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circRNAs expressed in human peripheral blood are
associated with human aging phenotypes, cellular
senescence and mouse lifespan
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Abstract Circular RNAs (circRNAs) are an emerging
class of non-coding RNA molecules that are thought to
regulate gene expression and human disease. Despite the
observation that circRNAs are known to accumulate in

older organisms and have been reported in cellular senes-
cence, their role in aging remains relatively unexplored.
Here, we have assessed circRNA expression in aging
human blood and followed up age-associated circRNA
in relation to human aging phenotypes, mammalian lon-
gevity as measured by mouse median strain lifespan and
cellular senescence in four different primary human cell
types. We found that circRNAs circDEF6, circEP300,
circFOXO3 and circFNDC3B demonstrate associations
with parental longevity or hand grip strength in 306
subjects from the InCHIANTI study of aging, and fur-
thermore, circFOXO3 and circEP300 also demonstrate
differential expression in one or more human senescent
cell types. Finally, four circRNAs tested showed evidence
of conservation in mouse. Expression levels of one of
these, circPlekhm1, was nominally associated with
lifespan. These data suggest that circRNA may represent
a novel class of regulatory RNA involved in the determi-
nation of aging phenotypes, which may show future
promise as both biomarkers and future therapeutic targets
for age-related disease.

Keywords Circular RNA . Aging phenotypes .

Senescence .Median strain lifespan

Introduction

Aging is a multifactorial process leading to gradual
deter iorat ion of physical and physiological
functionality at the cellular, tissue and organ levels. It
is the primary risk factor for chronic aging pathologies
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such as cancer, sarcopenia, diabetes, cardiovascular
disorders and neurodegenerative illnesses that account
for the bulk of morbidity and mortality in both the
developed as well as developing world (Kirkland 2016
). Physiological parameters such as loss of muscle mass,
frailty, immobility and cognitive impairment increase
the risk of developing geriatric syndromes (Fabbri
et al. 2016; Narici and Maffulli 2010). The molecular
processes that decline with advancing age underpin the
phenotypes of aging. At the cellular level, hallmarks of
aging include genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular se-
nescence, stem cell exhaustion and altered intercellular
communication (Lopez-Otin et al. 2013).

Changes in gene expression have been reported in
many age-related diseases (Yang et al. 2015). In ad-
dition to an increase in transcriptional noise and ab-
errant production and maturation of mRNA tran-
scripts (Bahar et al. 2006; Harries et al. 2011), studies
report associations between gene expression and the
development of age-associated syndromes of the
muscle (Noren Hooten et al. 2010; Welle et al.
2004) as well as neurodegenerative conditions such
as Alzheimer’s disease and Parkinson’s disease
(Miller et al. 2017; Shamir et al. 2017). Differential
expression of genes involved in inflammatory, mito-
chondrial and lysosomal degradation in aging tissues
has also been reported (de Magalhaes et al. 2009).
Gene expression is regulated at many levels. Changes
in the regulation and pattern of alternative splicing are
associated with age in several human populations and
are also evident in senescent cells of different line-
ages, where they may drive cellular senescence, since
restoration of levels reverses multiple senescence
phenotypes (Latorre et al. 2017; Latorre et al. 2018a;
Latorre et al. 2018b; Latorre et al. 2018c; Lye et al.
2019). Notably, non-coding RNAs also demonstrate
associations with aging or senescence and may be of
equal importance (Abdelmohsen et al. 2012; Boulias
and Horvitz 2012; Gorospe and Abdelmohsen 2011).

Circular RNAs (circRNAs) are a recently discov-
ered class of non-coding RNA molecules that are
thought to have important roles in regulation of
gene expression and human disease (Haque and
Harries 2017). circRNAs are formed by the back
splicing of downstream exons to the 3′ acceptor
splice site of upstream exons and result in a cova-
lently closed circular structure containing one or

more exons. They have been proposed to be key
regulators of gene expression by various mecha-
nisms including sequestration of RNA-binding pro-
teins and miRNAs or by acting as a competitor of
linear splicing of their cognate genes (Memczak
et al. 2013). The possibility that a single circRNA
could sequester several such RNA regulators sug-
gests that this class of non-coding RNAs could
modulate many cellular and physiological processes
through multiple pathways. circRNAs are known to
accumulate in older organisms (Gruner et al. 2016),
and some have been reported to be implicated in
cellular senescence (Du et al. 2017; Du et al. 2016).
Despite these promising findings, their role in aging
remains relatively unexplored.

We hypothesized that expression of some
circRNAs may be associated with advancing age,
aging phenotypes, lifespan or cellular senescence.
Changes in circRNA expression over a 5-year period
were assessed in relation to age, combined parental
longevity score (PLS) and hand grip strength. We
then assessed expression levels of 15 circRNAs in
early passage and late passage primary human dermal
fibroblasts, cardiomyocytes, astrocytes and vascular
endothelial cells. Finally, the junction sequences of
relevant exons were examined for conservation be-
tween mouse and humans and where evidence was
present that the back-spliced junction, and thus, the
circular RNA were conserved; we assessed expres-
sion in relation to longevity in six strains of mice
with differential median strain longevities.

We present here evidence that although effects on age
itself did not replicate in the wider sample set, the
expression levels of circEP300 (β = − 0.065, P =
0.001) and circFOXO3 (β = − 0.060, P = 0.002) were
negatively associated with parental longevity score.
circDEF6 was positively associated with parental lon-
gevity score (β = 0.070, P = 0.024) although this did not
reach multiple testing thresholds. circFNDC3Bwas also
nominally associated with hand grip strength (β = 0.004,
P = 0.039). circRNAs (7/12 (58%)) expressed in senes-
cent human primary astrocytes, endothelial cells, fibro-
blasts or cardiomyocytes also demonstrated dysregulat-
ed expression in one or more cell types. Comparative
sequence analysis suggested that four circRNAs may be
conserved in mice. When assessed, circPlekhm1 tran-
script level in spleen was also demonstrated to be pos-
itively associated with mouse median strain lifespan (β
= 0.0025; P = 0.017). These results suggest that some
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age-related circRNAs may play roles in molecular
drivers of aging such as cellular senescence, and hence
may represent potential contributors to lifespan or other
human aging phenotypes.

Methods

InCHIANTI cohort and selection of participants

The InCHIANTI study of Aging is a population study of
aging (Ferrucci et al. 2000). Participants undertook de-
tailed assessment of health and lifestyle parameters at
baseline, and again at three subsequent follow-ups (FU2
2004–2006, FU3 2007–2010 and FU4 2012–2014). The
present study used participants from the third and fourth
follow-up visits (FU3 and FU4). RNA samples and
clinical/phenotypic data were already available for 698
participants at FU3. The collection of the FU4 samples
and data comprise part of this study. During the FU4
interviews in 2012/2013, blood and clinical/phenotypic
data were collected from 455 study participants. These
data were cross-checked against RNA samples and
clinical/phenotypic data already held from FU3, to en-
sure that sample and phenotypic data was available from
both collections. Sample-associated data included mea-
sures of potential confounding factors such as BMI, sex,
level of education (none, elementary, secondary, high
school and university), study site, smoking and white
blood counts (neutrophil, lymphocyte, monocyte, eosin-
ophil percentages). Characteristics of the study popula-
tion are given in Table 1. Informed consent was obtained
from all participants. Ethical approval was obtained
from the Instituto Nazionale Riposo e Cura Anziani
institutional review board, Italy.

Generation of circRNA profiles from old and young
human peripheral blood

Circular RNA profiles were initially generated in parallel
from two sets of pooled peripheral blood total RNA sam-
ples using a modified ‘CircleSeq’ procedure (Lopez-
Jimenez et al. 2018). 2 μg RNA (RNA integrity number
(RIN) = 6.4) was assessed in two separate pools from 20
‘young’ samples (median age = 33 years, range 30–36
years, 55% female, 45% male; RIN 5.6) and 20 ‘old’
samples (median age 87 years, range 86–95 years, 90%
female 10% male, RIN 7.7). Each pooled sample was
divided into two aliquots, one of which was treated with

20 units RNAse R (Epicentre,Madison, USA) at 30 °C for
30 min to remove linear RNA, the other sample being
mock-treated using 1 μL RNase-free water in place of the
enzyme. Both aliquots were cleaned and concentrated
using 2 volumes of RNA clean beads (Beckman Coulter,
Indianapolis, USA) to remove the enzyme. The results of
the RNase R treatment were confirmed on a high-
sensitivity RNA screentape (Agilent, Santa Clara, USA).
Ribosomal RNA was removed, and indexed sequencing
libraries made using the libraries were determined by
qPCR and adjusted for size using Tapestation D1000
analysis (Agilent, Santa Clara, USA). Ribosomal RNA
was removed, and indexed sequencing libraries made
using the Illumina RNASeq protocol. The library concen-
trations were determined by qPCR and adjusted for size
using the data from the Tapestation D1000 analysis. Li-
braries were pooled in equimolar quantities, denatured and
diluted to 12.0 pM + 1% PhiX for clustering and then
underwent 125 paired-end Illumina sequencing in four
lanes using TruSeq SBS reagents (V3).

Analysis of circRNA profiles

RNase R and mock-treated sequence data were assem-
bled, and putative circular RNAs were identified using
PTESFinder (Izuogu et al. 2016) with the human ge-
nome (hg19) reference files provided with the software,
a segment size of 65 and a uniqueness score of 7. The
remaining parameters were left to default settings. To
calculate a comparable measure of circular RNA abun-
dance between samples, we used a measure termed
back-spliced reads per million mapped reads (bpm) for
each circular RNA defined as

bpmi ¼
ji

∑n
a¼1 ja þ ∑n

b¼1cb

� �
� 106

where Ji is the number of reads mapped to the back-
spliced junction of the circular RNA, c is the number of
reads mapped to canonical sites of the gene with the
circular RNA and n is the number of circular RNAs
identified. This measure is designed to be similar to the
commonly used reads per kilobase per million mapped
reads (RPKM) metric used regularly to estimate gene
expression from RNA-Seq data.

In addition to circular RNA detection using
PTESFinder, reads from all samples were also mapped
to the human genome reference (hg19) obtained from
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iGenomes using Tophat v2.1.0 with the pre-set sensitive
alignment parameters in paired-end mode (Trapnell
et al. 2009). The number of reads mapping to each exon
of each gene was then calculated using FeatureCounts
v2.0.0 with parameters for unstranded alignment, paired
reads, count multimapping reads and assigning reads to
overlapping features (Liao et al. 2013; Liao et al. 2014).
Counts were used to calculate RPKM per exon using the
standard method to compare the expression of each
exon across samples.

Pathway analysis of differentially regulated circRNA
host genes

circRNAs showing expression differences between the
pooled old and the pooled young samples were ranked
by RPKM and fold change. To assess whether circRNAs
demonstrating expression differences between young and
old pools were enriched in genes derived from specific
molecular or biochemical function groups, we carried out a
Cytoscape version 2.5.2 plug-in ClueGO analysis. This
platform queries over-representation of query genes in
specific KEGG, REACTOME and WikiPathways
(Bindea et al. 2009). The linear genes hosting the top
10% most abundantly expressed circRNAs in young and
old pools for the circRNA profile were queried against
KEGG_20.11.2017,REACTOME_Pathways_20.11.2017
and WikiPathways_20.11.2017. Outputs were selected
based on ‘enrichment/depletion’ through a two-sided
hypergeometric test with Bonferroni step down forP value
correction with the selected ontology reference set of cho-
sen genes. The GO terms were used to group functional
pathways, and the leading functional grouping was based
on highest significant kappa score.

Design of qPCR assays for circRNA validation

Levels of individual circRNA in young and old pools were
ranked by abundance. circRNAs demonstrating evidence
of altered expression with age fell into three classes: those
expressed exclusively in old, those expressed exclusively
in young, and those expressed in both young and old, but
with evidence that levels were different between the pools.
We selected five circRNAs exclusively expressed in young
(circITGAX, circPLEKHM1, circDEF6, circATP6V0A1
and circASAP1), five exclusively expressed in the old
(circFOXO3, circFNDC3B, circAFF1, circCDYL and

Table 1 Participant demographics, population demographics and
clinical characteristics of InCHIANTI study participants assessed
in this work, (A) demographics and (B) clinical characteristics

A Number Percentage

Participants 306 100

Age (years)

30–39 24 7.84

40–49 37 12.09

50–59 31 10.13

60–69 32 10.46

70–79 116 37.91

80–89 63 20.59

90–100 3 0.98

Gender

Male 143 46.73

Female 163 53.27

Pack years smoked (lifetime)

None 164 53.59

< 20 79 25.82

20–39 43 14.05

40+ 20 6.54

Study site

Greve 146 47.71

Bagno 160 52.29

Education level attained

Nothing 22 7.19

Elementary 124 40.52

Secondary 56 18.30

High school 50 16.34

Professional
school

34 11.11

University or
equivalent

20 6.54

B n Mean SD Min Max

Age (years) 306 66.96 16.06 30.00 94.00

BMI 305 27.15 4.35 15.01 42.99

White blood cell
count (n, K/μLs)

305 6.40 1.59 2.10 13.00

Neutrophils (%) 305 56.59 8.35 34.20 81.20

Lymphocytes (%) 304 31.69 7.67 9.80 51.20

Monocytes (%) 304 8.04 2.20 3.90 21.30

Eosinophils (%) 304 3.18 2.17 0.00 21.50

Parental longevity
score

206 − 0.02 0.81 − 2.46 1.71

Mean hand-grip strength (kg)

Follow-up 3 305 29.65 12.49 2.50 70.75

Follow-up 4 291 28.66 12.30 5.00 65.50
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circXPO7), as well as five expressed in both pools but
demonstrating evidence of altered expression (circMIB1,
circMETTL3, circBCL11B, circZC3H18 and circEP300),
where sequence and assay design constraints allowed for
to design specific assays to unique back-spliced junction
for qRTPCR follow-up.

circRNA probe design

Custom-designed qRTPCR assays for quantification of
relative expression were designed to unique back-
spliced circRNA junctions (Thermo Fisher, Foster City,
USA), the sequences of which are given in Online
Resource 1. Each target sequence was checked for the
presence of single nucleotide polymorphisms in poten-
tial primer or probe binding regions prior to ordering.
Assays were ordered as custom single-tube assays from
Thermo Fisher (Foster City, USA). Each circRNA probe
was validated using standard curve analysis using 1:10
serial dilutions of synthetic oligonucleotides homolo-
gous to the back-spliced junctions.

Assessment of associations between circRNA
expression and aging phenotypes in the InCHIANTI
cohort

RNA samples and phenotypic data were available from
306 individuals at both follow-up 3 (FU3) and follow-
up 4 (FU4) of the InCHIANTI study of aging. Charac-
teristics of participants are given in Table 1. We assessed
the expression of 15 age-associated circRNAs demon-
strating the most marked differential expression with
age between young and old pools as described above.
Aging parameters assessed were age itself, parental
longevity score (PLS) and hand grip strength. Partici-
pants aged 65 + years were categorised for PLS based
on the age at death of their parents. Short, intermediate
and long-lived cut-offs were calculated separately for
mothers and fathers based on the normal distribution of
age at death in the cohort, as described in Dutta et al.
(2013a). Mothers and fathers aged < 49 years or < 52
years at death respectively were classed as premature
and excluded. To standardize parental age of death, a Z
score was generated for combined maternal and paternal
measures of parental longevity. Hand-grip strength was
measured in kilograms using a dynamometer, with re-
peated measurements at both FU3 and FU4.

Reverse transcription and pre-amplification
of circRNAs in human peripheral blood RNA

cDNA synthesis was carried out using 100 ng total RNA
using the High-Capacity cDNA Reverse Transcription
Kit (Thermo Fisher, Foster City, USA) according to
manufacturer’s instructions (Fisher Scientific, New
Hampshire, USA) in a final reaction volume of 10.0
μL per sample. Reactions (samples in 96-well plates)
were run at 25 °C for 10 min, 37 °C for 120 min, 85 °C
for 5 min followed by an inactivation period for 95 °C
for 10 min. Pre-amplification of circRNA expression
was carried out using 5 μL TaqMan PreAmp master
mix (Thermo Fisher, Foster City, USA), 2.5 μL pooled
assay mix and 2.5 μL cDNA in a final reaction volume
of 10 μL per sample. Cycling conditions were one cycle
of 95 °C for 10 min followed by 14 cycles of 95 °C for
15 s with 60 °C for 4 min followed by 95 °C for 10 min.
Pre-amplified samples were then diluted 1:10 and main-
tained on ice prior to analysis.

Assessment of associations between circRNA
expression in peripheral blood RNA and human aging
phenotypes

The expression profiles of selected circRNAs were then
measured in total peripheral blood mRNA using custom-
designed OpenArray plates on the Thermo Fisher 12K
Flex platform (ThermoFisher, Foster City, USA).Reaction
mixes contained 2.5 μL 2✕OpenArray Real-TimeMaster
Mix, diluted pre-amplified cDNA (1.2μL) andRNase-free
dH2O (1.3 μL) (Thermo Fisher, Foster City, USA).
circRNA expression was measured relative to the geomet-
ric mean of the entire set of transcripts, with the expression
of each individual circRNA normalised to the global mean
of expression of that circRNA across the samples. Samples
were run in three technical triplicates. Association of
circRNAs with age in InCHIANTI was carried out by
multivariate linear regression, adjusted for potential con-
founders BMI, sex, level of education (none, elementary,
secondary, high school and university), study site, smoking
and white blood counts (neutrophil, lymphocyte, mono-
cyte, eosinophil percentages) while age was additionally
adjusted for all other measures of association in the aging
human cohort. We assessed association of circRNA with
hand grip strength and parental longevity score (PLS)
(Dutta et al. 2013b; Dutta et al. 2013c) as a proxy measure
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of longevity in humans. Statistical analysis was completed
using StataSE15 (StataCorp, TX, USA). Figures were
generated using GraphPad Prism 8.1.2 (GraphPad Soft-
ware, San Diego, USA).

Assessment of circRNA expression in human primary
senescent cells of different lineages

The expression levels of the 15 candidate circRNAs
analysed above were also assessed in relation to cellular
senescence, in senescent and early passage primary hu-
man primary fibroblasts, endothelial cells, astrocytes and
cardiomyocytes using high-throughput qRTPCR on the
12K Flex OpenArray platform (Thermo Fisher, Foster
City, USA). Samples were run in three biological repli-
cates and three technical replicates. Senescent cells had
been generated and characterised in previous work by our
group, and culture conditions and details of assessment of
senescence are reported elsewhere (Latorre et al. 2017;
Latorre et al. 2018a; Latorre et al. 2018b; Latorre et al.
2018c; Lye et al. 2019). RNA samples from this work
were available for use. circRNA levels were assessed in
three biological and three technical replicates from early
and late passage human primary cells of four different cell
types. Early passage young cells were at population
doubling (PD) of 24 for astrocytes, 28 for
cardiomyocytes, 24 for endothelial cells and 25 for fibro-
blasts, whilst late passage senescent cells were at PD = 84
for astrocytes, 75 for cardiomyocytes, 65 for endothelial
cells and 63 for fibroblasts. Senescent cell load in these
samples was ~ 75% for fibroblasts, ~ 55% for endothelial
cells, ~ 38% for cardiomyocytes and ~ 36% for
cardiomyocytes (Latorre et al. 2017; Latorre et al.
2018a; Latorre et al. 2018b; Latorre et al. 2018c; Lye
et al. 2019). In all cases, growth of the culture had slowed
to less than 0.5 PD/week. Differential circRNA expres-
sion in senescent cells was then assessed by one-way
ANOVA using StataSE15 (StataCorp, TX, USA).
Figures were generated using GraphPad Prism 8.1.2
(GraphPad Software, San Diego, USA).

Assessment of circRNA conservation between mouse
and human

We assessed whether the 15 circRNAs identified in our
human study were likely to be conserved in mouse by
aligning the mouse and human exon junction sequences
using the Blat tool in the UCSC genome browser
(https://genome.ucsc.edu). Quantitative real-time PCR

assays were developed to unique back-spliced junctions
of conserved circRNAs. Probe and primer sequences are
given in Online Resource 2. circRNA expression was then
measured in mouse spleen and muscle tissue and assessed
in relation to lifespan by analysis of levels in six strains of
male mice (A/J, NOD.B10Sn-H2b/J, PWD/PhJ, 129S1
/SvlmJ, C57BL/6J and WSB/EiJ) selected on the basis of
divergent median strain longevity (Yuan et al. 2009). An-
imal husbandry, handling, animal characteristics and sam-
ple preparation protocols have been previously described
(Lee et al. 2016). Tissue samples were obtained from
cross-sectional study conducted in the same compartment
and in the same period of time as described in Yuan et al.
(2009). Spleen and quadricep muscle tissues were excised
immediately after sacrifice and shipped from the Jackson
Laboratory using RNAlater-ICE Collection protocol (Life
Technologies, Carlsbad, CA). In this method, tissues are
submerged in RNAlater stabilization solution; an aqueous
tissue storage reagent used to rapidly permeate tissues and
stabilize RNA from fresh specimens and stored at – 20 °C
or below for later use.

RNA extraction and reverse transcription from mouse
tissues

Total RNA was extracted using the TRI Reagent/
chloroform phase separation according to manufac-
turer’s instructions. Briefly, tissues stored in RNA
later were drained, and then placed in 1 mL TRI
Reagent solution containing 10 mM MgCl2. Samples
were homogenized for 15 min (spleen) or 30 min
(muscle) using bead mills (Retsch Technology
GmbH, Haan, Germany). This was followed by a
phase separation using chloroform. Total RNAs in
the separated RNAs were precipitated from the
aqueous phase through overnight incubation with
isopropanol at − 20 °C. The following morning,
RNA pellets were washed twice with ethanol and
resuspended in RNase-free dH2O. Complementary
DNA (cDNA) was generated from 100 ng RNA
using the Evocript Universal cDNA Master Synthe-
sis kit according to the manufacturer’s instructions
(Roche, Switzerland).

Assessment of circRNA expression in mouse spleen
and muscle

circRNAs selected on the basis of interspecies sequence
conservation were validated in mouse spleen and muscle
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tissue. Expression levels of conserved circRNAs were
assessed in relation to median strain lifespan by relative
quantification. Quantitative qRTPCR was carried out for
circRNAs (circFoxo3, circMib1, circPlekhm1 and
circXpo7) in relation to the Pol2ra, Trfc and Ipo8 endog-
enous control genes, selected on the basis of lack of age
association in a previous study (Harries et al. 2011). Reac-
tion mixes contained cDNA (0.5 μL), TaqMan Universal
PCR mastermix II (2.5 μL, no AmpErase UNG (Thermo
Fisher, Foster City, USA), dH2O (1.75 μL, Fisher Scien-
tific, USA), and TaqMan gene assay (0.25 μL, Thermo
Fisher, Foster City, USA) in a 5 μL final reaction volume.
The reaction mixes were centrifuged at 3000 rpm,
vortexed and centrifuged again at 3000 rpm and
transferred to 384-well qRTPCR plates. qRTPCR was
run at 50 °C for 2 min, 95 °C for 10 min and 50 cycles
of 15 s at 95 °C for 30 s and 1 min at 60 °C. Each sample
assay was conducted in three technical triplicates. Expres-
sion levels of circRNAs in young and old mouse tissues
were measured relative to the geometric mean of the entire
set of transcripts, with the expression of each individual
circRNA normalised to the global mean of expression of
each circRNA across the samples. Linear regression anal-
ysis was carried out to assess the association of expression
of circRNA using StataSE15 (StataCorp, TX, USA).

Results

circRNA profile in peripheral blood of aging humans

One hundred sixty-six to 167M reads were obtained
from the RNAse R-treated pools and 157–163M reads
from the mock-treated pools with a mean Q score of
34.6–35.1 and total error rate of 0.47–0.53%. A total of
2207 circRNAs were expressed in human peripheral
blood. Of these, 184 circRNAs were found in both the
young and old samples, 431 were exclusively expressed
in the young sample pool and 1592 were exclusively
expressed in the old sample pool (Online Resource 3).
We selected 15 circRNAs for further analysis: 5
expressed exclusively in the young pool, 5 expressed
exclusively in the old pool and 5 expressed in both pools
but showing the most discrepant expression for further
study. These were circITGAX, circPLEKHM1,
circDEF6, circATP6V0A1 and circASAP1 which
showed exclusive expression in the young; circFOXO3,
circFNDC3B, circAFF1, circCDYL and circXPO7
which showed exclusive expression in the old; and

circMIB1, circMETTL3, circEP300, circZC3H18 and
circBCL11B that were expressed, but differentially so
in both sample pools.

Pathway analysis of circRNA expressed in aging
humans

Pathway enrichment for the genes hosting the top 10%
most abundant circRNAs in each of young and old
pooled peripheral blood samples was performed using
ClueGO cytoscape (Bindea et al. 2009). In the young
peripheral blood, the top 10% most abundant circRNAs
derived from genes associated with negative regulation
of ATP metabolic processes and in transmission of
synaptic signals. The leading edge genes hosting
circRNAs for negative regulation of ATP processes
were SNCA, STAT3 and UFSP2, whilst those associated
with synaptic vesicle endocytosis were FCH02,
PICALM, PIP5K1C and SNCA. Genes hosting
circRNAs were primarily localised in pathways in-
volved in phagocytosis, circadian regulation, cancer
pathways and golgi-associated vesicle budding in the
blood from aged donors (Table 2).

circPLEKHM1, circMETTL and circFNDC3B
expression levels are associated with aging phenotypes
in humans

The structures of the 15 circRNAs selected for
follow-up were predicted based on the sequencing
read depth for each exon and are presented in Fig.
1. Exon structures presented as read depth plots are
given in Online Resource 4. Although we demon-
strated no associations with age itself, we did identify
associations between some circRNAs and human
aging phenotypes. circEP300 and circFOXO3 both
demonstrated negative associations with combined
parental longevity score (β = − 0.065 and − 0.060;
P = 0.001 and 0.002 respectively), after adjustment
for multiple testing. circDEF6 was positively corre-
lated with parental longevity scores but demonstrated
nominal significance only (β = 0.070, P = 0.024)
(Table 3, Fig. 2). A positive association was also
identified both cross-sectionally (β = 0.004, P =
0.039) and longitudinally (β = 0.004, P = 0.038)
between circFNDC3B expression and hand grip
strength (Table 4, Fig. 3), although these were nom-
inal only.
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circRNAs are differentially expressed in early passage
and late passage cells

Twelve of 15 circRNAs tested were expressed in
astrocytes, endothelial cells, fibroblasts or astro-
cytes. Seven (58%) of these demonstrated differ-
ential expression between early and late passage
cells of one or more cell type (Table 5). circAFF1
and circFOXO3 demonstrated associations in more
than one cell type although direction of effect was
concordant only for circFOXO3 (in cardiomyocytes
and fibroblasts). circCDYL, circEP300, circMIB1,
circZC3H18 and circMETTL3 were differentially
expressed in only one cell type. circBCL11B,
circDEF6 and circITGAX were not expressed in
any cell type tested.

Differential expression of circRNAs between mice
of different median strain longevities

In silico analyses suggested that four circRNAs
(circFoxo3, circMib1, circPlekhm1 and circXpo7) may
have conserved back-spliced junction in the mouse. Asso-
ciations with longevity were then assessed in spleen and
muscle tissue from young (6 months) and old (20–22
months) mouse strains of six different median strain lon-
gevities. circMib1 and circXpo7 were expressed only in
spleen, whereas circFoxo3 and circPlekhm1 were
expressed in both tissues (Table 6). The expression of
circPlekhm1 demonstrated a nominal positive correlation
with median lifespan in young and old (β = 0.0013, P =
0.016) as well as in spleen of youngmice (β = 0.0025, P =
0.017), although thesewere not significant after adjustment

Table 2 Pathways enriched in age-associated circRNAs

Pathway p
value

Number Of
Genes

Genes

Expressed only in old

Fc gamma R-mediated phagocytosis 0.005 4 ARPC1B, ASAP1, PIP5K1C, VASP

Exercise-induced Circadian Regulation 0.006 3 CRY2, NCOA4, TAB2

Pathways Affected in Adenoid Cystic
Carcinoma

0.018 4 ERBB2, FOXO3, KANSL1, MGA

Endometrial cancer 0.041 3 AXIN1, ERBB2, FOXO3

trans-Golgi Network Vesicle Budding 0.035 3 DNAJC6, IGF2R, PICALM

Clathrin derived vesicle budding 0.049 3 DNAJC6, IGF2R, PICALM

Golgi Associated Vesicle Biogenesis 0.069 3 DNAJC6, IGF2R, PICALM

Cargo recognition for clathrin-mediated
endocytosis

0.062 5 FCHO2, IGF2R, PICALM, REPS1, UBQLN1

Clathrin-mediated endocytosis 0.049 8 DNAJC6, FCHO2, GAPVD1, IGF2R, PICALM, PIP5K1C,
REPS1, UBQLN1

Expressed only in young

Negative regulation of ATP metabolic
process

0.004 3 SNCA, STAT3, UFSP2

Synaptic vesicle recycling 0.009 4 FCHO2, PICALM, PIP5K1C, SNCA

Presynaptic endocytosis 0.018 4 FCHO2, PICALM, PIP5K1C, SNCA

Synaptic vesicle endocytosis 0.017 4 FCHO2, PICALM, PIP5K1C, SNCA

Expressed in both old and young, but demonstrating differential expression

Huntington’s disease_Homo
sapiens_hsa05016

0.014 2 ATP5C1, EP300

Pyruvate metabolism_Homo
sapiens_hsa00620

0.037 1 HAGH

Notch signaling pathway_Homo
sapiens_hsa04330

0.045 1 EP300

The ClueGo pathway results for pathways potentially targeted by genes generating the top 10% of circRNAs differentially expressed with
age are presented here aligned to the hg19 genome alignment. Number of genes = number of differentially expressed genes in each pathway
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for multiple testing (threshold P = 0.013). No associations were seen between muscle circRNA expression levels and
median strain longevity.
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circASAP1 circATP6V0A1 circDEF6 circITGAX circPLEKHM1

circAFF1 circCDYL circFNDC3B circFOXO3 circXPO7

circBCL11B circEP300 circMETTL3 circM1B1 circZCH3H18

Fig. 1 Circular RNA junction schematics for the top 5 most
abundant circular RNAs uniquely found in young (a) and old
samples (b). Also shown are junction schematics for the top 2
and 3 most abundant common circular RNAs found in young and
old samples respectively (c). Each schematic shows the identified
back-spliced exon or exons. The relative read depth at each back-

spliced junction is shown by the number of bars above each
junction and is scaled by linear interpolation, where the back-
spliced junctions with 1 and 10 bars represent the junctions with
the lowest and highest read depth respectively. Black and grey bars
show relative read depth at junctions in young and old samples
respectively
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Discussion

Circular RNAs (circRNAs) are an emerging class of
regulatory RNA molecule thought to play a role in
human disease (Haque and Harries 2017). These mole-
cules have no free ends, and as such are exonuclease
resistant. circRNAs accumulate in aged organisms
(Gruner et al. 2016) and have been suggested to play a
role in cellular senescence (Du et al. 2017; Du et al.
2016). We hypothesised that the human circRNAome
may differ in aged humans compared with younger
subjects and that these changes may also be associated
with cellular senescence or with longevity in animal
models. We identified > 2000 circRNAs in total RNA
from human blood, some of which were expressed
exclusively in samples from older donors. GSEA path-
ways enrichment analysis of genes hosting the top 10%
most abundant circRNAs in elderly donors suggested
that pathways involved in phagocytosis, circadian reg-
ulation, cancer pathways and golgi-associated vesicles
were the most enriched in these genes.We demonstrated
that three circRNAs (circDEF6, circFOXO3 and
circEP300) were associated with measures of parental

longevity, and one (circFNDC3B) was associated with
hand grip strength both longitudinally and cross-sec-
tionally. Furthermore, 7 of 12 circRNAs expressed in
human senescent cells of different cell types demonstrat-
ed dysregulated expression in one or more cell type and
1 of 4 circRNAs demonstrating conserved expression
were associated with median strain longevity in spleen
tissue from young mice. These findings are consistent
with the hypothesis that some circRNAs have roles in
molecular aging and the determination of mammalian
aging phenotypes.

circRNAs generated from the FOXO3 and EP300
genes were negatively associated with measures of hu-
man parental longevity and also demonstrated dysregu-
lated expression in human senescent cells. circRNAs
deriving from the FOXO3 gene have previously been
demonstrated to regulate cell cycle when manipulated
by gene knockdown in mouse embryonic fibroblasts,
cardiac fibroblasts or mammary cancer cell lines (Du

Table 3 circRNA expression in relation to combined parental
longevity score

circRNA β-Coefficient p value 95% CI

circAFF1 − 0.012 0.485 − 0.048–0.023

circASAP1 − 0.044 0.064 − 0.090–0.003

circATP6V0A1 0.036 0.223 − 0.022–0.094

circBCL11B 0.042 0.136 − 0.013–0.097

circCDYL − 0.030 0.109 − 0.067–0.007

circDEF6 0.070 0.024 0.009–0.131

circEP300 − 0.065 0.001 − 0.103–− 0.026

circFNDC3B 0.025 0.239 − 0.016–0.066

circFOXO3 − 0.060 0.002 − 0.098–− 0.021

circITGAX 0.019 0.440 − 0.030–0.068

circMETTL3 0.007 0.730 − 0.034–0.049

circMIB1 − 0.018 0.310 − 0.052–0.017

circPLEKHM1 − 0.009 0.493 − 0.035–0.017

circXPO7 0.038 0.162 − 0.016–0.093

circZC3H18 − 0.036 0.078 − 0.077–0.004

Beta coefficients, p values and 95% confidence intervals (95% CI)
are given for associations between circRNAs expression and com-
bined parental longevity (PLS) score. Two hundred ninety-one
samples were assessed. Genes demonstrating statistically signifi-
cant results below the multiple testing limit of 0.003 are indicated
in italics, whilst those demonstrating nominal associations only are
given in bold type

Fig. 2 circRNA expression is associated with combined parental
longevity. Forest plot illustrating the association between periph-
eral blood circRNA expression and combined human parental
longevity score (PLS) in participants from the InCHIANTI study
of aging. N = 306 individuals. The beta-coefficient of the associ-
ation is given on the X-axis, and the identity of the gene is given on
the Y-axis. Lines attached to each data point represent 95% confi-
dence intervals (95% CI). Statistical significance is indicated by
stars, *< 0.05, **< 0.005
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et al. 2016). Furthermore, FOXO3 circular RNAs also
demonstrate elevated expression and association with
cellular senescence in the heart tissue ofmice and humans
(Du et al. 2017). It is not clear whether the previously
reported circular FOXO3 transcripts have the same struc-
ture as the one we have identified, since previous studies
do not give its exon structure. A circRNA from the
FOXO3 gene identical to the one we have identified has
also previously been demonstrated to inhibit myoblast
differentiation in mouse cells (Li et al. 2019). Genetic

variation in the FOXO3 gene itself has previously been
associated with extreme longevity (Flachsbart et al. 2017;
Fuku et al. 2016) and has also been associated with
maintenance of telomere length (Davy et al. 2018).

circRNAs deriving from the EP300 gene have
not been previously reported. EP300 encodes the
repressor histone acetyltransferase protein p300,
which also has roles as a transcriptional corepressor
protein. EP300 has been implicated in modulation
of FOXO3 activity (Mahmud et al. 2019) and in

Table 4 circRNA expression in relation to grip strength

circRNA Grip strength β-Coefficient p value 95% CI

circAFF1 Cross-sectional − 0.001 0.508 − 0.004–0.002

Longitudinal − 0.003 0.081 − 0.007–0.000

circASAP1 Cross-sectional − 0.001 0.713 − 0.005–0.004

Longitudinal 0.000 0.854 − 0.005–0.004

circATP6V0A1 Cross-sectional 0.000 0.965 − 0.005–0.005

Longitudinal − 0.002 0.403 − 0.008–0.003

circBCL11B Cross-sectional 0.002 0.443 − 0.003–0.007

Longitudinal 0.000 0.914 − 0.006–0.005

circCDYL Cross-sectional − 0.001 0.665 − 0.004–0.003

Longitudinal 0.000 0.828 − 0.004–0.003

circDEF6 Cross-sectional 0.000 0.903 − 0.005–0.006

Longitudinal 0.002 0.599 − 0.004–0.008

circEP300 Cross-sectional − 0.004 0.060 − 0.007–0.000

Longitudinal − 0.003 0.112 − 0.007–0.001

circFNDC3B Cross-sectional 0.004 0.039 0.000–0.008

Longitudinal 0.004 0.038 0.000–0.008

circFOXO3 Cross-sectional 0.002 0.402 − 0.002–0.005

Longitudinal 0.000 0.834 − 0.004–0.003

circITGAX Cross-sectional 0.000 0.997 − 0.004–0.004

Longitudinal − 0.001 0.658 − 0.006–0.004

circMETTL3 Cross-sectional − 0.003 0.139 − 0.007–0.001

Longitudinal − 0.001 0.680 − 0.005–0.003

circMIB1 Cross-sectional 0.000 0.906 − 0.003–0.003

Longitudinal 0.002 0.305 − 0.002–0.005

circPLEKHM1 Cross-sectional 0.000 0.799 − 0.002–0.003

Longitudinal − 0.001 0.614 − 0.003–0.002

circXPO7 Cross-sectional − 0.003 0.236 − 0.008–0.002

Longitudinal − 0.004 0.139 − 0.009–0.001

circZC3H18 Cross-sectional 0.001 0.761 − 0.003–0.004

Longitudinal − 0.002 0.374 − 0.006–0.002

Beta coefficients, p values and 95% confidence intervals (95% CI) are given for associations between circRNA expression and hand grip
strength. Three hundred six individuals were assessed. Associations were assessed cross-sectionally (expression data FU3 and clinical
outcome FU3) and longitudinally (expression data FU3, clinical outcome FU4). All associations identified here were nominal only and are
given in bold
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antagonism of the FOX03a/SIRT1 signalling axis
(Jeung et al. 2016). Inhibition of EP300 has been
shown to mimic calorific restriction in human and
mouse cells (Pietrocola et al. 2018); calorific re-
striction is of course a well-known modifier of
lifespan in many species (Austad 1989; Hansen
et al. 2008; Kapahi et al. 2004; Mitchell et al.
2010). This protein is also a master regulator of
autophagy, which is a pivotal factor in stem cell
maintenance and evasion of cellular senescence
(Vijayakumar and Cho 2019).

circFNDC3B was positively associated with hand
grip strength. Although these associations were nominal
only, they were present both cross-sectionally and lon-
gitudinally. An average person may lose ~ 20–40% of
skeletal muscle mass as well as muscle strength from by
the time they reach 80 years of age (Carmeli et al. 2002;
Doherty 2003) and decline in skeletal muscle strength is
predictive of disability and mortality in humans
(Giampaoli et al. 1999; Rantanen et al. 1999; Rantanen
et al. 2012). Circular RNAs originating from this gene

have been reported previously, and suggested to possess
tumour suppressor activity (Liu et al. 2018).

The results generated from our mouse data suggest
that circPlekhm1, which was associated with median
strain longevity, may drive longevity, rather than being
consequential to it, since the associations are present in
the spleen RNA of young mice alone. The Plekhm1
gene encodes a multivalent adaptor protein that inte-
grates endocytic and autophagic pathways at the lyso-
some (McEwan and Dikic 2015). Its role in lifespan
may therefore stem from moderation of lysosomal traf-
ficking since lysosomes play a critical part in successful
aging and longevity (Carmona-Gutierrez et al. 2016;
Simonsen et al. 2007).

Our study has both strengths and weaknesses. It
represents one of the first circRNA profiles in aging
human peripheral blood and provides data not only
population-level epidemiological evidence for a role
in human aging phenotypes, or mammalian lifespan,
but also in vitro evidence that some circRNA may
influence cell senescence phenotypes. Weaknesses

Fig. 3 Peripheral blood circFNDC3B expression is nominally
associated with hand grip strength Forest plot illustrating the
association between circRNA expression and hand grip strength
in participants from the InCHIANTI study of aging. Associations
with grip strength are shown both a cross-sectionally from follow-
up 3 (FU3) and b longitudinally, from follow-up 4 (FU4). N = 306

individuals. The beta-coefficient of the association is given on the
X-axis, and the identity of the gene is given on the Y-axis. Lines
attached to each data point represent 95% confidence intervals
(95% CI). Statistical significance is indicated by stars, *< 0.05,
**< 0.005

194 GeroScience (2020) 42:183–199



Table 5 circRNA expression in early and late passage primary human cells

circRNA Median (IQR) p value

Early passage Late passage

Astrocytes

circAFF1 0.58 (0.55–0.68) 0.84 (0.79–1.09) 0.040

circASAP1 1.39 (0.97–1.48) 1.22 (1.18–1.36) 0.878

circATP6V0A1 1.60 (1.14–1.87) 1.14 (1.05–1.41) 0.229

circCDYL 0.71 (0.67–0.74) 0.90 (0.90–0.93) 0.001

circEP300 1.01 (0.95–1.04) 1.05 (1.00–1.07) 0.329

circFNDC3B 0.96 (0.85–1.10) 1.38 (1.20–1.48) 0.059

circFOXO3 0.88 (0.80–0.89) 0.89 (0.80–0.98) 0.646

circMETTL3 0.97(0.92–1.08) 0.69 (0.66–1.02) 0.180

circMIB1 0.71(0.69–0.86) 1.03 (0.99–1.04) 0.008

circPLEKHM1 1.05 (1.00–1.09) 0.76 (0.61–1.17) 0.306

circXPO7 1.25 (1.12–1.58) 1.54 (0.81–1.62) 0.987

circZC3H18 1.50 (0.67–2.24) 0.88 (1.00–1.07) 0.346

Cardiomyocytes

circAFF1 1.15 (1.09–1.26) 1.42 (1.04–1.52) 0.357

circASAP1 0.74 (0.71–1.05) 0.84 (0.83–1.02) 0.643

circATP6V0A1 0.57 (0.44–0.80) 0.41 (0.39–0.54) 0.249

circCDYL 1.47 (1.29–1.48) 1.42 (1.25–1.64) 0.855

circEP300 1.27 (1.02–1.48) 1.10 (0.84–1.45) 0.596

circFNDC3B 1.03 (0.83–1.09) 1.93 (0.96–1.97) 0.139

circFOXO3 1.00(0.99–1.07) 0.82 (0.79–0.92) 0.015

circMETTL3 0.88(0.69–0.99) 0.66 (0.63–0.79) 0.186

circMIB1 0.96 (0.81–1.02) 1.16 (0.97–1.25) 0.129

circPLEKHM1 0.85 (0.84–1.05) 0.82(0.71–1.22) 0.983

circXPO7 0.89 (0.74–0.94) 1.32 (0.75–1.63) 0.227

circZC3H18 0.83 (0.63–1.43) 0.85 (0.77–1.12) 0.862

Endothelial cells

circAFF1 0.94 (0.91–1.27) 1.07 (0.49–1.11) 0.548

circASAP1 1.03 (0.94–1.28) 1.69 (0.68–1.76) 0.467

circATP6V0A1 0.37 (0.16–0.58) 0.48 (0.48–0.48) 0.821

circCDYL 0.90 (0.76–1.11) 0.89 (0.84–1.02) 0.942

circEP300 0.99 (.75–1.45) 0.58 (0.53–0.80) 0.128

circFNDC3B 1.74 (1.49–3.18) 7.84 (3.18–9.97) 0.080

circFOXO3 0.38 (0.20–1.98) 0.14 (0.04–0.22) 0.275

circMETTL3 1.02 (0.54–1.08) 0.39 (0.39–0.56) 0.072

circMIB1 1.36 (0.98–1.54) 1.11 (1.03–1.43) 0.640

circPLEKHM1 1.02 (0.99–1.42) 1.47(0.83–4.85) 0.380

circXPO7 0.97 (0.72–1.18) 0.87 (0.31–1.22) 0.620

circZC3H18 1.02 (0.98–1.15) 1.51 (1.51–1.51) 0.047

Fibroblasts

circAFF1 1.06 (0.95–1.16) 0.58 (0.52–0.65) 0.003

circASAP1 0.51 (0.38–1.07) 1.05 (0.85–1.10) 0.196

circATP6V0A1 1.39 (1.00–1.41) 1.10 (0.46–1.35) 0.375
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Table 5 (continued)

circRNA Median (IQR) p value

Early passage Late passage

circCDYL 1.13 (0.72–1.17) 0.90 (0.81–1.06) 0.640

circEP300 0.96 (0.78–0.98) 0.38 (0.38–0.69) 0.023

circFNDC3B 0.50(0.48–0.94) 0.90 (0.85–0.91) 0.182

circFOXO3 1.91 (1.72–2.01) 1.60 (1.47–1.61) 0.025

circMETTL3 1.23(1.00–1.26) 1.39 (1.58–1.66) 0.030

circMIB1 1.20 (1.14–1.47) 0.85 (0.69–1.11) 0.072

circPLEKHM1 1.00(0.90–1.00) 0.84 (0.79–1.14) 0.716

circXPO7 1.03(0.48–1.08) 0.57 (0.39–1.18) 0.645

circZC3H18 0.93 (0.72–1.21) 0.74 (0.53–0.94) 0.432

Results reaching statistical significance are indicated in bold typeface

IQR interquartile range

Table 6 Differential expression of conserved circRNAs in mice of differential median strain longevities

circRNA Tissue β-Coefficient p value 95% CI

circFoxo3 Muscle 0.00 0.403 − 0.0010 0.0024

Young (muscle) 0.0001 0.936 − 0.0028 0.0031

Old (muscle) 0.0008 0.478 − 0.0015 0.0031

Spleen − 0.0003 0.815 − 0.0027 0.0021

Young (spleen) 0.0002 0.922 − 0.0039 0.0043

Old (spleen) − 0.0005 0.757 − 0.0037 0.0027

circMib1 Muscle ND ND ND ND

Young (muscle) ND ND ND ND

Old (muscle) ND ND ND ND

Spleen 0.0001 0.924 − 0.0023 0.0026

Young (spleen) − 0.0018 0.150 − 0.0044 0.0008

Old (spleen) 0.0021 0.299 − 0.0020 0.0062

circPlekhm1 Muscle 0.0003 .813 − 0.0022 0.0028

Young (muscle) − 0.0022 0.161 − 0.0054 0.0010

Old (muscle) 0.0016 0.365 − 0.0020 0.0053

Spleen 0.0013 0.016 0.0002 0.0024

Young (spleen) 0.0025 0.017 0.0005 0.0046

Old (spleen) 0.00001 0.967 − 0.0008 0.0009

circXpo7 Muscle ND ND ND ND

Young (muscle) ND ND ND ND

Old (muscle) ND ND ND ND

Spleen 0.0009 0.509 − 0.0019 0.0038

Young (spleen) 0.0003 0.894 − 0.0040 0.0045

Old (spleen) 0.0020 0.333 − 0.0023 0.0063

circRNA expression is reported here in relation to median strain longevity. Data are assessed separately for young and old animals of each
strain. N = 67 (muscle); 90 (spleen). Results reaching statistical significance are indicated in bold typeface

IQR interquartile range, ND not detected
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include a relatively low power to detect effects of in
the population study, which might be attributed to the
biological variation in circRNA levels and limitations
in samples size and power. Nevertheless, we were
able to identify some interesting associations, which
likely represent the largest effects. Future work could
include validation of epidemiological data in larger
sample sets and also functional delineation of the
molecular effects of the circRNA in question. Our
data provide evidence that circRNAs may play an
important role in the determination of mammalian
aging phenotypes. circRNAs are inherently stable,
due to their exonuclease resistance, and are found
not only in tissues relevant to human diseases, but
also in the circulation, raising the possibility that they
may prove useful as biomarkers of disease or targets
for molecular therapies in the future.
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