tertiary calculus
success.

Investigating Conceptual Understanding

Conceptual understanding has been a prominent topic
in mathematics education research for many years. For
example, Brownell (1935), Davis (1984), Hiebert & Car-
penter (1992), and Hiebert & Grouws (2007) define con-
ceptual understanding as making mental connections
among mathematical facts, procedures, and ideas. A
dominant assumption in this research is that the end
goal for conceptual understanding is knowledge that can
be used to “recognize, identify, explain, evaluate, judge,
create, invent, compare, and choose” (Star, 2000, p. 3).
Skemp (2006) extends this research by describing two
different types of understanding that occur in school
mathematics: relational and instrumental understand-
ing. Relational understanding implies that students
know what to do and why, whereas instrumental under-
standing indicates that students know rules without rea-
son. Another way to consider relational understanding
is through Russell’s (1999) web of mathematical mem-
ory. This web networks ideas and concepts in long-term
memory. Mathematical memory is then retrieved from
working memory to support meaningful mathematical
problem solving. 

This research illuminates the critical role that concep-
tual understanding plays in problem solving and the
learning of mathematics. Quantitative analysis of the
FICSMath Survey concludes similarly: Conceptual un-
derstanding proved to be a significant and positive pre-
dictor of performance in tertiary calculus (Wade,
Sonnert, Sadler, & Hazari 2017). In Wade et al.’s (2017)
in-depth correlational study of the 70 instructional items
on the FICSMath Survey, four constructs correlated with
the conceptual understanding survey item: multiple rep-
resentations (5 items; r = 0.301), applications (4 items;
r=0.207), discussion (4 items; r=0.254), and mathemati-
cal fluency (5 items; r=0.402). Use of a hierarchical linear
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model (HLM) further revealed the mathematical fluency
construct to be a positive predictor of future perform-
ance in tertiary calculus. (For a full report of these find-
ings, see Wade, Sonnert, Sadler, & Hazari, 2017).
Intrigued with these findings, this study allowed us to
more richly explore what high school teachers—identi-
fied by former students on the FICSMath Survey as
teaching for high conceptual understanding—do to pre-
pare students for future success in college level calculus. 

Research Questions and Study Design

This study is a follow-up qualitative investigation of the
FICSMath quantitative results linked to conceptual un-
derstanding. In this phase, we explore what teaching for
conceptual understanding means and involves for a na-
tional sample of high school teachers identified on the
FICSMath Survey as teaching for high conceptual under-
standing. That is, on a 0-5 scale, where 0-1 indicated a
low level of teaching for conceptual understanding, and
2-3 indicated a medium level, these teachers were rated
at a high level (4-5) of teaching for conceptual under-
standing. 

We base our approach to qualitative inquiry in phe-
nomenology. Like all qualitative research, this approach
is concerned with exploring phenomena “from the inte-
rior…taking the perspectives and accounts of research
participants as a starting point” (Ritchie, Lewis, Nichols,
& Ormston, 2014, p. 3). What is particular to phenome-
nology, however, is its focus on how a group of individ-
uals makes sense of the same phenomenon based on
their experience and the meaning that it holds for them
(Akerlind, 2005). A major advantage to using this ap-
proach, then, is that it allowed us to unpack conceptual
understanding as the teachers defined it in their own
terms and enacted in their own ways. 

In theorizing about understanding (conceptual or
otherwise), Gadamer (1996) suggests that understanding
is generated in the “fusion” and interplay among various
perspectives or “horizons” (p. 306). Rather than objectify
conceptual understanding as a phenomenon that these
teachers alone can fully explicate, we endeavored to dis-
cover the spaces where multiple perspectives confirm,
challenge, complicate, and expand each other. Although
our deliberation of conceptual understanding in this
paper focuses on the teachers’ perspectives, we include
our own perspectives and perspectives prevalent in the
literature as well. We do so not as a matter of testing
teachers’ knowledge in relation to what we or others
know about conceptual understanding, but to honor
their voices and situate their contributions (which cor-

relates both with students' notions of conceptual under-
standing and students' subsequent performances in ter-
tiary calculus) within the larger conversation about
conceptual understanding in ways that help us to better
prepare high school students for later success in college-
level mathematics. Accordingly, the following questions
frame this study:

1.  How do these high school teachers define 
conceptual understanding in mathematics?

2.  What do they say that they do to promote 
conceptual understanding in the precalculus 
and/or calculus courses they teach?

3.  What do they believe are the best ways to prepare
students for college calculus success? 

4.  How do the findings generated from this study 
inform the field about conceptual understanding
and the secondary-tertiary transition?

Regarding the last question, we relate what we
learned about conceptual understanding through this
study to what we learned through quantitative research
previously conducted. In so doing, we provide a richer,
collective understanding of what teaching for conceptual
understanding means. 

Method

The FICSMath Teacher Sample
Of the 10,492 students who completed the FICSMath
Survey, a subset of 2,326 students had precalculus their
senior year in high school. Within this subset, 1,285
(55%) students indicated that their precalculus teacher
required high conceptual understanding. Likewise, there
were 4,912 respondents who reported they had some
level of calculus their senior year in high school. From
these, 3,248 (66%) reported their teachers required high
conceptual understanding. The FICSMath Survey re-
spondents had the option of reporting their senior level
high school mathematics teacher’s name and the name
of their high school attended. If provided, this data was
used to identify teachers for this study.

From those teachers who met the aforementioned cri-
teria and for whom we had names and contact informa-
tion, we randomly selected and emailed a sample of
teachers from each of the four U.S. Census Regions an
invitation to participate in the study. Twenty-six teachers
from the West, 24 from the Midwest, 17 from the South,
and 17 from the Northeast were contacted. Of the 84
teachers contacted, 13 (8 females; 5 males) agreed to be
interviewed. Table 1 lists the number of teachers we in-
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terviewed by U.S. Census Region. The number of years
of teaching experience among participants per region av-
eraged twenty years or more (West: 22 years; Midwest:
23 years, South: 25 years, and Northeast: 20 years respec-
tively). Thus, the pool of teachers interviewed can be 
described as experienced and tenured.

thinking about further. We also wrote analytic memos
to provide a visible ‘audit trail’ as we moved from ‘raw’
data through preliminary coding to final codes. 

Second Phase
Members of the research team met at significant points
throughout the data collection process to share quotes,
identify patterns and regularity, discuss emerging codes
across the 13 interview excerpts, and reflect on idiosyn-
crasies that challenged or added to our thinking. In Table
2, we present a sampling of quotations for one of the in-
terview questions to show how we (a) examined teacher
statements looking for repeated words or ideas to gen-
erate preliminary codes, and (b) arrived at final thematic
codes. The same process was used for coding all of the
three interview questions.

Third Phase
As themes emerged and recurred in the data, we shifted
from an exploratory to a confirmatory stance and ad-
dressed issues of validity. According to Dahlin (1999),
the validity of phenomenological research is based on
three factors. The first factor is that major themes must
be independent. Once codes were finalized, we con-
ducted a check to determine the independence of the
themes assigned to teacher statements. Inter-rater relia-
bility (i.e., the extent to which two raters agreed on the
assigning of teacher statements to themes) was estab-
lished through comparing coding across two raters.
Cohen’s Kappa was computed to be 0.70. The adjusted
agreement (accounting for chance agreement) between
the two raters was 70%, thereby indicating good rating
consistency between raters (Landis & Koch, 1977).

The second factor is plausibility. Plausibility requires
that the categories represent actual or possible experi-
ences (Dahlin, 1999). To ensure plausibility, codes and
categories were derived from the teachers’ actual words
rather than pre-defined categories. Members of the re-
search team also checked the generation of codes and
categories for consistency of interpretation.

The last factor important to validity is correspon-
dence between the generated themes and what is known
from previous studies of the phenomenon. As men-
tioned previously, this study is a qualitative investiga-
tion of the FICSMath quantitative results linked to
conceptual understanding. Thus, we address the need
for interconnectedness of data by comparing the results
gained from this study to quantitative findings gained
from an earlier study (Wade, Sonnert, Sadler, & Hazari,
2017).

Data Collection
In-depth interviews were a key component of this study.
Our semi-structured, open-ended interview protocol fo-
cused on the first three research questions and also col-
lected information about the secondary mathematics
courses and grade level(s) they taught. Because the
teachers were geographically dispersed across the U.S.
and face-to-face interviews were not possible, we con-
ducted these interviews by phone. Interviews averaged
30 minutes. All were recorded and transcribed for the
purpose of analysis. 

Phases of Analysis
Our approach to this research relied on the gathering
and analysis of phenomenological interpretations and
experiences. Therefore, interpretative phenomenological
analysis guided how we examined individual teacher re-
sponses to the first three research questions (Saldaña,
2015). The analysis occurred in four phases. 

First Phase
To honor the teachers’ voices and ground the analysis in
their own perspectives, we used in vivo coding, open
coding, and analytic memos in the first cycle of analysis
(Saldaña, 2015). Interview data were aggregated by re-
search questions. The researchers read teacher responses
to each question with the purpose of identifying (a) sig-
nificant teacher statements that distilled, summarized,
or added value to each of the three questions posed, (b)
patterns and regularity of interpretation and action, and
(c) any statements perceived as idiosyncratic or worth
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Table 1
Number of Teachers Interviewed by U.S. Census 
Region and Gender 

US Census 
Region

Males 
Interviewed

(n=5)

Females 
Interviewed

(n=8)

Total Teachers
Interviewed 

(n=13)

West
Midwest
Northeast
South

2
3
0
0

1
2
2
3

3
5
2
3



Final Phase
To answer our fourth research question, we used axial
coding to deliberate on the relationships among all
themes within and across the first three research ques-
tions (Saldaña, 2015; Spiggle, 1994). This layer of analysis
allowed us to identify overarching phenomenological
themes. We then compared these overarching themes
(from the teachers’ perspectives) to the FICSMath Study
quantitative results (from the students’ perspectives). 

Researcher Reflexivity
Our involvement in this project stems from a shared
background and interest in secondary mathematics ed-
ucation and teacher education. As past and present high
school teachers and researchers ourselves, we wish to
counter the trend of students leaving STEM fields be-
cause of difficulty with the secondary-tertiary transition
in mathematics. This study allowed us to address a main
limitation of the quantitative FICSMath Study, which
follows: When it comes to teaching for high conceptual
understanding, what do these high school teachers say
they do to prepare their students for future success in
tertiary calculus? 

Findings                                                                   

The study’s research questions frame the sharing of
themes gained from our analysis. Within each question,
we discuss each theme, moving from themes that have
the greatest to the least number of teacher responses. A
total of 17 themes emerged from this analysis—four,
eight, and five themes respectively. To answer the fourth
research question, we present five, overarching phenom-
enological themes gained through the deliberation on 
all themes identified within and across the first three 
research questions. 

Definition of Conceptual Understanding 
Teacher responses to the question, “What is the meaning
of conceptual understanding in mathematics?” gener-
ated 20 statements that resulted in four themes: (a) ap-
plications are demonstrated (6 statements), (b) relational
understanding is displayed during problem solving (5
statements), (c) learning is discussed (5 statements), and
(d) students build on prior knowledge (4 statements).

Applications Are Demonstrated. Teachers defined
conceptual understanding as students being able to

Raw Data Preliminary Code Final Thematic Code

A lot of students think “If I can get the right answer, then
I know math.” But that is not what math is about. I tell
my students to look at the concepts. Think strategy,
think ideas. It is about the steps and the process, not
the answer itself. 

Just doing the problem is not an effective way to teach
understanding. Let them [students] present ideas and
struggle

I try to give them a framework they can hang their
procedures on. 

I spend a lot of time trying to understand the details of
the material and be able to see it from different
perspectives. Then I digest the important points into the
notes I give them, and outline the important aspects I
want them to get out of it [the lesson].

When a student asks me a question that I know I have
answered before, I have been able to look at it differently,
state it a different way, or use some other example that
they already know and show how it relates.

Think concepts, strategy, and
process, not only about the
final answer. 

Allow students to struggle
through the problem-solving
process.

When problem solving, hook
to prior knowledge.

Teachers utilized their own
content knowledge to bring
emphasis to the concepts.

Teachers content knowledge
allows them to think flexibly
about the content they teach.

Connect problem solving
concepts to prior knowledge
and allow students to
struggle.

Apply content knowledge.

Table 2
Sample of Initial Coding Categories for Interview Question: What Teachers do to Teach for Conceptual Understanding
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apply mathematical concepts in novel or different con-
texts. As one teacher shared, “students are able to apply
what they learn to real-life situations.” Another teacher
clarified, “A student who has a good understanding of a
concept should be able to apply that concept in a lot of
different circumstances, and a lot of problems that look
different but are rooted in similar concepts.” Lastly, one
teacher expressed, “They [students] would be able to see
something – a problem or situation – they have never
seen before and be able to use the tools they have learned
to approach it and solve it.” Interestingly, application
problems in mathematics are often used to improve stu-
dent engagement in learning mathematics (Beswick,
2010). These teachers suggest that application problems
serve other purposes beyond student engagement.

Relational Understanding is Displayed 
During Problem Solving 
Here, teachers identified the importance of sense making
during the problem-solving process. As one teacher
stated, “It’s not [students thinking about] How do I do it?
It’s What am I doing? ” Another explained, “Understand-
ing is demonstrated when students bring up a topic from
several weeks ago and are still able to understand and
explain it.” These views echo what Skemp (2006) identi-
fies as relational understanding. 

Learning is Discussed
For these teachers, mathematical discourse is a tool used
in class to share and support understanding. As one
teacher clarified, “A lot of times you can get to concep-
tual understanding through discussions.” The asking of
open-ended questions such as, “What does it mean
when a binomial is in parenthesis?” were also deemed
important. They also value students asking each other
questions, indicating that “conceptual understanding
happens during work time when students are asking
each other questions.” These statements speak to the im-
portance of mathematical discourse, which involves stu-
dents engaging in meaningful problem solving, while
conjecturing, scrutinizing, and defending problem solv-
ing ideas (Lampert, 1989; Ball, 1993). 

Students Build on Prior Knowledge
Teachers expressed the importance of mathematics
building upon itself and stressed wanting to help stu-
dents see and forge connections across content and
courses. One teacher shared, “Everything with math
builds. You have to have that foundation.” Another
stated, “[They should] understand the mathematical
principles that lead to the procedures, as opposed to
memorizing the procedures.” Another teacher empha-

sized the need for helping students gain a “firm grasp
on what the essence of something is.” Yet another said,
“Being able to make connections, see those connections,
and put them into a new situation so that you don’t just
understand the fact, but are able to pull the idea forward
and build upon several other ideas.” These ideas support
mathematical principles and concepts being stored in
long-term memory and being available for recall to sup-
port the learning of more new mathematics (Sweller, van
Merrienboer, & Paas, 1998).

What Teachers do to Teach for Conceptual
Understanding 
Teacher responses to the question, “Describe how you
have helped students understand concepts in mathemat-
ics” generated 57 statements that coalesced around eight
themes: (a) connect problem solving to prior knowledge
and allow students to struggle (12 statements), (b) assess
student work (9 statements), (c) provide opportunities
for students to learn from their mistakes (6 statements),
(d) apply content knowledge (5 statements) , (e) focus on
the language of mathematics (five statements), (f) use
representations (5 statements), (g) use technology to sup-
port concepts (3 statements), and (h) ask critical ques-
tions (2 statements).

Connect Problem Solving Concepts to Prior
Knowledge and Allow Students to Struggle.
The number of teacher statements in this theme is the
greatest across the first three research questions. Teach-
ers shared various ways they support students as they
build on prior learning and build new mathematical con-
cepts. One stressed, “After hooking to prior learning, I
let them figure out problems based on what they already
know.” Two teachers highlighted the importance of the
problem-solving process as compared to the final an-
swer. Exemplifying this, one stated, “A lot of students
think, ‘If I can get the right answer, then I know math,’
but that is not what math is about. I tell my students to
look at the concepts. Think strategy, make connections
across ideas. It is about the steps and the process, not just
the answer itself.” The other teacher added, “The ques-
tions on tests are never straightforward.” Another
shared, “the structure of the classroom – sitting together,
not reviewing, establishing their own habits and asking
themselves questions” as ways to support understand-
ing. Furthermore, addressing the willingness to struggle
through the problem-solving process, one teacher
stressed, “They [students] have to have done something
mathematical towards solving the problem and they
need to learn to get past the fear that they have.” When
teachers incorporate such opportunities for students to



develop conceptual understanding, successful problem
solving can occur (Haskell, 2001). The term "problem
solve" has multiple meanings, but it is most often asso-
ciated with solving nonstandard problems (Darken,
Wynegar, & Kuhn, 2000). Such problems require stu-
dents to “grapple with new and unfamiliar tasks when
the relevant solution methods are not known” (Schoen-
feld, 1992, p. 56). 

Assess Student Work
Teachers saw assessment of student work as a way to
support their understanding. For example, one teacher
stated, “I don’t accept a blank problem with a question
mark on homework.” Another responded, “They [stu-
dents] receive a zero if they leave a blank answer because
they have to learn to attempt every problem that they
see.” Other teachers stressed the types of assessments
they grade. For example, one teacher shared, “More of
the grading is on tests and quizzes where they have to
demonstrate knowledge versus on homework.” Schoen-
feld (2016) refers to assessing problem solving as provid-
ing access to what students know and can do from their
prior learning.

Provide opportunities for students to 
learn from their mistakes
Teachers valued students being persistent problem
solvers. As one teacher explained, “I try to teach them
[students] it is okay to get the wrong answer when
they’re learning because it isn’t always about getting the
right answer.” Another shared, “It is important that stu-
dents learn from their and others' mistakes.” Addition-
ally, one teacher indicated, “When we go over a problem
together, I’ll ask them if they [the students] thought of
certain points and ask them why the answer is not some-
thing or why an incorrect answer is unreasonable.”
When it comes to teaching AP Calculus, one teacher
noted, “Giving students old AP questions and asking
why certain answer choices are wrong supports the rea-
soning process by analyzing wrong answers and work-
ing backwards.” These practices align with the idea of
using flawed reasoning as being a part of the problem-
solving process. When students try a problem-solving
method that does not work, they then have the oppor-
tunity to learn from flawed reasoning (Russell, 1999).

Apply Content Knowledge
Teachers shared how they use their own content knowl-
edge when preparing to teach mathematical concepts.
One teacher indicated, “If you’re going to teach high
school mathematics, you’re going to have to take a bit
[of mathematics] in college.” Another added, “I spend a

lot of time trying to understand the details of the mate-
rial and see it from different perspectives. Then I digest
the important points into the notes I give them and out-
line the important aspects I want them to get out of it
[the lesson].” Another stressed, “My examples are very
specific. When you’re creating an example, if you
haven’t thought each step through, and then you get in
the middle of it and think ‘Oh gosh, I didn’t think it
would go down this path,’ then that’s not a good plan.”
In a similar vein, one confirmed, “the underlying prin-
ciples—it’s kind of theoretical” as being essential focal
points when teaching mathematics. Additionally, one
teacher shared, “when a student asks me a question that
I know I have answered before, I look at it differently,
state it a different way, or use some other example that
they already know and show how it relates.” These
teachers echo the importance of teachers’ content knowl-
edge for pedagogical purposes, as demonstrated by a
rich literary base (Ball, Thames, & Phelps, 2008; Krauss
et al., 2008; Skemp, 2006).

Focus on the Language of Mathematics
These teachers support students' understanding of the
language of mathematics. One teacher stated that she en-
courages students to “not just regurgitate a definition but
describe something in their own words and write their
own problem that utilizes the idea.” Another teacher of-
fered, “I try to get them [students] to understand a defi-
nition or a concept in as few words as possible.” Another
teacher simply said, “I emphasize definitions a lot.”
When it comes to mathematical literacy, it is critical that
students use precise mathematical language, syntax, and
symbolism in oral and written work (Wade, Sonnert,
Sadler, Hazari, 2017). 

Use Representations
Here, mathematics teachers shared their view that repre-
sentations, such as “manipulatives, everyday examples,
and visualizations,” are used to help students under-
stand mathematical concepts. Teachers also discussed,
“Connecting concepts to visual diagrams” to support
students making connections across concepts. Modeling
mathematics was also shared as a way to “explain con-
fusions.” Calculus teachers discussed representing ideas
“geometrically and taking things apart piece by piece.”
Likewise, teachers who also taught Algebra I referred to
representations as a way to “explain balance and equiv-
alence.” These ideas align with Tall’s (1997) view of rep-
resentation. He considers representations as ways to
demonstrate how functions “do and undo” and explain
foundational, yet complex, mathematical relationships
and ideas (p. 7).
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Use Technology to Support Concepts
Teachers shared how they use technologies to support
understanding. For example, one teacher stated “I use
graphing calculators in the classroom, which helps them
[students] to look at things from different perspectives.”
Another teacher indicated, “I usually spend at least 3-4
days in the computer lab with them [students], working
on activities that construct what the derivative is through
different approaches. Getting them [students] to actually
play with these things themselves and having to think
on their own is good for them, especially in Calculus
when the concepts are challenging.” Lastly, one teacher
mentioned, “I found Geometer’s Sketchpad to be useful
for teaching calculus and precalculus.” In a similar vein,
the National Council of Teachers of Mathematics
(NCTM) recommends that teachers and students have
regular access to technology to support mathematical
sense making, reasoning, problem solving, and commu-
nication (NCTM, 2015).

Ask Critical Questions
These teachers reported asking students critical ques-
tions, such as “Can you come up with an equation based
on what you read? Can you understand what you’re
looking at? Do you understand why you are doing the
steps you’re doing?” Another shared, “I try to give them
[students] problems that force them to think about the
actual concepts, something more than just ‘find the de-
rivative of f(x),’ but instead, I ask questions, such as
‘What does the derivative mean?’” This theme aligns
with the view of Krauss et al. (2008) that one way teach-
ers can push students’ thinking to higher levels is
through asking critical questions. 

Teaching for College Calculus Success 
Lastly, we asked the teachers, “What do you believe is
the best way to prepare students for college calculus suc-
cess?” Teacher responses generated 24 statements that
fell within five themes: (a) focus on foundational content
(10 statements), (b) require conceptual understanding 5
statements), (c) require students to learn how to study
(4 statements), (d) focus on the language of mathematics
(3 statements), and (e) limit graphing calculator use (2
statements).

Focus on Foundational Content
Teachers expressed the need to develop foundational
content knowledge. One expressed, “They [students]
need to have a good understanding of algebra. The stu-
dents have as much trouble with calculus as they do
with algebra, especially graphing.” Addressing the need

to spend more time on algebra, one teacher shared, “Stu-
dents need to feel confident and competent in algebra.
Rushing through those courses does a disservice to stu-
dents when they reach upper level classes.” Addition-
ally, one reflected, “Algebra II and pre-calculus are
critical for calculus preparation. If you are missing any
of those pieces, it’s a real problem.” Other teachers ad-
dressed specific content: “Logarithms should be a focus
because they [students] still do not fully understand ex-
ponents. The properties are strange, and in Algebra II
the domain issues are ignored. So, when you try to in-
troduce that, they [students] reject it.” One teacher also
shared, “I focused more on the symbols, the functions
and their properties.” Wade, Sonnert, Sadler, Hazari,
and Watson (2016) examined similarities and differences
between teachers’ and professors’ perspectives on
preparing students for college calculus success. The pro-
fessors mentioned algebra, more than anything else, as
foundational preparation for college calculus success.
These teachers’ views echo the professors' perspectives
of the importance of learning algebra. 

Require Conceptual Understanding
These teachers required students to understand mathe-
matical concepts. “They [students] are not always sure
why they’re doing what they’re doing, one teacher
noted. “Instead of just giving the rules, they have to have
some part in discovering the rules.” Another one re-
marked, “I spend a lot of time on the “why.” Why do we
use this method? Why is it better than the other method?
If they know how and why they are doing what they’re
doing, then they will be successful in advanced classes.”
In terms of understanding specific content, another
teacher responded, “Conceptual understanding of
graphs and functions are the basic building blocks for
calculus. Working with graphs and functions in a way
that requires deeper conceptual understanding trips up
most students.” These views of how to require concep-
tual understanding align with knowing what to do and
why, which aligns with Skemp’s (2006) definition of re-
lational understanding.

Require Students to Learn How to Study
Teachers indicated that learning mathematics requires
intentional focus that comes from studying. One teacher
indicated, “Give students lots of suggestions for how to
study. Students tend to get to precalculus and do not do
as well as they previously had. They expect the informa-
tion to simply come to them rather than to pursue the
ideas.” Another participant stated, “A lot of students get
to calculus without having to work or study in math
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class. They are not used to having questions on quizzes
or tests that they have not seen on their homework. So,
it is important to get them used to that before they get
to calculus.” Clark and Lovric (2008) identify being able
to study as one of the important shifts students must
make as they transition from lower to higher level math-
ematics. 

Focus on Mathematical Language
Teachers identified the need to use disciplinary mathe-
matical language correctly. One teacher explained “We
do them [students] a tremendous disservice when teach-
ers use nonsense terminology such as, ‘for x+2=7 move
the 2 to the other side,’ rather than teaching using actual
operations involved.” Speaking more broadly about lan-
guage, another teacher stated, “Algebra II is the language
of preparing students for college calculus.” Tall (2004)
identifies mathematical language as essential towards
connecting mathematical ideas, perceptions, and con-
cepts necessary to develop abstract thought.

Limit Graphing Calculator Use
Teachers addressed that the AP Calculus exam requires
the use of calculators. One teacher clarified, “Students
don’t use a calculator in calculus classes until the very
end of the year (February). A graphing calculator can be
used to illustrate concepts to the class such as how a
graph of a derivative is affected by something. However,
students should create everything by hand so they can
do everything with their brains and appreciate the tech-
nology.” This idea aligns with Wade, Sonnert, Sadler,
and Hazari (2017) and the NCTM’s (2015) views regard-
ing the strategic use of technology. Both groups recom-
mend that calculators are used to support concepts, but
not to replace problem solving efforts. 

Overarching Phenomenological Themes
Table 3 addresses our fourth research question: How do
the findings generated from this study inform the field
about conceptual understanding and the secondary-ter-
tiary transition? To address this question, we used axial

Overarching 
Phenomenological 

Themes

What does it mean to 
conceptually understand

mathematics? 

How you have helped 
students understand 

concepts in mathematics?

What is the best way to 
prepare students for college

calculus success?

Theme 1:
Support relational
understanding during 
problem solving.

Theme 2: 
Require students to learn how
to study so they can build on
prior knowledge and learn
from their mistakes.

Theme 3:
Use mathematical language
and ask critical questions to
support learning.

Theme 4: 
Teachers focus on their own
content knowledge necessary
to make connections across
mathematical applications.

Theme 5: 
Use technology to support
learning concepts but limit
calculator use.

Relational understanding 
is displayed during problem
solving.

Students build on prior
knowledge.

Learning is discussed.

Applications are
demonstrated.

Require conceptual
understanding.

Require students to learn to
study

Focus on mathematical
language.

Focus on content.

Limit graphing calculator
use.

Connect prior knowledge to
problem solving concepts
and allow students to
struggle.

Provide opportunities for
student to learn from their
mistakes.

Assess student work.

Focus on language of
mathematics.

Ask critical questions.

Apply content knowledge.

Use representations.

Use technology to support
concepts.

Table 3
Alignment Across the Themes Generated from the Three Interview Questions
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coding. Axial coding allows interrelationships to form
and provides the basis for informing a field and theory
construction (Saldaña, 2015; Spiggle, 1994). We arrived
at these themes by specifying relationships and delineat-
ing core themes around which all 17 themes revolved
(Goulding, 2005). Five overarching phenomenological
themes emerged from this deliberation. All told, these
overarching themes suggest that teaching for conceptual
understanding should (a) support relational understand-
ing during problem solving, (b) require students to learn
how to study to build on prior knowledge and learn
from mistakes, (c) use mathematical language and ask
critical questions to support learning, (d) focus on con-
tent knowledge necessary to make connections, and (e)
use technology to support learning concepts but limit
calculator use. These overarching themes, shown in
Table 3, advance current knowledge of precalculus and
calculus instructional practices in relation to conceptual
understanding and of their perceived benefits across the
secondary-tertiary transition. 

Discussion

We now consider the relationship between the over -
arching phenomenological themes gained from this
qualitative study (from the teachers’ perspectives) and
quantitative results gained previously from the FICS-
Math Study (from the students’ perspective). Table 4
(next page) shows our thinking about how these con-
structs and the phenomenological themes relate. It is im-
portant to note that Theme 2 (Require students to learn
to study so they can build on prior knowledge and learn
from their mistakes) and Theme 5 (Use technology to
support learning concepts but limit calculator use) are
not included in the table because they did not align with
the constructs from the quantitative study. 

In Table 4, we identify the three overarching phenom-
enological themes in relation to the four constructs cor-
related with the conceptual understanding item on the
FICSMath Survey (multiple representations, applications,
discussions, and mathematical fluency respectively). Of
the four quantitative constructs listed, mathematical 
fluency is the only construct that was a positive predictor
of performance in tertiary calculus. 

Interestingly, the focus on mathematical language
emerged as a theme for two of our research questions
(RQ2 and RQ3). This finding is not to be taken lightly.
As Kenney (2005) points out, “Mathematics is truly a for-
eign language for most students,” thus making its acqui-
sition “an extremely difficult process” (p. 3). Reasons for
this phenomenon are many with the greatest difficulty

stemming from the “double decoding” that occurs dur-
ing the entire process:

Double decoding…occurs when we first encounter
written mathematics or symbols, which must first be de-
coded, and then connected to a concept that may or may
not be present in prior knowledge even in an elementary
way” (p. 5)

Wakefield (2000) suggests that mathematical lan-
guage requires memorization of symbols, algorithms,
and abstractions that improves over time with practice.
Furthermore, Wakefield posits that the meaning of math-
ematical language is influenced by symbol order (or syn-
tax) and that understanding requires both decoding and
encoding. In sum, these teachers suggest that they pro-
vided explicit instruction around mathematical lan-
guage so that students gained mathematical fluency that
supported their understanding of mathematical con-
cepts at a deeper level. Teaching for high conceptual un-
derstanding, therefore, requires intentional development
of disciplinary knowledge, cognition, and language.

Limitations of the Study and Future Research

The FICSMath quantitative study pointed to conceptual
understanding as needing additional research, and thus,
this follow-up qualitative study was designed. The focus
sought to provide a more in-depth knowledge of con-
ceptual understanding as it relates to what teachers say
they do to support understanding across the secondary-
tertiary transition. While 84 teachers were contacted who
were reported as teaching for high conceptual under-
standing on the FICSMath Study, only 13 agreed to par-
ticipate. This is a small number, and the low proportion
of participants raises the concern of potential non-re-
sponse bias. On the other hand, our sample has the
strength of not being a convenience or snowball sample
but is based on a systematic sampling frame. This, of
course, made data collection much more arduous. The
work that it took in contacting and interviewing this
number of teachers spanned two years. Significant time
and effort were invested to connect two data sets (the
FICSMath Study and the contact information of teachers
and schools) to assure teachers we reached out to were
indeed identified by their prior precalculus or calculus
students as teaching for high conceptual understanding.
Additionally, we sought to have an equal balance be-
tween female and male teachers, but as Figure 1 shows,
five male and eight female teachers participated in this
study. Out of the 53 teachers contacted, 30 were males,
yet fewer males responded to our request to participate
in an interview. 
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Possible areas of additional research—illuminated by
the quantitative and qualitative studies—are as follows:
(a) how to prepare secondary calculus students for the
AP calculus exam, and for tertiary calculus, with depth
of understanding while covering the breadth of material;
(b) how to connect mathematical discourse to increase
student performance; and (c) how to connect application
problems in secondary precalculus and calculus courses
to support the learning for all students; Additionally, the

two overarching phenomenological themes that did not
relate with the quantitative study would also benefit
from more research. It remains unclear how Theme 2
(Require students to learn to study so they can build on
prior knowledge and learn from their mistakes) and
Theme 5 (Use technology to support learning concepts
but limit calculator use) fit in the secondary tertiary tran-
sition. More research in all of these areas may shed light
on the secondary-tertiary transition. All told, the goal 

Qualitative 
Theme

FICSMath 
Quantitative 
Constructs

FICSMath 
Survey Items in 

Constructs

Significance

Theme 1:
Support relational
understanding during 
problem solving.

Theme 3:
Use mathematical 
language and ask 
critical questions to 
support learning.

Theme 4
Focus on teachers’ 
own content knowledge
necessary to make
connections across
mathematical
applications.

Multiple 
Representation

Mathematical 
Fluency

Discuss

Applications

“Multiple representation” was a positive
predictor of future performance in tertiary
calculus for secondary precalculus
students, but not for calculus students.
This may point to AP exam preparation
that is focused on test taking strategies
rather than support for relational
understanding. These findings align with
Bressoud’s (2015) work. How to prepare
students for AP calculus with depth of
understanding, however, remains critical
to investigate.

The importance of mathematical
language (definitions, vocabulary,
functions, which include syntax and
symbolism) is confirmed by the
mathematical fluency construct being 
a positive predictor of performance in
tertiary calculus. 

While mathematical discussions align
with Theme 3, the discussions construct
was not a significant predictor of
performance in tertiary calculus. Use of
mathematical discourse to increase
student performance remains a critical
issue to examine. 

While teachers’ content knowledge is
critical, using it to make connections
across mathematical applications was
beneficial for top-performing students in
secondary calculus, but not for lower-
performing students. How to connect
application problems to support learning
for all students also requires further
study.

•  Highlighted more than one way
of solving a problem

•  Explained ideas clearly
•  Used graphs, tables, and other

illustrations
•  Presented various methods 

for solving problems
•  Teacher was enthusiastic 

about mathematics

•  Emphasis on precise definitions
•  Emphasis on vocabulary
•  Emphasis on hands-on

activities/labs
•  Emphasis on functions
•  Emphasis on mathematical

reasoning

•  Students questions and
comments were valued

•  Class discussions were useful
•  Student were comfortable

asking questions
•  Teachers answers were

valuable

•  Connected math to 
other subject areas 

•  Connected math to real life
applications

•  Connected math to everyday
life 

•  Examples from everyday world
were used. 

Table 4
Relationships Across Overarching Phenomenological Themes (Qualitative Study, Teachers' Perspectives) and 
Conceptual Understanding Constructs (Quantitative Study, Students’ Perspectives)
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remains to address the attrition among college students
in STEM fields by improving students’ preparation for
the secondary-tertiary transition. 

Conclusion

Learning, as defined by cognitive load theorists, is a per-
manent change in long-term memory, meaning that
what is learned can be recalled and applied to support
the processing of more new information (Sweller, Van
Merriënboer & Paas, 1998). When teachers are teaching
for high conceptual understanding, they are not only
teaching for current but future learning as well. Thus,
the challenge of teaching during the secondary-tertiary
transition is not an easy task. 

As mentioned in the beginning of this paper, much
depends on the robustness of the instruction that math-
ematics teachers provide at the high school level (Clark
& Lovric, 2009). Given the critical role that conceptual
understanding plays in preparing high school students
for future success in college calculus, problem solving,
and the learning of mathematics, understanding what
teachers do to effectively achieve it is of great value. With
that in mind, we offer instructive ideas on which teach-
ers and researchers alike can act. 
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