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ON KENMOTSU MANIFOLDS WITH A SEMI-SYMMERIC
METRIC CONNECTION

Sunil Yadav, Sudhakar Kr Chaubey and Rajendra Prasad

Abstract. The aim of the present paper is to study the properties of locally and glob-
ally φ-concircularly symmetric Kenmotsu manifolds endowed with a semi-symmetric
metric connection. First, we will prove that the locally φ-symmetric and the globally
φ-concircularly symmetric Kenmotsu manifolds are equivalent. Next, we will study
three dimensional locally φ-symmetric, locally φ-concircularly symmetric and locally
φ-concircularly recurrent Kenmotsu manifolds with respect to such connection and will
obtain some geometrical results. In the end, we will construct a non-trivial example
of Kenmotsu manifold admitting a semi-symmetric metric connection and validate our
results.

Keywords: Kenmotsu manifolds, φ-symmetric manifolds, η-parallel Ricci tensor, semi-
symmetric metric connection, concircular curvature tensor.

1. Introduction

The product of an almost contact manifold M and the real line R carries a natural
almost complex structure. However, if one takes M to be an almost contact metric
manifold and suppose that the product metric G on M × R is Kähler, then the
structure on M is cosymplectic [19] and not Sasakian. On the other hand, Oubina
[25] pointed that if the conformally related metric e2tG, t being the coordinates on
R is Kähler, then M is Sasakian and vice versa.

In [34], Tanno classified almost contact metric manifolds whose automorphism
group possesses the maximum dimension. For such manifold M , the sectional cur-
vature of the plane section containing ξ is constant, say c. If c >, =, and < 0, then
M is said be a homogeneous Sasakian manifold of constant sectional curvature,
product of a line or a circle with Kähler manifold of constant holomorphic sectional
curvature, and warped product space R ×f Cn, respectively. In 1972, Kenmotsu
[23] characterized the geometrical properties of the manifold when c < 0, called
Kenmotsu manifold. The geometrical properties of this manifold have been studied
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by many geometers, for instance (see, [3], [7]-[11], [15], [16], [22], [26], [33], [36], [40],
[41]).

In general, a geodesic circle (a curve whose first curvature is constant and sec-
ond curvature is identically zero) does not transform into a geodesic circle by the
conformal transformation

(1.1) g̃ij = ψ2gij

of the fundamental tensor gij . A transformation which preserves the geodesic circle
was first introduced by Yano [37]. The conformal transformation (1.1) satisfying
the partial differential equation

ψ;i;j = φgij

change a geodesic circle into a geodesic circle. Such transformation is known as the
concircular transformation and the geometry which leads with such transformation
is known as the concircular geometry [37].

A (1, 3) type tensor C which remains invariant under the transformation (1.1),
for an n-dimensional Riemannian manifold M , given by

(1.2) C(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ]

for all vector fields X, Y and Z on M is known as a concircular curvature tensor
[37], where R, r, and ∇ are the Riemannian curvature tensor, the scalar curvature,
and the Levi-Civita connection, respectively. In view of (1.2), it is obvious that

(1.3) (∇WC)(X,Y )Z = (∇WR)(X,Y )Z − dr(W )

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ] .

The importance of the concircular transformation and the concircular curvature
tensor are well known in the differential geometry of F -structures such as complex,
almost complex, Kähler, almost Kähler, contact and almost contact structures ([37],
[6], [35]). In a recent paper, Ahsan and Siddiqui [1] have studied the application of
concircular curvature in general relativity and cosmology.

Let (M, g) be a Riemannian manifold of dimension n. A linear connection ∇̃ on
(M, g), whose torsion tensor T̃ of type (1, 2) is defined by

T̃ (X,Y ) = ∇̃XY − ∇̃YX − [X,Y ]

For arbitrary vector, fields X and Y on M are said to be torsion free or symmetric
if T̃ vanishes, otherwise it is non-symmetric. If the connection ∇̃ satisfies ∇̃g = 0
on (M, g), then it is called metric connection, otherwise it is non-metric. In [17],
Friedmann and Schouten introduced the notion of semi-symmetric linear connection
on a differentiable manifold. Hayden [18] introduced the idea of semi-symmetric lin-
ear connection with non-zero torsion on a Riemannian manifold. The systematic
study of the semi-symmetric metric connection on the Riemannian manifold was
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introduced by Yano [38]. He proved that a Riemannian manifold endowed with a
semi-symmetric metric connection has vanishing curvature tensor with respect to
the semi-symmetric metric connection if and only if it is conformally flat. This
result was generalized for vanishing Ricci tensor of the semi-symmetric metric con-
nection by T. Imai ([20], [21]). Various geometrical and physical properties of this
connection have been studied by many authors among whom are ([2]-[4], [12]-[14],
[27]- [31], [39]). Motivated by the above studies, the authors will continue to study
the properties of the Kenmotsu manifolds equipped with a semi-symmetric metric
connection. The present paper is organized in the following manner:

After the introduction in Section 1, we will notify you on the basic results
of the Kenmotsu manifolds and the semi-symmetric metric connection in Section
2 and Section 3, respectively. In section 4, we will start the study of globally
φ-concircularly symmetric Kenmotsu manifold and prove that the manifold is η-
Einstein as well as locally φ-symmetric.The following sections deal with the study
of locally φ-symmetric, locally φ-concircularly symmetric, Ricci semisymmetric,
η-parallel Ricci tensor and locally φ-concircularly recurrent Kenmotsu manifolds
equipped with a semi-symmetric metric connection. In the last section, we will
construct an example of three dimensional Kenmotsu manifold admitting a semi-
symmetric metric connection to verify some results of our paper.

2. Preliminaries

Let M be an n(= 2m + 1)-dimensional connected almost contact metric manifold
with an almost contact structure (φ, ξ, η, g), that is, M admits a (1, 1)-type tensor
field φ, a (1, 0)-type vector field ξ, a 1-form η, and a compatible Riemannian metric
g satisfies

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η(φX) = 0,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X)

for all X, Y ∈ T (M), where T (M) denotes the tangent space of M [5]. If an almost
contact metric manifold M satisfies

(2.3) (∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX

for all X, Y ∈ T (M), then M is called a Kenmotsu manifold [23]. From (2.1)-(2.3),
it can be easily prove that

(2.4) ∇Xξ = X − η(X)ξ

and

(2.5) (∇Xη)(Y ) = g(X,Y )− η(X)η(Y )

for all X, Y ∈ T (M). Let S denote the Ricci tensor of M . It is noticed that M
satisfies the following relations.

(2.6) R(X,Y )ξ = η(X)Y − η(Y )X,
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(2.7) R(ξ,X)Y = η(Y )X − g(X,Y )ξ

and

(2.8) S(X, ξ) = −(n− 1)η(X)

for allX, Y ∈ T (M). The curvature tensor R in a 3-dimensional Kenmotsu manifold
M assumes the form

R(X,Y )Z =

(
r + 4

2

)
[g(Y,Z)X − g(X,Z)Y ]−

(
r + 6

2

)
[g(Y,Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].(2.9)

After contracting X it becomes

(2.10) S(Y, Z) =
1

2
[(r + 2)g(Y,Z)− (r + 6)η(X)η(Y )]

for all X, Y ∈ T (M).

An n-dimensional Kenmotsu manifold (M, g) is said to be an η-Einstein manifold
if its non-vanishing Ricci-tensor S takes the form

(2.11) S(X,Y ) = ag(X,Y ) + bη(X)η(Y )

for all X, Y ∈ T (M), where a and b are smooth functions on (M, g). If b = 0 and
a is constant, then η-Einstein manifold becomes Einstein manifold. Kenmotsu [23]
proved that if (M, g) is an n-dimensional η-Einstein manifold, then a+b = −(n−1).

ll

3. Semi-symmetric metric connection on Kenmotsu manifold

Let M be an n-dimensional Kenmotsu manifold endowed with a Riemannian metric
g. A linear connection ∇̃ on (M, g) is said to be a semi-symmetric metric connection
[38] if the torsion tensor T̃ of the connection ∇̃ and the Riemannian metric g satisfies
(3.1)
ll., l, kmlkvmmmmmmmmmmmmmmmmmmmmT̃ (X,Y ) = η(Y )X − η(X)Y

and

(3.2) ∇̃g = 0

for all X, Y ∈ T (M). The Levi-Civita connection ∇ and the semi-symmetric metric
connection ∇̃ on (M, g) are connected by

(3.3) ∇̃XY = ∇XY + η(Y )X − g(X,Y )ξ

for all X, Y ∈ T (M) [38]. From (2.1), (2.2) and (3.3), it follows that

(3.4) (∇̃Xη)(Y ) = (∇Xη)(Y )− η(X)η(Y ) + g(X,Y ).
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The curvature tensors R and R̃ with respect to ∇ and ∇̃, respectively, are connected
by

(3.5) R̃(X,Y )Z = R(X,Y )Z +α(X,Z)Y −α(Y,Z)X + g(X,Z)AY − g(Y,Z)AX,

where α is a tensor field of type (0, 2) and A, a tensor field of type (1, 1), are related
by

(3.6) α(Y, Z) = g(AY,Z) = (∇Y η)(Z)− η(Y )η(Z) +
1

2
g(Y, Z),

for all X, Y , Z ∈ T (M) [38]. From (2.1), (2.5), (3.5) and (3.6), it follows that

R̃(X,Y )Z = R(X,Y )Z − 3g(Y, Z)X + 3g(X,Z)Y + 2η(Y )η(Z)X

−2η(X)η(Z)Y + 2η(X)g(Y, Z)ξ − 2η(Y )g(X,Z)ξ.(3.7)

Contracting (3.7) along X, we get

(3.8) S̃(Y, Z) = S(Y, Z)− (3n− 5)g(Y, Z) + 2(n− 2)η(Y )η(Z),

which becomes

(3.9) r̃ = r − n(3n− 7)− 4.

Here S̃ and r̃ denote the Ricci tensor and the scalar curvature with respect to the
connection ∇̃. Replacing Z by ξ in (3.8) and using (2.8), we have

(3.10) S̃(Y, ξ) = −2(n− 1)g(Y, ξ).

Thus we can state:

Proposition 3.1. Let M be an n-dimensional, n > 3, Kenmotsu manifold equipped
with a semi-symmetric metric connection ∇̃. Then ξ is an eigen vector of S̃ corre-
sponding to the eigenvalue −2(n− 1).

4. Globally φ-concircularly symmetric Kenmotsu manifold with a
semi-symmetric metric connection

In this section, we will study the properties of the globally φ-concircularly symmetric
Kenmotsu manifold equipped with a semi-symmetric metric connection ∇̃ and prove
our result in the form of theorems.

Definition 4.1. A Kenmotsu manifold M of dimension n is said to be locally
φ-symmetric with respect to the semi-symmetric metric connection ∇̃ if the non-
vanishing curvature tensor R̃ satisfies the relation

φ2((∇̃W R̃)(X,Y )Z) = 0

for all vector fields X, Y , Z and W orthogonal to ξ.
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This notion was introduced by Takahashi [32] for Sasakian manifold.

Definition 4.2. An n-dimensional Kenmotsu manifold M is said to be a globally
φ-concircularly symmetric manifold with respect to ∇ if the non-zero concircular
curvature tensor C satisfies

(4.1) φ2((∇WC)(X,Y )Z) = 0

for all vector fields X, Y , Z, W ∈ T (M).

Definition 4.3. An n-dimensional Kenmotsu manifoldM equipped with the semi-
symmetric metric connection ∇̃ is said to be a globally φ-concircularly symmetric
Kenmotsu manifold with respect to ∇̃ if the non-vanishing concircular curvature
tensor C̃ with respect to ∇̃ satisfies

φ2((∇̃W C̃)(X,Y )Z) = 0(4.2)

for arbitrary vector fields X, Y , Z and W . Here C̃ is a concircular curvature tensor
[37] with respect to ∇̃ and is defined by

(4.3) C̃(X,Y )Z = R̃(X,Y )Z − r̃

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ] .

Theorem 4.1. An n-dimensional, n ≥ 3, globally φ-concircularly symmetric Ken-
motsu manifold M equipped with a semi-symmetric metric connection ∇̃ is an η-
Einstein manifold.

Proof. We suppose that M is a globally φ-concircularly symmetric Kenmotsu man-
ifold with respect to a semi-symmetric metric connection ∇̃. Then we have

φ2((∇̃W C̃)(X,Y )Z) = 0.

In view of (2.1), the above equation becomes

−(∇̃W C̃)(X,Y )Z + η((∇̃W C̃)(X,Y )Z)ξ = 0.

Equation (1.3) along with above equation give

−g((∇̃W R̃)(X,Y )Z,U) +
dr̃(W )

n(n− 1)
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

+η((∇̃W R̃)(X,Y )Z)η(U)− dr̃(W )

n(n− 1)
[g(Y,Z)η(X)− g(X,Z)η(Y )] η(U) = 0.

Replacing X = U = ei, where {ei, i = 1, 2, 3, ..., n}, be an orthonormal basis of the
tangent space at each point of the manifold M and then summing over i, 1 ≤ i ≤ n,
we get

−(∇̃W S̃)(Y,Z) +
dr̃(W )

n
g(Y,Z) + η((∇̃W R̃)(ξ, Y )Z)

− dr̃(W )

n(n− 1)
[g(Y,Z)− η(Y )η(Z)] = 0.
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Putting Z = ξ in the above equation and using (2.1), we get

(4.4) −(∇̃W S̃)(Y, ξ) +
dr̃(W )

n
η(Y ) + η((∇̃W R̃)(ξ, Y )ξ) = 0.

In view of (2.1), (2.2), (2.4), (2.6), (2.7), (3.3) and (3.7), we conclude that

η((∇̃W R̃)(ξ, Y )ξ) = 0

and hence the equation (4.4) becomes

(4.5) (∇̃W S̃)(Y, ξ) =
dr̃(W )

n
η(Y ).

Substituting Y = ξ in (4.5) and using (2.1) and (2.8), we get dr̃(W ) = 0. This
implies that r̃ is a constant. So from (4.5), we obtain

(4.6) (∇̃W S̃)(Y, ξ) = 0.

It is well known that

(∇̃W S̃)(Y, ξ) = ∇̃W S̃(Y, ξ)− S̃(∇̃WY, ξ)− S̃(Y, ∇̃W ξ).

In view of (2.1), (2.2), (2.4), (2.5), (2.8), (3.3), (3.4), (3.10) and (4.6), above equation
takes the form

S(Y,W ) = (n− 3)g(Y,W )− 2(n− 2)η(Y )η(W ).

Hence the statement of the Theorem 4.1 is proved.

From the above equation, it is clear that r = (n − 1)(n − 4). Hence the scalar
curvature under consideration is constant. Thus we have

Corollary 4.1. An n-dimensional, n > 3, globally φ-concircularly symmetric Ken-
motsu manifold M equipped with a semi-symmetric metric connection ∇̃ possesses
a constant scalar curvature.

Theorem 4.2. Let M be an n-dimensional, n > 3, Kenmotsu manifold admits a
semi-symmetric metric connection ∇̃. Then the globally φ-concircularly symmetric
manifold and the locally φ-symmetric manifold with respect to ∇̃ coincide.

Proof. We suppose that the manifold M is globally φ-concircularly symmetric with
respect to a semi-symmetric metric connection ∇̃. Since r is constant on M and
therefore r̃ is also constant. The covariant derivative of (4.3) gives

(4.7) (∇̃W C̃)(X,Y )Z = (∇̃W R̃)(X,Y )Z.
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In view of (3.3), (3.4) and (3.7), we get

(∇̃W R̃)(X,Y )Z = (∇̃WR)(X,Y )Z + 2{(∇W η)(Y )− η(Y )η(W )

+g(Y,W )}η(Z)X + 2 {(∇W η)(Z)− η(Z)η(W ) + g(Z,W )} η(Y )X

−2 {(∇W η)(X)− η(X)η(W ) + g(X,W )} η(Z)Y

−2 {(∇W η)(Z)− η(Z)η(W ) + g(Z,W )} η(X)Y

+2g(Y,Z) {(∇W η)(X)− η(X)η(W ) + g(X,W )} ξ
+2 {∇W ξ +W − η(W )ξ} {η(X)g(Y,Z) + η(Y )g(X,Z)}
−2g(X,Z) {(∇W η)(Y ) + η(Y )η(W )− g(Y,W )} ξ.(4.8)

Using (2.4) and (2.5) in (4.8), we obtain

(∇̃W R̃)(X,Y )Z = (∇̃WR)(X,Y )Z + 4 {−η(Y )η(W ) + g(Y,W )} η(Z)X

+4 {−η(Z)η(W ) + g(Z,W )} η(Y )X

−4 {−η(X)η(W ) + g(X,W )} η(Z)Y

−4 {−η(Z)η(W ) + g(Z,W )} η(X)Y

+4g(Y,Z) {−η(X)η(W ) + g(X,W )} ξ
+4 {η(X)g(Y,Z) + η(Y )g(X,Z)} {W − η(W )ξ} .(4.9)

If X, Y , Z and W are orthogonal to ξ then from above equation, we get

(4.10) (∇̃W R̃)(X,Y )Z = (∇̃WR)(X,Y )Z + 4g(Y, Z)g(X,W )ξ.

In view of (4.7) and (4.10), we have

(∇̃W C̃)(X,Y )Z = (∇̃WR)(X,Y )Z + 4g(Y, Z)g(X,W )ξ.

Operating φ2 on either sides of the above equation and then using (2.1) we get

(4.11) φ2(∇̃W C̃)(X,Y )Z = φ2(∇̃WR)(X,Y )Z

for all vector fields X, Y , Z and W orthogonal to ξ. From the equations (4.7) and
(4.9), it is clear that the equation (4.11) satisfies for all vector fields X, Y , Z and
W on M . Hence the statement of the Theorem 4.2 is proved.

Remark 4.1. The last equation shows that a locally φ-symmetric Kenmotsu man-
ifold with respect to the semi-symmetric metric connection ∇̃ is always globally φ-
concircularly symmetric manifold. Thus we conclude that on a Kenmotsu manifold
locally φ-symmetric and globally φ-symmetric manifolds are equivalent correspond-
ing to the connection ∇̃.

5. Three dimensional locally φ-symmetric Kenmotsu manifolds with
respect to the semi-symmetric metric connection

This section deals with the study of the locally φ-symmetric Kenmotsu manifold
M with respect to a semi-symmetric metric connection ∇̃. Now, we will consider
a 3-dimensional locally φ-symmetric Kenmotsu manifold equipped with a semi-
symmetric metric connection ∇̃ and prove the following:



On Kenmotsu Manifolds with a Semi-Symmetric Metric Connection 109

Theorem 5.1. A 3-dimensional Kenmotsu manifold equipped with a semi-symmetric
metric connection ∇̃ is locally φ-symmetric with respect to the connection ∇̃ if and
only if dr(W ) = 0, W is an orthonormal vector field to ξ.

Proof. From (2.9) and (3.7), we get

R̃(X,Y )Z =

(
r − 2

2

)
{g(Y,Z)X − g(X,Z)Y }

+

(
r + 2

2

)
[η(Y )g(X,Z)ξ + η(X)η(Z)Y

−η(X)g(Y, Z)ξ − η(Y )η(Z)X].(5.1)

Taking covariant differentiation of (5.1) with respect to the semi-symmetric metric
connection ∇̃ along W , we have

(∇̃W R̃)(X,Y )Z =
dr(W )

2
[g(Y, Z)X − g(X,Z)Y − η(X)η(Z)Y

+ {−g(X,Z)η(Y ) + g(Y,Z)η(X)} ξ + η(Y )η(Z)X]

+

(
r + 2

2

)
[g(X,Z)(∇̃W η)(Y )ξ + g(X,Z)η(Y )∇̃W ξ

−g(Y,Z)(∇̃W η)(X)ξ − g(Y,Z)η(X)∇̃W ξ
+η(Z)(∇̃W η)(X)Y + η(X)(∇̃W η)(Z)Y

−η(Z)(∇̃W η)(Y )X − η(Y )(∇̃W η)(Z)X].(5.2)

In consequence of (3.3) and (3.4), (5.2) becomes

(∇̃W R̃)(X,Y )Z =
dr(W )

2
[g(Y, Z)X − g(X,Z)Y − g(X,Z)η(Y )ξ

−η(X)η(Z)Y + g(Y, Z)η(X)ξ + η(Y )η(Z)X]

+

(
r + 2

2

)
[−η(X)g(Y,Z) {∇W ξ +W − η(W )ξ}

−g(Y,Z) {(∇W η)(X)− η(X)η(W ) + g(X,W )} ξ
+η(Z) {(∇W η)(X)− η(X)η(W ) + g(X,W )}Y
+η(X) {(∇W η)(Z)− η(W )η(Z) + g(Z,W )}Y
−η(Z) {(∇W η)(Y )− η(Y )η(W ) + g(Y,W )}X
−η(Y ) {(∇W η)(Z)− η(Z)η(W ) + g(Z,W )}X
+g(X,Z) {(∇W η)(Y )− η(Y )η(W ) + g(Y,W )} ξ
+g(X,Z)η(Y ) {∇W ξ +W − η(W )ξ}].(5.3)

Let us suppose that the vector fields X, Y , Z and W are orthogonal to ξ, therefore



110 S. Yadav, S. K. Chaubey and R. Prasad

(5.3) becomes

(∇̃W R̃)(X,Y )Z =
dr(W )

2
{g(Y,Z)X − g(X,Z)Y }

+

(
r + 2

2

)
[g(X,Z) {(∇W η)(Y ) + g(Y,W )}

−g(Y,Z) {(∇W η)(X) + g(X,W )}]ξ.(5.4)

Operating φ2 on both sides of (5.4) and then using (2.1) and (2.2), we obtain

(5.5) φ2((∇̃W R̃)(X,Y )Z) = −dr(W )

2
{g(Y,Z)X − g(X,Z)Y } .

From the equation (5.5), it is obvious that the manifold M is locally φ-symmetric
Kenmotsu manifold with respect to ∇̃ if and only if dr(W ) = 0. Hence the statement
of the Theorem 5.1 is proved.

6. Three dimensional Locally φ-concircularly symmetric Kenmotsu
manifold with a semi-symmetric metric connection

Definition 6.1. A Kenmotsu manifold M is said to be locally φ-concircularly
symmetric with respect to the semi-symmetric metric connection ∇̃ if its concircular
curvature tensor C̃ satisfies

φ2((∇̃W C̃)(X,Y )Z) = 0

for all vector fields W , X, Y and Z orthogonal to ξ.

Theorem 6.1. A 3-dimensional Kenmotsu manifold M with respect to the semi-
symmetric metric connection ∇̃ is locally φ-concircularly symmetric manifold with
respect to the connection ∇̃ if and only if the scalar curvature r is constant.

Proof. From (2.9) and (3.7), it follows that

R̃(X,Y )Z =

(
r − 2

2

)
{g(Y,Z)X − g(X,Z)Y }

+

(
r + 2

2

)
[η(X)η(Z)Y − η(Y )η(Z)X

+ {g(X,Z)η(Y )− g(Y,Z)η(X)} ξ].(6.1)

In view of (1.2) and (6.1), we get

C̃(X,Y )Z =

(
r − 2

2

)
{g(Y, Z)X − g(X,Z)Y }

+

(
r + 2

2

)
[η(X)η(Z)Y − η(Y )η(Z)X

+ {g(X,Z)η(Y )− g(Y,Z)η(X)} ξ]

+
r

6
{g(Y, Z)X − g(X,Z)Y } .(6.2)
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Taking covariant derivative of (6.2) with respect to the semi-symmetric metric con-
nection ∇̃ along W , we have

(∇̃W C̃)(X,Y )Z =
dr(W )

2
[g(Y,Z)X − g(X,Z)Y + η(X)η(Z)Y

+ {η(Y )g(X,Z)− η(X)g(Y,Z)} ξ − η(Y )η(Z)X]

+

(
r + 2

2

)
[g(X,Z)(∇̃W η)(Y )ξ + g(X,Z)η(Y )∇̃W ξ

−g(Y,Z)(∇̃W η)(X)ξ − g(Y,Z)η(X)∇̃W ξ + η(X)(∇̃W η)(Z)Y

−η(Z)(∇̃W η)(Y )X − η(Y )(∇̃W η)(Z)X + η(Z)(∇̃W η)(X)Y ]

+
dr(W )

6
{g(Y, Z)X − g(X,Z)Y } .(6.3)

Let us consider that the vector fields X, Y and Z are orthonormal to ξ and therefore
(6.3) converts into the form

(∇̃W C̃)(X,Y )Z =
dr(W )

2
{g(Y,Z)X − g(X,Z)Y }

+

(
r + 2

2

){
g(X,Z)(∇̃W η)(Y )− g(Y,Z)(∇̃W η)(X)

}
ξ

+
dr(W )

6
{g(Y, Z)X − g(X,Z)Y } .(6.4)

Using (3.4) in (6.4), we obtain

(∇̃W C̃)(X,Y )Z =
2dr(W )

3
{g(Y, Z)X − g(X,Z)Y }+

(
r + 2

2

)
[g(X,Z)(∇W η)(Y )

−g(X,Z)η(Y )η(W )− g(Y,Z)(∇W η)(X) + g(Y,W )g(X,Z)

−g(Y, Z)g(X,W ) + g(Y, Z)η(X)η(W )]ξ.(6.5)

Applying φ2 on both sides of (6.5) and using (2.1), we get

φ2
(

(∇̃W C̃)(X,Y )Z
)

=
2dr(W )

3
{g(Y,Z)X − g(X,Z)Y } .

This proved the statement of the Theorem 6.1.

From the Theorem 5.1 and the Theorem 6.1, we can state the following:

Corollary 6.1. A 3-dimensional Kenmotsu manifold with respect to the semi-
symmetric metric connection ∇̃ is locally φ-concircularly symmetric with respect
to the connection ∇̃ if and only if it is locally φ-symmetric with respect to ∇̃.

[’]
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7. Three dimensional Ricci semisymmetric Kenmotsu manifold with
respect to the semi-symmetric metric connection

The following section delas with the study of a 3-dimensional Ricci semisymmetric
Kenmotsu manifold with respect to the semi-symmetric metric connection with tha
aim to prove some geometrical results.

Theorem 7.1. A 3-dimensional Ricci semisymmetric Kenmotsu manifold with re-
spect to a semi-symmetric metric connection ∇̃ possesses a constant scalar curva-
ture.

Proof. Let us consider a 3-dimensional Kenmotsu manifold M equipped with a
semi-symmetric metric connection ∇̃ which satisfies R̃(X,Y ) · S̃ = 0, that is, M is
Ricci semisymmetric with respect to ∇̃ and then we have

(7.1) S̃(R̃(X,Y )Z,W ) + S̃(Z, R̃(X,Y )W ) = 0.

Replacing X by ξ in (7.1), we get

(7.2) S̃(R̃(ξ, Y )Z,W ) + S̃(Z, R̃(ξ, Y )W ) = 0.

From (5.1), it is obvious that

(7.3) R̃(ξ, Y )Z = −2 {g(Y, Z)ξ − η(Z)Y } .

By virtue of (3.10), (7.2) and (7.3), we obtain

(7.4) η(Z)S̃(Y,W ) + 4η(W )g(Y, Z) + η(W )S̃(Z, Y ) + 4η(Z)g(Y,W ) = 0.

Let {ei}, i = 1, 2, 3, is an orthonormal basis of the tangent space at each point
of the manifold M . Putting Y = Z = ei in (7.4) and taking summation over i,
1 ≤ i ≤ 3, we get

(r̃ + 12)η(W ) = 0.

Since η(W ) 6= 0, in general, therefore r̃ = −12 (constant). This proved the state-
ment of the Theorem 7.1.

In consequence of the Theorem 6.1 and Theorem 7.1, we state:

Corollary 7.1. If a 3-dimensional Kenmotsu manifold M with respect to a semi-
symmetric metric connection ∇̃ satisfies the condition R̃(X,Y ) · S̃ = 0, then M is
locally φ-symmetric as well as locally φ-concircularly symmetric with respect to ∇̃,
respectively.

8. η-parallel Ricci tensor with respect to the semi-symmetric metric
connection
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Definition 8.1. A Ricci tensor S̃ of a Kenmotsu manifold M equipped with a
semi-symmetric metric connection ∇̃ is called η-parallel with respect to ∇̃ if it S̃ is
non-zero and satisfies

(8.1) (∇̃X S̃)(φY, φZ) = 0

for all vector fields X, Y and Z on M .

The notion of η-parallel Ricci tensor on a Sasakian manifold was introduced
by M. Kon [24]. Since then, many authors studied the geometrical and physical
properties of this tensor.

Theorem 8.1. If a 3-dimensional Kenmotsu manifold M with respect to the semi-
symmetric metric connection ∇̃ possesses an η-parallel Ricci tensor, then the scalar
curvature of M is constant.

Proof. In view of (2.2), (2.9) and (3.8), we have

(8.2) S̃(φX, φY ) =

(
r̃ + 4

2

)
{g(X,Y )− η(X)η(Y )} .

Differentiating (8.2) covariantly with respect to the semi-symmetric metric connec-
tion ∇̃ along W , we get

(∇̃W S̃)(φX, φY ) =
dr̃(W )

2
{g(X,Y )− η(X)η(Y )}

−
(
r̃ + 4

2

){
(∇̃W η)(X)η(Y ) + (∇̃W η)(Y )η(X)

}
−S̃((∇̃Wφ)(X), φY )− S̃(φX, (∇̃Wφ)(Y )).(8.3)

In view of (2.1), (2.3), (2.5), (3.3), (3.4), (8.1) and (8.3), it can be easily found that

dr̃(W )

2
{g(X,Y )− η(X)η(Y )}+ 2η(X)S̃(φW,φY ) + 2η(Y )S̃(φW,φX)

−(r̃ + 4) {η(Y )g(X,W ) + η(X)g(Y,W )− 2η(X)η(Y )η(W )} = 0.(8.4)

In consequence of (8.2), (8.4) becomes

dr̃(W ) {g(X,Y )− η(X)η(Y )} = 0,

which gives
dr̃(W ) = 0⇐⇒ r̃ is constant.

Hence the statement of the Theorem 8.1 is proved.

In the light of the Theorem 6.1 and Theorem 8.1, we state the following corollary.

Corollary 8.1. If a 3-dimensional Kenmotsu manifold M equipped with a semi-
symmetric metric connection ∇̃ has η-parallel Ricci tensor, then the manifold is
locally φ-symmetric as well as locally φ-concircularly symmetric with respect to ∇̃,
respectively.
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9. Three dimensional locally φ-concircularly recurrent Kenmotsu
manifold with respect to the semi-symmetric metric connection

Definition 9.1. A Kenmotsu manifold M equipped with a semi-symmetric metric
connection ∇̃ is said to be φ-concircularly recurrent with respect to ∇̃ if there exists
a non-zero 1-form A on M such that

(9.1) φ2((∇̃W C̃)(X,Y )Z) = A(W )C̃(X,Y )Z

for arbitrary vector fields X, Y , Z and W , where C̃ is the concircular curvature
tensor with respect to the semi-symmetric metric connection ∇̃. If the 1-form A
vanishes identically on M , then the manifold M with ∇̃ is reduced to a locally
φ-concircularly symmetric manifold with respect to ∇̃.

Theorem 9.1. If a 3-dimensional locally φ-concircularly recurrent Kenmotsu man-
ifold admits a semi-symmetric metric connection ∇̃, then the curvature tensor with
respect to ∇̃ assumes the form (9.7).

Proof. From (3.9) and (5.5), we have

(9.2) φ2((∇̃W R̃)(X,Y )Z) = −dr̃(W )

2
{g(Y,Z)X − g(X,Z)Y } .

On the other hand, from (1.3), it is seen that (for n = 3)

(9.3) (∇̃W C̃)(X,Y )Z = (∇̃W R̃)(X,Y )Z − dr̃(W )

6
{g(Y, Z)X − g(X,Z)Y } .

Applying φ2 on both sides of (9.3), we get
(9.4)

φ2((∇̃W C̃)(X,Y )Z) = φ2((∇̃W R̃)(X,Y )Z)− dr̃(W )

6

{
g(Y, Z)φ2X − g(X,Z)φ2Y

}
.

In consequence of (2.1), (9.1) and (9.2), it is obvious that

A(W )C̃(X,Y )Z = −dr̃(W )

3
{g(Y, Z)X − g(X,Z)Y }

−dr̃(W )

6
{η(X)g(Y, Z)− η(Y )g(X,Z)} ξ.(9.5)

Replacing W with ξ in (9.5), we get

C̃(X,Y )Z = − dr̃(ξ)
3A(ξ)

{g(Y,Z)X − g(X,Z)Y }

− dr̃(ξ)
6A(ξ)

{η(X)g(Y,Z)− η(Y )g(X,Z)} ξ,(9.6)

provided A(ξ) 6= 0. In view of (1.2) and (9.6), we have

(9.7) R̃(X,Y )Z = a {g(Y,Z)X − g(X,Z)Y } − b {η(X)g(Y, Z)− η(Y )g(X,Z)} ξ,

where a =
{
r̃
6 −

dr̃(ξ)
3A(ξ)

}
, b = dr̃(ξ)

6A(ξ) and A is a non-zero 1-form.
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10. Example of a Kenmotsu manifold admitting a semi-symmetric
metric connection

In this section, we will construct a non-trivial example of a Kenmotsu manifold
admitting the semi-symmetric metric connection and after that we will validate our
results.

Example 10.1. Let

M = {(x, y, z) ∈ R3 : x, y, z( 6= 0) ∈ R},

be a three dimensional Riemannian manifold, where (x, y, z) denotes the standard coordi-
nates of a point in R3. Let us suppose that

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z ∂

∂z

be a set of linearly independent vector fields at each point of the manifold M and therefore
it forms a basis for the tangent space T (M). We also define the Riemannian metric g of
the manifold by g(ei, ej) = δij , where δij denotes the Kronecker delta and i, j = 1, 2, 3.
Let us consider a 1-form η defined by η(Z) = g(Z, e3) for any Z ∈ T (M) and a tensor field
φ of type (1, 1) defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

By the linearity properties of φ and g, we can easily verify the following relations

φ2X = −X + η(X)e3, η(e3) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y )

for arbitrary vector fields X, Y ∈ T (M). This shows that for ξ = e3, the structure
(φ, ξ, η, g) defines an almost contact metric structure on M .

If ∇ represents the Levi-Civita connection with respect to the Riemannian metric g,
then with the help of above relations, we can easily calculate the non-vanishing components
of Lie bracket as:

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

We recall the Koszul’s formula

2g(∇XY,Z) = Xg(Y,Z) + Y g(X,Z)− Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ])

for all vector fields X,Y, Z ∈ T (M). It is obvious from Koszul’s formula that

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

From the above calculations, we can observe that ∇Xξ = X − η(X)ξ for ξ = e3. Thus
the manifold (M, g) is a Kenmotsu manifold of dimension 3 and the structure (φ, η, ξ, g)
denotes the Kenmotsu structure on the manifold M [16].
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In consequence of (3.3) and the above results, we can find that

∇̃e1e1 = −2e3, ∇̃e1e2 = 0, ∇̃e1e3 = 2e1,

∇̃e2e1 = 0, ∇̃e2e2 = −2e3, ∇̃e2e3 = 2e2,

∇̃e3e1 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = 0

and also the components of torsion tensor T̃ are

T̃ (ei, ei) = ∇̃eiei − ∇̃eiei − [ei, ei] = 0, for i = 1, 2, 3

T̃ (e1, e2) = 0, T̃ (e1, e3) = e1, T̃ (e2, e3) = e2.

This shows that T̃ 6= 0 and, therefore, by the equation (3.1), we can say that the linear
connection defined in (3.3) is a semi-symmetric connection on (M, g). By straightforward
calculation, we can also find

(∇̃e1g)(e2, e3) = 0, (∇̃e2g)(e3, e1) = 0, (∇̃e3g)(e1, e2) = 0

and other components by symmetric properties. This demonstrates that the equation (3.2)
is satisfied and hence the linear connection defined by (3.3) is a semi-symmetric metric
connection on M . Thus, we can say that the manifold (M, g) is a 3-dimensional Kenmotsu
manifold equipped with a semi-symmetric metric connection defined by (3.3).

With the help of the above discussions, we can calculate the curvature and Ricci tensors
of M with respect to the semi-symmetric metric connection ∇̃ as

R̃(e1, e2)e3 = 0, R̃(e1, e3)e3 = −2e1, R̃(e3, e2)e2 = −2e3,

R̃(e3, e1)e1 = −2e3, R̃(e2, e1)e1 = −4e2, R̃(e2, e3)e3 = −2e2,

R̃(e1, e2)e2 = 0, S̃(e1, e1) = −6, S̃(e2, e2) = −2, S̃(e3, e3) = −4

and other components can be calculated by skew-symmetric properties. We can easily
observe that the equation (3.10) is verified.

Next, we have to prove that the manifold (M, g) is a Ricci semisymmetric with respect
to the connection ∇̃, i.e., R̃ · S̃ = 0. For instance,

(R̃(e3, e1) · S̃)(e1, e1) = 0, (R̃(e3, e2) · S̃)(e1, e1) = 0, (R̃(e3, e3) · S̃)(e1, e1) = 0.

In a similar way, we can verify other components. Also, we can prove that r̃ = −12
(constant) and hence the Theorem 7.1 is verified. Moreover, it can be easily seen that the
Theorem 5.1, Theorem 6.1 and the Theorem 8.1have been verified.
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Editor and the anonymous referees for their suggestions.
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