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SUMMARY

Cardiac ischemia leads to the loss of myocardial tis-
sue and the activation of a repair process that culmi-
nates in the formationof a scarwhose structural char-
acteristics dictate propensity to favorable healing or
detrimental cardiac wall rupture. To elucidate the
cellular processes underlying scar formation, here
we perform unbiased single-cell mRNA sequencing
of interstitial cells isolated from infarcted mouse
hearts carrying a genetic tracer that labels epicar-
dial-derived cells. Sixteen interstitial cell clusters
are revealed, five of which were of epicardial origin.
Focusing on stromal cells, we define 11 sub-clusters,
including diverse cell states of epicardial- and endo-
cardial-derived fibroblasts. Comparing transcript
profiles from post-infarction hearts in C57BL/6J and
129S1/SvImJ inbred mice, which displays a marked
divergence in the frequency of cardiac rupture, un-
covers an early increase in activated myofibroblasts,
enhanced collagen deposition, and persistent acute
phase response in 129S1/SvImJ mouse hearts,
defining acrucial timewindowof pathological remod-
eling that predicts disease outcome.

INTRODUCTION

Myocardial infarction (MI) is defined by extensive myocardial cell

death due to prolonged ischemia (Thygesen et al., 2018) and re-

mains a main cause of morbidity and mortality worldwide. The

ability to regenerate the heart in lower vertebrates and neonates

has been attributed to the proliferation of pre-existing cardio-

myocytes (Foglia and Poss, 2016), a property that is almost

entirely lost in the adult mammalian heart, where response to

injury results in the formation of a scar. The outcome of the repair

process is highly dependent on the extent of myocardial death

and on the interplay between the inflammatory response and

fibrosis (Forte et al., 2018), which can lead to rupture or adverse

ventricular remodeling and heart failure.

Cardiac interstitial cells are increasingly recognized as main

players in organ injury response. They constitute 60%–70% of

the total cells of the heart and include immune cells, endothelial

cells, smooth muscle cells (SMCs), pericytes, fibroblasts, and

various putative stem cell populations. Traditionally, most

mesenchymal cell types in the heart have been defined and

sub-selected based on the expression of surface markers, but

no stem cell marker identified to date is unique to a particular

stromal cell type, and the relations of putative stem cell sub-pop-

ulations to other mesenchymal cells in the cardiac interstitium

are unclear (Forte et al., 2018). While the existence of any signif-

icant population of resident cardiac stem cells in the adult heart

has been largely disproved (Chien et al., 2019), heterogeneity in

the mesenchymal-stromal fraction of the mammalian cardiac

cellulome likely indicates a spectrum of different functions in

both homeostasis and response to injury (Skelly et al., 2018).

Previous explorations of cardiac cellular diversity in themouse

heart characterizing single-cell transcriptional profiles of major

non-myocyte cell populations (Farbehi et al., 2019; Kretzschmar

et al., 2018; Pinto et al., 2016; Skelly et al., 2018) have yielded

valuable insights into the structure of the cardiac cellulome. To

develop a more definitive compendium of interstitial cell types

and transitions in response to cardiac injury, we applied unbi-

ased single-cell RNA sequencing (scRNA-seq) to profile the pro-

gression of gene expression patterns in cardiac interstitial cells

through the three main phases of post-MI response: inflamma-

tion, proliferation, and maturation. Analysis of multiple closely

spaced time points immediately after MI revealed a rapidly

changing landscape of interstitial cell types, providing a detailed

and comprehensive characterization of cellular features and

building a precise map of stromal cell evolution in response to

injury.

Given the dramatic differences in myocardial response to

infarction among genetically diverse mice (Salimova et al.,

2019), we analyzed two inbred strains, C57BL/6J and 129S1/

SvImJ, to define distinct cellular features at the transition be-

tween inflammatory and proliferative phases, when the two

strains display major differences in the incidence of early rupture

(23% versus 59%, respectively). These studies reveal signifi-

cantly different fibroblast states in hearts that are genetically

prone to post-MI rupture, pinpointing specific cell populations

that define reparative outcome in the damaged myocardium,
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which represent promising targets for anti-fibrotic treatments of

heart failure.

RESULTS

Single-Cell Analysis Defines the Interstitial Cell
Landscape Post-MI
To profile cell dynamics in response to MI, we performed unbi-

ased scRNA-seq on live nucleated interstitial cells using the

10X Chromium technology (Zheng et al., 2017). Since the epicar-

dium, the mesothelium covering the heart, is the major source

(�80%) of cardiac fibroblasts in homeostasis (Furtado et al.,

2016; Smith et al., 2011), we traced the stromal component using

C57BL/6J Wt1Cre;RosaZsGreenf/+ mice, in which an enhanced

green fluorescent protein (EGFP) variant (ZsGreen1) marks

epicardial derivatives. To obtain a clean preparation of interstitial

cells, we removed cardiomyocytes, debris, and dead cells by

straining the cell suspension through 40-mmmeshes using mag-

netic beads-based dead cell depletion and sorting for nucleated

(DRAQ+) live (DAPI�) cells. A total of 36,847 live, nucleated inter-

stitial cells were captured at homeostasis and at days (d) 1 and 3

(inflammatory phase), 5 and 7 (proliferative phase), and 14 and

28 (maturation phase) post-MI from 7 mice (Figure 1A; Table

S1; Forte et al., 2018). Whole-mount images showed a diffuse

ZsGreen fluorescence in homeostasis, which increased in inten-

sity after injury, transiting from global heart activation (d1) to the

border zone of the infarct (d3–d5) and onward into the scar area

(d5–d28) (Figure 1B). ZsGreen+ cells increased in the late remod-

eling phase, indicating the presence of epicardial-derived cells in

the mature scar (Figure 1C). Global clustering of single-cell tran-

scriptomes (Butler et al., 2018; Zheng et al., 2017) revealed 16

main populations, identified by marker genes preferentially ex-

pressed in each cluster (Figures 1D–1G; Table S2). These popu-

lations included endothelium (Fabp4, Pecam1); lymphatic endo-

thelium (Lyve1, Cldn5); SMCs (Rgs5, Vtn, Kcnj8); Schwann cells

(Plp1, Kcna1); 7 immune cell populations (granulocytes [S100a8,

S100a9], monocytes I [Chil3, Plac8] and II [Saa3, Arg1], macro-

phages [C1qa,Cd68], dendritic cells [DCs;H2ab1,Cd74], B cells

[Cd79a, H2-DMb2], and a mixed T-natural killer [NK] cell cluster

[Nkg7, Ms4a4b, Gzma]); three fibroblast populations (types I

[Col1a1, Gsn, Dcn], II [Wif1, Dkk3], and III [Mt2, Timp1]); myofi-

broblasts (Myofb; [Cthrc1, Acta2, Postn]); and epicardium (Clu,

Dmkn)—all of these are described in more detail in Figures 1D

and 1E.

ZsGreen expression marking epicardial origin was predomi-

nant in five clusters: epicardium, smooth muscle, and fibroblast

types I–III (Figures 1E and S1A). Co-expression of Wt1 and

ZsGreen marked a minor percentage of endothelial (�1%) and

smooth muscle (�2%) cells, as well as the activated post-MI

epicardium, indicating de novo expression of the gene, verified

using immunofluorescence (Figures S1B–S1D). No de novo

expression of Wt1 mRNA was seen in fibroblasts, confirming

that post-MI activated fibroblasts derive from the pre-existing

Wt1Cre;RosaZsGreenf/+ labeled pool of cells.

A dynamic and choreographed contribution of cell types

evolved during infarct resolution (Figures 1F and 1G). Innate im-

mune cells accumulated immediately after MI (Figures 1D–1G):

short-lived neutrophils peaked within 24 h (Forte et al., 2018),

monocytes appeared between d1 and d7, and macrophages

peaked �d3–d7. Cell ratios returned to near-homeostatic levels

during the maturation phase of MI (d14–d28), with fibroblasts

and endothelial cells prevailing over immune components (Fig-

ure 1G). Whereas a significant fraction of new cell types and

states were observed in the stromal and innate immune cell ag-

gregates during recovery from MI, adaptive immune and

vascular/mural cells were relatively stable (Figure S2).

Dynamics of Stromal Populations Involved in Scar
Formation
To obtain a more detailed portrait of stromal transition from ho-

meostasis (Furtado et al., 2014; Pinto et al., 2016; Skelly et al.,

2018) to post-MI response, fibroblast types I–III, Myofb, and

mesothelial epicardial populations were aggregated and sub-

clustered. Twelve sub-clusters were obtained (Figures 2A, 2B,

S3, and S4; Table S3). Cellular trajectories were defined using

SPRING (Weinreb et al., 2018) (links to SPRING visualization in

Figure S2C). Predictions using DoubletFinder (McGinnis et al.,

2019) revealed an overall very low percentage of predicted dou-

blets across clusters and sub-clusters (Figure S3). Three clusters

were excluded from further analyses due to low cell representa-

tion or mixed identity: a small cluster defined by interferon-

response (IFNr) genes (Ifit3, Isg15, Ifit1), a few dendritic-like cells

(Cd52,C1qb) with a relatively higher frequency of predicted dou-

blets (0.5%; Figure S3) compared to other clusters and sub-clus-

ters, and phagocytic cells (mixed myeloid-Myofb signature;

Actb,Notch2, Lyz2, P2y12). The latter cells were enriched during

the post-MI proliferative phase (d3–d7) and were transcription-

ally similar to proliferating Myofb (Figure S4B), presenting a

relatively higher expression of genes involved in metabolic pro-

cesses and oxidative phosphorylation (Figures 2E and S4).

Within the type I fibroblast population, three closely related

populations of ZsGreen+ epicardial-derived fibroblasts (EpiDs)

were obtained and defined, based on temporal prevalence

and/or marker expression, as homeostatic epicardial derived fi-

broblasts (HEpiDs), progenitor-like state fibroblasts (PLSs), and

late-resolution (LR) fibroblasts. HEpiDs were characterized by

a relatively higher level of expression of genes associated with

the response to organic substances and metabolic effectors:

Dpep1, a zinc-dependent metalloproteinase involved in gluta-

thione and leukotriene metabolism, which may have a role in

transforming growth factor b (TGF-b)-induced epithelial-mesen-

chymal transition (EMT) (Park et al., 2016); Lpl, important for lipo-

protein triglyceride metabolism (Fernández-Borja et al., 1996;

Xie et al., 2018); Hsd11b1, which converts cortisol to its inactive

form, cortisone, and may affect dermal fibroblast proliferation

(Terao et al., 2014); and the pleiotropic chemokine Cxcl14

(Hara and Tanegashima, 2012; Lu et al., 2016; Figures 2C–2E

and S4C). PLSs were relatively stable across all time points (Fig-

ure 2B), expressed genes associated to cell migration and

morphogenesis, known stromal cell markers Cd248 (Smith

et al., 2015), Pi16 (Regn et al., 2016; Xie et al., 2018), and rela-

tively higher levels of Ly6a, previously used as a marker to enrich

for putative cardiac progenitor cells (Tang et al., 2018; Farbehi

et al., 2019; Oh et al., 2003; Figures 2C–2E and S4C). LR

fibroblasts were prevalent at d14–d28 (maturation phase), ex-

pressing a relatively higher level of genes associated with cell
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differentiation, osteogenesis, and regulation of matrix remodel-

ing and deposition, including Adamtls2 and Cilp, secreted pro-

teins involved in the negative regulation of TGF-b availability

(Le Goff et al., 2008) and activity (Zhang et al., 2018), fibrillogen-

esis (Koo et al., 2007), and fibrosis (van Nieuwenhoven et al.,

2017; Zhang et al., 2018); Col8a1, an extracellular matrix (ECM)

component conferring tensile strength that supports vessel

integrity and structure (Kittelberger et al., 1990) upregulated in

Figure 1. Single-Cell RNA-Seq of Interstitial Cells Post-MI Reveals Population Dynamics in Cardiac Repair

(A) Murine cardiac interstitial cells were isolated by mechanical and enzymatic dissociation of adult mouse cardiac ventricular tissue (dashed square); mesh

purification, magnetic dead cell depletion, and sorting were performed to exclude cardiomyocytes and apoptotic or necrotic cells before analysis. A total of

38,600 cells were captured and sequenced (n = 7 mice).

(B) Selected time points and whole-mount images of Wt1cre;ZsGreenf/+ mice used to trace epicardial-derived components in the cardiac interstitium.

(C) Percentage of single live nucleated ZsGreen+ interstitial cells detected by flow cytometry in the samples used for scRNAseq. Data shown asmean ± SD of two

technical replicates at each time point.

(D) t-Distributed stochastic neighbor embedding (t-SNE) plot of the aggregate of all sequenced cells across time points. Seurat analysis with 24 PC and resolution

0.5 was used to define 16 main clusters.

(E) Dot-plot visualization of top marker genes used to identify clusters. Dot sizes denote percentage of expression per cluster; color gradient defines average

expression per cell.

(F) t-SNE plot showing cell contribution by time point identified by color.

(G) Bar plot of percentage of cluster contributions per time point.

See also Figures S1 and S2 and Tables S1 and S2.
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Figure 2. Evolution of Fibroblast States across Phases of Repair

(A) t-SNE plot of combined stromal clusters (fibroblasts I, II, and III, myofibroblasts) and epicardium, further sub-clustered by 20 PC, resolution 0.5, colored by

cluster separation.

(B) Bar plot representation of the relative frequency of different fibroblast sub-clusters (percentage over total cells) at different time points across repair.

(C) Dot-plot representation of top two signature genes per sub-cluster.

(D) SPRING visualization of fibroblast sub-clusters; 1,200 cells are shown per time point, colored by Seurat-defined clusters.

(E) PANTHER GO-slim biological process overrepresentation analysis of fibroblasts sub-cluster marker genes, showing representative GO terms per each sub-

cluster, excluding DCs, dendritic-like cells, and IFNr (interferon-responsive cells). Bonferroni corrected p values.

See also Figures S2–S4 and Tables S3 and S4.
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the presence of vascular injury (Gerth et al., 2007; Kittelberger

et al., 1990; Lopes et al., 2013); and the transcription factor

Meox1, which is involved in embryonic somitogenesis and

TGF-b-induced differentiation of SMCs (Dong et al., 2018; Fig-

ures 2C–2E and S4C). Meox1 is also implicated in cardiac path-

ological hypertrophy (Lu et al., 2018) and is downregulated

during in vitro phenoconversion from fibroblasts to Acta2+

Myofb (Cunnington et al., 2014). The observed gene expression

pattern of LR fibroblasts and their prevalence during the matura-

tion phase suggests that these cells arise as a consequence of

chronic pathological remodeling rather than as direct precursors

of Acta2+Myofb, aswas recently suggested (Farbehi et al., 2019).

The SPRING k-nearest neighbor (knn) graphical representa-

tion of stromal cells showed a linear progression from EpiD

ZsGreen+ to Myofb (Figure 2C). Type II fibroblasts (Wif1, Dkk3)

appeared as a distinct sub-cluster, branching separately in the

SPRING plot (Figure 2D) and characterized by a gene signature

closely related to valve leaflets, with top canonical pathways

involved in endochondral ossification and Wnt signaling and

Gene Ontology (GO) terms related to anatomical structure

morphogenesis and development (Figures 2C–2E, 3E, and

S4C). Given the low level of ZsGreen expression in these cells,

possibly due to ambient RNA contamination, they are likely

endocardial-derived fibroblasts (EndD). Consistently, 88.5% ±

2.27% of the DKK3+ cells in the ventricles were co-labeled

with ZsGreen in TekCre;ZsGreenf/+ mice (which trace endocar-

dial-derived cells), while 88.05% ± 4.02% of EndD cells were

ZsGreen� in Wt1Cre;RosaZsGreenf/+ mice (Figure 3). A similar

population, recently referred to as Wnt-X (Farbehi et al., 2019),

was considered an activated state, since WIF1 protein was

observed immediately after injury in the peri-infarct area (Fig-

ure S4D). In contrast, our analysis showed the expression of

the signature marker DKK3 already in homeostasis around cor-

onary vessels and valve fibroblasts (Figure 3), suggesting that

the segregation of the EndD as a sub-population of fibroblasts

may be due to its embryological origin, rather than to an activa-

tion state (Figure 2D).

A sub-cluster of ZsGreen+ EpiD cells, defined by its injury

response (IR) properties, and expressing high levels of Mt1-2

transcripts (Figures 4 and S4B), appeared at d1, preceding

Myofb at d3 (Figure 2B). MT1-2 metallothioneins are involved

in the alleviation of oxidative stress and immunomodulation

(Subramanian Vignesh and Deepe, 2017), and transient Mt1-2

activation in stress conditions or inflammatory diseases (De

et al., 1990) exerts a protective function by reducing apoptosis

and excessive fibrosis (Duerr et al., 2016). The IR sub-cluster

also showed a high expression of monocyte-macrophage che-

moattractants Ccl2, Ccl7, and Csf1 and neutrophil activators

Cxcl1 and Cxcl5; pro-inflammatory-pro-fibrotic factors Il33,

Cxcl12, and Tgfb1 (Figure 4B); the metalloprotease inhibitor

Timp1, which blocks Mmp1 but can additionally prevent

apoptosis and induce proliferation in a range of cell types

(Brew and Nagase, 2010); the Mmp3 metalloprotease, which

can degrade the major components of the ECM but not intersti-

tial collagen I (Lu et al., 2011); andmatricellular proteins with pro-

inflammatory or pro-reparative functions such as Prg4 (Iqbal

et al., 2016) and Angptl4 (Jamil et al., 2017; Teo et al., 2017).

This complex cocktail of regulatory factors implicates the IR

cell cluster in the initiation of the inflammatory response and for-

mation of granulation tissue. GO biological terms and canonical

Figure 3. Endocardial-Derived Fibroblast (EndD) Validation in Homeostatic Ventricles

(A) Confocal imaging of the EndD marker DKK3 (in red) on cardiac sections from adult Wt1Cre; ZsGreenf/+ mice. ZsGreen labels epicardial derived cells.

(B) Quantification of the percentage of DKK3+ cells co-labelled with the reporter ZsGreen. Data are represented as mean ± SEM. N = 3 biological replicates,

7 technical replicates.

(C) Confocal imaging of DKK3 (in red) on cardiac sections from adult TekCre; ZsGreenf/+ mice. ZsGreen labels endocardial-derived cells.

(D) Quantification of the percentage of DKK3+ cells co-labelled with the reporter ZsGreen. Data are represented as mean ± SEM. N = 3 biological replicates, 7

technical replicates.(E) Enrichr analysis of EndD marker genes identified top related cell (mouse gene atlas) and tissue (ARCHS4 tissues) types.

See also Figure S4 and Tables S3 and S4.
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pathways associated with this cluster included ribosome

biogenesis; regulation of eukaryotic translation initiation factor

2 (eIF2), eIF4, and p70S6K, indicating active protein synthesis

and translation; and acute phase response signaling (Serpina3n,

Serpina1, Tnfrsf1a), involved in the unfolded protein response

and glycolysis (Figures 2E and 4C). To confirm the expression

of MT1-2 in stromal cells, immunostaining was performed

on Wt1cre;ZsGreenf/+, to verify the epicardial origin, and

Col1a1eGFP mice, for quantification. While in homeostasis,

MT1-2 proteins were expressed mostly in CD45+ cells

(88.9% ± 5.4% of CD45+ cells, 4% ± 1.3% of Col1a1-EGFP+

cells; Figures 4D and 4E), reflecting their role in immune cell

maturation (Subramanian Vignesh and Deepe, 2017); global acti-

vation was detected at d1 in EpiD (ZsGreen+) stromal cells,

extending from the injury site to remote myocardial areas

(62.7% ± 2.5% of Col1a1-GFP+ cells Figures 4D and 4E). At

d3, MT1-2+ stromal cells were reduced and mostly confined to

the scar area (29.6% ± 5% of Col1a1-GFP+ cells in the scar

area versus 6% ± 0.2% distal area), labeling a fraction of Myofb

defined by anatomical position, morphology, and high expres-

sion of Col1a1-GFP. MT1-2+ was mostly limited to CD45+ and

sub-epicardial cells at d5. Consistently, SPRING analysis

showed that the IR cluster evolved from high expression of

Mt1-2 and stromal and fibroblast genes (Gsn [Witke et al.,

1995], Pdpn [Suchanski et al., 2017], Angptl4) on d1 to low

expression of Mt1-2 accompanied by Myofb markers (Fn1,

Acta2, Cthrc1) on d3 (Figure 4F), suggesting that IR cells rapidly

transition to Myofb, in contrast to a previous report suggesting

the appearance of Myofb not earlier than d7 post-MI (Farbehi

et al., 2019).

Myofb, large cells with highly active endoplasmic reticulum,

are defined as specialized fibroblasts that appear post-injury,

produce a high quantity of ECM components, and acquire

some phenotypic and functional features of SMCs, such as

contraction capacity upon stimulation, essential for the closure

and stabilization of the injury site (Baum and Duffy, 2011; Forte

et al., 2018). Our analysis showed a linear progression from

EpiD ZsGreen+ to Myofb (Figure 2D). Three main populations

of Myofb were observed post sub-clustering: Myofb (Acta2,

Cthrc1), ProlifMyofb (Acta2, Cthrc1, cell-cycle genes) from d3

to d7, and a group of cells similar to the recently defined matrifi-

brocytes (MFCs) (Fu et al., 2018) enriched in the mature scar

(d14–d28). MFCs expressed genes related to osteoblasts and

chondrocytes, similarly to EndD fibroblasts (Figure 5), such as

cartilage oligomeric matrix protein (Comp), an ECM protein pre-

sent in cartilage that catalyzes the assembly of collagens and

formation of fibrils (Halász et al., 2007), and genes associated

with fibrosis and collagen signaling, similar to LR fibroblasts

and Myofb. Pairwise differential gene expression analysis of all

fibroblast states using Seurat revealed that, compared to

EndD, MFCs had higher levels of ECM components (Col8a1,

Fn1, Fbn1, Itgbl1, Wisp2, and Cthrc1) and notably did not ex-

press the Wnt inhibitor Wif1 (Figure S4C; Table S4). Compared

to Myofb, MFCs had reduced expression of genes associated

with contractility (Acta2, Tagln, Tpm2, andMyl9) or ECM compo-

nents (Timp1, Tnc, Cthrc1, and Col1a1), but expressed Comp

and Angptl7 and Fbln1 and Cilp, supporting the transition to a

less contractile, less secretory cell type producing components

of a more stable, chondrogenic-like ECM.

To visualize the conversion between these two cell types in the

injury site, immunofluorescence was performed using ACTA2

and CTHRC1 as Myofb markers. MFC markers included

SFRP2, a pro-reparative paracrine factor (Mirotsou et al.,

2007), and CLU, a widely expressed glycoprotein upregulated

in senescent fibroblasts or under different stress conditions.

CLU may play a role in apoptosis, debris removal, and folding

of secreted proteins (Jenne and Tschopp, 1992; Jones and Jo-

mary, 2002; Figures 5B and 5C). ACTA2 staining in Myofb was

seen at a lower intensity than in SMCs starting from d3, and

was mostly limited to vessels at d14–d28, while Myofb CTHRC1

staining persisted at late stages. InMFCs, SFRP2 andCLU stain-

ing increased at later stages; the latter was also expressed in

activated endocardium and epicardium (Figure 5C). qPCR anal-

ysis on Col1a1-EGFP+ stromal cells isolated from the scar and

distal myocardial areas of the heart at d5–d14 post-MI confirmed

that Myofb markers Acta2 and Tnc were significantly higher in

the scar during the proliferation phase (d5), while MFC markers

Ecrg4,Comp,Sfrp2, Thbs4,Wisp2,Meox1, andCol8a1were up-

regulated at d14. Meox1, Comp, Ecrg4, and Col8a1 were unal-

tered or not significantly changed in the d5 distal area compared

to the control, confirming their enrichment in LR fibroblasts.

These results underscore the dynamic stromal response to car-

diac injury, which induces a complex orchestration of multiple

cell subtypes responsible for post-MI remodeling.

Genetically Determined Factors Confer Resilience to
Cardiac Rupture
Genetic background dictates differences in initial cardiac stro-

mal cell composition that may influence the course of replace-

ment fibrosis in cardiovascular disease (Forte et al., 2018;

Salimova et al., 2019). Here, we took advantage of the genetic

diversity across inbred mouse strains to investigate the variation

in response to MI: C57BL/6J or B6J (control), 129S1/SvlmJ or

129 (prone to hypertension), DBA/2J (prone to calcification),

Figure 4. An Epicardial-Derived Injury Response (IR) Fibroblast Population in the Early Phase of Repair Post-MI

(A) Heatmap of the average expression of the top 20 signature IR cluster genes across all fibroblast sub-clusters.

(B) Top cytokines and chemokines produced by the IR cluster.

(C) Top IR cluster canonical pathways identified using Ingenuity Pathway Analysis (IPA).

(D) Confocal imaging of MT1-2 staining in IR fibroblasts at d1 and d3 post-MI using Wt1cre;ZsGreenf/+ and Col1a1eGFP reporter mice.

(E) Scatterplot showing the percentage ofMT1-2+ cells co-labeled with the reporterCol1a1eGFP or CD45 (gray). A total of 5–10 frameswere counted per each time

point, 2–3 mice per time point. Data are represented as means ± SEMs. LV (green dot) is the left ventricle injury site; RV/Distal (red triangle), right ventricle, area

distal from the injury site.

(F) SPRING visualization of the IR sub-cluster showing time course evolution of cluster identity (blue arrow) from fibroblast (Fb) to myofibroblast (Myofb). Plots on

right panels show marker genes that distinguish early (Fb) from late (Myofb) IR cells. Scale bars, 50 mm.

See also Figure S4 and Tables S3 and S4.
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Figure 5. Contribution of Myofibroblasts (Myofb), Matrifibrocytes (MFCs), and Late Response Fibroblasts (LR) to Ventricular Remodeling

Post-MI

(A) knn SPRING visualization of theMyofb cluster identified from analysis of the stromal aggregate across 7 time points (PC24, resolution 0.5), colored by time and

by the expression of early Myofb marker genes (Acta2, Tnc, Cthrc1, light blue) and MFC marker genes (Sfrp2, Clu, Ecrg4, Comp, Wisp2, Thsb4).

(B and C) Confocal imaging of adult hearts fromCol1a1eGFPmice, used as a genetic marker for stromal cells. (B)Myofbmarkers CTHRC1 (red) and ACTA2 (white)

and (C) MFC markers SFRP2 (red) and CLU (white) at different time points post-MI.

(D) qPCR validation of additional Myofb (light blue), MFC (dark blue), and LR (olive green) markers on live nucleated stromal cells (PI�, DRAQ5+, EGFP+) sorted

fromCol1a1eGFP transgenic hearts. Scar or distal areas were dissected and separately processed for sorting from control (n = 3) or d5 (n = 3) and d14 (n = 3) post-

MI ventricular tissue.

(legend continued on next page)
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NOD/ShiLtJ (prone to type 1 diabetes), NZO/HlLtJ (obese), A/J

(prone to muscular dystrophy), and three wild-derived strains

(CAST/EiJ, WSB/EiJ, and PWK/PhJ) (Figure 6A). The mortality

Data are summarized as box andwhisker plots, indicating themedian value (black bar inside box), 25th and 75th percentiles (bottom and top of box, respectively),

and minimum and maximum values (bottom and top whisker, respectively). Statistical significance (*p < 0.05, zp < 0.001, #p < 0.0001) was calculated per each

gene by two-tailed unequal variance Student’s t test between sample (distal d5, distal d14, scar d5) and correspondent reference used for normalization (distal

d0, scar d14). Scale bars, 50 mm.

See also Figure S4 and Tables S3 and S4.

Figure 6. Differential Rupture Rate and Stro-

mal Cell Response across Inbred Murine

Strains

(A) Pie charts showing 1-month survival rate post-

MI of 9 inbred strains with different susceptibilities

to cardiovascular dysfunction, including diabetes

(NOD/ShiLtJ, n = 13), obesity (NZO/HILtJ, n = 16),

hypertension (129S1/SvlmJ, n = 34), calcification

(DBA/2J; n = 9), dystrophic myopathy (A/J; n = 14),

and wild-derived strains (CAST/EiJ, n = 18; WSB/

EiJ, n = 12 and PWK/PhJ, n = 11). C57BL/6J was

used as a control (n = 13).

(B) Representative whole-mount images of 129S1/

SvlmJ and C57BL/6J hearts at homeostasis and

d3 post-MI.

(C) t-SNE plot of combined interstitial cells from

C57BL/6J and 129S1/SvlmJ hearts (B6J sham,

n = 2, 4,710 cells; 129 sham, 4,213 cells; d3 MI

B6J, 3,950 cells; d3 MI 129, 4,128 cells). Twenty-

seven clusters were obtained using unbiased

clustering.

(D) Relative ratio of various stromal cell populations

in 129 and B6J hearts at d3 sham or MI (mean

cells per thousand). Two B6J sham samples were

used to show consistency between biological

replicates.

See also Figures S5 and S6 and Table S5.

rate varied among strains, with 129

showing the highest rate of rupture

(59%; n = 34) when compared to B6J

(23%; n = 13), as previously described

(Gao et al., 2005). The baseline cardiac

function of both lines was similar (Fig-

ure S5), despite previous reports of higher

blood pressure in 129 males (Barrick

et al., 2007), attributed to the increased

activity of the renin-angiotensin system

(RAS) pathway (Lum et al., 2004; Wang

et al., 2002), which promotes inflamma-

tion (Gao et al., 2017). Rupture occurred

between d4 and d5 in B6J and d3 and

d4 in 129 (Figure S5K), similar to previous

reports (Gao et al., 2005) and coinciding

with the transition from the inflammatory

to the proliferative phase and of fibroblast

state from IR to Myofb.

To understand how differences in cell

composition and/or gene expression

may determine the higher propensity to

rupture in 129, scRNA-seq of 129 and B6J cardiac interstitial

cells were compared in sham-operated mice and at d3 post-

MI (Figure 6B), the crucial pre-rupture time point. Data were

Cell Reports 30, 3149–3163, March 3, 2020 3157



integrated, using Harmony, an algorithm that projects cells into a

shared embedding while accounting for a biological variable—in

this case, genetic background (Korsunsky et al., 2019; Fig-

ure 6C). The comparison to sham-operated mice that were sub-

jected to a similar procedure, with chest opening and tearing of

the pericardium, allowed us to focus on the differences caused

by the ischemic injury alone. Post-MI 129 hearts presented rela-

tively more Myofb, ProlifMyofb, and IR fibroblasts than B6J (Fig-

ure 6D), at the expense of other fibroblast states, which were

balanced or relatively reduced in 129 (Figures S6A and S6B).

Within the stromal cluster aggregate (Figure S6C), 3,922 genes

were differentially expressed between 129 and B6J as a function

of strain and MI (Tables S6 and S7). PANTHER analysis defined

differences in pathways related to inflammation, receptor tyro-

sine kinase signaling, cell migration, ECM organization, and

collagen formation between strains (Figures 7A, S7A, and

S7B). Ingenuity Pathway Analysis (IPA) confirmed the enrich-

ment in pathways related to fibrosis, adhesion, growth, and

inflammation, and predicted upstream regulators, including

pro-inflammatory and pro-fibrotic factors (Tgfb1, Tnf, Ifng, Il1b,

Il4, Agt) (Figure S8). The expression of genes within GO cate-

gories for ossification, ECM organization, ECM structural com-

ponents, and collagen-containing matrix were relatively reduced

in 129 sham, but upregulated in 129 at 3d post-MI compared

with B6J (Figures S7C and S7D). Within ECM components,

elasticity genes (Eln, Emilin2, fibulins, microfibrillar-associated

Figure 7. Differential Pro-inflammatory and Secretory Phenotypes and ECM Composition between 129 and B6J Cardiac Stromal Cells

(A) PANTHER Reactome pathway analysis of 3,922 differentially expressed genes (FC R 2; p < 0.01) between sham or d3 post-MI 129 and B6J stromal cells.

(B–D) Dot plots showing the percentage and intensity of expression of genes within representative GO terms related to angiotensin response (B), ECM

composition (C), and acute phase response and coagulation (D) across all of the samples. Two B6J sham samples were used to show consistency of change

between biological replicates. Percentage scores denote the number of genes within the GO term that are represented in the list of differentially expressed genes.

(E) qPCR validation of gene changes across samples. Sorted CD45�/CD31� stromal cells were isolated from adult 129 and B6J d3 sham or post-MI hearts (n = 3

biological and technical). Target genes were grouped as Myofb markers, ECM components, genes regulating ECM composition, coagulation, acute phase

response, chemokine activity, and renin-angiotensin system (RAS).

Data are summarized as box andwhisker plots, indicating themedian value (black bar inside box), 25th and 75th percentiles (bottom and top of box, respectively),

and minimum and maximum values (bottom and top whisker, respectively). Statistical significance (*p < 0.05, zp < 0.001, #p < 0.0001) per each gene was

calculated by two-tailed unequal variance Student’s t test, comparing expression values in 129 versus B6J reference samples used for normalization.

See also Figures S7–S9 and Tables S6 and S7.
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proteins) were relatively lower in 129 irrespective of injury (Fig-

ure 7C and S7D), while tensile-strength collagens (Fn1, Tnc,

Thbs1, Vcan)were upregulated in 129 post-MI. ECM-associated

enzymes (Adamts2, Adamts5, Lox, Loxl2, Bmp1) were also

higher in 129 post-MI, while metalloproteinases were increased

in B6J (Figures S8C and S8D), with the exception of Mmp9, or

gelatinase B, which was previously associated with cardiac

rupture (van den Borne et al., 2009), and Mmp14, a mem-

brane-associated metalloprotease involved in the activation of

MMP2, or gelatinase A (Jugdutt, 2003). ECM components

involved in the inflammatory response (Hif1a, Timp1, F2r) were

upregulated in 129 post-MI (Figures 7C and S7E), as well as

coagulation genes (F2r, Pf4) and negative regulators of fibrino-

lysis (Serpine1, Thbs1) (Figure 7D). Mouse strain 129 also ex-

pressed relatively higher levels of acute phase response genes

(Tlr4, Serpina3n, Saa3) both in sham and post-MI, and increased

chemoattractant or chemokine activity post-MI, with the excep-

tion ofCxcl14,which was already higher in 129 sham (Figures 7D

and S7E).

Among its numerous functions, the RAS is involved in ECM

deposition through stimulation of the AgtR1 (Mehta and Grien-

dling, 2007). Angiotensin II (AngII) induces a secretory phenotype

in fibroblasts, stimulating the production of chemokines and

ECM components (Bouzegrhane and Thibault, 2002), as well

as pro-fibrotic factors, including TGF-b1 (Rosenkranz, 2004).

AngII plays an essential role in promoting liver fibrosis by upregu-

lating Toll-like receptor 4 (TLR4), thus enhancing downregulation

of the TGF-b1 inhibitory pseudo-receptor BAMBI (Li et al., 2013).

Consistently, our single-cell data showed a relative increase in

Agt1ra, its downstream targets Tlr4, Tgfb1, and Ctgf (Figure 7B),

and reduced Bambi in 129 stromal cells post-MI (Figures S8C

and S9).

In summary, the increased susceptibility of 129 hearts to

rupture is associated with persistent coagulation and impaired

fibrinolysis that increases instability in the injury site, which is

also supported by the higher responsiveness to angiotensin (Fig-

ures 7B, S7B, and S9). The increased production of ECM com-

ponents in 129 post-MI does not confer resilience to rupture;

rather, other ECM properties, such as fiber alignment, or physi-

ological differences in baseline ECM composition, have been

suggested as critical factors for heart repair following injury

(Gao et al., 2002; Richardson and Holmes, 2016; Salimova

et al., 2019).

DISCUSSION

In the heart, interstitial cells of varying identities provide impor-

tant regulatory functions in tissue homeostasis and repair, and

an accurate evaluation of their composition is essential for

defining their respective roles during pathogenesis and for

devising strategies for tissue engineering and other therapeutic

intervention. Our previous studies offered insights on the abun-

dance and characteristics of different interstitial cell types in

the heart, aided by isolation strategies and genetic tools to define

and manipulate fibroblasts (Furtado et al., 2014), refined flow

cytometry techniques (Pinto et al., 2012, 2016), and unbiased

single-cell analysis (Skelly et al., 2018) in the absence of cardio-

myocytes, without relying on surface markers that may overlap

different cell states and conceal heterogeneity (Ackers-Johnson

et al., 2018; Jaitin et al., 2014). We also drew on recent work

leveraging mouse genetic diversity for the discovery of the

gene networks associated with variations in cardiovascular dis-

ease outcomes (Salimova et al., 2019).

The inclusion of a genetic reporter distinguished multiple EpiD

subtypes (HEpiD, PLS, LR, IR, Myofb, MFC) whose sequential

appearance defined post-MI phases, as well as an endocar-

dial-derived cell population (EndD) expressing genes involved

in endochondral ossification and Wnt signaling inhibition, whose

stable presence in homeostasis persisted throughout repair.

Detailed profiling of the dynamic transcriptional changes across

three phases of cardiac response to infarction (inflammatory,

proliferative, and maturation) revealed a rapid induction of dy-

namic injury-induced transitions in interstitial cell states,

including an emerging fibroblast subset associated with inflam-

matory initiation that marked the inherited characteristics of

pathogenic outcomes.

In contrast to previous scRNA-seq studies in cardiac post-

ischemic injury (Farbehi et al., 2019; Kretzschmar et al., 2018),

the analysis of multiple time points (d1, d3, d5, d7) immediately

post-MI has provided a higher resolution of the early dynamic

transitions in stromal cells that predict survival versus cardiac

rupture. Whole-heart activation soon after injury identified an

IR signature in fibroblasts and in a fraction of early Myofb, ex-

pressing molecular markers of oxidative stress alleviation and

immunomodulation. A detailed analysis of the proliferative phase

(d3, d5, d7) revealed a prevalence of Myofb and their cycling

counterparts (ProlifMyofb) and a phagocytic population with

mixed fibroblastic-myeloid identity (Arlein et al., 1998). Profiles

of later post-MI stages (d14, d28) identified a population of

EpiD (LR), expressing genes modulatory of TGF-b activity and

availability and regulatory of ECM components involved in tissue

remodeling and pathological hypertrophy. A similar cell type

(F-actin) has been recently defined as a pre-Myofb activation

state in which fibrosis is inhibited (Farbehi et al., 2019). Given

that LR are prevalent in the distal infarct area during the matura-

tion phase, when Myofb are replaced by MFC derived from

Acta2+ cells (Fu et al., 2018), LR are most likely not direct Myofb

precursors, but rather a state indicative of chronic remodeling.

Our current analysis confirmed that MFCs are closely related

to Myofb (Fu et al., 2018), but have reduced contractile and

secretory properties, expressing different matrix components

associated with late remodeling and ossification.

The early transition of IR to Myofb is likely an important step in

determining reparative outcome, considering the high preva-

lence of cardiac rupture in 129 hearts in the early proliferative

phase (d3–d4). Clear differences in the stromal compartment

of 129 hearts showed a prevalence of Myofb and IR Myofb,

with a stronger pro-inflammatory and secretory state, including

increased production of chemokines, inflammatory signals,

and ECM components, as compared to B6J hearts. This pheno-

type is correlated with an enhanced response to angiotensin. A

high responsiveness to the RAS pathway may be due to the

presence of a duplication of the Renin gene in the 129 strain,

the function of which is still not completely clear (Lum et al.,

2004; Wang et al., 2002). Treatments with therapeutic drugs tar-

geting the RAS pathway cause a significant reduction in the
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frequency of rupture in 129, independently from changes in

blood pressure, and attributed to reduced inflammatory infiltra-

tion (Gao et al., 2017). Here, significant differences in the

single-cell transcriptomic analysis, combined with bulk qPCR

validation in the stromal compartment of the 129 mice, are in

line with the pleotropic functions of angiotensin, which not only

regulates the recruitment of myeloid cells from the spleen (Swir-

ski et al., 2009) but also promotes fibrosis and collagen deposi-

tion by fibroblasts (Lijnen et al., 2001; Mehta and Griendling,

2007). While it may seem paradoxical that mice with more

ECM-secreting Myofb are prone to rupture, the reduced expres-

sion of collagens and ECM components conferring elasticity in

129 homeostatic hearts suggest that pre-existing scaffolds are

more important than newly secretedmatrices in conferring resis-

tance to rupture (Gao et al., 2002). An alternative explanation for

this phenomenon is that the quality, organization, andmaturation

of the matrix is more important than its pure enhanced secretion.

In addition, gene expression patterns indicate that persistent

coagulation and reduced fibrinolysis in 129 may contribute to

the instability of the injury site.

The 129 model resembles the more common cardiac rupture

of the pre-reperfusion era (type III), characterized by transmural

myocardial necrosis with hemorrhagic transformation in the cen-

tral region (Becker and van Mantgem, 1975). The present study

pinpoints the modulation of the early transition from IR to Myofb

as a critical determinant for risk of rupture and pathological re-

modeling in the 129 model and proffers mechanistic insights

into the previously reported beneficial effects of fibrinolytic and

anti-RAS therapies in these patients (Bates, 2014; Honda et al.,

2014). It presents a comprehensive profile of cell types and path-

ways for the modulation of fibrosis as a critical intervention post-

MI, providing potential targets for anti-fibrotic intervention. The

detailed transcriptomic analysis of cardiac interstitial cells at

different time points post-MI provides a benchmark for compar-

ative analyses of potential differences in cell composition and

dynamics of genetically diverse models with different reparative

outcomes. Future mapping of the networks controlling the fibro-

blast IR state promises to identify specific features conferring

susceptibility and resilience to cardiac rupture, enabling patient

stratification and the development of precision therapies.
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Ingenuity Pathway Analysis QIAGEN Ingenuity Pathway Analysis; RRID:SCR_008653

Panther Mi et al., 2019 PANTHER, RRID:SCR_004869

LAS software v4.8 Leica Leica Application Suite; RRID:SCR_016555

Fiji version 1.0 Schindelin et al., 2012 Fiji, RRID:SCR_002285

LASX Leica Leica Application Suite X; RRID:SCR_013673
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stock #007906) (Madisen et al., 2010). For constitutive endocardial genetic tracing, the same reporter was crossed with B6.Cg-

Tg(Tek-cre)12Flv/J mice (TekCre; JAX stock #004128) (Koni et al., 2001). The previously described Col1a1eGFP transgenic mice

were used as a cardiac fibroblast marker for validation experiments (Yata et al., 2003). Nine different inbred strains were subjected

to myocardial infarction to evaluate the reparative outcome: NZO/HlLtJ (JAX stock #002105), WSB/EiJ (JAX stock #001145), NOD/

ShiLtJ (JAX stock #001976), 129S1/SvImJ (JAX stock #002448), PWK/PhJ (JAX stock #0003715), CAST/EiJ (JAX stock #000928), A/J

(JAX stock #000646), C57BL/6J (JAX stock #000664) and DBA/2J (JAX stock #000671).

METHOD DETAILS

Myocardial infarction
Myocardial infarction was performed as previously described (Salimova et al., 2019) on young adult males (10-12-week-old.) Briefly,

the left anterior descending branch of the coronary artery (LAD) was permanently ligated above branching, about 1mm below the tip

of the left auricle. Only mice with > 30% left ventricular ischemia were used for analysis. The mouse thoracic cavity was then closed

and sutured. Sustained release 0.05 mg/g buprenorphine gel formulation was administered subcutaneously at the time of surgery for

analgesia. Bipuvicane has administered locally to chest suture site. Mice were individually monitored daily for the first 7 days, fol-

lowed by weekly monitoring until the endpoint of experiments. Survival rates were also assessed at 28 days. Myocardial rupture

(days 3-5) was confirmed by necropsy. Sudden death (days 0-1) was determined by death in the absence of rupture. Heart failure

was determined by assessment of body condition score (poor mobility, grooming, hunching, etc) on live animals before euthanasia.

Sham surgeries were performed in the sameway as infarcts, except that after pericardial tearing the animal was sutured without liga-

tion of the coronary artery. Functional analyses were performed at baseline (before surgery) and 28 days post-surgery. Vevo 2100

ultrasound imaging system (FUJIFILM/VisualSonics Inc., Canada) was used for morphological and functional evaluation of hearts.

Animals were anesthetized with isoflurane with controlled body temperature and heart rate for functional imaging. Baselinemeasure-

ments were obtained using parasternal long (PSLAX) and short (SAX) axis B-mode imaging. Used parameters were endocardial and

epicardial length and area in systole and diastole.

Single Cell Isolation
The protocol for cell isolation was adapted from Chong et al. (2011). Heart ventricles were dissociated, mechanically cut into small

pieces with a scalpel and subjected to two 15min digestionswith 263U/ml collagenase type II (Worthington Biochemical Corporation,

LS004177), under magnetic stirring at 250rpm, 37�C. The cell suspension was passed through a 40 mm cell strainer to remove car-

diomyocytes, small fragment of undigested tissue and collected on ice in a conical 50ml tube containing 2%FCS (VWR Seradigm,

97068-085) in PBS. Cells were spun at 300g for 5 min and pre-warmed red cell lysis buffer (Sigma-Aldrich, R7757) was added for

1 min to remove blood cells. After washing, cell pellets were resuspended in 200 mL Dead Cell Removal MicroBeads (Miltenyi Biotec,

130-090-101) and incubated 10min at room temperature in the dark. Themix of cells and beadswas diluted in binding buffer (Miltenyi

Biotec, 130-090-101) and an AutoMACS Separator was used to deplete dead cells bound to the magnetic beads.

After centrifugation at 400g for 5 min, cells were resuspended in 2%FCS+2mM EDTA and stained with 2mMDRAQ5 (eBioscience,

65-0880-92) followed by 3 mM Propidium Iodine (Sigma-Aldrich, P4864) after 5min. Single live nucleated cells were sorted on a BD

AriaII with 130mm nozzle to minimize pressure over cells (12psi). 16-32,000 events were sorted in 0.04%BSA, centrifuged for 8min at

400g, resuspended and diluted to 320-400cells/ml for scRNaseq (10x Genomics).

Single-cell transcriptome barcoding and library preparation for Illumina sequencing
Single cell capture, barcoding and library preparation were performed with the 10x Chromium system using version 2 chemistry, ac-

cording to the manufacturer’s protocol (10x Genomics, #CG00052). Approximately 12,000 cells were loaded into one lane of a 10x

Chromiummicrofluidic chip. 1 channel was used per sample (11 total) on 3 chips. Following capture and lysis, cDNAwas synthesized

and amplified (12 cycles) as per manufacturer’s protocol (10x Genomics). The amplified cDNA from each channel was used to

construct an Illumina sequencing library. cDNA and libraries were checked for quality on an Agilent 4200 TapeStation, quantified

by KAPA qPCR, and sequenced on an Illumina HiSeq 4000 with 150 cycle sequencing to an average depth of 46,000 reads per

cell. Detailed information on the cDNA and library yield, sequencing saturation and estimated number of captured cells per sample

can be found in Table S1.

Single-cell RNA-seq data analysis
Processing of sequencing reads

Raw Illumina data were processed using CellRanger v2.1 (10x Genomics) to convert Illumina basecall files to FASTQ format, align

sequencing reads to the appropriate genome using the STAR aligner (Dobin et al., 2013), and quantify gene expression. For cells

isolated from B6J mice, the mouse reference genome (GRCm38/mm10) was used with an extra contig added to allow alignment

of reads derived from transgenic ZsGreen sequence. Specifically, the sequence of the plasmid used to generate the transgenic

mouse was obtained from http://www.addgene.org/browse/sequence/162422/. The 1680bp used sequence included the complete

ZsGreen coding sequence, a downstream 589bp WPRE sequence, and the poly(A) signal. For cells isolated from 129 mice, variant

calls from the Mouse Genomes Project (Keane et al., 2011) were obtained and g2gtools (https://github.com/churchill-lab/g2gtools)
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was used to replace single nucleotide variants, insertions, and deletions in the reference genome to create a 129-specific reference

genome towhich readswere aligned. Individual sequencing runswere processed using the ‘‘cellranger count’’ command, and aggre-

gated runs from all time points processed using the ‘‘cellranger aggr’’ command, specifying argument ‘‘–normalize=mapped’’ for

depth normalization.

Data quality control, normalization, clustering, and marker analysis

The Seurat software package version 2.3.4 (Butler et al., 2018; Macosko et al., 2015) was used in R version 3.4.1 (R Development

Core Team, 2017) to analyze processed scRNA-Seq data. Data from 38,555 cells that passed CellRanger’s quality control steps

were obtained. 36,847 cells were retained after filtering out cells in which < 500 or > 5,000 genes were detected; > 10% of reads

derived from mitochondria; or > 15,000 UMIs were sequenced. Expression of 27,999 transcripts was quantified, of which 18,862

were expressed in at least one cell. Read counts were normalized using log transformation. Cell cycle stage was estimated and re-

gressed out using methods implemented in Seurat (and detailed at https://satijalab.org/seurat/v3.0/cell_cycle_vignette.html). In

addition to cell cycle stage, the number of genes detected, number of UMIs detected, and percentage of mitochondrial reads

were also regressed out. Variable genes were detected using the Seurat function FindVariableGenes with default parameters except

y.cutoff = 0.5. Dimensionality reduction was used to explore transcriptional heterogeneity and for clustering. Specifically, PCA was

used for dimensionality reduction. The first 24 principal components (PCs) were used as input for a graph-based approach to cluster

cells by cell type using resolution 0.5 and as input to t-SNE for reduction to two dimensions to facilitate visualization (Villani et al.,

2017).

Average expression of all genes per time-point and per cluster were obtained. Two Seurat functions were employed to identify

marker genes: FindAllMarkers() to compare each cluster with all the others, and FindMarkers() for pairwise comparisons among clus-

ters/sub-clusters. For each marker gene of clusters, the average fold change (avg_logFC), percentage of expression in each specific

cluster (pct.1), percentage of expression in all the other clusters (pct.2), and adjusted p-value (p_val_adj) were calculated, as reported

in Tables S2, S3, and S4). Avg-logFC was chosen to represent cluster-specific markers.

SPRING visualization

The used SPRING (Weinreb et al., 2018) viewer web-interface that can be found at https://kleintools.hms.harvard.edu/tools/spring.

html. For visualization, the following parameters were used: Number of PCA dimensions = 25; Gene filtering - minimum counts = 3;

Gene filtering - gene variability percentile = 80.0; Number of nearest neighbors = 5; Cell filtering -minimum counts = 0.0; Gene filtering

- minimum cells = 3.0. Data matrixes of clusters of interest retrieved from the Seurat object containing all time-points were uploaded.

List of genes, clustering and temporal information derived from meta data associated with the Seurat objects were also provided.

Stromal cell sub-clustering

In order to explore transcriptional heterogeneity within stromal cell clusters, the complete matrix of single cell transcriptomes and the

data from selected populations (Fibroblasts I, Fibroblasts II, Fibroblasts III, Myofibroblasts and Epicardium; clusters 0,4,6,7,12) were

re-normalized and clustered. Specifically, highly variable genes were identified, and the gene expression matrix was reduced in

dimensionality using PCA. The first 20 PCs were selected and a graph-based clustering method implemented in Seurat was em-

ployed to cluster cells (resolution 0.5).

Doublets prediction

Cell doublets were predicted using DoubletFinder version 2.0.2 (McGinnis et al., 2019, https://github.com/chris-mcginnis-ucsf/

DoubletFinder). DoubletFinder identifies doublets according to each cell’s gene expression proximity to artificial doublets created

by averaging the transcriptional profile of randomly chosen cell pairs. DoubletFinder was run independently on each single cell library

from the 7 time point experiment, to ensure that simulated doublets did not include cells from different libraries which would be

impossible to observe. For all libraries, a 6% (true) doublet rate was assumed, 25 principal components were used, and the default

value of 25% was used for pN (the number of generated artificial doublets expressed as a proportion of the merged real-artificial

data). For each library, the PC neighborhood size pKwas estimated using as themaxima of the distribution of mean-variance normal-

ized bimodality coefficient scores, as suggested by the developers.

Integration of data from different murine strains

Single cell transcriptomes derived frommice of different genetic backgrounds require careful integration before joint analysis can be

performed. In particular, the same cell type may show variability in gene expression in genetically distinct mice due to genetic regu-

lation of gene expression. The Harmony R package version 0.0.0.9000 (Korsunsky et al., 2019) was used to integrate data from B6J

and 129 cells. This software takes cells from the strains and projects them onto a shared embedding, allowing for joint clustering and

analysis of the combined data. Before running Harmony, data were processed using simple criteria with the Seurat package. First,

raw data matrices were read from each 10x Chromium sample. 18,006 genes quantified in both B6J and 129 backgrounds were

retained for further analysis. Second, cells were filtered using automated criteria. Cells with a very low or high number of UMIs or

number of genes expressed were filtered (minimum 1000 UMI and 500 genes expressed; cells with a UMI [number of genes] count

greater than three standard deviations from the mean UMI [number of genes] count of all cells were discarded). Furthermore, cells

with > 30% mitochondrial reads were discarded. Third, the top 1000 variable genes were identified. Fourth, data were normalized,

with signal due to the number of UMI and percent mitochondrial reads regressed out. Fifth, PCA was conducted on the

complete dataset including B6J d0 - 6608 cells; B6J sham, n = 2 - 4710 cells; 129 sham - 4213 cells; d3 MI B6J - 3950 cells; d3
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MI 129 - 4128 cells. To run Harmony, 80 PCs were used and the RunHarmony() function available at https://github.com/

immunogenomics/harmony was used to integrate data with parameters: theta = 1; max.iter.harmony = 20. Finally, t-SNE was

computed and cells were clustered using the graph-based clustering method implemented in Seurat.

Differential gene expression across different strains

The MAST software(Finak et al., 2015) was used to enquire differential gene expression between strains in different conditions (sham

and d3 post-MI). Tests were carried out using the MASTcpmDetRate method (Soneson and Robinson, 2018).This method tests for

differences using log- and library size-normalized counts, with cellular detection rate as a covariate, andwas among themost power-

ful and accurate methods for differential expression analysis of single cell RNA-Seq (Soneson and Robinson, 2018). Analysis of the

differentially expressed genes to identify enrichment of particular biological functions was performed using Ingenuity Pathway Anal-

ysis (QIAGEN) and Panther (Mi et al., 2019). The score of each relevant GO-term was calculated as the ratio of the number of query

genes associated with the term divided by the total number of genes in the genome associated with the term. Lists of mouse genes

associated with each GO term were obtained from the Mouse Genome Informatics database at the link http://www.informatics.jax.

org/downloads/reports/gene_association.mgi.gz (accessed January 14, 2019).

Tissue processing for cryosectioning
Following animal euthanasia, hearts were perfused with 1x HBSS, transferred to 0.5mM KCl for cardiac cycle arrest in diastole, fixed

in 4% paraformaldehyde (PFA) for 30min-1 hour at 4�C, permeated with 30% sucrose overnight at 4�C and embedded in Fisher

Healthcare Tissue OCT Compound on dry ice. 8 mm cryosections were obtained using the Cryostar NX70 (Thermo Fisher).

Immunofluorescence
Cryosections were dried for two hours at room temperature, re-fixed in 2%PFA for 10min, permeabilizedwith 0.5%Triton for 15min,

blocked with 5% BSA in 50mM Glycine PBS, and stained with primary antibodies diluted in blocking solution, overnight at 4�C. The
following antibodies were used:WT1(1:100, Abcam, ab89901), DKK3 (1:100, R&D Systems, AF948), CTHRC1 (1:100, Thermo Fisher,

PA5-49638), ACTA2 (1:100, Sigma Aldrich, A5228, clone 1A4), MT1a (1:100, Enzo Life Sciences, ADI-SPA-550-D), CD45 (1:100, BD

Biosciences, 550539, clone 30-F11), CLU (1:100, MyBioSource, MBS9215265, clone RB18701), SFRP2 (1:50, R&D Systems,

MAB1169, clone 331022). Used secondary antibodies were Invitrogen Alexa Fluor 568 Donkey anti-Goat (A-11057), Goat anti-Mouse

(A-11031), Goat anti-Rabbit (A-11011); Alexa Fluor 647 Goat anti-Rat (A-21247), Goat anti-mouse IgG2a (A-21241), and Goat anti-

Rabbit (A-21244) diluted 1:500 or 1:1000 in PBS. Nuclei were stained with DAPI (0.1mg/ml, Thermo Fisher, D1306).

Imaging
Bright field and fluorescent wholemount images of full hearts were captured on a stereo-microscope (Leica,MZ10F), equippedwith a

color/fluorescence camera (Leica, DFC 450c). Scale bars were added and images processed using the LAS software v4.8. Immu-

nofluorescence images were acquired using either an upright fluorescent microscope (Zeiss, Axio Imager.Z2), equipped with

X-Cite 120LED excitation source (Excelitas Technologies), using a 20x objective (Zeiss, Plan-Apochromat’’ 20x/0.8), and the

ZEN2 software (Zeiss, blue edition) for acquisition, or using confocal imaging (SP8-AOBS, Leica) with 40x (Leica, HC PL APO

40x/1.30 Oil CS2, FWD = 0.24 mm) or 63x (Leica, HC PL APO 63x/1.40 Oil CS2, FWD = 0.14) objectives, using very-high sensitivity

HyD detectors for the emission of 488, 561 and 633 lasers, and the LASX software. At least 3 independent rounds of stainings were

done and images were acquired keeping same setting across all time-points used in the comparison analysis. All quantification and

image processing were performed using Fiji version 1.0 (Schindelin et al., 2012). Z stacks with 0.5 mm step size were converted by

Z-projection of the average intensity for each channel. Individual channels were merged and pseudo-colored.

Flow cytometry and cell sorting for bulk RNA isolation
For qPCR validations, interstitial cells were isolated as described above, from the whole ventricles of control mice or scar area and

distal area in injured mice. In experiments with Coll1a1eGFP mice, GFP+DRAQ5+PI- cells were sorted on Aria II with 130 mm nozzle. In

absence of a fluorescent reporter (129, B6J mice), cells were first resuspended in blocking solution containing anti-mouse CD16/

CD32 (1:600, Leinco Technologies, C381, clone 2.4G2) in 2% FCS 5min at RT, then stained with APC/Cyanine7 anti-mouse CD45

(1:660, BioLegend, 103115, clone 30-F11), PE-Cy7 anti-mouse CD31 (1:800, BD Biosciences, 561410, clone 390) on ice for

15min. After washing in PBS, cells were resuspended in 2%FCS+2mM EDTA and DAPI (50ng/ml) before sorting on the AriaII for

DAPI-CD45-CD31-cells.

RNA extraction and quantitative PCR
RNA was isolated from bulk sorted cells using the RNAqueous-Micro Total RNA Isolation Kit (Thermo Fisher, AM1931), according to

manufacturer’s instructions. cDNA synthesis was performed using the SuperScript IV VILO Master Mix with ezDNase Enzyme

(Thermo Fisher, 11766050). qPCR reactions were performed using Power SYBR Green PCR Master Mix (Thermo Fisher,

4367659) on ViiA 7 Real-Time PCR System with 384-Well Block (Thermo Fisher). 4ng of RNA were loaded per reaction. Primers

were designed using IDT primer design tool and BLAST, tested with standard curves on 4 serial 5-fold dilutions. The following

primers were used: Comp F: 50-ACATAGATGGCGACCGAATAC-30, R: 50-CCTCTGGTCTGGGTTATCTTTC-30; Acta2 F:

50-TCTTTCATTGGGATGGAGTCAG-30, R: 50-GACAGGACGTTGTTAGCATAGA-30; Cthrc1 50-CCCATCGAAGCCATCATCTATC-30,
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R: 50-TCACAGAGTCCTTCCACAGA-30; Sfrp2 F: 50-AGAGGAAGCTCCCAAGGT-30, R: 50-GGTGTCTCTGTTGATGTACGTTAT-30;
Ecrg4 F: 50-CTGGGTCCAGATGGCATAAG-30, R: 50- GTTCTCGGCTACAGCTACATT-30; Wisp2 F: 50-TTGAAGCTGGCTCCAC

AAG-30; R: 50-GGGCATACACCATTGAGAGAAT-30; Meox1 F: 50-GGGAGGATTGCATGGTACTT-30, R: 50-CTGGTTGTCTG

ACCTCTCTTT-30; Col8a1 F: 50-GCTCAAGAAGCTGTTCTGTAAATC-30, R: 50-CCAGTAGAATCGAGGACCAAAG-30; Tnc F: 50-CC
AGGGTTGCCACCTATTT-30, R: 50-GTCTAGAGGATCCCACTCTACTT-30; Thbs4 F: 50-GCTCCTTGGAGAGGTGAAAG-30, R: 50-AA
AGCTGAGAGGACCACAAG-30; Cxcl14 F: 50-GCTCTTGGTGGTGACGATAA-30, R: 50-GCTACAGCGACGTGAAGAA-30; Saa3 F:

50-GCCTTCCATTGCCATCATTC-30, R: 50-CACATGTCTCTAGACCCTTGAC-30; Serpina3n F: 50-TGCAGTCTACAGAGCTGAAA

CC-30, R: 50-CAACCCTGAACATCGGGAGT-30; Fn1 F: 50-TCCTGTCTACCTCACAGACTAC-30, R: 50-GTCTACTCCACCGAACAA

CAA-30; F2r F: 50-TGGAGGGTAGGGCAGTCTAC-30, R: 50-GTGTACACGGAGGGCATGAA-30; Serpine1 F: 50-TCCACAAGTCT

GATGGCAGC-30, R: 50-TGGTAGGGCAGTTCCACAAC �30; Plat F: 50-CGAAAGCTGACGTGGGAATA-30, R: 50-GTGTGAGGT

GATGTCTGTGTAG-30; Anxa2 F: 50-CAAGACCAAAGGAGTGGATGAG-30, R: 50-CTGATAGGCGAAGGCAATGT-30; Dcn F:

50-CTGGCCAATGTTCCTCATCT-30, R: 50- AAGGTAGACGACCTGGATATACT-30;Col5a1 F: 50-CACCTTGATCCTCGACTGTAAG-30,
R: 50-TGTTGGATGTCACCCTCAAATA-30; Col4a2 F: 50-ACAATCACCACCAAAGGGGA-30, R: 50-GGAATCCATCCAGCCCATCC-30;
Fbln5 F: 50-TGTCTGCGTTTGCTCTATGT-30, R:50-GAGTATCATGCGTCTCTGTCTG-30; Mfap5 F: 50-AGTCCTGCTTCACCAGTT

TAC-30, R: 50-GGCAAAGCTCATCTTTCATAGC-30; Thbs1 F: 50-GCCTCTCCTGTGATGAACTATC �30, R: 50-CTCTGTTCT

CTTCCGTCACTTT-30; Serping1 F: 50-GCTGAGAACACCAACCATAAGA-30, R: 50-CCACTTGGCACTCAAGTAGAC-30; Tgfb1 F:

50-CTGAACCAAGGAGACGGAATAC-30,R: 50-GGGCTGATCCCGTTGATTT-30; Hprt1 (Furtado et al., 2014) F: 50-GCGAGGGA

GAGCGTTGGGCT-30, R: 50-CATCATCGCTAATCACGACGCTGGG-30; Rpl4 (Ruiz-Villalba et al., 2017) F: 50-GCC

GCTGGTGGTTGAAGATAA-30, R: 50-CGTCGGTTTCTCATTTTGCCC-30.

QUANTIFICATION AND STATISTICAL ANALYSIS

Number of biological replicates and statistical significance are specified in figures and figure legends. For Echocardiography baseline

measurements of B6J (n = 14) and 129 (n = 13) strains, an average of 3 measurements of each parameter were obtained per animal

(standard deviation < 0.5). To evaluate the response to MI of different inbred strains the following mice were used: NOD/ShiLtJ,

n = 13, NZO/HILtJ, n = 16, 129S1/SvlmJ, n = 34, DBA/2J; n = 9, A/J; n = 14, CAST/EiJ, n = 18; WSB/EiJ, n = 12, PWK/PhJ,

n = 11, C57BL/6J n = 13.

For immunostaining quantification, we used 5-6 fields per time-point and calculated mean and standard error of the mean. Un-

paired, two-tailed Student’s t test was used for pairwise comparison of data between groups. P value of less than 0.05 was consid-

ered significant. For qPCR analysis we used 3 technical replicates of 3 biological replicates. We calculated ê - DDCt, where e is the

efficiency of each primer pair derived from the standard curve, DDCt is obtained by normalizing Ct values on the geometric mean of

two housekeeping genes (Rpl4 and Hprt1) over the refence sample. The median, 25th and 75th percentile, maximum and minimum

values are represented with box and whisker plots. For statistical analysis, unpaired two-tailed Student’s t test, which compares the

relative expression values of each gene to the values of the reference sample used for normalization. P-value of less than 0.05 was

considered significant. Excel v16.16.7 and GraphPad Prism v7.0 were used for the analysis, generation of graphs and statistics. For

differential gene expression analysis between 129 and B6J, a threshold of 2-fold expression change and P-value%0.01 were used.

False discovery rate (FDR)-corrected P-values were used for sorting the results from Panther analysis. P-values of overlap and

Benjamini-Hochberg (B-H) corrected P -values were used for the upstream regulators and canonical pathway analysis respectively

(Ingenuity Pathway Analysis, QIAGEN). For the Kaplan-Meier survival plot, statistical significance was calculated using the Gehan-

Breslow-Wilcoxon test.

DATA AND CODE AVAILABILITY

Data resources
R scripts utilized in the study can be obtained upon request. The accession number for the sequencing data reported in this paper is

ArrayExpress: E-MTAB-7895.
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