THE INDONESIAN JOURNAL OF BUSINESS ADMINISTRATION Vol. 2, No. 17, 2013:2040-2049

PROPOSED METHOD TO INCREASE PRODUCTIVITY AT PT AMI

Arief Andhella and Dermawan Wibisono School of Business and Management Institute Technology of Bandung aandhella@gmail.com

Abstract — PT AMI is a bakeware manufacture located in Bandung and all its product is 100 percent export oriented. The products are exported to American and European markets. The type of business is based on jobs order or customers' orders. The company found that low productivity and high number of defects have caused the company to lose sales and profits. During the analysis the main problem regarding quantity lies in the Unit Press Shop, which has poor layout which causing the production unable to reach optimum level. While in the quality issue, the problem lies in the Unit Press Shop and Unit Painting. The problems are due to lack of knowledge of the operators. The methods that will be discussed in analyzing the roots of problems in PT AMI are the Lean Manufacturing concept with DMAIC methodology to identify the root of the caused and waste in the manufacturing area. The propose method in order to eliminate the problems are additional machines, new layout and the grouping of similar items and processes help to improve the capacity in production. The capacity improvement is about 85.5% compare to the existing system. Another proposes solution is to create training for the operators to improve the skill and knowledge regarding the impact of high reject to the company's growth. The first expectation after the training is the improvement of 20% compare to total reject in 2012. The implementation to improve the productivity will require the effort and team works form few departments. The timeline in applying the propose methods will takes about three months starting from January 2014.

Keywords: Lean manufacturing, productivity and optimum management.

1. Introduction

PT AMI is a kitchenware manufacturing company that established in 1991. The products are categorized into 9 basic items. In Production Unit, there are five different Process Units, which are Unit Blank, Unit Press Shop, Unit Treatment, Unit Painting and Unit Assembling Packaging. Since 2010, the demands from the customers have been increasing but the company unable to meet the demands.

2. Business Issue Exploration

The writer will be using this conceptual framework as the guidance:

Figure 1 Conceptual Framework

The method from Lean Manufacturing will be used to identify and eliminate wastes that are happening during the process in continuous improvement. The writer will use such as data production, data process and data rejects will help the writer to understand the existing process of production, existing output of the production and the number of rejects. There are five principal in the Lean Manufacturing:

- 1. Identify product value based on perspective of customers
- 2. Identify the value stream of process mapping for every products.
- 3. Eliminate waste and process that has no added value.
- 4. Organize that material, information and products to flow continuously and efficiently
- 5. Continuously improvement tools and techniques.

In most common manufacturing companies in the world. The Seven Type of Waste are shown in table below:

Туре	Waste
1	Overproduction
2	Delay (waiting time)
3	Transportation
4	Processes
5	Inventories
6	Motions
7	Defective Products

Table 1. Seven Type of Common Waste in Manufacturing

As the DMAIC method, the writer will concentrate on the Define, Measure, Analyze and Improve for the company, while Control will be done after the implementation of the proposed solution to the company.

Figure 2. DMAIC Cycle

Currently PT AMI only able to fulfill about 67.7% from the total of the Customers' demands and the defective products in year 2012 is about 2.13% from the total production in 2012.

2 0 1 2					
Period	Dem an d	Output			
Jan	828,388	667,947			
Feb	817,817	502,811			
M ar	571,757	460,686			
Apr	3 2 7 , 5 5 2	655,282			
M ay	1,394,786	736,071			
Jun	946,999	649,960			
Jul	1 ,4 7 4 ,0 6 5	7 2 8 , 2 5 3			
Aug	854,042	5 1 2 , 2 7 6			
Sep	1 ,1 8 8 ,4 4 2	697,302			
0 c t	1 ,4 5 5 ,1 3 6	950,155			
N o v	1,119,839	8 2 2 , 7 4 0			
Dec	627,771	469,600			
Grand Total	11.606.594	7.853.083			

Table 2. The Total Customers' Demands and Total PT AMI's Output

The data of rejects bellows shows that Unit Press Shop, Unit Painting and Unit Assembling Packaging have a high number of rejects.

Table 3. Rejects in each Unit Process Production

Month	REJECT IN EVERY UNIT PROCESS				
WOITTI	В	PS	T	Р	AP
January	146	3,841	236	11,996	3,347
February	42	4,617	207	8,930	2,416
March	82	3,117	196	6,526	2,336
April	138	3,470	295	5,762	2,055
May	100	4,870	386	9,999	3,413
June	114	4,809	300	6,000	3,877
July	65	3,502	214	4,810	4,521
August	87	1,711	107	3,098	3,401
September	157	3,984	250	3,747	2,791
October	131	5,343	232	9,516	3,677
November	162	3,984	367	4,637	3,291
December	80	2,115	194	7,320	3,735
TOTAL	1,304	45,363	2,984	82,341	38,860

From this two internal data the writer decided to focus initially on the aspects of layout and the aspect of quality.

Poor layout of machines in production floor

The writer find out that the current existing areas do not concentrate on the similar items or process since many of the machines are scattered among the areas.

Figure 3. Current layouts in Unit Press Shop

The writer is then calculating the time loss for the production based on the worst scenarios where there is a need for jumping process from one area to another with average travelling time from each process is 3 minutes.

Table 4. Time lost during process

Item 12" Pizza				
Drogoss	Otvinnes	Existing system		
1100055	Qtympts	Time in min		
Forming	80	10		
Travel Time A	0	5		
Trimming	80	10		
Travel Time B	0	5		
Bending	80	10		
Travel Time C	0	1		
Rolling	80	10		
Total	80	51		

From the calculation based on the lowest stroke of the machines requires about 51 minutes to produce 80 pcs with time-loss about 21.5% from the cycle time.

Insufficient training

As for the high number of defects, the writer analyzes the roots of the cause of these is insufficient training since most operators are clueless regarding their responsibility in minimalizing the rejects. The writer find that that the roots of problems during the entire finding in this analysis in the table shown below.

Table 5. Cate	egory of Analysis	
---------------	-------------------	--

Category	Aspect				
Low	Poor Layout in Unit				
Productivity	Press Shop				
	Broken Machines				
High number of	• Poor equipment				
rejects	maintenance				
	• Insufficient training				

3. Business Solution

These roots of problems need to be eliminated and find a solution to reduce the waste from the problems above in order for the company to increase profits, productivity and quality.

Improvement of the capacity

The poor lay out of the machines causes the products process to jump from one area to the other area. The propose solutions are:

- Rearrange and grouping the position of the machines according to the processes of the products.
- Adding additional machines.

Figure 4. Proposed New Layouts of Machines in Unit Press Shop

Improvement for the quality

The writer proposed the training instead of other kind of solutions because the writer found that the operator still have a very little knowledge regarding quality and responsibility in maintenance of the equipment in reducing the defects. Therefore the are two proposed solutions to improve the quality are:

- Provide training for the operators in Unit Press Shop and Unit Painting
- Improving the equipment maintenance.

Analysis in comparing Purposed System and Existing System in Quantity

The writer will do the analysis of the improvement using proposed method with the existing system in:

- Capacity
- Revenue
- Minimalize Time loss

Calculation Improvement in Capacity

In the new lay out, the process arrangement is according to the characteristic similar items and process to eliminate the loss time during process form the jumping process in the existing system. In the past, the production lanes are only 8 lanes that produce the total capacity of 600,000 pieces per 2 shifts in a month. The categories of area can be seeing in the table below:

Area	Item Grouping	Category	Propose number of lanes in the A rea
LB	Cookie Pizza	Shallow Depth	4
LF LG	Loaf Pan Round Pan Square Pan	Medium Depth	5
LE	Oblong Pan Roaster	High Depth	3
LA	Muffin	Area Muffin	4
LC	Spring Form	A rea Spring Form	3
LH	Mixed Items and Trail Area	Mix Depth	2

Table 6. Category of area with similar type of products

Now with new rearrangement of the layout the capacity is based per area which making the production to measure easily.

es
e

Area	No of Lanes	Capacity /hour	Capacity /shift	Capacity 2shifts/month	50% from theory
LB	4	1,920	13,440	672,000	336,000
LF LG	5	900	6,300	315,000	157,500
LE	3	540	3,780	189,000	94,500
LA	4	1,200	8,400	420,000	210,000
LC	3	1,440	10,080	504,000	252,000
LH	2	360	2,520	126,000	63,000
	Total	8,160	57,120	2,226,000	1,113,000

Another comparison solution is shown on the table below regarding the improvement the capacity of the production.

Table 8. Improvement capacities with new layout

Type of Items	Previous Layout /shift	50% of New Layout per shift	Improvement
Cookie Pizza		6,720	Percentage Improvement calculate
Loaf Pan Round Cake Square Cake	12,000	3,150	= (22,260- 12,000) /12,000
Oblong Roaster		1,890	0.855
Muffin		4,200	
Spring Form		5,040	
Mix Items		1,260	
Total Capacity	12,000	22,260	85.50%

The proposed method shows the visibility and validity to apply the method is valid and shows the improvement in the capacity by 85.5%.

Calculation Improvement in Minimalizing Time-Loss

The writer then calculate the improvement due to time loss from the existing process because of the jumping process and the propose layout without any jumping process to another area.

Item12'' Pizza					
Process	Outron me	Existing system	Proposed system	Inprovement	
	Quins	Tine in min	Timein min	Timein mir	
Forming	80	10	10		
Travel Time A	0	5	1		
Trinming	80	10	10	1	
Travel Time B	0	5	1	100	
Bending	80	10	10	10%	
Travel Time C	0	1	1		
Rdling	80	10	10		
Total	80	51	43		

Table 10. Efficiency from the time loss

In the calculation above the time loss of the can be reduce from 22% to 16% during the process. Therefore in term of time-loss, there is an improvement of 27%.

Calculation Improvement in Revenue

The improvement to the company revenue due to the new improvement capacity will help the company to increase 78% of the revenue. This calculation is based on constant output from the new improvement to the existing items that sold to buyers.

	Exisisti	ngSystem	Propos	Proposed System	
Month Froducti		revenue	Production Revenue		Revenue
	Capacity	\$1	Capacity	\$1	in %
Jan	667,947	\$ 667,947.00	1,113,000	\$ 1,113,000,00	67%
Feb	502,811	\$ 502811.00	1,113,000	\$ 1,113,000,00	121%
Mar	460,686	\$ 460,686.00	1,113,000	\$ 1,113,000,00	142%
Apr	655,282	\$ 655282.00	1,113,000	\$ 1,113,000,00	70%
May	736,071	\$ 736071.00	1,113,000	\$ 1,113,000.00	51%
Jun	649,960	\$ 649,960.00	1,113,000	\$ 1,113,000.00	71%
Jul	728,253	\$ 728253.00	1,113,000	\$ 1,113,000.00	53%
Aug	512,276	\$ 512,276.00	1,113,000	\$ 1,113,000,00	117%
Sep	697,302	\$ 697,302.00	1,113,000	\$ 1,113,000,00	60%
Ou	950155	\$ 950155.00	1,113,000	\$ 1,113,000,00	17%
Nov	822,740	\$ 822,740.00	1,113,000	\$ 1,113,000,00	35%
Dac	469,600	\$ 469,600.00	1,113,000	\$ 1,113,000,00	137%
Total	7,853,083	\$ 7853.08300	13,356,000	\$13356,000,00	78%

Table 11. Improvement in term of Revenue

Calculation Improvement in Quantity

The writer will calculate the improvement in term of value from decreasing reject about 20% after the training. This calculation is based on assumption that the result will be achieved by 6 months after the training.

- Reject
- Value of rejects

Based on internal data from production, it showed the number of rejects in every month Table 12 . Minimalizing reject by 20%

Improvement in Minimalizing Rejects by 20%								
Ma	Reject	Improvement	Reject	Improvement				
Month	Press Shop	20%	Painting	20%				
an	3,841	768	15,343	3,069				
² eb	4,617	923	11,346	2,269				
Mar	3,117	623	8,861	1,772				
Apr	3,470	694	7,817	1,563				
May	4,870	974	13,412	2,682				
un	4,809	962	9,877	1,975				
ul	3,502	700	9,331	1,866				
Aug	1,711	342	6,499	1,300				
Sep	3,984	797	6,538	1,308				
Oct	5,343	1,069	13,193	2,639				
Nov	3,984	797	7,928	1,586				
Dec	2,115	423	11,055	2,211				
lotal	45,363	9,073	121,200	24,240				

Assume that the training will improve the efficiency of reject products for about 20%. 166,563x 20% = 33,312 pcs

The Efficient Value from Rejects

The writer make assumption that the average sale price of an item is \$ 1.00, therefore the loss from rejects is shown in the table below.

Description	No Of Rejects	Average \$ per item	Total Lost in \$						
January	3,837		3,837						
February	3,193		3,193						
March	2,396		2,396						
April	2,257		2,257						
May	3,656		3,656						
June	2,937	1	2,937						
July	2,567	1	2,567						
August	1,642		1,642						
September	2,104		2,104						
October	3,707		3,707						
November	2,382		2,382						
December	2,634		2,634						
Total	33,312	1	33,312						

Table 13. Efficiency from Reject

Assume that the cost of each product is 1.00, therefore the total save will be: $33,312 \times 1 = 33,312$

As the calculation above show the company may be able to save \$33,312 in a year. Calculation Cost in Implementing Versus Profit from Proposed System

The writer will calculate the cost in implementing and the profit from the proposed system . Cost for movement machine

The company required allocating money for moving the machinery to the running facility. The total length of time to move requires about 6 days with re-layout the floor. The total cost is shown below for the transportation.

Detail Spending per day in Rp.	No of days	Total Spending in Rp.
Fork lift 10 Ton (2 Units) 7,500,000	6	45,000,000
Crane (1 Unit) 8,000,000	2	16,000,000
T rucks (3Units) 4,500,000	4	18,000,000
	Total	79,000,000

Table 14. Cost of Spending for Moving Machines

The company needs to spend out is about Rp 79,000,000 for the total of 6 days for renting heavy equipment.

Cost for additional People

Addition new operators will increase the spending of the company in each month.

No of Operator	Cost of Spending in a month (Rp.)	Total spending in a month (Rp.)
	Salary 1,400,000	67,200,000
48	Health Insurance 50,000	2,400,000
	Total	69,600,000

Table 15. Cost of Spending for Additional Operators

From the table above if the production requires 2 shifts, therefore the spending will be Rp. 139,200,000 as show below.

No of Operator	No of Shift	Total spending in a month (Rp.)
48	Shift 1 69,600,000	69,600,000
	Shift 2 69,600,000	69,600,000
	Total	139,200,000

ators
2

Profit from new improve system

With the assumption that the company has net profit 3% from the sales of the items therefore each month the company has a profit of:

Table 17. The Profit from new system

Sales in	Net Profit
month	3%
\$1,113,000	\$33,390

On the calculation above, the writer shows that the companies able to have profit of \$33,900 if the products are able to be sell.

Efficient from rejects

Assume the company able to minimalize rejects by 20% therefore the amount of money that can be save from efficiency is:

Table 18. Efficiency from rejects

Efficiency for	Efficient per
Rejects	month
\$33,312	\$2,776

The table below is comparing the spending and the income of the company when applying the purposed method.

Table 19	Compariso	n Spending
	oompunisoi	i speriorig

Spending in Rupiah		Income in Rupiah				
M ove m en t m achines	79,000,000	Improvement production	323,883,000			
Additional employees	139,000,000	Efficiency	26,927,200			
Total	218,000,000	Total	350,810,200			
		Profit total	132,810,200			

It shown that the proposed solution is valid in increasing capacity in production and improving the profit for the company.

4. Implementation Plan

The proposed solution needs the efforts from few departments such as Unit Press needs to make sure the grouping of similar item and process and the machines that needs to do the in each process. Unit Maintenance needs to set up what the requirements to re-layout the machines. Purchasing Department needs to arrange with the company confirmation on rental service for heavy equipment to rent. Finance Department needs to be prepared in term of financial spending during the process since all the payment for the new components order have to be acknowledge and done by only the Finance Department. HRD needs to start recruit new employees for Press Shop unit to operate new machineries and provide training on how to operate the machines the safety needed while operating the machines to the new employees. QC needs to provide the training to improve the quality of the products in order to reduce number of defects, the QC department needs to be involve to educate the types of rejects in every units area and how to prevent such misfortune events. Production Departments needs to be involved together with QC for the training regarding how to improve the quality in every Unit in Production. Each of these Unit Departments has the responsibilities to manage the changes from the current system to the proposed method.

The roadmap above is needed to have a timeline to make the whole process work on the right path. The timeline below is made with the hope that it will become guidance for each Department in maintaining their task in the progress as long as the company operates.

	Activities		2014												
Department			JAN				FE B				MAR				
		1	2	3	14	1	2	3	4	1	2	3	4		
		Π		Г	Г	Г	Г	Г	Г			П	C		
Unit Press Shop	Prepare new lay out and grouping	Γ	Γ	Г	Г	Г	Г	Г	Г			П			
	Prepare time for relayouting		Γ	Г	Г	Г	Г	Г	Г				Г		
	Stop production for relayout	Ε	L	Г	L	1	E	E					E		
Init Maintenance	Prenare the requirement for the mahines	μ	ŀ	-	⊢	Ļ	ŀ	Ļ	Ļ.	Н	Н	Н	-		
Unit Maintenance	Installing electrical componets	h	÷	÷	t	⊢	÷	÷	÷						
	MovingMachines	E	-	t	t	ŀ	t	ŀ	F				-		
	Layouting the machine	Г	1	-	t	1	h	F	Г			Н	-		
	1	Г	Г	Г	Г	Г	Г	Г	Г			П	С		
Purchasing Department	Rent Heavy eqeuipmet for moving	Γ	Γ	Г	Г	Γ	Г	Γ				Π			
	order the electrical componets	С	Г	Г			L		L				Γ		
		E		Г	L	1	Г	Γ							
Finacial Department	expedeture	E	L	L			L								
100	Desuiting	μ.	1	-	Ł	1	L	Ļ.,	1.				-		
TIKD	Tosting	H	ł	÷	ł	┝	ŀ	-	÷	Н	Н	Н	-		
	Colocting	⊢	-	ŀ	ł	-	ŀ	-	H		-		-		
	Training Safety, operaing machines and quality	H	-	ŀ	ł	┝	┝	⊢	F	Н		Н	-		
	maining sarety, operaling machines and quality	H	⊢	÷	ł	⊢	⊢	ł	ŀ		H	Н	-		
Production	Training Unit Press Shop	r	t	È	ŕ	t	ŕ	†-	ŕΠ	'n	h	Н	h		
QC	Trainin Unit Treatment			Г	l.	l	L								
	Training Unit Painting		Г	Г	Г	Г	Г	Г	Г				-		
	Training Unit Assembling Plakacging	Г	Г	Г	Γ	Ľ	Г	Г	Г			П	С		
								_							

Table 20. Timeline for improvement

References

Gaspersz V., 2012, All-in-One Production and Inventory Management: Vinchristo Publication.

Imai M., 1986, Kaizen: The Key to Japan's Competitive Success, First Edition: McGraw-Hill.

Liker J. L., 2005, The Toyota Way: 14 Prinsip Management Dari Perusahaan Manufaktur Terhebat di Dunia, Indonesia Edition. Erlangga

Wibisono, D. 2006m Manajemen Kinerja: Konsep Desain dan Teknik Meningkatkan Daya Saing Perusahaan, Bandung: Erlangga