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Abstract. In this paper, the Lyapunov exponent and moment Lyapunov 

exponents of two degrees-of-freedom linear systems subjected to white noise 

parametric excitation are investigated. The method of regular perturbation is 

used to determine the explicit asymptotic expressions for these exponents in the 

presence of small intensity noises. The Lyapunov exponent and moment 

Lyapunov exponents are important characteristics for determining both the 

almost-sure and the moment stability of a stochastic dynamic system. As an 

example, we study the almost-sure and moment stability of a thin-walled beam 

subjected to stochastic axial load and stochastically fluctuating end moments.  

The validity of the approximate results for moment Lyapunov exponents is 

checked by numerical Monte Carlo simulation method for this stochastic 

system. 

Key words: Eigenvalues, Perturbation, Stochastic stability, Thin-walled beam, 

Mechanics of solids and structures 

1. INTRODUCTION 

In recent years there has been considerable interest in the study of the dynamic 

stability of non-gyroscopic conservative elastic systems whose parameters fluctuate in a 

stochastic manner. To have a complete picture of the dynamic stability of a dynamic 

system, it is important to study both the almost-sure and the moment stability and to 
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determine both the maximal Lyapunov exponent and the pth moment Lyapunov exponent. 

The maximal Lyapunov exponent is defined by 

 0

1
lim log ( ; )q
t

t q
t

  q  (1) 

where 0( ; )t qq  is the solution process of a linear dynamic system. The almost-sure 

stability depends upon the sign of the maximal Lyapunov exponent which is an 

exponential growth rate of the solution of the randomly perturbed dynamic system. A 

negative sign of the maximal Lyapunov exponent implies the almost-sure stability 

whereas a non-negative value indicates instability. The exponential growth rate 

0 0[ ( ; , ) ]
p

E t q qq  is provided by the moment Lyapunov exponent defined as 

 0

1
( ) lim log [ ( ; ) ]

p

q
t

p E t q
t

  q  (2) 

where  E  denotes the expectation. If ( ) 0q p   then, by definition 

0 0[ ( ; , ) ] 0
p

E t q q q   as t   and this is referred to as the pth moment stability. 

Although the moment Lyapunov exponents are important in the study of the dynamic 

stability of the stochastic systems, the actual evaluations of the moment Lyapunov 

exponents are very difficult. 

Arnold et al. [1] constructed an approximation for the moment Lyapunov exponents, 

the asymptotic growth rate of the moments of the response of a two-dimensional linear 

system driven by real or white noise. A perturbation approach was used to obtain explicit 

expressions for these exponents in the presence of small intensity noises. Khasminskii and 

Moshchuk [2] obtained an asymptotic expansion of the moment Lyapunov exponents of a 

two-dimensional system under white noise parametric excitation in terms of the small 

fluctuation parameter , from which the stability index was obtained. Sri Namachchivaya 

et al. [3] used a perturbation approach to calculate the asymptotic growth rate of a 

stochastically coupled two-degrees-of-freedom system. The noise was assumed to be 

white and of small intensity in order to calculate the explicit asymptotic formulas for the 

maximum Lyapunov exponent. Sri Namachchivaya and Van Roessel [4] used a 

perturbation approach to obtain an approximation for the moment Lyapunov exponents of 

two coupled oscillators with commensurable frequencies driven by small intensity real 

noise with dissipation. The generator for the eigenvalue problem associated with the 

moment Lyapunov exponents was derived without any restriction on the size of  pth 

moment. Kozić et al. [5] investigated the Lyapunov exponent and moment Lyapunov 

exponents of a dynamic system that could be described by Hill’s equation with frequency 

and damping coefficient fluctuated by white noise. The procedure employed in 

Khasminskii and Moshchuk [2] was applied to obtain an asymptotic expansion of the 

Lyapunov exponent and moment Lyapunov exponents of an oscillatory system under two 

white-noise parametric excitations in terms of the small fluctuation parameter. These 

results were used to obtain explicit expressions of an asymptotic expansion of the moment 

and almost sure stability boundaries of the simply supported beam which was subjected to 

the axial compressions and varying damping which were two random processes. In [6, 7], 
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Kozić et al. investigated the Lyapunov exponent and moment Lyapunov exponents of two 

degrees-of-freedom linear systems subjected to white noise parametric excitation. In [6], 

almost-sure and moment stability of the flexural-torsion stability of a thin elastic beam 

subjected to a stochastically fluctuating follower force were studied. In [7], moment 

Lyapunov exponents and stability boundary of the double-beam system under stochastic 

compressive axial loading were obtained. In [9], Pavlović et al. investigated the dynamic 

stability of thin-walled beams subjected to combined action of stochastic axial loads and 

stochastically fluctuating end moments. By using the direct Lyapunov method, the authors 

obtained the almost-sure stochastic boundary and uniform stochastic stability boundary as 

the function of characteristics of stochastic process and geometric and physical 

parameters.  

Deng et al. [12] investigated the Lyapunov exponent and moment Lyapunov 

exponents of flexural-torsional viscoelastic beam, under parametric excitation of white 

noise. The system of stochastic differential equations of motion is first decoupled by 

using the method of stochastic averaging for dynamic systems with small damping and 

weak excitations. The moment and almost-sure stability boundaries and critical excitation 

are obtained analytically which are confirmed by numerical simulation. Also, Deng in 

[13] studied the moment stochastic stability and almost-sure stochastic stability through 

the moment Lyapunov exponents and the largest Lyapunov exponent of flexural-torsional 

viscoelastic beam, under the parametric excitation of a real noise. 

Stochastic stability of a viscoelastic plate in supersonic flow as well typical example 

of a coupled non-gyroscopic system through Lyapunov exponent and moment Lyapunov 

exponents and are investigated by Deng et al. [14]. The excitation is modelled as a 

bounded noise process. By using the method of stochastic averaging, the equations of 

motion are decoupled into Itô differential equations, from which moment Lyapunov 

exponents are readily obtained. The Lyapunov exponents are obtained from the relation 

with moment Lyapunov exponents.  

The aim of this paper is to determine a weak noise expansion for the moment 

Lyapunov exponents of the four-dimensional stochastic system. The noise is assumed to 

be white noise of such small intensity that an asymptotic growth rate can be obtained. We 

apply the perturbation theoretical approach given in Khasminskii and Moshchuk [2] to 

obtain second-order weak noise expansions of the moment Lyapunov exponents. The 

Lyapunov exponent is then obtained using the relationship between the moment 

Lyapunov exponents and the Lyapunov exponent. These results are applied to study the 

pth moment stability and almost-sure stability of a thin-walled beam subjected to 

stochastic axial loads and stochastically fluctuating end moments. The motion of such an 

elastic system is governed by the partial differential equations in [9] by Pavlović et al. 

The approximate analytical results of the moment Lyapunov exponents are compared with 

the numerical values obtained by the Monte Carlo simulation approach for these 

exponents of a four-dimensional stochastic system. 
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2. THEORETICAL FORMULATION 

Consider linear oscillatory systems described by equations of motion of the form 

 

2

1 1 1 1 1 11 1 1 12 2 2

2

2 2 2 2 2 21 1 1 22 2 2

2 ( ) ( ) 0,

2 ( ) ( ) 0,

q q q K t q K t q

q q q K t q K t q

         

         
 (3) 

where 1 2,q q  are generalized coordinates, 1 2,   are natural frequencies and 12 , 22  

represent small viscous damping coefficients. The stochastic terms 1( )t  and 2 ( )t  

are white-noise processes with small intensity with zero mean and autocorrelation 

functions 

 
 

 
1 1

2 2

2

1 2 1 1 1 2 1 2 1

2

1 2 2 1 2 2 2 2 1

( , ) ( ) ( ) ( ),

( , ) ( ) ( ) ( ),

R t t E t t t t

R t t E t t t t

 

 

      

      
 (4) 

where 1 , 2  are the intensity of the random process 1( )t  and 2 ( )t , and ( )  is the 

Dirac delta.  

Using the transformation  

 1 1 1 1 2 2 3 2 2 4, , ,q x q x q x q x       (5) 

and denoting 

 ij ij jp K  , (i, j=1,2), (6) 

the above Eqs. (3) can be represented in the first-order form by a set of Stratonovich 

differential equations 

 1 2 ( )  ( )d dt dt dw t dw t     0 1 2X A X AX B X B X ,  (7) 

where  1 2 3 4

T
X x x x x  is the state vector of the system, 1( )w t  and 2 ( )w t  are the 

standard Weiner processes and 0A , A , 1B  and 2B  are constant  4 4  matrices  given by 

 

1

1 1

2

2 2

11 12

1

22 21

0 0 0 0 0 0 0

0 0 0 0 2 0 0
,     ,    

0 0 0 0 0 0 0

0 0 0 0 0 0 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0
,    .

0 0 0 0 0 0 0 0

0 0 0 0 0 0

p p

p p

   
   
  
    
   
   

     

   
   
    
   
   
   

0

2

A A

B B

,  (8) 

Applying the transformation 
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1 1 2 1 3 2 4 2

2 2 2 2 2

1 2 3 4

1 2

cos cos , cos sin , sin cos , sin sin ,

( ) ,

0 2 , 0 2 , 0 2,     ,

p p

x a x a x a x a

P a x x x x

p

             

    

              

 (9) 

and employing Itô’s differential rule, yields the following set of Itô equations for the pth 

power of the norm of the response and phase variables 1 2,   ,      : 

  
 

 

* * *

1 11 1 12 2

* * *

2 21 1 22 2

* * *

1 1 3 31 1 32 2

* * *

2 2 4 41 1 42 2

( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ).

p
d a dt dw t dw t

d dt dw t dw t

d dt dw t dw t

d dt dw t dw t

     

      

        

        

 (10) 

In the previous transformations, a represents the norm of the response, 1  and 2  are 

the angles of the first and second oscillators, respectively, and    describes the coupling 

or exchange of energy between the first and second oscillator 

In the previous equation we have introduced the following markings 

  * 2 2 2 2

1 1 1 2 22 sin cos sin sinpP        ,   * 2 2

2 1 1 2 2sin sin sin 2         

 *

3 1 1sin 2    ,  *

4 2 2sin 2    , * 2 2

11 11 1 22 2sin 2 cos sin 2 sin
2

pP
p p           

  *

21 11 1 22 2

1
sin 2 sin 2 sin 2

4
p p      , * 2

31 11 1cosp    , * 2

41 22 2cosp    , (11) 

 *

12 12 1 2 21 1 2sin cos cos sin sin 2
2

pP
p p         , 

* 2 2

22 12 1 2 21 1 2

1
sin cos sin cos sin cos

2
p p          , 

*

32 12 1 2cos cosp tg     
, 

*

42 21 1 2cos cos cotp     
. 

The Itô version of Eqs.(10) have the following form 

 
 

 

1 11 1 12 2

2 21 1 22 2

1 1 3 31 1 32 2

2 2 4 41 1 42 2

( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ),

p
d a dt dw t dw t

d dt dw t dw t

d dt dw t dw t

d dt dw t dw t

     

      

        

        

, (12) 

where i  are given in Appendix 1 and  *

ij ij   , (i, j=1, 2, 3, 4).  
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Following Wedig [11], we perform the linear stochastic transformation 

 1

1 2 1 2( , , ) , ( , , )S T P P T S        , (13) 

introducing the new norm process S by means of the scalar function 1 2( , , )T     which is 

defined on the stationary phase processes 1 , 2  and    

 

  



 

 

1 2 1 2

1 2 1 1 1 2 2 2

1 2

1 2

1 2 1 0 1 2

00 01 02 11 12 22

11 21 31 41 1

12 22 32 42 2

 

( )

( ) ,

dS P T T dt P T m T m T m T

m T m T m T m T m T m T dt

P T T T T dw t

P T T T T dw t

    

        

  

  

             

           

           

          

, (14) 

where   

  

   

0 2 11 21 12 22 1 3 11 31 12 32 2 4 11 41 12 42

2 2

00 21 22 01 21 31 22 32 02 21 41 22 42

2 2 2 2

11 31 32 12 31 41 32 42 22 41 42

,   ,   ,

1
,   m ,   m ,   

2

1 1
,  m ,   m   . 

2 2

m m m

m

m

                       

               

             

 (15) 

If the transformation function 1 2( , , )T     is bounded and non-singular, both 

processes P and S possess the same stability behavior. Therefore, transformation function 

1 2( , , )T    is chosen so that the drift term, of the Itô differential Eq. (15), does not 

depend on the phase processes 1 , 2  and  , so that 

 
 

 
1 2

1 2

1

11 21 31 41 1

1

12 22 32 42 2

( ) ( )

( ) .

dS p Sdt S T T T T T dw t

S T T T T T dw t



  



  

           

         
 (16) 

By comparing Eqs. (14) and (16), it can be seen that such a transformation function 

1 2( , , )T     is given by the following equation 

 0 1 1 2 1 2( , , ) ( ) ( , , ).L L pT T            (17) 

In (17) 0L  and 1L   are the following first and second-order differential operators 

 

0 1 2

1 2

2 2 2 2 2 2

1 1 2 3 4 5 62 2 2

1 2 1 21 2

1 2 3

1 2

,

,

L

L a a a a a a

b b b c

 
  

 

     
       

     

  
   

  

 (18) 
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where 1a , 
2a , 

3a , 
4a , 

5a , 
6a , 

1b , 
2b , 

3b  and c  are given in Appendix 2. 

Eq. (17) defines an eigenvalue problem for a second-order differential operator of 

three independent variables, in which ( )p  is the eigenvalue and 1 2( , , )T     the 

associated eigenfunction. From Eq. (16), the eigenvalue ( )p is seen to be the Lyapunov 

exponent of the pth moment of system (7), i. e., ( )( ) ( )x tp p   . This approach was first 

applied by Wedig [11] to derive the eigenvalue problem for the moment Lyapunov 

exponent of a two-dimensional linear Itô stochastic system. In the following section, the 

method of regular perturbation is applied to the eigenvalue problem (17) to obtain a weak 

noise expansion of the moment Lyapunov exponent of a four-dimensional stochastic 

linear system. 

3. WEAK NOISE EXPANSION OF THE MOMENT LYAPUNOV EXPONENT 

Applying the method of regular perturbation, both the moment Lyapunov exponent 

( )p  and the eigenfunction 1 2( , , )T    are expanded in power series of ε as: 

 

2

0 1 2

2

1 2 0 1 2 1 1 2 2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ,

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) .

n

n

n

n

p p p p p

T T T T T

            

                       
 (19) 

Substituting the perturbation series (19) into the eigenvalue problem (17) and equating 

terms of the equal powers of ε leads to the following equations 

 

0

0 0 0 0

1

0 1 1 0 0 1 1 0

2

0 2 1 1 0 2 1 1 2 0

3

0 3 1 2 0 3 1 2 2 1 3 0

0 1 1 0 1 1 2 2 1 1 0

( ) ,

( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( )n

n n n n n n n

L T p T

L T L T p T p T

L T L T p T p T p T

L T L T p T p T p T p T

L T L T p T p T p T p T p T









    

  

    

     

      

      

           ,

 (20) 

where each function 1 2( , , ),  0,1,2,i iT T i      must be positive and periodic in the 

range 0 2    , 10 2     and 20 2    . 

3.1 Zeroth order perturbation 

The zeroth order perturbation equation is 0 0 0 0( )L T p T   or 

 0 0
1 2 0 0

1 2

( )
T T

p T
 

   
 

. (21) 

From the property of the moment Lyapunov exponent, it is known that 

 2

0 1 2(0) (0) (0) (0) (0) 0n

n          , (22) 
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which results in (0) 0n   for 0,  1,  2,  3,....n   Since the eigenvalue problem (21) does 

not contain p, the eigenvalue 0 ( )p is independent of p. Hence, 0 (0) 0   leads to  

 0 ( ) 0p  .   (23) 

Now, partial differential Eqs. (21) have the form 

 0 0
1 2

1 2

0
T T 

  
 

. (24) 

Solution of Eq.(24) may be taken as   

  0 1 2 0( , , ) ( )T       ,  (25) 

where 0 ( )  is an unknown function of  which has yet to be determined.   

3.2 First order perturbation 

The first order perturbation equation is 

 0 1 1 0 1 0( )L T p T LT   .  (26) 

Since the homogeneous Eq. (24) has a non-trivial solution given by Eq. (25), for Eq. 

(26) to have a solution it is required, from the Fredholm alternative, that following is 

satisfied: 

    * *

0 1 0 1 0 1 0 0, ( ) , 0L T T p T L T T    . (27) 

In the previous equation, *

0 0 ( )T    is an unknown solution of the associated adjoint 

differential equation of (24), and  ,f g  denotes the inner product of functions 

1 2( , , )f     and 1 2( , , )g    defined by 

      
2 2 2

1 2 1 2 1 2

0 0 0

,    f , , g , ,  d d df g

  

            . (28) 

Taking onto account (25), (26) and (28), the expression (27) has the form  

    
2 2 2

1 0 1 0 1 20
0 0 0

   ( )  d d d 0p L

  

            , (29) 

and will be satisfied if and only if 

  
2 2

1 0 1 0 1 2

0 0

  ( )  d d 0p L
 

        . (30) 

After the integration of the previous expression we have that 
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2

0 0
0 1 1 1 0 1 02

( ) ( ) 0
d d

L A B C p
dd

 
          


, (31) 

where  

    
2 2 2 2

1 1 1 2 1 2 1 1 1 2 1 2

0 0 0 0

  ( , , ) d d ,    b ( , , ) d d  ,A a B
   

                  

  
2 2

1 1 2 1 2

0 0

  ( , , ) d d .C c
 

         (32) 

Finally, 1A , 1B  and 1C  are 

 

   

 

 

     

 

 

2 2 2 2

1 11 22 12 21

2 2
2 212 21
1 2

2 2 2 2

11 22 12 21

2 2 2 2

1 11 22 12 21

2 2 2 2

12 21

2

1 2 11

1
2 cos 4

128

cos 2
16

1
6  ,

128

1
1 2 sin 4

64

1
sin cos cot

8

1
             16 16 2

32

A p p p p

p p

p p p p

B p p p p p

p tg p

p p

       
 


   

    
 

        
 

     

           

     

     

      

2 2 2

22 12 21

2 2 2 2

1 11 22 12 21

2 2 2 2

1 2 11 22 12 21

2 2 2 2

1 2 11 22 12 21

2 1 sin 2  ,

1
2 2 cos 4

128

1
             16 16 2 4  cos 2

32

1
             64 64 10 3 2 6  

128

p p p p

C p p p p p p

p p p p p

p p p p p p p

     
 

       
 

          
 

           
 

 (33) 

Since the coefficients (33) of the Eq.(31) are periodic functions of , a series 

expansion of the function 0 ( )   may be taken in the form  

  0
0

cos 2
N

k
k

K k


    . (34) 

Substituting (34) in (31), multiplying the resulting equation by cos2k  (k=0, 1, 2 ...) 

and integrating with respect  from 0 to 2  leads to a set of 2N+1 homogenuos linear 

equations for the unknown coefficients 0K , 1K , 2K .....   
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k1

N

0j

jjk K)p(KA 
 ,  (35) 

where 

   
2

0

cos(2 ) cos(2 )jkA L j k d



    ,  k=0, 1, 2, 3, ....N. (36) 

When N tends to infinity, the solution (34) tends to the exact solution. The condition 

for system homogeneous linear equations (35) to have nontrivial solutions is that the 

determinant of system homogeneous linear equations (35) is equal to zero. The 

coefficients jkA  to order N=4 are presented in Appendix 3.  

In the case when N=0, we assume a solution (34) in the form  0 0K   . From 

conditions that 00 0A  , the moment Lyapunov exponent in the first perturbation is 

defined as  

  
 

 
 

 2 2 2 2

1 1 2 11 22 12 21

10 3 6
( ) .

2 128 64

p p p pp
p p p p p

 
          (37) 

In the case when N=1, the solution (34) has the form  0 0 1 cos2K K     , then 

moment Lyapunov exponent in the first perturbation is the solution of the equation 
2 (1) (1)

1 1 1 0 0d d      where coefficients (1)

0d and (1)

1d  are presented in Appendix 4. In the 

case when N=2, the solution (34) has the form  0 0 1 2cos2 cos4K K K      , the 

moment Lyapunov exponent in the first perturbation is the solution of the equation 
3 (2) 2 (2) (2)

1 2 1 1 1 0 0d d d        where coefficients (2)

0d , (2)

1d and (2)

2d  are presented in 

Appendix 5. However, for 2N  , it is impossible to obtain the explicit expressions of  

 1 p  and the numerical results must be given, for N=3 and 4.  

4. APPLICATION TO A THIN-WALLED BEAM SUBJECTED TO AXIAL LOADS AND END 

MOMENTS 

The purpose of this section is to present the general results of the above sections in the 

context of real engineering applications and show how these results can be applied to 

physical problems. To this end, we consider the flexural-torsional vibration stability of a 

homogeneous, isotropic, thin walled beam with two planes of symmetry. The beam is 

assumed to be loaded in the plane of greater bending rigidity by two equal couples and 

stochastic axial loads and stochastically fluctuating end moments (Fig. 1).  

The governing differential equations for the coupled flexural and torsional motion of 

the beam can be written as given by Pavlović et al. in [9] 



 Moment  Lyapunov  Exponents and  Stochastic Stability of a Thin-Walled Beam Subjected to Axial ... 11 

 

2 4 2 2

2 4 2 2

2 2 2 4

2 2 2 4

( ) ( ) 0,

( ) ( ) 0,

u y

p

p s

U U U U
A EI M T F T

tT Z Z Z

I U
I GJ F t M T EI

T AT Z Z Z


     
     

   

        
       

    

  (38) 

where U is the flexural displacement in the x-direction,  is the torsional displacement,  

is mass density, A is area of the cross-section of beam, yI , pI , SI  are axial, polar and 

sectorial moments of inertia, J is Saint–Venant torsional constant, E is Young modulus of 

elasticity, G is shear modulus, U ,   are viscous damping coefficients, T is time and Z 

is axial coordinate. 

 

Fig. 1 Geometry of a thin-walled beam system 

Using the following transformations 

 

   

2 4
2

2

2 2
2

1 2 2 2

,  ,  ,  ( ) ,  ( ) ,

,   ,   ,   ,

1 1
,   ,   ,

2 2

p

t cr cr

y s
cr cr y t

y y p

U

y p y py

I
U u Z zl T k t F T F F t M T M M t

A

EI AIAl
F M EI GJ k e

l EI I Il

l A GJAl
l s

EI I EI IAEI


    

  
   

      
 

 (39)   

where l is the length of the beam, crF  is Euler critical force, crM  is critical buckling 

moment for the simply supported narrow rectangular beam, S is slenderness parameter, 

1  and 2  are reduced viscous damping coefficients, we get governing equations as  
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2 4 2 2
2 2

12 4 2 2

2 2 2 4
2 2

22 2 2 4

2 ( ) ( ) 0,

2 ( ) ( ) 0.

u u u u
sM t F T

tt z z z

u
s F t sM t e

Tt z z z

     
       

   

       
        

   

 (40) 

Taking free warping displacement and zero angular displacements into account, 

boundary conditions for the simply supported beam are 

  

   

   

2 2

2 2

( ,0) ( ,1)

2 2

2 2

( ,0) ( ,1)

,0 ,1 0,

,0 ,1 0.

t t

t t

u u
u t u t

z z

t t
z z

 
   

 

   
     

 

  (41) 

Consider the shape function sin( )z  which satisfies the boundary conditions for the 

first mode vibration, the displacement ( . )u t z  and twist ( , )t z  can be described by 

 1( , ) ( )sinu t z q t z  ,  2( , ) ( )sint z q t z   . (42) 

Substituting ( , )u t z  and ( , )t z  from (42) into the equations of motion (40) and 

employing Galerkin method unknown time functions can be expressed as 

 

2

1 1 1 1 1 11 1 12 2

2

2 2 2 2 2 21 1 22 2

2 ( ) ( ) 0,

2 ( ) ( ) 0.

q q q K F t q K M t q

q q q K M t q K F t q

      

      
 (43) 

If we are defined the expressions 

 2 4

1   ,  2 4

2 s e    ,  4

11 22K K   , 4

12 21 ,K K s    (44) 

and assume that the compressive stochastic axial force and stochastically fluctuating end 

moment are white-noise processes (4) with small intensity 

 1( ) ( )F t t  ,  2( ) ( )M t t  , (45) 

then Eq. (43) is reduced to Eq. (3). 

Using the above result for the moment Lyapunov exponent in the first-order 

perturbation, 

 
2

1( ) ( ) ( )p p O     , (46)  

with the definition of the moment stability ( ) 0p  , we determine analytically (the case 

where N = 0, 1( )p is shown with Eq.(37)) the pth moment stability boundary of the 

oscillatory system as  

 
4 2 2

1 2 1 2

1 10 3 6

64 32

s e p p
s

s e

    
       

  
.  (47) 
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It is known that the oscillatory system (40) is asymptotically stable only if the 

Lyapunov exponent 0  . Then expression  

 )(O 2

1  , (48)  

is employed to determine the almost-sure stability boundary of the oscillatory system in 

the first-order perturbation 

 













 2

2

2

1

4

21 s
16

3

32

5

es

es1

. (49) 

In [9], Pavlović et al. by using the direct Lyapunov method, investigated the almost 

sure asymptotic stability boundary of an oscillatory system as the function of stochastic 

process, damping coefficient and geometric and physical parameters of the beam. 

According to the authors, the condition for almost sure stochastic stability may be 

expressed by the following expression 

  
         0es4ess2s 2121

2

2

2

1

422

2

2

1

8 
.  (50) 

For the sake of simplicity in the comparison of results, in the following we assume that 

two viscous damping coefficients are equal 

 
 21 , (51) 

For this case, we determine the almost-sure stability boundary as 
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2
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s
6

5

es

es1

32

3

, (52) 

and the pth moment stability boundary of the oscillatory system in the first-order 

perturbation as 

 
    2

2

2

1

4

sp62p310
es

es1

128







.  (53) 

Starting from Eq. (50), derived by Pavlović et al. [9], the almost sure stability 

boundary can be determined in the form 

 
 2

2

2

1

4

s
2





.  (54) 

With respect to standard I-section we can approximately take that ratios 2h b  , 

1 11b   , 1 1.5   ,where h is depth, b is width,  is thickness of the flanges and 1  is 

thickness of the rib of I-section. These ratios give us  
2

0.01928 /s l h  and 1.176e  . 
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For the narrow rectangular cross section, according to assumption 0.1h  , for thin-

walled cross sections  
2

1.88 /s l h and 0e  , which is obtained using the 

approximation  
2

1 1h   .  

 

a) I-section    b) Narrow rectangular cross section 

Fig. 2. Stability regions for almost-sure (a-s) and pth moment stability for 0.1   

Almost-sure stability boundary and pth moment stability boundary in the first-order 

perturbation for I-section are given in Fig. 2a, and for narrow rectangular cross section in 

Fig. 2b. It is evident that stability regions in the present study are higher compared to the 

results obtained by Pavlović et al. [9]. Also, the moment stability boundaries (53) are 

more conservative than the almost-sure boundary (52). It is evident that end moment 

variances are about ten times higher for I-section than for narrow rectangular section, 

when stochastic axial force vary only a little.  

5. NUMERICAL DETERMINATION OF THE PTH MOMENT LYAPUNOV EXPONENT 

Numerical determination of the pth moment Lyapunov exponent is important in 

assessing the validity and the ranges of applicability of the approximate analytical results. 

In many engineering applications, the amplitudes of noise excitations are not small so that 

the approximate analytical methods such as the method of perturbation or the method of 

stochastic averaging cannot be applied. Therefore, numerical approaches have to be 

employed to evaluate the moment Lyapunov exponents. The numerical approach is based 

on expanding the exact solution of the system of Itô stochastic differential equations in 

powers of the time increment h and the small parameter  as proposed in Milstein and 

Tret’Yakov [8]. The state vector of the system (7) is to be rewritten as a system of Itô 

stochastic differential equations with small noise in the form 
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1 1 2

2 1 1 1 2 11 1 1 12 3 2

3 2 4

4 2 3 2 4 22 3 1 21 1 2

,

2 ( ) ( ),

,

2 ( ) ( ).

dx x dt

dx x x dt p x dw t p x dw t

dx x dt

dx x x dt p x dw t p x dw t

 

        

 

          

  (55) 

For the numerical solutions of the stochastic differential equations, the Runge-Kutta 

approximation may be applied, with error  4 4R O h h   . The interval discretization is 

[ 0t , T]: { kt : k=0,1,2,3, ....M; 0t < 1t < 2t .........< Mt =T} and the time increment is 

1j jh t t  . The following Runge-Kutta method used to obtain the (k+1)th iteration of 

the state vector  1 2 3 4, , ,X x x x x  
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 (56) 
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Random variables i  and i  (i=1,2) are simulated as  

    
1

1 1
2

i iP P       , 
1 1 1

212 12
i iP P

   
        
   

. (57) 

Having obtained L samples of the solutions of the stochastic differential equations 

(56), the pth moment can be determined as follows  

    1 1
1

1 L pp

k j k
j

E X t X t
L

 


  
  

 ,      1 1 1

T

j k j k j kX t X t X t  
        . (58) 

Using the Monte-Carlo technique by Xie [10], we numerically calculate the pth 

moment Lyapunov exponent for all values of p of interest as  

  
1

( ) log
p

p E X T
T

  
  

. (59) 

6. CONCLUSIONS 

In this paper, the moment Lyapunov exponents of a thin-walled beam subjected to 

stochastic axial loads and stochastically fluctuating end moments under both white noises 

parametric excitations are studied. The method of regular perturbation is applied to obtain 

a weak noise expansion of the moment Lyapunov exponent in terms of the small 

fluctuation parameter. The weak noise expansion of the Lyapunov exponent is also 

obtained. The slope of the moment Lyapunov exponent curve at 0p   is the Lyapunov 

exponent. When the Lyapunov exponent is negative, system (43) is stable with probability 

1, otherwise it is unstable. For the purpose of illustration, in the numerical study we 

considered set system parameters 1 2 1      , 0.1  , 4000L  , 0.0005h  , 

10000M  and 1 2 3 3

1
(0) (0) (0) (0)

2
x x x x    . 

Typical results of the moment Lyapunov exponents ( )p  for system (43) given by 

Eq. (46) in the first perturbation are shown in Fig. 3 for I-section and the noise intensity 

1 0.1   and 2 0.15  . The accuracy of the approximate analytical results is validated 

and assessed by comparing them to the numerical results. The Monte Carlo simulation 

approach is usually more versatile, especially when the noise excitations cannot be 
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described in such a form that can be treated easily using analytical tools. From the Central 

Limit Theorem, it is well known that the estimated pth moment Lyapunov exponent is a 

random number, with the mean being the true value of the pth moment Lyapunov 

exponent and standard deviation equal to pn L , where pn  is the sample standard 

deviation determined from L samples. It is evident that the analytical result agrees very 

well with the numerical results, even for N = 0 when the function  0   does not depend 

on  and assumes the form  0 0K   . 

 
Fig. 3 Moment Lyapunov exponent )p(  for I-section ( 1.01  , 15.02  ) 

 
Fig. 4 Moment Lyapunov exponent )p(  for narrow rectangular cross section 

( 15.01  , 01.02  ) 
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The moment Lyapunov exponents ( )p  in the first perturbation for narrow 

rectangular cross section and the noise intensity 1 0.15   and 2 0.01   are shown in 

Fig. 4. Unlike the previous example, it is observed that the discrepancies between the 

approximate analytical and numerical results decrease for larger number N of series (34).  

Further increase of N number of members does not make sense, because the curves merge 

into one. 

If we consider the influence of cross-sectional area of stability boundary, generally 

speaking, the narrow rectangular cross section has smaller stability regions than the I-

section. As for the influence of intensity of stochastic force, the end moment variances are 

about ten times higher for I-section than for narrow rectangular section, while the 

difference in axial force variances is small. 
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