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ABSTRACT Whole-genome bacterial sequences are required to better understand
microbial functions, niche-specific bacterial metabolism, and disease states. Although
genomic sequences are available for many of the human-associated bacteria from
commonly tested body habitats (e.g., feces), as few as 13% of bacterium-derived
reads from other sites such as the skin map to known bacterial genomes. To facili-
tate a better characterization of metagenomic shotgun reads from underrepresented
body sites, we collected over 10,000 bacterial isolates originating from 14 human
body habitats, identified novel taxonomic groups based on full-length 16S rRNA
gene sequences, clustered the sequences to ensure that no individual taxonomic
group was overselected for sequencing, prioritized bacteria from underrepresented
body sites (such as skin and respiratory and urinary tracts), and sequenced and as-
sembled genomes for 665 new bacterial strains. Here, we show that addition of
these genomes improved read mapping rates of Human Microbiome Project (HMP)
metagenomic samples by nearly 30% for the previously underrepresented phylum
Fusobacteria, and 27.5% of the novel genomes generated here had high representa-
tion in at least one of the tested HMP samples, compared to 12.5% of the se-
quences in the public databases, indicating an enrichment of useful novel genomic
sequences resulting from the prioritization procedure. As our understanding of the
human microbiome continues to improve and to enter the realm of therapy devel-
opments, targeted approaches such as this to improve genomic databases will in-
crease in importance from both an academic and a clinical perspective.

IMPORTANCE The human microbiome plays a critically important role in health and
disease, but current understanding of the mechanisms underlying the interactions
between the varying microbiome and the different host environments is lacking.
Having access to a database of fully sequenced bacterial genomes provides in-
valuable insights into microbial functions, but currently sequenced genomes for
the human microbiome have largely come from a limited number of body sites
(primarily feces), while other sites such as the skin, respiratory tract, and urinary
tract are underrepresented, resulting in as little as 13% of bacterium-derived
reads mapping to known bacterial genomes. Here, we sequenced and assembled
665 new bacterial genomes, prioritized from a larger database to select under-
represented body sites and bacterial taxa in the existing databases. As a result,
we substantially improve mapping rates for samples from the Human Microbiome
Project and provide an important contribution to human bacterial genomic data-
bases for future studies.
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As sequencing technology improves, the increased practicality of genomic analysis
has allowed for new inquiries into the workings of the human microbiome.

Already, research has characterized the microbial communities of diverse body sites
and elucidated the role that microbiota may play in conditions including type 2
diabetes, cardiovascular disease, obesity, cancer, and autism (1–4). Future research
aspires to manipulate microbial communities as a prophylactic or therapeutic approach
to prevent and/or control various infectious and disease states.

The data for these microbiome studies generally take the form of either 16S rRNA
gene sequences or metagenomic shotgun sequencing. The former is frequently used
for its efficiency and affordability, requiring only marker genes to be known in order to
align and annotate reads. However, exclusive use of this type of data has become
limiting to researchers who wish to understand a more complete picture of microbial
functions and metabolism within a niche. Metagenomic shotgun sequencing can
provide answers to these kinds of question, but it relies upon the use of a reference
genome for either alignment or k-mer comparison of genomes intermixed from
hundreds to thousands of different taxa (5).

In the past, there have been several efforts to compile a database of microbial genomes.
Most notably, the MetaHIT (6) and Human Microbiome Project (HMP) (7) gene catalogs
made available catalogs based upon over a hundred European and American samples,
respectively. In 2014, Li et al. amassed these data in addition to data from other interna-
tional studies to create an integrated gene catalog for the human gut microbiome (IGC) (8).
This catalog contained almost 10 million nonredundant genes, but it still remains far from
comprehensive. Most of these species were cultured from healthy patients whose microbial
communities likely differ from those of disease states (9). Additionally, a disproportionate
amount of the available reference genomes belong to gut and urogenital microbiota,
neglecting other taxa that might be pertinent to studies of skin, vaginal, or respiratory
microbiomes (10). In fact, a 2014 study examining the effect of genomic database compo-
sition on metagenomic read mapping found that with existing databases, read mapping
varied significantly between body sites. The highest-performing areas (posterior fornix)
mapped as many as 92% of reads, but samples in the lowest-performing areas (skin)
mapped as low as 13% (11). Finally, microbiome composition varies not only between sites
on an individual but also between individuals in diverse environments, suggesting that a
broader spectrum of reference genomes may be necessary for broad applicability of
microbiome analytic techniques (12).

As studies continue to unearth the variety of microbiomes found in multiple countries
or a single individual, as well as the importance of tracing new bacterial strains in the
setting of an outbreak, it becomes increasingly important to populate the bacterial phy-
logeny while representing diverse body habitats by generating high-quality reference
genomes to publicly available databases. Several recent studies have contributed to human
microbiome genomic resources, including two large studies of the human gut microbiome
(13, 14), and a study that assembled genomes across a variety of samples, from metag-
enomic shotgun sequences (15). In our study, the sequencing and analyses of 10,000
full-length 16S rRNA gene sequences identified underrepresented phylogenetic lineages
and sequences from underrepresented body sites, 665 of which were prioritized, se-
quenced, and assembled at a whole-genome level. Unlike a recent metagenomic study
with similar goals (15), the samples here represent isolated bacterial cultures representing
purified single strains of bacteria, providing higher confidence in the genomic assemblies.
Analyses of the 665 genomes illuminated the importance of taxonomic prioritization in new
genome discovery and demonstrated the effects of an unbiased database on microbiome
characterization. The approach and the resources are of importance at both the academic
and clinical research levels.

RESULTS AND DISCUSSION
Composition of sequenced genomes. The complete Washington University Strain

Collection (WUSC), comprising 10,787 bacterial taxa isolated from clinical samples,
underwent 16S rRNA gene sequencing. A total of 4,546 full-length 16S rRNA gene
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sequences were phylogenetically classified following sequencing, assembly, quality
control, and annotation (Fig. 1). After controlling for contaminated samples and select-
ing single bacterial representatives per original sample, 3,551 full-length 16S rRNA gene
sequences (see Table S1 in the supplemental material) were interrogated based on (i)
their 16S classification, prioritizing novel or underrepresented taxonomic groups in
existing public databases; (ii) their body site source, prioritizing underrepresented body
sites (such as blood, peritoneal fluid, and wounds); and (iii) the quality and availability
of the source DNA. The analysis resulted in 665 strains to be selected for whole-genome
sequencing, assembly, and annotation, representubg 15% of the candidate samples
initially screened for novelty. More than 89% (594/665) of assembled genomes were
over 99% complete (according to BUSCO [16]), and over 98% of samples (655) had
genome coverage depths of over 50�. Table S2 contains, for each of the 665 genomes,
accession information; complete phylogenetic classification; body site source data; and
completeness, assembly, and annotation statistics.

Before and after prioritization, samples were taken from over 15 different body sites,
with the largest taxonomic representation drawn from skin, respiratory tract, and
urinary tract cultures (Fig. 2A). Prioritization caused a relative increase of at least 300%
in sparsely sampled areas such as joint and bone, while relative representation of
samples from medical hardware, urinary tract, and unknown locations was reduced,
perhaps due to the homogeneity of bacterial communities that has previously been
observed (17, 18). The fecal microbiota was underrepresented among preprioritized

FIG 1 Flow chart diagram of overall sample production and prioritization procedure.
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and prioritized samples, since it is the best characterized of the body locations (10).
Note that “unknown” samples were from a specific sample type (such as wound or
abscess), but these were not assigned a specific body site in the metadata. Additionally,
the prioritization considered phylogenetic clustering, with the intention to avoid
overselecting the same strains of bacteria, regardless of species or sample site origin
(99% identity over 95% length). This resulted in a wider array of unique taxa being
sequenced than would have been selected without considering phylogeny.

The majority of samples before and after prioritization were part of the Firmicutes
phylum, followed in abundance by the Actinobacteria and Proteobacteria phyla. Bacte-
roidetes, Fusobacteria, and Tenericutes were sparsely represented in samples (Fig. 2B).
After prioritization, relatively fewer Firmicutes samples were chosen for sequencing,
since studies historically have identified primarily taxa in the Bacteroidetes and Firmic-
utes phyla, which tend to be more abundant in the gut (10). Instead, the relative
representation of Actinobacteria in samples to be sequenced increased after prioritiza-
tion. Actinobacteria are an important component of several different body location

FIG 2 Composition of isolates before (left) and after (right) prioritization. (A) Isolate categorization by body habitat. (B) Isolate categorization by phylogeny at
a phylum level.
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microbiomes, including skin folds (19) and the poorly characterized eye mucosal
microbiome (20). In addition to Fusobacteria, it also comprises a notable part of
oral microbiomes such as that of the tongue dorsum or supragingival plaque (20). As
the literature regarding these areas continues to expand, further characterization of
their microbiomes will require genomic libraries including more taxa within the Acti-
nobacteria or Fusobacteria phylum, which may not have appeared in earlier gut
microbiome studies. This is becoming increasingly important as these taxa have been
implicated in a number of health and disease states, such as colon cancer (21–23).

Clustering of the prioritized isolates by 16S rRNA gene read counts showed clear
assortment by phyla (Fig. 3A). Some body sites tended to cluster within phyla; most
notably, respiratory tract samples were primarily within the Proteobacteria phylum,
while skin samples clustered within the Firmicutes phylum and Bacilli class (Fig. 3B). It
is interesting that these phyla are not those predominantly associated with the
respiratory tract or skin, respectively. Studies suggest that the principal taxa in the
respiratory tract lie within the Bacteroidetes and Firmicutes phyla (24), while skin
samples vary greatly, but frequently contain Actinobacteria, Proteobacteria, or bacteria
within the Staphylococcaceae family of Firmicutes (19). The differences between our
data clusters and the normal skin or respiratory tract communities reflect the efforts of
our prioritization method to obtain sequences distinct from the known biological
landscape. These sequences may become particularly important in efforts to charac-
terize disease-state deviations from the normal microbiome: for example, research
suggests that asthma may be associated with enrichment of bacteria in the Proteobac-
teria phylum, within which our prioritized respiratory samples tended to cluster (25).
Characterization of such deviate taxa, as opposed to those that fall within the norm,
may give us better resolution in our view of how physiological processes associate with
changes in diverse microbiota.

Effect of database sequence augmentation on characterization of metagenom-
ics shotgun sequences. Compared to publicly available genome databases alone
(HMP plus GenBank; 4,383 strains), the addition of our 665 novel genomes substantially
increased genomic reads mapped for all 1,391 shotgun metagenomic samples from the
HMP. By body site, the largest increases in reads mapped were observed for HMP
samples from oral sites including the tongue dorsum and buccal mucosa (Fig. 4A and
Table 1), which was expected since the “respiratory” sample category includes both oral
samples and respiratory clinical samples collected through the oral route (see Tables S1
and S2). Besides gastrointestinal (GI) samples, these sites were two of the most
numerous found in the existing database, indicating a notable absolute as well as
relative increase in the amount of read mapping (Fig. 4B). While we did not specifically
try to prioritize the fecal microbiome, the substantial increases in its characterization
reflect both the strength of the prioritization process here for novel strains and the
large diversity of the fecal microbiome within and between individuals, providing it
more potential for increases in characterization of metagenomic shotgun reads. Al-
though there were smaller increases for the anterior nares and posterior fornix, the skin
samples collected as part of this study include many abscess, wound, and limb skin
tissue samples, so these may not be well represented among the sample test sets used
but will still be valuable for future studies.

Taxonomically, the largest increase in reads mapped was observed for bacteria from
the phylum Fusobacteria. This phylum has historically been poorly characterized in
databases, so our sequence contributions increased mapped reads by almost 30%
(Fig. 4C). The phyla Proteobacteria and Actinobacteria showed modest increases in
mapped reads, while the well-characterized Firmicutes and Bacteroidetes phyla showed
only very small improvements. The improvements observed in read mapping for these
taxa are likely related to the improvements that we observed in read mapping for the
oral mucosa, which contains greater proportions of Fusobacteria, Actinobacteria, and
Proteobacteria (26).

This overall improvement is unsurprising given the high representation of our
novel genomes among diverse HMP samples. Of the 665 (27.5%) novel genomes
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sequenced, 183 had high representation in at least one of the HMP samples (�50%
breadth and �1� depth). In comparison, only 12.5% of the public database
genomes had high representation (P � 10�5 for enrichment of high-abundance
strains) (Fig. 5).

FIG 3 Grouping of the sequenced WUSC bacterial genomes based on body site, phylum, and class. (A) WUSC strains clustered based off 16S read sequence
similarity. Phylum is indicated by dendrogram branch color, while body habitat is indicated by the colored bars around the periphery of the image. (B) WUSC
strains classified by body site and phylogeny at a phylum (left) or class (right) level. Counts indicate the number of strains in each category; color indicates the
level of representation in each category, with green representing high counts and red representing low or none.
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There are several possible reasons for the enrichment of our novel genomes in the
HMP data set relative to GenBank. First, our genomes were all sequenced from human
samples, compared to many environmental samples that contribute to other public
databases. For this reason, our results are particularly applicable to biomedical research
endeavors. Second, our novelty by a phylogeny prioritization process, which selected a
representative sequence from a cluster of similar sequences, emphasized variety in our
rank list. Rather than simply sequencing all of the genomes that were determined to be
the most novel, our process ensured sampling of novel genomes from many different
taxa. Third, our selection of isolates from undercharacterized body sites broadens the
types of samples that would find representation in a database. At the moment, HMP
statistics show a database composition primarily of GI and urogenital cultures, with
several other body sites having fewer than 10 reference genomes (27). For this reason,
samples taken from body sites such as the eyes or respiratory system might contain
genomes from our newly sequenced cohort but not from public databases.

If undertaken with focused sampling efforts, culturing and sequencing of isolates
determined by our prioritization process could yield even greater improvement to

FIG 4 Increased characterization of metagenomic shotgun sequences by addition of genomes of novel
phylogenetically distinct strains. (A) Relative improvement of read mapping rates from HMP samples to
the improved genome database. (B) Number of total mapped reads per sample after novel reference
genome sequence inclusion versus the absolute increase in mapped reads after versus before novel
sequence inclusion. Samples are colored by body site. The dotted line represents the average relation-
ship between total number of mapped reads and absolute increase in mapped reads after novel
reference genome sequence inclusion. (C) The proportion of total mapped reads after novel sequence
inclusion attributable to a given phylum versus the relative increase in reads mapped for that phylum
after novel sequence inclusion. Phyla are represented as differently colored dots, with names given on
the chart.
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known databases. Our isolates were taken from samples originally obtained from a
variety of standard-of-care culture types from patients suspected to have an infection,
thus resulting in a variety of sample qualities. Poor quality or technical workability
sometimes eliminated what would have otherwise been a highly ranked isolate for
sequencing. Additionally, our approach was still limited to those taxa that could be
cultured in a laboratory setting using routine media commonly used in the clinical
microbiology laboratory. There may be other taxa, especially among the variety of body
sites in our study that are important but have heretofore not been sequenced due to

TABLE 1 Average read mapping of samples grouped by body site to GenBank and novel
HMSC genomes versus GenBank alonea

Body site
No. of
samples

Avg no. of reads

Cleaned
reads/sample

Mapping to
GenBank

Mapping to
GB � HMSC

Anterior nares 151 1,931,203 1,257,949 1,270,602
Buccal mucosa 241 10,521,737 8,276,060 8,588,770
Posterior fornix 137 3,876,399 3,212,985 3,218,331
Feces 319 88,431,094 60,971,330 61,628,060
Supragingival plaque 261 52,284,221 40,001,982 40,713,876
Tongue dorsum 282 78,327,283 57,097,893 59,722,717
aGenBank was considered the “baseline” database prior to this study’s addition of novel genome assemblies.
GB � HMSC refers to GenBank and novel HMSC genomes.

FIG 5 Novel genome assemblies (black) show increased representation in HMP samples, relative to sample size (�50% breadth,
�1� depth, upper right quadrant of graph). Novel genomes are shown in black; public database genomes are shown in dark gray.
Numbers are not normalized for database size.
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their inability to grow in culture or inability to grow with the culture techniques used
as part of routine clinical microbiology.

Our results demonstrate the benefit of a targeted approach to the sequencing and
assembly of new microbial genomes. They also contributed 665 novel genomes
originating from diverse human habitats to public databases that can be utilized by
other studies. If more endeavors similar to this one are undertaken in the future, read
mapping could be improved even more for microbial community samples spanning a
variety of human habitats. As our understanding of the microbiome continues to
improve and to enter the realm of therapy developments, such endeavors will increase
in importance from both an academic and a clinical perspective.

MATERIALS AND METHODS
Sampling and culturing. Clinical specimens were submitted to the Barnes-Jewish Hospital Clinical

Microbiology Laboratory and were processed using culture media, incubation atmosphere, and incuba-
tion time as described in the clinical laboratory’s standard operating procedures for each specimen type.
Bacterial isolates that morphologically resembled resident microbiota for the sample type cultured were
selected, and a suspension of the microorganism was made for sequence-based analysis.

Bacterial 16S rRNA genes were sequenced to identify novel bacterial strains associated with
diverse habitats. The full length of the 16S rRNA genes (16S) for each bacterial strain was obtained by
sequencing three overlapping regions on the 3730 ABI platform. Primers used for the three amplicons
were as follows: V1-V3, 27F (AGAGTTTGATCCTGGCTCAG) and 534R (ATTACCGCGGCTGCTGG); V3-V5, 357F
(CCTACGGGAGGCAGCAG) and 926R (CCGTCAATTCMTTTRAGT); and V6-V9, U968f (AACGCGAAGAACCT
TAC) and 1492r-MP (TACGGYTACCTTGTTAYGACTT). A total of 10,787 microbial isolates with 16S reads
generated on the Sanger 3730 platform were analyzed. Following analytical processing and removal of
chimeric 16S reads (28), a phylogenetic stepwise approach was undertaken to prioritize the potential
novel genomes to be sequenced. Comparison to publicly available 16S rRNA gene sequences was
performed using a BLAST database that contained nonredundant 16S rRNA gene sequences from SILVA
v.115 (29) and Ribosomal Database Project (RDP) (30) training set 9. The 16S rRNA genes from the
Washington University Strain Collection (WUSC) were subjected to a BLAST search against this database,
and any sequence with �97% identity and/or �90% coverage against any of the strains in the existing
databases was considered potentially novel (225 total “novel” strains). Following this initial processing,
of the 10,787 starting strains, 4,546 sequences (from 3,798 unique samples, due to the sequencing of
technical replicates) met three criteria to advance to further analysis: successful 16S assembly (using the
One Button Velvet assembly pipeline, version 1.1.06 [31]), metadata completeness, and successful
SILVA/RDP classification.

To further prioritize isolates, we performed phylogenetic analysis to avoid repeatedly sampling very
similar isolates and to preferentially select novel sequences, such as those similar to known sequences
but isolated from a different body site. The 16S rRNA genes from the complete bacterial genomes from
the HMP (whole-genome shotgun-based sequencing; inclusive of the 4 HMP sequencing centers;
McDonnell Genome Institute at Washington University School of Medicine, J. Craig Venter Institute,
Baylor College of Medicine, and the Broad Institute) and the Greengenes GOLD database were clustered
into a nonredundant database by clustering all sequences using 99% identity and 95% coverage (32),
with the longest sequence per cluster used as a representative. The WUSC 16S rRNA genes from the 3,798
unique samples were then clustered with these representative sequences at 99% identity over 95%
length. A total of 247 WUSC samples were determined to be contaminated due to the presence of
multiple sequence replicates from the same sample being present in different clusters, leaving 3,551
samples for downstream prioritization.

The taxonomic classifications were used to split the sequences into taxonomic groups manageable
for manual evaluation, by constructing phylogenetic trees for each taxonomic group using mothur (33).
The 15 resulting phylogenetic trees were visualized using iTOL (34), and 16S rRNA sequences were
considered to be novel by phylogeny if they did not cluster with the 16S rRNA gene of a sequenced
bacterial genome or if they originated from different body sites than the sequenced isolate (262
samples). For simplicity in the prioritization, body site information was collapsed into a broader category
when it was more detailed (e.g., abscesses from any body site were collapsed to “Abscess”).

The top available samples were prioritized for sequencing according to (i) all novel samples first (20
final samples sequenced); (ii) the top-ranked sample within each novel by phylogeny cluster (88
samples); (iii) known cluster top representatives (51 samples); (iv) novel by phylogeny samples from
unique isolation sources but which were not the top ranked in their cluster (only up to 5 per cluster, since
there are some very large clusters; 128 samples), and (v) novel by phylogeny samples, sorted by
within-cluster rank, selecting for samples from rare or desirable body sites (355 samples); and (vi) known,
unique isolation sources (23 samples).

Overall, from the 10,787 starting 16S sequences in the WUSC database, 4,546 with SILVA/RDP
classifications and available metadata were selected (representing 3,551 unique samples; see Table S1 in
the supplemental material), and 665 samples were prioritized for genome sequencing based on
availability, strain novelty compared to existing databases, and body site of origin, with a strategic
approach used to avoid sequencing similar samples repeatedly (Table S2).

Genome sequencing, assembly, and annotation. DNA extraction and whole-genome shotgun
sequencing on the Illumina GAIIx platform was performed as previously described (26). One Button
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Velvet (version 1.1.06) (31) was used to assemble the genomes, and HMP cutoffs and settings (7) were
applied for a sequence to have enough contiguity to be advanced to the annotation level. We screened
for contamination by subjecting the assembled supercontigs to a BLAST search against a database of all
HMP strains sequenced in-house using BLASTN. If supercontigs from the same strain had a top hit against
2 different genera, this strain was considered contaminated and discarded. Those that failed were
discarded from the pipeline. The GC% plot was reviewed as an additional measure to detect mixed
data from different sources. Any contigs identified as contaminated were removed, and the resulting
assemblies continued into the annotation pipeline. Annotation was performed as previously de-
scribed for the HMP reference genomes (26), and taxonomic validation was performed by checking
the 16S gene against the reference database and ensuring that the taxonomic identity of the
majority of the predicted genes (by BLASTp against GenBank’s bacterial NR database [35]) matched
the identity determined by the SILVA/RDP matching methods. Genome completeness was tested
using BUSCO, version 4 (16).

Analysis of HMP metagenomics shotgun data. To quantify the value of our 665 newly assembled
Human Microbiome Sequence Collection (HMSC) genomes, we mapped 1,391 HMP samples from 6 body
sites against a baseline bacterial database containing all GenBank complete and drafted bacterial
genomes (circa March 2016) (26). We then mapped the same samples to the GenBank database with our
665 HMSC genomes added.

When mapping sample reads to GenBank database entries, we used only GenBank entry genomes
with annotation. In cases in which there were multiple entries for a single taxon, we used only the
longest representative. The HMP samples used as queries were chosen from 6 body sites: anterior nares,
buccal mucosa, posterior fornix, stool, tongue dorsum, and supragingival plaque (26). Outliers with
regard to sample read counts (“cleaned” read counts per sample) were filtered by applying an upper limit
of 3� standard deviation of read counts above the mean per sample for each body site. A lower cutoff
was also set to remove roughly the bottom 5% of the smallest samples. This resulted in 1,391 samples
being used as queries.

Contaminating human reads in query samples were masked using BMTagger (ftp://ftp.ncbi.nlm.ni-
h.gov/pub/agarwala/bmtagger). Duplicate reads were marked and removed using a modified version of
EstimateLibraryComplexity, a tool from the Picard package (http://picard.sourceforge.net/index.shtml).
Low-quality sequences were then trimmed away using a modified version of the script trimBWAstyle.pl
(J. Fass, The Bioinformatics Core at UC Davis Genome Center). This script removed bases with a quality
of 2 or less from the ends of reads, an indicator of uncertain quality as defined by Illumina’s End
Anchored Max Scoring Segments (EAMMS) filter. After masking and quality trimming, reads with fewer
than 60 consecutive non-N bases were removed. The cleaned reads for each sample that passed our
filters were then mapped against both databases (GenBank [GB] bacterial genomes and GB bacterial
genomes plus HMSC genomes) using Bowtie 2 v2.2.5 (default settings: end-to-end mode, zero mis-
matches allowed in seed alignment during multiseed alignments, multiseed length 22).

Data availability. All assembled and annotated genomic sequences and metadata are deposited in
NCBI’s GenBank (25). All BioProject, BioSample, and accession identifiers (IDs), metadata, and assembly
statistics are provided per sample in Table S2 in the supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, XLSX file, 0.4 MB.
TABLE S2, XLSX file, 0.2 MB.
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