
Resumen

El Control por Matriz Dinámica (DMC) es una de las estrategias de control avanzado 
que más aplicaciones industriales tiene en la actualidad. Sin embargo, la literatura 
presenta pocas opciones para el cálculo del parámetro de sintonización que gobierna 
la agresividad del controlador. Esta investigación propone una nueva ecuación de 
sintonización para calcular este parámetro de sintonización. Se presentan los análisis 
estadísticos realizados para formular la ecuación de sintonización. Para probar la 
eficacia de la ecuación propuesta, se presenta pruebas de rendimiento del controlador 
usando diferentes métodos de sintonización. Estas pruebas incluyen tanto sistemas 
lineales como no lineales.
Palabras claves: Control automático procesos, control por matriz dinámica, 
ecuación sintonización.

Abstrac

Dynamic Matrix Control (DMC) is one of the most used advanced control strategies 
used in industrial environments. However, the available literature does not present 
many alternatives to calculate the controller tuning parameter (also called suppression 
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1.  INTRODUCTION

Dynamic Matrix Control (DMC), originally developed by Cutler and Ramaker 
in 1979 [1], is a successful and widely used technique in industrial applications 
[2-11]. It is considered a Model Based Controller (MBC) because the prediction 
capability is based on the process model incorporated inside the algorithm.  
DMC’s main characteristics are [12]:

- Uses linear step response model to predict process behavior.
- A quadratic objective performance over a finite prediction horizon is em-

ployed.
- Future plant outputs are specified to follow the set point as closed as pos-

sible.
- Optimal outputs, to track set point, are calculated using least square 

method.

DMC, and other MBC schemes, allows intrinsic dead time compensation 
because of the process model used to predict future behavior.

The matrix operations on which the DMC calculations are based can easily 
be extended to any number manipulated and controlled variables. For any pair 
of manipulated-controlled variable, a unit step response vector is required. Each 
of these vectors is used to form the dynamic matrix. The individual dynamic 
matrices are sub matrices of the global matrix. Sanjuan showed a detailed 
explanation about the implementation of the  Dynamic Matrix Controller 
(DMCr) using matrix notation [13][14].

The controller output, vector ΔΜ can be calculated as:

ΔM = (ATA)-1ATE (1)

where A is the dynamic matrix containing the process dynamic information. 
E is the error between the set point and the actual value of the controlled 
variable.

factor). This research proposes a new tuning equation to calculate this parameter. The 
statistical analysis and regression used to develop the equation, as well as the tests 
used to validate it are shown. Linear and nonlinear systems were used to compare 
different tuning methods.
Key words: Process control, dynamic matrix control, tuning equation.
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Usually a suppression factor is used as a tuning parameter to adapt the ag-
gressiveness of the controller; in that case the control move is expressed as:

ΔM = (ATA+λ2I)-1ATE (2)

where λ is the suppression factor and I is the identity matrix. 

The DMC control law can be also expressed in terms of the constant matrix 
KIPS:

ΔM = ((ATA+λ2I)-1AT)E = (KIPS)E (3)

KIPS is an invariant element of the control law.  It is calculated off-line and 
stored to be used when the DMC algorithm requires to calculate ΔM.

Although Shridhar and Cooper [15-17] have proposed equations to determine 
adequate values of the suppression factor, it is common industrial practice to 
use a trial and error procedure to choose the λ value [14]. This practice is time 
consuming and demands a considerable effort by control engineers because 
for every suppression factor the KIPS matrix must calculated and stored; with 
the corresponding computing time and effort involved. 

Shridhar and Cooper tuning equations for SISO control loops are:

 (4)

 (5)

where M is the control horizon, an integer number usually from 1 to 6. Ts is 
the sampling time, and is the largest value that satisfies Ts ≤ τ/10 and Ts ≤ to/2. 
KP is the process gain.

Recent research [18] has shown that Equations (4) and (5) predict λ values 
that commonly generate aggressive behavior, which could be detrimental for 
chemical processes with highly nonlinear behavior. Therefore, it is necessary 
to develop a more reliable equation to determine λ values. That is precisely 
the goal of this paper, to propose a new tuning equation for DMCr in SISO 
control loops. 
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The following sections present the method used to develop the new tun-
ing equation, and the tests used to evaluate and compare the performance of 
standard DMCr working with different tuning methods. 

2.   DMCr TUNING EQUATION DESIGN

To develop the new tuning equation a factorial experiment was designed, and 
an analysis of variance (ANOVA) was performed to determine the variables 
that have a significant influence on the optimal suppression factor λ. The ex-
periment consisted in modeling a general process as a first-order-plus dead 
time (FOPDT) and determine, using constrained optimization, the best λ value 
to minimize a cost function.  The FOPDT model contains three parameters, 
process gain, Kp, time constant, τ, and dead time to.

A total of 35 simulations were performed for the experiment, corresponding 
to the 243 possible combinations of factor values choose for the study. No repli-
cates were necessary because this experiment is a deterministic computational 
test where repetitions of factor levels provide the same result every time. Table 
1 shows the three levels used in the factorial experiment for each factor. 

Table 1
Factors used to perform the designed experiments

Level KP λ to/λ Ts/τ Γ
Low 0.5 1 0.2 0.05 2
Medium 1.5 3 0.6 0.1 5
High 2.5 5 1 0.15 8

Γ is a weighted parameter used in the cost function.  The cost function used 
was defined using a combination of the Integral of the Absolute value of the 
Error (IAE) and the Integral of the Manipulated Valve signal (IMV). This cost 
function or Performance Parameter (PP) is expressed as:

 (6)

The optimal suppression factor for each experiment condition is defined 
as the λ value which minimizes Equation (6). This cost function was selected 
after some attempts using only IAE as performance parameter; for many ex-
periment conditions the minimum IAE resulted in a non desirable oscillatory 
behavior. Adding the IMV, the optimum suppression factors minimize the 
oscillatory behavior.
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To run the experiment and determine the optimal suppression factor for 
each condition, a Matlab program was developed using the Optimization and 
Statistical toolboxes available in Matlab Release 6.5. For every experiment 
condition a set point change equal to +10%TO at time 10 s was introduced. 
Later, at time 40 s a disturbance of +10%TO was introduced into the process. 
These two changes were made with the purpose of finding optimal values of 
λ useful for set point changes and disturbances affecting the process; there-
fore, the tuning equation developed can be used in both cases. Figure 1 shows 
a typical test performed to find the optimal value of suppression factor to 
minimize Equation (6).

Figure 1
Example of set point change and disturbance used with FOPDT to 

find optimal suppression factor for DMCr

For all experiment conditions, the DMCr was implemented using a Control 
Horizon (CH) equal to 5, a sampling time equivalent to 0.1Τ and a Sampling 
Size (SS) to build matrix A, equivalent to 4τ + to; as literature recommends (see 
references [13] and [14]). This sampling size is large enough to capture process 
dynamic characteristics, but no so large to obtain a sluggish DMC response.

Once the complete set of optimal values of the suppression factor was 
found, an analysis of variance (ANOVA) was performed. The ANOVA allows 
determining the most significant factors for the optimal tuning. Only main ef-
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fects and second order interaction were considered. Table 2 shows the ANOVA 
table for the experiment. 

Table 2
ANOVA table for optimal suppression factor

Source Sum Sq. DoF Mean Sq. F P value
KP 151.5478 2 75.7739 447.9556 0
τ 4.417000 2 2.2084 13.06000 0
to/τ 14.78930 2 7.3946 43.71510 2.2204e-016
Ts/τ 7.64030 2 3.8202 22.58380 1.5546e-009
Γ 1.68550 2 0.84273 4.982000 0.0077736
Kp*τ 2.28200 4 0.5705 3.372700 0.0107730
Kp*to/τ 2.52410 4 0.63102 3.730400 0.0060036
Kp*Ts/τ 1.18480 4 0.29619 1.751000 0.1404500
Kp*Γ 0.12735 4 0.031837 0.188210 0.9443400
τ*to/τ 2.92150 4 0.73037 4.317700 0.0022875
τ*Ts/τ 1.17940 4 0.29485 1.743100 0.1421300
τ*Γ 0.36383 4 0.090959 0.537720 0.7081900
to/τ *Ts/τ 3.98440 4 0.9961 5.888700 0.0001720
to/τ *Γ 0.47614 4 0.11904 0.703710 0.5903000
Ts/τ *Γ 0.26025 4 0.065063 0.384630 0.8194700
  Error 32.4778 192 0.16915
  Total 227.8611 242
where
DoF: Degree of Freedom
F: Test Statistic F

The significant factors are those with a P value less than 0.05. Therefore, 
the significant factors are: Kp, τ, to/τ, Ts/τ, Γ, Kp/τ, Kp*to/τ, to and to/τ*Ts/τ. 
Using this information and the set of optimal suppression factor available, 
nonlinear regressions were performed, using many possible combinations 
of the significant factors, until a good correlation coefficient was obtained. 
The tuning equation that best fit the optimal values of the suppression factor        
(R2 = 0.9595) is:

 (7)
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Equation 7 must be applied using a ratio sampling time to process time 
constant (Ts/τ) equal to 0.1.

3.  SIMULATION RESULTS

To validate the new tuning equation, suppression factors were calculated us-
ing the Shridhar and Cooper tuning equations, Equation (7), and the optimal 
value determine by Matlab optimization toolbox. The DMCr performance was 
compared using those values. 

For the following FOPDT process:

 (8)

The suppression factor using Shridhar and Cooper [15] λSC is:

 λSC = 0.0875 (9)

Equation (7) gives:
   

 λ = 0.4220 (10) 

Using optimization methods, the value for λ is:

 λOPT = 0.325 (11)

Figure 2 shows the performance comparison. The figure shows that the 
controller response using the Shridhar and Cooper value generates oscillatory 
behavior. The suppression factor predicted from these equations is the smaller 
one, which implies the most aggressive controller behavior. This result seems 
to be a general tendency of the Shridhar and Cooper equations because they 
always generated the smaller λ. Figure 2 shows that the response obtained 
using the suppression factor calculated with Equation (7) is almost the same 
when the optimal value of λ is used.
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Figure 2
Performance comparison using different tuning methods

As a second test, a simulation of the mixing process shown in Figure 3 
was used.

Figure 3
Schematic representation Mixing Process
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A hot water stream F1(t) is manipulated to mix with a cold water stream 
F2(t) to obtain an output flow F’(t) at a desired temperature T’(t). The 
temperature transmitter is located at a distance L from the mixing tank 
bottom. The volume of the tank varies freely without overflowing. The 
mathematical model used is developed in the Appendix.

As a first step of DMCr implementation, the process was identified as a FOPDT 
model to determine its characteristic parameters. Fit 3 method [19] was used 
to perform the identification; introducing changes in the signal to the valve 
of +10%CO and -10%CO. The results where:

 (12)

       
 (13)

Using the model of Equation (13), and Equation (7) and the Shridhar 
and Cooper equations to calculate the suppression factor, the results are: 
λ=1.3125 and  λSC=0.0653. The suppression factor determined by optimization 
is λOpt=1.092.

Figure 4 shows the control performance provided by each suppression 
factor.  The Shridhar/Cooper tuning value generates a very aggressive con-
troller behavior, a non desirable operation condition. The tuning obtained 
using Equation (7) produced a stable and smooth behavior, very close to that 
obtained with the optimum suppression factor. Table 4 shows the Integral of 
the Absolute Value of the Error (IAE) values for tests presented in Figure 4. 
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Figure 4
Performance comparison using different tuning methods for mixing process

   
Table 4

IAE comparison for test presented in Figure 4

Tuning  Method IAE
Shridhar/ Cooper 168.8
Equation (7) 150.6
Optimization 142.1

IAE values obtained for this test confirm that tuning parameter calculated 
using Equation (7) allows a smooth controller performance, very similar to 
that obtained using the optimal value of the suppression factor. The oscillatory 
behavior observed in Figure 4 corresponds to the higher IAE. 

4.  CONCLUSIONS

The results presented demonstrate the convenience of Equation (7) to calculate 
the suppression factor λ to tune DMCr. The performance of the DMCr using 
this tuning parameter is always smooth; tracking the set point and rejecting 
disturbances effectively. 
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APPENDIX

This appendix provides the mathematical model of the tank in Figure 3.

An unsteady state mass balance around the tank gives: 

 (A-1)

where ρ is the flow density, A is the tank cross section and h(t) is the liquid 
level inside the tank.

The output flow F(t) is modeled as a function of the liquid level and the 
manual valve used in the bottom of the tank: 

 (A-2)

Assuming the contents of the tank are well-mixed, an energy balance 
around the tank gives:

 (A-3)

where Cp and Cv are the heat capacity of the liquid at pressure constant and 
volume constant respectively. T1(t) is the hot water stream temperature, T2(t) 
is the cold water stream temperature. T(t) is the temperature just in the bot-
tom of the tank.

Because the sensor/transmitter TT is located at a distance L from the tank 
bottom, there is a delay time between T(t) and the temperature registered by 
the sensor/transmitter T’(t). That delay time to(t) can be calculated as:

 (A-4)

where At is the pipe cross sectional area, and L is the distance between the 
tank bottom and the sensor/transmitter position.

The temperature registered by the sensor/transmitter can be related to the 
output temperature as:
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T’(t) = T(t–to(t)) (A-5)

The sensor/transmitter is modeled as a first order differential equation:

 (A-6)

where τT and KT are the sensor/transmitter time constant and gain respec-
tively. Tmin is the minimum reading of the sensor/transmitter. c(t) is the output 
signal.

The control valve used to manipulate stream F1(t) is also modeled as a first 
order differential equation:

 (A-7)

where τV and Kv are the time constant and gain of the valve respectively. 

Table 3 shows all steady state values of all the variables.

Table 3
Steady state values for mixing process

Parameter Steady State Values Units
F1 0.8 m3/s
F2 1.1 m3/s
F 1.9 m3/s
T1 80 oC
T2 15 oC
T 42.36 oC
ρ 1000 kg/m3

V 10 m3

Cv 1 kcal/oC-kg
Cp 1 kcal/oC-kg
CV 0.6 m3/m0.5

L 3 m
τV 0.5 s
Kv 0.016 (m3/s)/(%CO)
KT 1.25 %TO/oC
τT 0.5 s
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