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ARTICLE

Graph embedding and unsupervised learning
predict genomic sub-compartments from HiC
chromatin interaction data
Haitham Ashoor1, Xiaowen Chen1, Wojciech Rosikiewicz1, Jiahui Wang1, Albert Cheng 1, Ping Wang1,

Yijun Ruan1,2,3 & Sheng Li 1,2,3,4✉

Chromatin interaction studies can reveal how the genome is organized into spatially confined

sub-compartments in the nucleus. However, accurately identifying sub-compartments from

chromatin interaction data remains a challenge in computational biology. Here, we present

Sub-Compartment Identifier (SCI), an algorithm that uses graph embedding followed by

unsupervised learning to predict sub-compartments using Hi-C chromatin interaction data.

We find that the network topological centrality and clustering performance of SCI

sub-compartment predictions are superior to those of hidden Markov model (HMM) sub-

compartment predictions. Moreover, using orthogonal Chromatin Interaction Analysis by in-

situ Paired-End Tag Sequencing (ChIA-PET) data, we confirmed that SCI sub-compartment

prediction outperforms HMM. We show that SCI-predicted sub-compartments have distinct

epigenetic marks, transcriptional activities, and transcription factor enrichment. Moreover,

we present a deep neural network to predict sub-compartments using epigenome, replication

timing, and sequence data. Our neural network predicts more accurate sub-compartment

predictions when SCI-determined sub-compartments are used as labels for training.
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The genome is hierarchically organized in three-dimensional
(3D) space1, and chromosomal sequences can be mapped
to one of two major compartments: compartment A is

associated with open chromatin, and compartment B is associated
with closed chromatin. The A/B compartments are predicted
from chromatin interaction data, in particular, data generated by
the genome-wide Hi-C chromatin interaction profiling technique,
which combines proximity-based ligation with massively parallel
sequencing2. Recent studies of additional data types, including
methylation, DNase I hypersensitive sites, and single-cell ATAC-
seq, have corroborated the existence of A/B compartments as
functional units of genome organization3. The genome can be
further subdivided into sub-compartments, where genomic
regions within a given sub-compartment are more likely to
interact with each other than with regions in different sub-
compartments. Subsequent to the A/B compartment model, a
three-sub-compartment model was introduced based on higher-
resolution Hi-C inter-chromosomal interaction data4: one sub-
compartment is a component of the open chromatin compart-
ment; and the other two sub-compartments are components of
closed chromatin compartment, one near centromeres and the
other far from centromeres. The latest model proposes five sub-
compartments based on the use of hidden Markov modeling
(HMM) to cluster inter-chromosomal interactions5. This method
identifies two active sub-compartments (A1 and A2) and three
inactive sub-compartments (B1, B2, and B3) using deeply
sequenced GM12878 cell line data. The model also shows that the
five sub-compartments exhibit distinct epigenomic signatures.
Since sub-compartments are essential for understanding higher-
order 3D genome organization, and an increasing volume of
genome-wide chromatin interaction data will soon be available
through the ENCODE and 4D Nucleome consortia, there is a
practical need for an easy-to-use, automated, and accurate sub-
compartment predictor.

In addition to Hi-C, other types of genome-wide sequencing
data have been used to predict the higher-order genome organi-
zation. For example, chromatin immunoprecipitation sequencing
(ChIP-seq) data of 11 histone modifications and 73 transcription
factors (TFs) have been used to predict sub-compartments with
63% test accuracy using a deep learning multi-class classifier6.
Recently, TSA-Seq, a new genome-wide mapping method that
estimates mean distances of chromosomal loci from nuclear
structures, was used to predict several Mbp chromosome trajec-
tories between nuclear structures7. These findings use sub-
compartment assignments either for predictive model output
labels or for evaluation of the distances between nuclear speckles.
These studies require accurate sub-compartment determination.
Also, a DNA methylation correlation matrix based on multiple
replicates corroborates the A/B compartment model3. However,
the potential of DNA methylation levels to predict nuclear sub-
compartmentalization is still not clear.

Here, we introduce SCI, an algorithmic framework based on
graph embedding8 and k-means clustering that predicts genomic
sub-compartments from Hi-C data. We show that sub-
compartment prediction by SCI is more accurate than other
unsupervised algorithms. Furthermore, we use orthogonal data
for external validation, including ChIA-PET chromatin interac-
tion, transcriptome, and epigenome data. Lastly, using SCI out-
put, we developed an epigenome-based (DNA methylation and
histone modification) deep neural network model for sub-
compartment classification.

Results
SCI overview. To predict sub-compartments, SCI starts with a
normalized, genome-wide Hi-C inter-chromosomal contact

matrix and constructs a Hi-C interaction graph, where each node
on the graph represents a genomic bin. If two bins are interacting,
an edge connecting them is added to the graph, and the weight of
the edge corresponds to the normalized Hi-C sequencing read
count between the two bins. Then, SCI uses graph embedding8 to
project the interaction graph into a lower-dimensional vector
space for k-means clustering to predict sub-compartments
(Fig. 1a).

Specifically, SCI adapts a graph-embedding method termed
LINE8 to project an otherwise high-dimensional graph structure
into a lower-dimensional space that describes the chromatin
interactions. LINE utilizes first-order and second-order proximi-
ties of graph vertices to reduce dimensionality and promote
efficient clustering.

The number of sub-compartments in the nucleus is jointly
determined by (a) the spatial location of chromatin and (b)
chromatin interactions. Importantly, local epigenetic status can
impact chromatin interactions9. Using gap statistics to determine
the optimal number of sub-compartments, we obtained nine as
the optimal number of sub-compartments (named C1–C9).
However, some of these sub-compartments are enriched for
similar epigenetic modifications (C3 and C4; C5 and C6),
suggesting that sub-compartments can be spatially separated
and functionally comparable—they still show comparable levels
of transcriptional potential (Supplementary Fig. 1). To allow for
direct comparison of SCI with other computational methods for
predicting sub-compartments, we chose to use 5 clusters in
subsequent SCI performance evaluations. Importantly, SCI offers
users the flexibility to select the number of sub-compartments
based on either their preference or the optimal number calculated
by gap statistics.

We then assessed the performance of SCI based on structural
and functional evaluations (Fig. 1b). We also developed a deep
neural network classifier for predicting sub-compartments using
DNA sequencing data and epigenomic profiles (Fig. 1b).

SCI outperforms alternative algorithms. We compared sub-
compartments predicted by SCI to those predicted by HMM
(reported in Rao et al. 2014) and by k-means clustering applied
directly to an inter-chromosomal interaction matrix (Kmean-
s_Yaffe, reported in Yaffe, E. and Tanay, A., 2011). We tested
each algorithm using data from Rao et al., who generated 4.9
billion Hi-C reads from GM12878, a human lymphoblastoid
ENCODE cell line.

When given the same parameter (k= 5), SCI predicted
comparable number of sub-compartments as that predicted by
HMM (C1-C5; Fig. 1c, Supplementary Fig. 3); however,
Kmeans_Yaffe failed to predict five sub-compartments, as it
placed genomic bins in four sub-compartments instead of 5
(Supplementary Fig. 2). Following the convention of Rao et al., we
reordered sub-compartments predicted by SCI such that
sub-compartments C1 and C2 correspond to open chromatin
sub-compartments reported by Rao et al. (A1 and A2), while sub-
compartments C3, C4, and C5 correspond to closed chromatin
sub-compartments reported by Rao et al. (B1, B2, and B3). Sub-
compartments C1 and C2 have higher gene density compared to
the other three sub-compartments (Fig. 1d), which is consistent
with the previous reports10.

Our UMAP visualization of SCI embedding (Fig. 1e) shows: (i)
a clear distinction between sub-compartments C1 (in red) and C2
(in yellow), which was indirectly reported in the literature
by measuring the distance from lamina-associated domains
(LADs)11; and (ii), clear separation of the inactive sub-
compartment C3 (in gray) from the inactive sub-compartments
C4 (in purple) and C5 (in blue). We further showed that the open
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Fig. 1 SCI utilizes a chromatin interaction graph to predict genomic sub-compartments. a The SCI workflow starts with a normalized Hi-C inter-
chromosome matrix. From this matrix, the interaction graph is constructed; nodes with the same color represent bins from the same chromosome. After
building the interaction graph, the graph embedding step transforms the graph into a lower-dimensional space. Finally, k-means clustering is used to cluster
node representations. b SCI-predicted sub-compartments are validated using structural and functional properties and serve as class labels to train a sub-
compartment classifier based on a feature matrix compiled with features of DNA sequence and epigenomic profiles (methylation and histone
modifications), and replication timing data. c Bar plot of genomic bin count for each sub-compartment. d Bar plot of gene density measured as the number
of genes per genomic bin for each sub-compartment. Sub-compartments associated with open chromatin (C1 and C2) show higher gene density compared
to sub-compartments associated with closed chromatin (C3-C5). e UMAP 2-D projection of SCI’s embedding with 100 dimensions showing clustered sub-
compartments for GM12878 Hi-C data. f ATAC-seq enrichment evaluating open and closed chromatin states across all five sub-compartments.
g Distribution of nucleolar-associating domains (NADs) between C4 and C5. h–k Comparison of clustering quality metrics between SCI and HMM:
(h) closeness centrality, (i) betweenness centrality, (j) clustering coefficient and (k) Silhouette index. For the boxplots, the top and bottom lines of each
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lower lines above and below the boxes are the whiskers. Asterisks (***) represent p-values < 2.2e−16 using Mann–Whitney test.
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chromatin-associated sub-compartments (C1 and C2) have higher
enrichment of ATAC-seq compared to the inactive compartments
(Fig. 1f, open-chromatin sub-compartment C1 compared to
closed-chromatin sub-compartment C3, and open-chromatin
sub-compartment C2 compared to closed-chromatin sub-com-
partment C5). Moreover, we show that C4 is more highly enriched
for nucleolar-associating chromosomal domains (NADs)12 com-
pared to C5 (Fig. 1g), indicating that C4 is located in the nucleolus
while C5 is likely not. Thus, SCI-predicted sub-compartments
exhibit distinct chromatin characteristics.

Genomic regions that map to the same sub-compartment
based on the graph embedding of SCI are expected to be in
proximity to each other in 3D space. To test this, we examined
intra-sub-compartment, inter-chromosomal chromatin interac-
tion network topology features, including network centrality
(closeness and betweenness) and the clustering coefficient.
Compared to the HMM approach, SCI showed significantly
higher closeness centrality (p-values < 2.2e−16, Mann–Whitney
test) and betweenness centrality, and a higher graph clustering
coefficient within sub-compartments (Fig. 1h–j), with improve-
ments between 8–10%. In addition, we found that open sub-
compartments (C1 and C2) show higher centrality values for
chromatin interactions compared to the closed sub-
compartments (C3, C4, C5) (Supplementary Fig. 3), indicating
that heterochromatin is more spatially constrained than euchro-
matin. These topological network features indicate higher
chromatin interactions between genomic regions within the same
SCI-predicted sub-compartments. To further evaluate the cluster-
ing performance of SCI and HMM, we calculated their Silhouette
indices, which measure the consistency within clusters of data13.
The Silhouette index ranges from −1 to 1, where a higher value
indicates better clustering performance. SCI improved the
Silhouette index over the previous HMM sub-compartment
annotation by 8% (Fig. 1k). Moreover, we calculated the Davies-
Bouldin index, where lower values are better, and SCI improved
the Davies-Bouldin index by 7% (Supplementary Fig. 4). We also
compared LINE to the state-of-the-art graph embedding algo-
rithms HOPE14 and DeepWalk15. LINE-based cluster results had
a better Silhouette index and centrality measures compared to the
alternative graph embedding methods (Supplementary Fig. 5).

SCI performance validated with ChIA-PET data. To further
validate that genomic regions from any given Hi-C-based SCI-
predicted sub-compartment have higher chromatin interaction
frequencies than those from different sub-compartments, we
applied SCI to datasets from an orthogonal chromatin interac-
tion assay, Chromatin Interaction Analysis by Paired-End Tag
Sequencing (ChIA-PET). ChIA-PET measures chromatin
interactions associated with specific protein factors16. We used
two different ChIA-PET datasets: the first captures interactions
associated with CCCTC-binding factor (CTCF), a chromatin-
binding protein associated with more than 70% of the total
chromatin interactions17; and the second captures interactions
associated with RNA polymerase II (RNAPII), which coordi-
nates communication between promoters and their distal reg-
ulatory elements. We then compared the chromatin interactions
in GM12878 cells measured by CTCF and RNAPII ChIA-PET to
quantify two types of chromatin interactions: (i) intra-loops,
which are defined as ChIA-PET chromatin loops that connect
two genomic bins that have the same sub-compartment pre-
dictions; and (ii) inter-loops, which are defined as ChIA-PET
chromatin loops that connect two genomic bins that have dif-
ferent sub-compartment predictions (Fig. 2). We showed
that there are more CTCF ChIA-PET intra-loops (the diagonal
of the heatmap in Fig. 2a and the top panel of Fig. 2b and

Supplementary Fig. 6) than CTCF ChIA-PET inter-loops. SCI-
detected sub-compartments achieved a higher intra-loop vs. inter-
loop ratio of normalized CTCF ChIA-PET loop counts compared
to HMM-detected sub-compartments (Fig. 2c, p-value < 2.2 ×
10−16, Fisher’s exact test). RNAPII ChIA-PET data corroborated a
higher ratio of intra-loops vs. inter-loops using SCI compared to
HMM (Fig. 2d–f). This equated to a 60% and 74% more robust
performance for SCI compared to HMM for CTCF and RNAPII
loop ratios, respectively. We then visualized the ChIA-PET loops
in an example region with more intra-loops than inter-loops
(Fig. 2g). Together, these data demonstrate that, compared to
HMM-prediction of sub-compartments, SCI-prediction of sub-
compartments achieves better clustering performance and tighter
network topology structure.

Functional assessment of sub-compartments. To compare the
functional properties of sub-compartments predicted by SCI with
those of sub-compartments predicted by other methods, we
assessed enrichment for epigenomic marks and replication timing
within sub-compartments. Data comprised DNase hypersensitive
sites (DHS) (open chromatin), ten histone modifications,
enhancer annotations, super-enhancer annotations, DNA
methylation, and six replication timing datasets (Fig. 3a, Sup-
plementary Fig. 7). In general, transcriptionally active sub-
compartments are expected to have higher enrichment for DHS
and the histone modifications (H3K27ac and H3K36me), com-
pared to transcriptionally inactive sub-compartments. While
inactive sub-compartments are expected to have higher enrich-
ment for H3K27me3 and DNA methylation. We found that SCI-
predicted sub-compartments satisfied these expectations (Fig. 3a).
In contrast, HMM-predicted sub-compartments exhibited higher
enrichment for DHS in C3 (inactive) than in C2 (active) (Sup-
plementary Fig. 7). We observed higher enrichment for enhancers
and super-enhancers in the C1 and C2 sub-compartments pre-
dicted by both SCI and HMM (Fig. 3a, Supplementary Fig. 7),
consistent with transcriptionally active genomic regions.

Genes in close 3D spatial proximity to one another are more
likely to have synchronized transcriptional control compared to
those that are in different sub-compartments18. Therefore, we
examined transcriptional activity in SCI-predicted sub-compart-
ments. We assessed gene-expression levels using ENCODE RNA-
seq data of GM12878 cells. Genes within C1 and C2 had
significantly higher transcript per million (TPM) values (p-value <
0.01 based on ANOVA) compared to genes within C3-5,
consistent with their epigenetic regulatory status (Fig. 3b).
Furthermore, we evaluated the generation of nascent RNA using
Global run-on sequencing (GRO-seq)19. The GRO-seq data
confirmed that transcriptional activity in C1 and C2 is
significantly higher (fold change > 3, p-value < 0.01 based on
ANOVA) than that in sub-compartments C3-5 (Fig. 3c).

We hypothesize that the expression of genes within the same
sub-compartment is more highly coordinated than that of genes
across different sub-compartments. Therefore, we calculated
pairwise Spearman’s correlation of gene expression for gene pairs
within the same sub-compartment and across sub-compartments.
We observed higher pairwise correlation values of gene expres-
sion for genes falling into bins within the same sub-compartment
(intra-compartment correlation) compared to genes in different
sub-compartments (inter-compartment correlation) (Fig. 3d). We
also showed that SCI achieved a significantly higher (P-value <
2.2e−16, paired Wilcoxon test) intra-compartment correlation to
the inter-compartment correlation ratio compared to HMM. As
shown in Fig. 3e, SCI performs 40% better than HMM with
respect to pairwise gene-expression correlation for functional
evaluation of sub-compartments.
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Folding the genome into sub-compartments may optimize the
efficient usage of transcriptional regulatory elements. If true, we
would expect to see sub-compartment-specific TF enrichment. To
test this, we assessed TF enrichment using elastic net regression,
which infers the regulatory elements that control transcription for
each sub-compartment20. Based on feature dependency analysis20

(see Methods section for details), we identified sub-compartment-
specific TFs that can be used to predict gene-expression levels in
each sub-compartment (Supplementary Table 1). We also
identified sub-compartment-specific TFs (red text in Fig. 4a, b).
To further validate C1- and C2-specific TFs, we evaluated
ENCODE ChIP-seq data that was available for MYC, EP300, and

BRCA1 TFs. We found that ChIP-seq-based TF enrichment
patterns agree with the predicted sub-compartment-specific TFs,
where MYC and BRCA1 are enriched in C1, and BATF and
EP300 are enriched in C2 (Fig. 4c). In addition, we observed that
YY1, a TF common to both C1 and C2, is not enriched in either
sub-compartment. These results indicate that SCI can identify
chromatin hierarchical sub-compartments that parse into tran-
scriptional regulatory units.

Deep neural network for predicting sub-compartments. Recently,
models have been proposed for predicting sub-compartment-level
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g Example regions of SCI sub-compartment predictions that have more intra-sub-compartment loops (intra-loops) than inter-sub-compartment loops
(inter-loops) supported by CTCF and RNAPII ChIA-PET. Asterisks (***) represent p-value < 2.2 × 10−16 using Fisher’s exact test.
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genome structure from the DNA sequence, ChIP-seq data6, and
other 3D genome assays7. One approach uses a 450 K-based DNA
methylation correlation matrix from multiple replicates (n ≥ 62) to
identify genome-wide A/B compartments. However, there is no
available model for sub-compartment structure prediction using a
single DNA methylation library.

Using SCI predictions, the five sub-compartments showed
distinct epigenome signatures (Fig. 3a), DNA methylation
percentage distributions, and percentage of disordered reads,
the latter of which is a measurement of epigenome stochasticity21

(Fig. 5a). Building on these distinctions, we developed an
epigenome-based classifier to predict sub-compartments based
on ChIP-seq epigenomic marks and whole-genome bisulfite
sequencing data, using a deep neural network (DNN) (Fig. 5b).
We combined dynamic epigenomic features and static DNA
sequence features to design a deep neural network (DNN). We
sliced the data set into a training set (80%) and test set (20%). The
model accuracy reached higher test accuracy (0.73) using SCI-
detected class labels than using HMM-detected class labels (0.68)
or using randomized class labels (0.23) with the same class sizes
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(Fig. 5c). In addition, we developed a more compact model using
only DNA methylation and DNA based features, which was able
to predict genomic sub-compartments with 0.66 of accuracy.
Because the model interpretability of DNN is limited, we used a
gradient-boosted trees model (XGBoost) classifier and random
forest machine learning methods to derive a feature importance
score for our features. The accuracy of the XGBoost classifier is
0.69, and the accuracy of the random forest method is 0.67, each
of which is slightly lower than the accuracy of our DNN model.
The XGBoost and random forest methods agreed that histone
modification features followed by DNA methylation distribution
are the most important feature in the dataset (Supplementary
Fig. 8).

Our sub-compartment DNN predictors outperformed recently
developed model6 using 84 ChIP-seq libraries for histone modifica-
tions and TFs using the same training/test data split (training data
is from odd-numbered chromosomes and test data is from even-
numbered chromosomes) (Supplementary Table 2). Moreover,
our reduced model using DNA methylation and DNA features
outperformed their reduced model using 11 histone marks.

Compartment prediction using Hi-C or ChIA-PET data. We
also used SCI to predict A/B compartments from Hi-C and
ChIA-PET data on two cell lines: GM128787 (human B-lym-
phocyte) and K562 (human lymphoblast). We predicted A/B
compartments using a 100-kb resolution. We observed high
agreement for A/B compartment prediction from both technol-
ogies (Supplementary Fig. 9) (agreement for GM12878 is 91%
and agreement for K562 is 78%). We observed a high correlation
(0.88 for GM12878 and 0.76 for K562) for the first eigenvector
values between Hi-C and ChIA-PET. Moreover, we noted that
enrichment for several open chromatin marks, histone marks,
and replication timing data was similar using compartments
called by Hi-C and ChIA-PET for both cell lines (Supplementary
Fig. 10). We implemented the compartment predictor using
static features (DNA sequence information) and dynamic fea-
tures (DNA methylation information) as input for the deep
neural network model and achieved 87% test accuracy (Supple-
mentary Fig. 11).

Discussion
Hi-C enables the elucidation of higher-order chromatin topology
that suggests structural regulation of transcriptional control.
Software exists for data pre-processing, chromatin loop calling,
and topologically associating domain (TAD) predictions. How-
ever, there is no available software to examine compartment and
sub-compartment structures. Furthermore, it has been shown
that the TAD structure is rather stable among different cell types,
while the structure of sub-compartments is highly variable among
different cell types; this validates the need to study the cell type-
specific functions of sub-compartments22. SCI identifies complex
nuclear sub-compartments in a fully data-driven, unsupervised
fashion.

In contrast to previous methods that infer sub-compartments
using HMM, SCI more comprehensively utilizes network prop-
erties and thus may preserve the global structure of the chromatin
interaction network. SCI formulates sub-compartment prediction
as a graph-based problem and enables efficient utilization of Hi-C
information via graph embedding. SCI considers both the first-
order and second-order proximities, which complement the
sparsity of first-order proximity in Hi-C data. We demonstrated
that SCI outperforms other algorithms, such as HMM and
Kmeans_Yaffe. We believe that the superior performance of SCI
compared to other methods is due to its use of all the inter-
chromosomal interactions, and efficient dimensionality reduction
via graph embedding. Specifically, Rao_HMM uses only a subset
of inter-chromosome interactions, and Kmeans_Yaffe does not
perform a dimensionality reduction on the data. Importantly, we
studied the functional relevance of sub-compartments as they
relate to cellular processes. Moreover, we show TF enrichment in
SCI-predicted sub-compartments.

Recently, various computational models have been proposed to
predict genome organization from sequence and epigenomic
data6 and other 3D genome assays7. We believe that SCI will
further propel the development of such models by providing
robust, accurate labels for genomic sub-compartments. As an
example, we developed compartment and sub-compartment
DNN predictors using static features from the DNA sequence
of the reference genome and dynamic features from histone
modifications and DNA methylation data and outperformed the

Random labels

HMM labels

SCI labels

C1 C2 C3

C4 C5

D
N

A
 m

et
hy

la
tio

n 
%

0

100
0

100
a

c

b

0 1 0 1
Disordered methylation

0 1

Low  High
Density

0.2 0.4 0.6 0.75

Test accuracy

M
LP

 s
ub

-
co

m
pa

rt
m

en
t

ou
tp

ut
 la

be
ls

 

…

…

… …

Output
layer

Input
layer

Hidden layers
C1

C2

C3

C4

C5

Static features:

DNA Sequence

1. 2-mer count

2. 3-mer count

Dynamic features:

DNA Methylation information:

1. Methylation (% distribution,
    PDR distribution,
    Epipolymorphisim
    distribution)  

2. Histone modification ChIP-
    seq data and replication
    timing data     

S
ub

-c
om

pa
rt

m
en

ts

Fig. 5 Deep neural network predicting sub-compartments using DNA methylation. a Smoothed scatter plot showing the distribution of the percentage of
DNA methylation and the proportion of disordered DNA methylation reads for all sub-compartments. b The schematic diagram for the constructed a deep
neural network (DNN) model to predict sub-compartments from methylation and DNA sequence features. c Bar plot showing the accuracy of sub-
compartment prediction using random classifier trained with random labels, HMM sub-compartment annotation, or SCI sub-compartment annotation.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14974-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1173 | https://doi.org/10.1038/s41467-020-14974-x |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


published model6 using 84 ENCODE ChIP-seq libraries for his-
tone modifications and TFs from the same cell line.

Importantly, the ENCODE and 4D Nucleome consortia are
generating robust Hi-C datasets, and we anticipate that SCI will
contribute to more efficient and accurate sub-compartment
determination, and will improve our understanding of the com-
plex interactions between DNA methylation, gene expression,
and chromatin organization. Furthermore, tens of thousands of
DNA methylation assays have been generated in large-scale stu-
dies such as The Cancer Genome Atlas, the Epigenome Roadmap,
and Cancer Cell Line Encyclopedia. SCI will provide methods to
maximize the value of these datasets and thereby enrich our
understanding of the layers of gene-expression coordination that
are important for development and disease states.

Methods
Background. All current sub-compartment prediction methods utilize an inter-
chromosomal interaction matrix to predict sub-compartments. Two methods for
prediction of genomic sub-compartments have been published. First model is the
Yaffee and Tanay sub-compartment model (Yaffee_Kmeans). This model applies
K-means clustering directly on a HiC interaction matrix. It modifies the distance
calculation method such that it ignores all distance computation that involves
intra-chromosomes entries. This model identifies three sub-compartments: one
active and two inactive sub-compartments. The second model is Rao sub-
compartments (HMM). The Rao sub-compartment prediction method focuses on
one sub-set of inter-chromosomal interactions: the interactions between odd-
numbered and even-numbered chromosomes. This method uses HMM to cluster
the interactions between odd-numbered and even-numbered chromosomes in
different runs. After performing cluster annotation for odd-numbered and even-
numbered chromosomes, the Rao method combines those annotations into a single
final cluster annotation based on enriched HiC interactions between the clusters of
odd-numbered and even-numbered chromosomes.

Graph-embedding methods. Given an undirected graph G= [V, E], where V
represents genomic bins, and E represents Hi-C interactions, each edge (e) between
vi and vj has weight wij, which represents the normalized Hi-C read count. Graph-
embedding approaches project graph G into a low dimension space Rd by calcu-
lating embedding matrix U (please refer to the following reviews for more detailed
information about graph embedding23–25). We compared SCI graph embedding
method to DeepWalk and HOPE graph embedding methods.

The Deepwalk method relies on performing random walks across the graph that
have a specific length. These walks resemble node sequences in the graph, and this
sequence is fed to the Word2Vec approach to derive the embedding of the graph
vertices based on their context. The original DeepWalk implementation handles
only unweighted graphs. We used a modified version of the algorithm to handle
weighted graphs from (https://github.com/dongguosheng/deepwalk).

The HOPE method derives the graph embedding matrix U, which minimizes
the following objective function:

S� usu
T
t

�
�

�
�
2

F

where S is a similarity matrix, and U is an embedding matrix where U= [Us, Ut].
The similarity matrix can be defined using different similarity measures, including
the Katz index and rooted page rank. For HOPE, we used the implementation of
these algorithms from the GEM graph embedding package (https://github.com/
palash1992/GEM). We used Katz index similarity measures in the original
publication14.

LINE and joint optimization. In order to project graph G into lower dimension Rd,
LINE defines two properties to preserve in the graph: first-order proximity and
second-order proximity.

First-order proximity is defined as the pairwise proximity through edges
between the vertices in graph G. LINE models first-order proximity between two
vertices in graph vi and vj:

p1 ¼
1

1þ e�uTi �uj
ð1Þ

where ui and uj are vertices embedding into low-dimensional space Rd. We define
empirical edge distribution over the space V ×V, p̂1 ¼ wij

W where W ¼ P

ði;jÞ2E wij .
To obtain the first-order embedding, LINE optimizes the KL divergence (omitting
constants) between p1 and p̂1 as

O1 ¼ �
X

i;jð Þ2E
wijlogðp1ðvi; vjÞÞ ð2Þ

For second-order proximity, the main assumption is that vertices connected to
other vertices are similar. To calculate embedding based on the second-order
proximity, LINE introduces the context concept. Each vertex in the graph is

considered as a simple vertex or as a context to other vertices. LINE introduces two
vectors ui and u0i , where ui is the representation for vi as a vertex while u0i is the
representation for vi as a context.

For each directed edge in the graph (i, j) (undirected edges are treated as two
directed edges with opposite directions), LINE defines the probability of context vj
generated by vertex vi as:

p2 vjjvi
� �

¼
exp u0Tj � ui

� �

P

k2V exp u0Tk � ui
� � ð3Þ

Empirical distribution p̂2 is defined as p̂2 ¼ wij

di
, where di is the out-degree of node i.

LINE optimizes scaled (scaled by node degree) versions of the KL divergence
between p2 and p̂2. It defines

O2 ¼ �
X

wij2E
wij log p2 vjjvi

� �� �

ð4Þ

SCI implements two approaches to combine defined objective functions O1 and
O2. In the first approach, SCI optimizes O1 and O2 independently and then
combines representation from both orders into a final representation. In the second
approach (joint optimization), SCI combines first-order and second-order
proximity objective functions into one function to define O3 as:

O3 ¼ 1� αð ÞO1 þ αO2; α 2 0; 1½ � ð5Þ
where α is a mixing parameter to determine the weight of first-order and second-
order optimization functions.

It then optimizes both orders at the same time. An asynchronous gradient
descent algorithm coupled with negative sampling is used to optimize all objective
functions. The joint optimization showed a 30% increase in time efficiency (from
26 min to 18 min using GM12878 Hi-C data) and a slightly lower clustering
performance of the joint optimization compared to separate optimization
(measured by Silhouette index, Davies-Bouldin index, and centrality measures,
Supplementary Fig. 12). Both separate and joint optimization are available as
options in the SCI code.

Evaluation for clustering methods. For each genomic bin we define Silhouette
index (si) as:

si ¼
bi � ai

max bi; aið Þ ð6Þ

where bi is the lowest average distance for genomic bin i for all other clusters, and
ai is the average distance from genomic bin i from all points in the same cluster.

We used the silhouette_score function from scikit-learn package version 0.19.2.
We used Euclidean distance as our distance measure.

The Davies–Bouldin index (DBI) is defined as:

DBI ¼ 1
k

Xk

i¼1

maxi≠jDij ð7Þ

where

Dij ¼
di þ dj
dij

ð8Þ

Following the definition in ref. 26, we define di and dj as the average distance
between all pairs in clusters i and j. dij is the distance between all pairs between
clusters i and j.

The clustering coefficient is defined as the ratio of the number of closed triplets
(triangles) the node has to the number of all triplets that the node has. To adjust to
the weighted graph, the weighted average for the closed triples is calculated27.

Closeness network centrality of a node is defined as the average length of the
shortest path between the node and all other nodes in the graph. Closeness
centrality for a node u in a graph with n nodes can be calculated as:

C uð Þ ¼ n� 1
Pn�1

v¼1 dðv; uÞ
ð9Þ

where d(v, u) is the shortest path between nodes u and v.
Betweenness network centrality is defined as the number of times a node acts as

a bridge along the shortest path between two other nodes. Betweenness centrality
for a node u in a graph with n nodes can be calculated as:

CB ¼
X

s;t2V

σðs; tjuÞ
σðs; tÞ ð10Þ

where V is the total number of nodes in the graph. σ s; tð Þ is the number of shortest
paths between nodes s and t. σðs; tjuÞ is the number of shortest paths between s and
t passing through u.

Closeness and betweenness centralities were calculated using NetworkX
version 2.1.

GM12878 CTCF and RNAPII ChIA-PET intra-chromosome loops supported
by at least five paired-end reads were used for loop ratio calculation. A loop anchor
is associated with a specific sub-compartment if it has an overlapping ratio greater
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than 50%. Next, we create sub-compartment loop interaction matrix M (mij),
where mij represents the number interaction between sub-compartments i and j
detected using ChIA-PET data, such that the ChIA-PET loop left anchor falls in
sub-compartment i and the right anchor falls in sub-compartment j. As there is no
directionality difference between the left and right anchors, we create a symmetric
compartment matrix Msym as the sum of M and MT. Finally, a normalized matrix
(Mnorm) is obtained by dividing Msym by the sum of its all elements.

An intra-sub-compartment loop was defined as a ChIA-PET loop with both
anchors falling in genomic bins belonging to the same sub-compartment. Inter-
sub-compartment loops were defined if two anchors of the loops fall in genomic
bins from different sub-compartments. The ratio of the number of intra-sub-
compartment and the number of inter-sub-compartment were then used to assess
the connectivity of the predicted sub-compartments.

Sub-compartment and compartment prediction using epigenome data. We
developed machine learning and deep learning models for sub-compartment and
compartment predictions using DNA sequence static features and epigenomic
features. We utilized the XGBoost28 and random forest29 machine learning
approaches to assess feature importance.

To predict sub-compartments from methylation and sequence-based data, we
defined two types of features: static sequence-based features, and epigenome-based
features. The static features include counting DNA-based 2-mers and 3-mers in each
sub-compartment bin. The DNA methylation features include DNA methylation
percentage distribution in each genomic bin, and epigenome instability or disordered
DNA methylation patterns measured by the percentage of disordered reads (PDR)
and epi-polymorphism. Also, we include the median signal for histone modification
and replication timing data per genomic bin as features. Histone modifications data
include H3K27ac, H3K27me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2,
H3K9ac, H3K9me3, H4K20me1, H3K36me3, and H2az marks. Replication timing
data include: RepG1, RepG2, RepS1, RepS2, RepS3, and RepS430. The model was
constructed using the Keras framework (v2.2.4) and TensorFlow backend (v1.11.0).

LINE hyperparameter for sub-compartment identification. We experimented
with several hyperparameter settings for LINE. We performed hyperparameter
selection over embedding size (size), number of negative samples (negative), and
number of edges to be sampled to construct embedding (samples). We used the
grid search to obtain the best parameters; below are the values used for each
hyperparameter, with the selected values indicated in bold:

i. Size: 100, 128, 200, 256, and 512
ii. Negative: 1, 2, 3, 4, 5, 6, and 7
iii. Samples: 15, 20, 25, 30, 40, 50

Neural network hyper-parameter selection for sub-compartment and com-
partment prediction. We fine-tuned network hyper-parameters using a random
search. Below is the list of hyper-parameters with their experimental values, with
the selected values indicated in bold:

i. First layer number of nodes: [128, 256, 512, 1024]
ii. Second layer number of nodes [64, 265, 512]
iii. Learning rate [0.01, 0.02, 0.03, 0.04, 0.05]
iv. Second hidden layer drop-out rate [0.1, 0.2, 0.3, 0.4, 0.5, 0.60, 0.7, 0.8, 0.9]
v. Optimizer: [SGD, RMSProp, Adam]
vi. Epochs: [100, 200, 300]
vii. Batch size: [32, 64, 128, 265]

Random forest and XGBoost hyper-parameter selection. We used the XGBoost
Python library to build our XGBoost classifier. We used the grid search to fine-tune
the number of boosting trees, and we experimented with the number of trees in the
range of [20, 200] with a step of 10. We selected 100 trees based on cross-validation
results using training data.

We used scikit-learn (scikit-learn.org) implementation for the random forest.
We used the grid search to fine-tune the number of forest trees, and we
experimented with the number of trees in the range of [20, 200] with a step of 10.
We selected 130 trees based on cross-validation results using training data.

Training and testing data design. Genomic bins (the data points) were split: 80%
for training and 20% for testing. We applied random forest, XGBoost, and DNN
models for sub-compartment and compartment classifications. We report accuracy
as the performance for those models. For comparison with6 in Supplementary
Table 2, we trained on odd-numbered chromosomes and tested on even-numbered
chromosomes.

Sub-compartment regulator inference. We obtained the DNA binding motifs of
transcription factors (TFs) from the CIS-BP database31. We mapped TFs to the
hg19 sequence using FIMO32, and we retained TF hits with FDR < 0.1. Then, we
associated TF binding sites (TFBS) with genes if the predicted TFBS were within
2 kb of a gene TSS. We further filtered TFBS by selecting only those in accessible

chromatin regions, as determined by ATAC-seq data. Finally, we constructed a
features matrix where the genes represent samples, and all mapped TFs represent
features, and where the count of TF hits associated with a given gene represents the
feature value. We modified the RegulatorInference tool (https://bitbucket.org/
leslielab/regulatorinference) to implement a sample-by-sample elastic net regres-
sion model to predict gene expression for each replicate using regulatory elements
in gene promoters. We optimized the elastic net mixing parameter (alpha) using
ten folds cross-validation. Based on the minimum squared error (mse), we picked
an alpha value of 0.3 (Supplementary Fig. 13).

As a result of elastic net regression, we obtained a coefficient vector for TFs that
represents the importance of the corresponding TF for the prediction of gene
expression, while the sign of the coefficient can be interpreted as the predicted
direction of regulation. We performed elastic net regression tasks separately for
each sub-compartment.

Finally, we performed feature dependency analysis across samples to determine
regulators that significantly account for compartment-specific gene expression in the
regression models. In this process, the aggregate error change of one TF is
calculated20. In summary, the aggregate error corresponds to the difference between
the total regression error and the error contributed by a specific TF across the six
different RNA-seq datasets used. To calculate the aggregate error for each elastic net
model, initially, the entire error is measured using all learned TF coefficients. Then the
TF coefficients are set to zero one at a time, then the error contributed by a specific TF
is calculated. Lastly, the difference between both errors is calculated for each model
and aggregated over the different models to define the final aggregate error.

The higher the aggregate error value, the most important the TF. If the
aggregate error change of a TF is higher than the cutoff, it is considered an
important TF. We used the default RegulatorInference tool cutoff, which
corresponds to the mean of aggregate error changes across all TFs plus 1.5 times
the standard deviation of aggregate error changes across all TFs.

Epigenomic signal enrichment. The enrichment of the epigenome signal was cal-
culated based on the description of (Rao et al., 2014). Briefly, to calculate enrichment
for epigenomic data, we used bwtool33 to calculate the mean of the normalized signal
for each histone mark in each bin downloaded from the ENCODE consortium data
portal (see data availability). Then we computed enrichment as the ratio of the
median of ChIP-seq signal for all of the bins in each sub-compartment divided by
median of ChIP-seq signal of all of the bins genome-wide.

Transcription factors enrichment. We obtained all ENCODE uniformly pro-
cessed peaks from (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeAwgTfbsUniform/). We assigned peaks to different sub-compartments
using bedtools34. We calculated peak enrichment in specific sub-compartments as
the average peak abundance in a specific sub-compartment divided by genome-
wide peak abundance. We evaluated the significance of the presence of a specific TF
in a sub-compartment using the Mann-Whitney test compared to the genome-
wide background. We considered only those TFs with corrected p-value <0.05 in at
least one compartment. To evaluate the significance between C1 and C2 sub-
compartments, we used a two-tailed Mann–Whitney test.

Pairwise correlation among genomic bins using RNA-seq. Correlation of gene-
expression levels within the same or different compartments was computed only
for those genes expressed in at least one of the studied replicates. Each gene was
represented as one TSS, corresponding with the 5’ end of the “gene” feature from
Gencode V19 reference annotation35. All genes within a given maximum distance
(e.g., 100 kb were joined into pairs. Spearman’s correlation coefficient was com-
puted for each pair. Next, gene pairs were categorized as either intra-compartment,
if both genes were located in the same type of compartment (e.g., C1), or as inter-
compartment, if representative gene coordinates of a pair were located in different
compartments. Finally, the average value of Spearman’s correlation coefficients was
computed for all intra-compartment and inter-compartment pairs, considering
only those for which results were statistically significant (i.e., p-value < 0.05). All of
the above-described steps were conducted for the maximum range between pairs
up to 10Mb with a 100 Kb step.

Gene-expression levels comparison using RNA-seq. We used transcript-per-
million RNA-seq transcript quantification at the gene level in the box of Fig. 3b.
We assigned gene TSSs to different sub-compartments, and then we plotted a
boxplot using seaborn package version 0.9.0.

Transcription efficiency measured by GRO-seq. We used bwtools to extract an
aggregation plot36 for GRO-seq data around each TSS for each sub-compartment
separately.

DNA methylation data preprocessing. Briefly, whole genome bisulfite sequen-
cing (WGBS) data were first trimmed of adapters using Trim-galore (version 0.4.0)
[http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/]. The base qual-
ity of the trimmed reads was checked with FastQC (version 0.11.5) [http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/]. The preprocessed reads were then
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aligned to human genome reference hg19 using Bismark (version 0.16.1)37. The
aligned reads were then deduplicated, and the methylation call at each CpG site
was determined by running the appropriate Bismark scripts. DNA methylation
patterns were calculated using methclone38; epipolymorphism39 and PDR21 were
calculated using epihet (https://www.bioconductor.org/packages/devel/bioc/html/
epihet.html).

ATAC-seq data processing. We used HMCan40 to obtain signal tracks from the
alignment data.

Enhancer and super-enhancers enrichment. We calculated enhancer and super-
enhancer enrichment as the ratio between the expected value of observing a super-
enhancer (or enhancer) per compartment and the expected value of observing a
super enhancer (or enhancer) genome-wide.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We obtained processed (.hic) formatted Hi-C data for both GM12878 and K562 cell-lines
from5 with GEO entry GSE63525. GM12878 ChIA-PET data accession code of 4D
Nucleome consortium (https://commonfund.nih.gov/4dnucleome) is 4DNES7IB5LY9
(CTCF) and 4DNESZ25MOZV (RNAPII). We obtained raw ChIA-PET for CTCF and
RNAPII factor for K562 cell-line from ENCODE. We processed raw files to produce
loops follow the Links: https://www.encodeproject.org/experiments/ENCSR000BZY/ and
https://www.encodeproject.org/experiments/ENCSR000CAC/. We used ATAC-seq data
generated by41 GEO entry GSE47753. We downloaded signal bigwig tracks for DHS and
histone modifications from the ENCODE consortium using the following link: http://ftp.
ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/signal/
jan2011/bigwig/. We downloaded super-enhancer annotations for GM12878 dbSuper
database42 (https://asntech.org/dbsuper/). We obtained enhancer data for GM12878
from DENdb enhancers database43 (https://www.cbrc.kaust.edu.sa/dendb/), and used
only high quality enhancers with a minimum score of 3 as assessed by DHS signal. We
downloaded RNA-seq quantified gene expression files from ENCODE with the following
GEO accessions: GSE88583, GSE88627, GSM958730, GSE90222, GSE78553, GSE78555.
We downloaded GRO-seq signal tracks described in ref. 19 from GEO accession number
GSE60456. For replication time data, we downloaded signal tracks from the ENCODE
consortium using the following link: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeUwRepliSeq/. We obtained NAD enriched regions published in12

for hg18 reference. We used liftOver tool to map regions to hg19 reference. We only
considered mapped regions with 0.95 confidence.

Code availability
SCI code is available on https://github.com/TheJacksonLaboratory/sci and https://github.
com/TheJacksonLaboratory/sci-DNN.
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