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Abstract: Risk assessment of climatic events and climate change is a globally challenging issue.
For risk as well as vulnerability assessment, there can be a large number of socioeconomic indicators,
from which it is difficult to identify the most sensitive ones. Many researchers have studied risk
and vulnerability assessment through specific set of indicators. The set of selected indicators varies
from expert to expert, which inherently results in a biased output. To avoid biased results in this
study, the most sensitive indicators are selected through sensitivity analysis performed by applying a
non-linear programming system, which is solved by Karush-Kuhn-Tucker conditions. Here, risk is
assessed as a function of exposure, hazard, and vulnerability, which is defined in the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), where, exposure and vulnerability
are described via socioeconomic indicators. The Kolmogorov-Smirnov statistical test is applied to
select the set of indicators that are the most sensitive for the system to assess risk. The method is
applied to the Bangladesh coast to determine the most sensitive socioeconomic indicators in addition
to assessing different climatic and climate change hazard risks. The methodology developed in this
study can be a useful tool for risk-based planning.

Keywords: risk assessment; socioeconomic indicators; sensitivity analysis; non-linear programming;
Kolmogorov-Smirnov test

1. Introduction and Statement of Problem

1.1. Overview of the Research

Climate change’s impact has become the most important threat to human civilization. For the
past few decades, climate change has increasingly affected the lives of people and all climate sensitive
sectors. Due to the increasing scarcity of economic, social, and technical resources, various strategies
for adaptation to climate change are in high-priority. Assessing risk is to examine the underlying
socioeconomic, institutional, and, to a lesser extent, political and cultural factors. In order to minimize
the risks of climate change, the identification of affected areas in planning and prioritization of
adaptation processes becomes very important [1,2]. Several past studies quantified and compared
vulnerability that generates risk by using an index [3]. To help increase consciousness, expedite
development of plans and strategies, and aid decision making, composite indices are used. These are
a set of collaborative, analytical, and communicative tools [4,5]. Development of suitable indicators
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for risk assessment has gained awareness since the ground-breaking paper of Smit and Wandel [6]
and the IPCC assessment report published in 2007 [7]. In risk assessments, indicators are used to
‘measure’ and ‘characterize’ the hazard, exposure, sensitivity, and adaptive capacity of a system. There
is a growing necessity to develop indicators to assess risk to determine the strength of response plans
over time and to better understand the fundamental processes. Risk is one of the most common
techniques that utilizes indicators (different hazards and socioeconomic parameters), which represent
the properties and characteristics of a given system [8,9]. Downing et al. [9] states that vulnerability
indicators (i.e., comprising sensitivity and adaptive capacity indicators) can help identify and target
vulnerable regions, sectors or populations, raise awareness, and be part of a monitoring strategy. Adger
et al. made a proper distinction between the specific and generic parameters of climate change [10].
Brooks et al. provided an index of possible proxy indicators to evaluate the effect of climate change at
national and regional levels [11]. Transfer between different scales of analysis is not possible in case
of indicators, as they are context specific [12]. Procedures for indicator selection mainly follow two
general approaches: one based on a conceptual understanding of relationships and another based
on theoretical (statistical or mathematical) relationships. In most of the previous studies, researchers
selected many indicators based on peer-reviewed studies [13,14]. In some studies, indicators were
selected from local stakeholder workshops or expert opinion based on field survey [15], which are
highly biased.

We are aware of the fact that risk assessment is generally uncertain where the uncertainty is
originated from composite interactions of hazards and socioeconomic impacts. To date, most of the
studies that proposed policy suggestions for improved adaptation strategies for risk reduction did not
clearly explore the theoretical basis for the selection of indicators [16]. Incorporation of a multitude of
strongly correlated variables in the vulnerability index can lead to inaccurate conclusions, as shown by
Kocur-Bera [17]. Sensitivity analysis can be one possible solution to this problem, which is performed
on multiple variables that constitute an index [18]. It is less resource intensive than generating an
ensemble of a large number of variables.

1.2. Research Gap, Research Objectives, and Significance

Sensitivity analysis provides a powerful means of learning about the degree of sensitivity of all
the socioeconomic parameters of the system. It primarily studies the degree of impact of each indicator
on the composition of the indices [19]. This technique may be used to come up with a functional
relationship between a small group of parameters and the response of the system output [20–22].
Baker et al. identified the sensitivity analysis method as one of the key quantitative analyses for risk
management, as it can provide the groundwork for planning adaptation operations to minimize the
risks associated with climate change [23]. The tool can also be used for the identification of uncertainties
to prioritize additional research or data collection [24].

Various methods such as the differential method, analysis of variance (ANOVA), linear regression
analysis (RA), response surface method (RSM), mutual information index (MII), fourier amplitude
sensitivity test (FAST), Sobol’s method [25], and non-linear programming [26] can be used to perform
sensitivity analysis.

In this study, non-linear programming is applied to the sensitivity analysis, which can be viewed
as a part of mathematical optimization. Non-linear programming deals with optimization problems
where the objective function or some of the constraints are non-linear. This method covers the whole
system where the risk is assessed. In this study, the selected system is the coastal zone of Bangladesh.

This study is focused on solving the prime answer of the question, “How sensitive are single
indicators and how does single indicator sensitivity influence the overall risk of the system?” In this
study, risk is defined according to IPCC AR5 [27] to formulate the non-linear programming and to
select the most sensitive indicators. This gives the ranking of the set of indicators. Within this ranking,
a statistical test is performed to select the most sensitive indicators, which can be used to assess the
risk in the selected system.
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2. Method

Methodology of this study includes study area selection, selection of hazard and socioeconomic
indicators in the study area, methodology and formulation of non-linear programming, solution of the
non-linear programming, and statistical analysis to detect significant change.

2.1. Study Area Selection

To apply the methodology developed in this paper, a study area is needed where the required
data of socioeconomic indicators are available. The coastal area of Bangladesh (Figure 1) is found
suitable for this purpose. The extent of this coast covers a long distance inland [28] where about
one-fourth of the country’s total population lives [29]. This population may increase to almost double
by mid-century [30]. The coexistence of availability of resources [31], high poverty rate [32], and
natural hazards [33] makes the selection of socioeconomic parameters complicated in this area. Data
from available socioeconomic indicators in the study area are used to determine the most sensitive
ones to assess risk.
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Figure 1. Area map.

2.2. Hazards in the Study Area

The study area is vulnerable due to different types of natural hazards. The dominant hazards
in this area are storm surges, floods, salinity, and river erosion (Figure 2). Necessary data for hazard
assessment is extracted from model simulation results [34]. Storm surge is the result of cyclonic event
that occurs in pre-monsoon (April–May) and post-monsoon (October–November) seasons. The main
impact zone of storm surge is confined within the landfall location along the exterior coast [35]. Storm
surge hazard (Figure 2a) is assessed by combining surge depth and cyclonic wind speed. Flooding is
caused by combined action of fluvial flow from upstream rivers and tide from sea and occurs mainly
during monsoon (June–September). The northern parts of the coast which are not protected by polders
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(an encircled embankment) are mainly affected by flood [36]. The parameter used for flood hazard
assessment (Figure 2b) is flood depth. Salinity in the study area is represented by the river salinity.
Salinity intrusion in the region occurs during dry season (December–March). Salinity magnitude is the
maximum in western and eastern region, whereas the central region has the minimum salinity [37].
Salinity hazard is assessed (Figure 2c) by using salinity magnitude in the rivers and estuaries. Erosion
in the study area are mainly confined along the river banks [38]. To assess erosion hazards (Figure 2d),
the total eroded area along the river bank is used as the hazard parameter.
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2.3. Available Socioeconomic Indicators to Assess Risk in the Study Area

From the available data sources, 23 socioeconomic indicators are preliminary selected that can be
used to assess risk in the area due to the four hazard indicators mentioned in Section 2.2. All of these
27 indicators (4 hazards and 23 socioeconomic) are divided into different domains. The methodology
developed in this study is applied to determine the most sensitive indicators from this preliminary list
to assess risk in the study area. Table 1 shows the preliminary selected indicators in different domains,
their role in assessing risk, sources of data and data units.
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Table 1. Total lists of hazards and socioeconomic indicators.

Domain Indicators Impact on Risk Data Source and Data Unit

Exposure

Cropped Area Negative impact on risk due to its
exposure to hazard [39,40].

Data source: [41].
Data unit: Percentage of Cropped Area per
unit of administrative area.

Number of Household Increased number of households causes
increased risk [42,43].

Data source: [29].
Data unit: Percentage of Number of
Household per unit of administrative area.

Population Density Increased population density increases
exposed population to risk [43,44].

Data source: [29].
Data unit: Total number of population per
unit of administrative area.

Sensitivity

Female to Male Ratio Female population are more sensitive to
risk than male population. Increased
number of female populations increases
risk.

Data source: [29].
Data unit: Ratio of female to male population.

Poverty Rate Poor people are sensitive to hazards. So,
higher poverty rates are indicative of
higher risk due to same hazard.

Data source: [29].
Data unit: Percentage of extreme poor lies
below poverty line.

Dependent Population Dependent population in an area are
the women, children, and elderly
people. These group of population are
considered as less able to adaptation
against risk [42,44,45].

Data source: [29].
Data unit: Percentage of summation of
women, children and elderly population to
the total population of an administrative unit.

Disabled People Physically and mentally disabled
people are more sensitive to hazard
because of their inability and slow
response during a hazard event [46].

Data source: [29].
Data unit: Percentage of total disabled people
to total number of population in an
administrative unit.

Unemployed Population Unemployment decreases the coping
capacity and increases the sensitivity
and susceptibility to risk [47].

Data source: [29].
Data unit: Percentage of total unemployed
population to total population in an
administrative unit.

Adaptive Capacity

Growth center Growth center is an economic indicator.
Increased number of this indicator
indicates better economic strength and
better adaptive capacity against
vulnerability [48].

Data source: [29].
Data unit: Number of growth center per 5000
of population in an administrative unit.

Plantation Plantation is considered as a buffer
against storm surge hazard that reduces
the initial thrust of the hazard.
Reduction of hazard means reduction of
risk [49].

Data source: [34].
Data unit: Forest area (natural and artificial)
per unit of administrative area.

Aquaculture Shrimp cultivation is the dominant
aquaculture in the study area.
Aquaculture is considered as an
alternative livelihood to adapt against
salinity hazard.

Data Source: [34].
Data unit: Shrimp cultivated area per unit of
administrative area.

Cyclone shelter Cyclone shelter is a structural adaptive
measure against storm surge hazard.
Increased number of cyclone shelter
reduces number of human casualty and
thus reduces storm surge risk [43,50].

Data source: [51].
Data unit: Number of cyclone shelter per unit
of administrative area.

Cropping intensity Cropping intensity is an indicator of
agricultural activity. Increased cropping
intensity means increased adaptive
capacity that reduces risk against
hazard [39,40,52]

Data source: [41].
Data unit: Percentage of gross cropped area
per net cropped area in an administrative
unit.

GDP Gross Domestic Product (GDP) is an
economic indicator. Higher GDP means
better ability to recover from loss and
reduce risk from hazard [53].

Data source: [29].
Data unit: Gross Domestic Product per capita.

Irrigation Equipment Shallow tube-well (Stw), Deep
tube-well (Dtw), and Low Lift Pump
(LLP) are known irrigation equipment
in the study area. Increased number of
Irrigation Equipment enable a farmer to
better adapt with the hazard and thus
reduce risk.

Data source: [29].
Data unit: Number of irrigation equipment
per unit of cropped land area.
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Table 1. Cont.

Domain Indicators Impact on Risk Data Source and Data Unit

Polder Area Polder is an encircled embankment
constructed to prevent flood in the
study area. Increased number of
polders reduces flood and thus reduces
flood risk [43,54].

Data source: [34].
Data unit: Percentage of total poldered
(embanked) area per administrative
unit.

Presence of Lifeline Lifeline is represented by water supply,
sanitation and electricity. Higher
number of lifeline utilities are
considered to increase adaptive capacity
against vulnerability and thus reduces
risk [43–45].

Data source: [29].
Data unit: Percentage of tap water and
other pond types surface water sources
and percentage of connected sanitary
and electricity lines per unit area of an
administrative unit.

Loan Loan is considered as the credit facility
by co-operative society and banks,
particularly to recover from loss due to
hazard. Increased loan facilities thus
reduce risk due to hazard [55].

Data source: [29].
Data unit: Percentage of total account
holder per total number of populations
in an administrative unit.

Literacy Rate Literate people know better how to
adapt with the vulnerability and reduce
risk [42,44,45]

Data source: [29].
Data unit: Percentage of number of
literate people per unit of
administrative area.

Number of Health care
Provider

Health care providers play an important
role to reduce human casualty during a
hazard, which acts to reduce
vulnerability and risk of the community
[56].

Data Source: [29].
Data unit: Percentage of health care
provider compared to total population
in an administrative unit.

Paka and Semi-paka
house

Paka and Semi-paka houses represent
households which are structurally
strong to resist impacts of hazard.
Presence of these housing types reduces
risk [43,45].

Data source: [29].
Data unit: Percentage of Paka and
Semi-paka houses compared to total
number of households in an
administrative unit.

Communication
Infrastructure

Communication infrastructure is
represented by all types of structural
measures related to communication. It
acts as an adaptive capacity for a
community and reduces vulnerability
and risk during a hazard [43,44,57].

Data source: [29].
Data unit: Weighted sum of length of
different types of structural measures
used for communication purpose in an
administrative unit.

Road Density Increased road density in an area
increases the mobility during the time
of hazard. This makes it possible to
utilize other adaptive measures that
reduces risk.

Data source: [29].
Data unit: Total road length in an
administrative unit.

2.4. Non-Linear Programming to Determine the Most Sensitive Indicators

As mentioned earlier, the central research question of this paper is: ‘What are the most sensitive
indicators that determine risk in a system?’ To answer this question, non-linear programming is applied
to determine the most sensitive indicators in the study area from the list described in Section 2.3.

A non-linear programming system is a system that solves an optimization problem where some
of the constraints are non-linear or the objective function is non-linear. A general constraint and
unconstraint non-linear programming problem is to select n decision variables x1, x2, . . . , xn from a
given feasible region in such a way as to optimize (minimize or maximize) a given objective function
f (x1, x2, . . . . . . , xn) of the decision variables [58]. The feasible region is defined as a boundary where all
possible points of a non-linear programming problem satisfy the problem’s constraints [58]. A flow
chart describing non-linear programming is shown in Figure 3.
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2.4.1. Unconstrained Non-Linear Programming

The simplest non-linear programming problem is that of minimizing or maximizing a function [58].

f : RNx → R. (1)

An unconstrained non-linear programming problem is given by

min
x ∈ RNx

f (x) (2)

Where f : RNx → R. is a smooth and real valued objective function of the vector x ∈ RNx .

2.4.2. Constrained Non-Linear Programming

The problem is called a non-linear programming problem (NLP) if the objective function is
non-linear and/or the feasible region is determined by non-linear constraints [58]. Thus, in minimization
form, the general non-linear programming is stated as:
Minimize

f (x1, x2, . . . . . . , xn) (3)

subject to:
g1(x1, x2, . . . . . . , xn) ≤ b1 (4)

gm(x1, x2, . . . . . . , xn) ≤ bm (5)

where each of the constraint functions g1 through gm is given and b1,b2, . . . . . . .,bm are constant vectors.
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2.5. Development of Non-Linear Programming System

There are some ‘disturbance parameters’ that are responsible for creating the ambiguous results in
risk as well as vulnerability. To avoid chaos in risk and vulnerability analysis, a non-linear programming
system is incorporated. For the development of this system, risk, hazard, exposure, and vulnerability
are needed to be used as the constraints and the objective function under the system. For these, 23
(out of total 27, where 4 are hazard parameters) possible socioeconomic indicators (Section 2.3) are
selected in this study area [27]. Risk is a multiplicative function (non-linear combination) of hazard,
exposure, and vulnerability, where vulnerability is a simple linear combination of sensitivity and
adaptive capacity [27].

In this research, the non-linear programming systems are developed from the linear and non-linear
combination of parameters (Section 2.3) that are called decision variables. Here, risk is considered
as an objective function and constraints are developed from the weighted scores of parameters for
each spatial unit of the study area (a total of 139 administrative unit named as ‘upazila’). The relative
weighted scores are calculated using PCA [59]. PCA gives a correlation matrix that identifies the
principal component for a system [59]. Pearson correlation coefficient was used to find the weights of
the parameters that describe how much an indicator can explain a component vector.

The coefficients of x1, x2, x3 . . . . . . . . . x27 of each constraint of (1) are weights of indicators
computed by applying PCA. The constant vectors (a,b,c,d,e) which are defined in Section 2.4 are found
to be maximum value from the weighed values of risk of upazilla. Mathematically, risk along with
constraints to minimize risk is defined as:

Objective Function
minimize , Risk = Exposure × Hazard × Vulnerability
Constraints,
Exposure
0.38 x1 + 0.38x2 + 0.24x3 ≤ 0.78(= a)
Exposure + Sensitivity
0.0919x1 + 0.11x2 + 0.06x3 + 0.111x4 + 0.051x5 + 0.042x6 + 0.09x7 + 0.054x8 ≤ 0.54(= b)
Sensitivity
0.013x4 + 0.055x5 + 0.0439x6 + 0.107x7 + 0.046x8+ ≤ 0.44(= c)
Hazard*Exposure
(0.38 x1 + 0.38x2 + 0.24x3)(0.317x24 + 0.14x25 + 0.29x26 + 0.27x27) ≤ 0.337(= d)
Adaptive Capacity,
0.072x9 + 0.073x10 + 0.105x11 + 0.078x12 + 0.078x13 + 0.12x14 + 0.044x15 + 0.042x16

+0.109x17 + 0.052x18 + 0.0812x19 + 0.052x20 + 0.037x21 + 0.018x22 + 0.033x23 ≥ 0.64(= e)

(6)

2.6. Solution of Non-Linear Programming System with Karush-Kuhn-Tucker (KKT) Conditions

In modern non-linear programming algorithms, the Fritz John and the Karush-Kuhn-Tucker conditions
are directly applicable to practical optimization problems [60]. In this research, Karush-Kuhn-Tucker
conditions [60] are used to solve the non-linear programming system. A prerequisite for stating KKT
conditions is the Lagrangian function [60,61]. Consider the non-linear programming in general:

min f (y)
s/t g(y) ≤ 0

h(y) = 0
(7)

where g(y) is a function of the inequality constraint and h(y) is a function of the equality constraint.
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The Lagrangian function is defined by:

L(y, l0,λ,µ) = l0 f (y) +
Ng∑
i=1

λigi(y) +
Nh∑
j=1

λ jh j(y) (8)

Where λi = [λ1,λ2, · · · ,λNg ], µ j = [µ1,µ2, · · · ,µNh ]

g(y) =


g1

g2
...

gNg

 and h(y) =


h1

h2
...

hNh

 (9)

Taking l0 = 1 for KKT condition,

(i) ∇yL(y∗, 1,λ,µ) = 0
(ii) ∇µL(y∗, 1,λ,µ) = h(y∗) = 0
(iii) ∇λL(y∗, 1,λ,µ) = g(y∗) ≤ 0
(iv) λT g(y∗) = 0
(v) λ ≥ 0

(10)

where gradient ∇ f =


∂ f
∂y1
...
∂ f
∂yNy


Necessary conditions for KKT [60] are:

(1) f(y) is to be feasible to apply the above constraints (iv) and (v).
(2) Gradients of (iii), (iv), and (v) improve objectives and satisfies the following equations:

∇ f (x∗) −
K∑

i=1
λi
∗
∇hi(y∗) −

m∑
j=1

λ j
∗
∇g j(y∗) = 0

λi
∗gi(y∗) = 0 (Complementary Slackness)

(11)

(3) It satisfies to the positive Lagrangian multiplier λ∗ ≥ 0.

Using these conditions, a set of equations are formulated for the required values of variables
(decision parameters) to minimize the objective functions.

Applying the above methodology, a MATLAB code to solve the non-linear programming problem
(Equation 1) is developed.

2.7. Statistical Analysis to Detect Significant Change

Two risk levels are developed for all spatial units (in this case spatial unit is the ‘upazila’, which is
an administrative unit one step below the district level). One risk level is based on the base risk scores
of each upazila, considering all 23 socioeconomic indicators. The other risk level is developed by using
the risk scores calculated by elimination of indicators one-at-a-time. Statistical tests are performed to
examine whether there are significant changes between these two risk levels. To detect statistically
significant change between two risk levels, the Kolmogorov-Smirnov test [62–65] is performed. The test
is performed by calculating the difference between two risk levels c1 and c2. To perform these tests,
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the following hypotheses are applied where C1i is the base risk score considering 23 indicators and
C2i is the risk score after elimination of indicators one-at-a-time:

H0 : C1i = C2i; there is no significant change between two curves (12)

H1 : C1i , C2i; there is a significant change between two curves (13)

Cumulative distributions of c1 curve and c2 curve are C f1i, C f2i. Cumulative distributions are
calculated by the following formulae:

For C f1i
C f11 = C11

C f12 = C11 + C12
C f13 = C11 + C12 + C13
. . . . . . . . . . . . . . . . . . . . . . . . . . .

C f1N = C11 + C12 + C13 + · · ·+ C1N

(14)

where N is number of upazila.
Moreover, for C f2i

C f21 = C21
C f22 = C21 + C22

C f23 = C21 + C22 + C23
. . . . . . . . . . . . . . . . . . . . . . . . . . .

C f2N = C21 + C22 + C23 + · · ·+ C2N

(15)

The distance (D) between cumulative distributions are calculated as the maximum distance by
applying the following formula

Distance(D) = Sup
1≤i≤138

(C f1i −C f2i) (16)

Here, 138 represents the total number of spatial units (in this case upazila). Distance (D) implies
the dissimilarity between two curves.

3. Results and Discussion

A non-linear programming system with inequality and equality constraints is designed from 27
(23 socioeconomic and 4 hazards) possible parameters (decision variables) by using normalized scores
of each parameter. This non-linear programming problem is solved by KKT conditions and it gives the
rank of indicators during the risk minimization process (which is the ultimate target). Variation of the
coefficient of variables in the objective function describes the sensitivity of the parameters (decision
variables). A MATLAB code is developed for the solution of the non-linear programming problem
where one function ‘lambda’ is defined in the code named as the Lagrangian multiplier. This ‘lambda’
displays the lower limit and the upper limit of the coefficients of variables of the objective function. If
the coefficients of variables of the objective function vary within the range between the lower limit
and the upper limit, risk (the objective function) is optimized (minimized), otherwise the risk varies.
This implies that the range between the lower and upper limit gives the rank among the indicators
where lower deviation gives the most sensitive parameter and higher deviation gives the least sensitive
parameter (Table 2). Based on this ranking (Table 2), domain specific indicators are arranged according
to their ranking (Table 3).
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Table 2. Rank of indicators.

Indicators Coefficient of
Objective Function Lower Limit Upper Limit Range between Lower

Limit and Upper Limit Rank

Cropped Area 0.15901201 1.59 × 10−1 1.59 × 10−1 6.47 × 10−8 1
Number of households 0.42011697 4.20 × 10−1 4.20 × 10−1 7.27 × 10−8 2
Population density 0.42087102 4.21 × 10−1 4.21 × 10−1 7.27 × 10−8 3
Cyclone shelter 0.044980433 4.50 × 10−2 6.02 × 10−2 1.52 × 10−2 4
Plantation 0.046954986 4.70 × 10−2 6.29 × 10−2 1.59 × 10−2 5
Polder Area 0.049170973 4.92 × 10−2 6.58 × 10−2 1.66 × 10−2 6
Growth Centre 0.052033969 5.20 × 10−2 6.97 × 10−2 1.76 × 10−2 7
GDP 0.055189127 5.52 × 10−2 7.39 × 10−2 1.87 × 10−2 8
Irrigation Equipment 0.057194489 5.72 × 10−2 7.66 × 10−2 1.94 × 10−2 9
Paka and Semi- paka house 0.05755829 5.76 × 10−2 7.71 × 10−2 1.95 × 10−2 10
Loan 0.059529224 5.95 × 10−2 7.97 × 10−2 2.02 × 10−2 11
Communication Infrastructure 0.059854204 5.99 × 10−2 8.01 × 10−2 2.03 × 10−2 12
Cropping intensity 0.062339437 6.23 × 10−2 8.35 × 10−2 2.11 × 10−2 13
Aquaculture 0.062434786 6.24 × 10−2 8.36 × 10−2 2.12 × 10−2 14
Literacy Rate 0.063560103 6.36 × 10−2 8.51 × 10−2 2.15 × 10−2 15
Number of Health care Providers 0.063792292 6.38 × 10−2 8.54 × 10−2 2.16 × 10−2 16
Presence of Lifeline 0.066181942 6.62 × 10−2 8.86 × 10−2 2.24 × 10−2 17
Road Density 0.06697054 6.70 × 10−2 8.96 × 10−2 2.27 × 10−2 18
Female to male ratio 0.121988782 8.07 × 10−2 1.22 × 10−1 4.13 × 10−2 19
Poverty Rate 0.130673052 8.64 × 10−2 1.31 × 10−1 4.43 × 10−2 20
Dependent Population 0.232939206 1.54 × 10−1 2.33 × 10−1 7.86 × 10−2 21
Disabled People 0.24190139 1.60 × 10−1 2.42 × 10−1 8.20 × 10−2 22
Unemployed population 0.27249757 1.80 × 10−1 2.72 × 10−1 9.23 × 10−2 23

Table 3. Domain specific indicators based on ranking.

Indicators Domain

Cropped Area
ExposureNumber of households

Population density

Female to male ratio

Sensitivity
Poverty Rate
Dependent Population
Disabled People
Unemployed population

Cyclone shelter

Adaptive Capacity

Plantation
Polder Area
Growth Centre
GDP
Irrigation Equipment
Paka and Semi-paka house
Loan
Communication Infrastructure
Cropping intensity
Aquaculture
Literacy Rate
Number of Health care Provider
Presence of Lifeline
Road Density

3.1. Selection of the Most Significant Indicators

The most significant indicators are selected by applying a process of elimination of indicators
among the ‘ranked indicators’, which are determined by applying non-linear programming (Table 2).
Elimination criteria is based on measuring ‘statistically significant’ change (10% dissimilarity between
the c1 and c2 levels) when one indicator is ‘eliminated’ from the system. In order to evaluate how
much effect a single parameter can have on the overall analysis, the analysis is performed repeatedly
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by excluding the parameters one-at-a-time, while keeping the total number of ‘used’ parameters the
same for each case. The elimination process is started by excluding the least significant indicator
first and the process is repeated by eliminating each indicator one-at-a-time. To measure statistically
significant change of the risk score (when one is eliminated from the system) from the base risk score,
the Kolmogorov-Smirnov test is applied in testing the difference between the two risk scores. Both
the risk scores are cumulatively distributed, and the maximum difference is found between the two
cumulative risk scores which implies the percentage of dissimilarity. Table 4 represents the elimination
list of indicators and Figure 4 shows the insignificant change due to the elimination process.

Table 4. Elimination list of indicators.

Indicators Domain

Elimination_1 Road Density
Adaptive CapacityElimination_2 Presence of Lifeline

Elimination_3 Number of Health care Provider

Elimination_4 Unemployed Population Sensitivity
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Figure 4. Insignificant change due to the elimination process.

For the fifth elimination, when the second least sensitive indicator (Disabled People) from the
sensitivity domain is excluded, the dissimilarity is found to be above 10% of the base risk score,
as shown in Figure 5. Similarly, when the fourth least sensitive indicator from the adaptive capacity
domain (Literacy Rate) are eliminated, more than 10% dissimilarity is calculated (Figure 6). Thus, we
can conclude that these two parameters show significant dissimilarity from the base risk score, which
entitles them to be included in the most sensitive indicators.

Completion of statistical analysis gives the final set of indicators (19 socioeconomic indicators are
finally selected from a list of 23 as described in Section 2.3), which are the most sensitive socioeconomic
indicators for risk assessment in the study area (Table 5).
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3.2. Implication of the Most Sensitive Indicators

The most sensitive domain specific indicators selected in Table 5 are applied to assess storm surge
risk in the study area (Figure 7). The risk map shows risk zones varying from very high to very low
(Figure 7). The risk map generated in this way by using the most sensitive indicators can be used in
risk-based planning. If we consider ‘the most sensitive indicators’ as the ‘most sensitive sectors’ that
generate high risks due to ‘inadequate investment’, then policy makers can decide in which sector
they will invest to minimize risk in a location. As sensitivity of these indicators are determined from a
system approach, policy makers can view the system response from the generated risk map after an
investment is made in a specific sector that is considered the most sensitive for the system. In this
way, investment on a less sensitive sector can be avoided in risk-based planning. The method can
be made dynamic by re-computing the most sensitive indicators with the changed biophysical and
socioeconomic settings.
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Table 5. List of most sensitive domain specific socioeconomic indicators.

Indicators

Cropped Area
ExposureNumber of households

Population density

Cyclone shelter

Adaptive Capacity

Plantation
Polder
Growth Centre
GDP
Irrigation Equipment
Paka and Semi-paka house
Loan
Communication Infrastructure
Cropping intensity
Aquaculture
Literacy Rate

Female to male ratio

SensitivityPoverty Rate
Dependent Population
Disabled People
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4. Conclusions and Recommendations

The sensitivity analysis made in this study shows that non-linear programming is effective to
select the most sensitive indicators for risk assessment. It helps avoid the multi-collinearity and
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disturbance among the parameters. It provides an appropriate insight into the problems associated
with the system under constraints. Using this method, it is possible to assess how sensitive a solution
is due to any change in one or more parameters. In this research, for sensitivity analysis, risk is
considered as an objective function under some inequality and equality constraints that are developed
with the values of each parameter (indicators) for each spatial unit for different domains—i.e., exposure,
sensitivity, adaptive capacity, and hazards. This system is solved by the KKT conditions. This creates a
ranking among the indicators. For statistical analysis, a Kolmogorov-Smirnov test is performed for
the selection of a set of indicators that are most sensitive for the system. This test is performed by
eliminating indicators one-at-a-time from the ranked indicators. By repeating the process for each
indicator, the most sensitive indicators for quantitative risk assessment are found. This method was
applied with regard to the Bangladesh coast in an effort to determine the most sensitive domain
specific socioeconomic indicators, which assessed risk due to four dominant hazards in the region.
The methodology developed in this study can be a useful tool in risk-based planning. Policy makers
can decide which sector they will invest that will effectively minimize risk in a specific location and
can avoid investing on the less sensitive sector. At the same time, they will be able to visualize the
system response due to investment on the most sensitive sector. The method has limited applicability
for the region where amount of data availability is too low with questionable accuracy.
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