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ABSTRACT A new comprehensive space-time model for the characterization of point rainfall rate is presented. A detailed 

assessment of four key rain characteristics (probability of rain/no rain condition, first and second order lognormal statistics 

and, space and time correlation functions) with consideration of the impact of varying spatial-temporal integration lengths are 

discussed. A set of empirical equations have been developed and the results show that they  provide estimates of probability 

of rain/no rain with root mean square errors of less than 1.3 in space and 0.04 in time. They provide good estimates of the 
parameters at any space-time scales, particularly at higher resolutions that are of great importance to the design and planning 

of networks operating at frequencies above 10 GHz. In particular, the authors have created databases of rain characteristic 

parameters spanning North West Europe from which rain rate at any location of interest at different space-time scales can be 

conveniently obtained. These have been validated by comparing the rain rate exceedance distribution, 𝑅0.01 , from the model 

estimates at different space-time scales across the British Isles with values calculated from measured data. It has been found 

that the proposed model gives highly accurate estimates of 𝑅0.01 for the continental area with error percentages (E) generally 

less than 2.5 but the error percentage increases at the edges of the radar scans and in the oceanic area due to low data availability. 

INDEX TERMS rainfall rate, rain characteristics, radio-wave propagation, space-time model, satellite.

I. INTRODUCTION 

Wireless communication systems operating at frequencies 

greater than 10 GHz are significantly affected by rain 

attenuation of radio waves, which leads to poor network 

performance [1]-[3]. This is particularly true for millimeter 

wave communication links where the rainfall rate for 0.01% 

of the time is an important parameter [4]. Rain events are 

highly variable in both space and time and their 

characteristics are influenced by factors such as climate type, 

season and topography [5]. A quantitative understanding of 
the behavior of the spatial and temporal variability of rain is 

required to calculate the long-term rain-induced attenuation 

statistics, e.g. ITU-R P.618-12 [6].   

The extremely variable nature of rain makes it challenging 

to estimate rain rates over large areas with high resolutions 

directly from measurements. Although this can potentially 

be achieved with a high density network of rain gauges, the 

cost of such a deployment is prohibitive and difficult to cover 

wide areas with suitable space resolutions (say 𝐿). Therefore 

the data that is available is often estimates at one point rather 

than an area covered by multiple points. Meteorological 

radar and satellite measurements compensate this drawback 

and can capture the fine-scale spatial variability of rainfall, 

but the time resolution (say 𝑇) is often poor. In addition, it is 

difficult to obtain accurate rainfall rate measurements over 

mountain and oceanic areas due to difficulties associated 

with obtaining accurate rain radar readings [7]. Such 

limitations have been addressed using rain models, for 

example in [9]-[11].  

Rain modeling has evolved to ameliorate the limited 

resolutions of measurement apparatus to offer other 

resolutions, particularly at smaller scales 𝐿′  and 𝑇′ , using 

approaches such as downscaling [12]-[13], fractal theory 

(self-similarity) [14]-[15], and interpolation [16]-[17]. 

However, the  drawback in most of the existing rain studies 

is that they tend to purely focus on predictions at either 

smaller space scales, so evolution in time of spatial patterns 

of rain field is not considered, [18]-[19], or shorter time 

scales without explicitly taking the spatial distribution of rain 

fields into account [20]-[21]. However, rain exhibits high 

variability and irregularity in both space and time. High 

intensity rain events, especially those associated with strong 

convection, normally cover only a few kilometers and last 

for short periods. These cause severe outage in high 

frequency wireless networks. The 3D space-time point rain 
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rate data at higher resolutions, which is often not available 

from commonly used apparatus, is of particular importance 

to describe these small-scale events and is required by 

networks planners and designers of physical layer fade 

mitigation techniques [22]-[23]. A representative model of 

rain dynamics would be a combination of a two-dimensional 

model in space and a one dimensional model in time. 

The lack of three-dimension (3D) space-time modeling of 

rain has long been a challenging issue and there are only a 

few studies that have been published in the past few decades. 

For example, taking advantage of the spatial disaggregation 

scheme, like in [24], Venugopal in [25] proposed a space-

time downscaling model utilizing dynamic scaling property 

in rainfall to predict spatially evolving rainfall fields which 

preserve a prescribed space-time organization structure at 

finer scales. Another classic space-time rain model was 

proposed by Deidda [26] based on the assumption that 

Taylor’s hypothesis [27] can be applied. The space and time 

scales, therefore, can be connected and then mutually-

converted using an advection velocity parameter so that the 

statistical properties of rain at smaller scales can be deduced 

from larger ones. Instead of focusing on rain rate only, 

alternative studies of rain characteristics have also attracted 

a lot of interest [28]-[31]. This is because in [32] Bell has 

demonstrated that a reasonable lognormal distribution of rain 

fields can be simulated provided systematic knowledge of 

the key rain characteristics are known. Therefore, in [33], the 

authors have proposed a new space-time interpolation 

approach that can interpolate the key rain characteristics to 

finer scales of the order of seconds, in time, and meters, in 

space, with high accuracy. 

In particular, the authors proposed a statistical model in 

[34] based on the assessment of the impact of varying spatial 

and temporal integration lengths on key characteristics of 

point rainfall rate and their dependencies on the integration 

volumes. However, the proposed model is only valid for 

cases where either the spatial or temporal integration length 

is constant (𝐶), whilst the other is changing, denoted as: {𝐿, 

𝑇 = 𝐶} or {𝐿 = 𝐶, 𝑇}. As an extension of the work in [34], 

this paper aims to fulfill two objectives: 1) assess the impact 

of varying 3𝐷 spatial-temporal integration lengths on rain; 

and 2) develop an appropriate model to estimate the rain 

characteristics at changing space-time scales, particularly at 

smaller ones. These objectives, when fulfilled, will enable 

the estimation of point rainfall rate at any given scale 

together with the prediction of rain-induced attenuation for 

wide area networks with multiple links of varying lengths.  

The reminder of this paper is organized as follows; Section 

II describes the experimental data used in this study. Section 

III discusses the methodology for modeling the point rainfall 

rate and briefly describes how to generate rain fields using 

rain parameters. Section IV presents the experimental results 

and the proposed empirical equations for estimating rain 

characteristics at different space-time scales. We have also 

validated the results using real measurements from datasets 

with better resolution. Conclusions are drawn in Section V. 

II. DATA DESCRIPTION 

The experimental data used in this study is provided by the 

Centre for Environmental Data Analysis (CEDA), which 

holds a database of European rainfall rate estimate generated 

by NIMROD radar system. This covers several climatic 

zones. The NIMROD system concurrently receives the radar 

images from 15 C-band (5.3 cm wavelength) radars. The 

radar network performs a series of 15-minute azimuth scans 

at different elevations and converts the rainfall rate data onto 

a 5-𝑘𝑚 Cartesian grid [35]-[36]. The composite European 

data is available from April 2002 as well as radar images 

from 1999. The processed radar and satellite data together 

with surface reports and Numerical Weather Prediction 
(NWP) fields are jointly used for precipitation rate analysis 

[37]. In this study, five years of radar data from 2010 to 

2014 has been studied. The dataset used consists of more 

than 150,000 radar maps with each map covering 432,000 

grid points.  

CEDA also holds another dataset with better resolution over 

the British Isles. Radar networks within the UK have several 

scan radii with space resolution up to 1 𝑘𝑚 at time intervals 

as short as 5 𝑚𝑖𝑛𝑠  (see [38]). 

III. SPACE-TIME MODELING OF POINT RAIN RATE 

The prediction of the dynamic rain attenuation statistics in 

slant paths is required in many applications relating to 

satellite communication. Matricciani in [39] has proposed a 

physical-mathematical model using a method known as 

“synthetic storm technique” for calculating the rain 

attenuation. The specific attenuation may be calculated from 
raindrop size distribution but an adequate approximation 

may be obtained from the rain rate. Rec. ITU-R P. 838-3 [40] 

provides a power-law model linking specific attenuation 𝛾 

and rainfall rate 𝑅 (𝑚𝑚/ℎ) as follows; 

𝛾 ≅ 𝛼𝑅𝛽                                       (1) 

where α and 𝛽 are frequency dependent parameters.  

Given that the average rainfall rate measured within a 

spatial area 𝐴 = 𝐿 × 𝐿 at time interval 𝑇 is expressed as: 

𝑅(𝐿, 𝑇) =
1

𝑇
∫ 𝑑𝑡

𝑇
2⁄

−𝑇
2⁄

1

𝐿2 ∫ ∫ 𝑟(𝐱, 𝑡) 𝑑𝑎
𝐿

2⁄

−𝐿
2⁄

𝐿
2⁄

−𝐿
2⁄

          (2) 

where 𝑟(𝐱, 𝑡), here 𝐱 = (𝑥1,  𝑥2), denotes the point rainfall 

rate in 𝑚𝑚/ℎ  at location 𝐱  and time 𝑡 . 𝐿  and 𝑇  are the 

spatial and temporal integration lengths of NIMROD radar 

map, respectively. 

The synthesis of rain fields requires detailed 

understanding of four key characteristics of rain; the 

probability of rain occurrence, first order statistics and, space 

and time correlation function of rain [32]-[34]. It has been 

demonstrated that point rainfall rate at one location for any 

combination of spatial and temporal integration length is 

well modeled as a lognormal process with a mixed 

probability density function (PDF) [41]: 
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𝛬𝑅(𝜇, 𝜎, 𝑃0) = {
1 − 𝑃0                                          no rain

𝑃0

√2𝜋𝑅𝜎
𝑒𝑥𝑝 [− (

𝑙𝑛𝑅−𝜇

𝜎
)

2

]           for rain
    (3)                                            

 

where 𝑃0 denotes the probability of rain occurrence at a point 

when it is raining (𝑅 > 0), and {𝜇, 𝜎} are the lognormal 

parameters required to describe the distribution of rainfall 

rate, where 𝜇 and 𝜎 are the mean and standard deviation of 

𝑅 , respectively. Previous study in [34] showed that the 

statistical parameters {𝑃0 , 𝜇, 𝜎} depend on the location  𝐱 

and the integration volume. 𝑃0  is equivalent to the long term 

probability of rain over a period 𝒯 i.e 𝑃0 = 𝒯𝑟𝑎𝑖𝑛𝑦/𝒯. The 

general empirical equation that gives good estimates of 𝑃0 

throughout the whole range of integration length is: 

𝑃0 = 100 − 𝑏𝑒𝑥𝑝(𝑐𝑥𝑒)                       (4) 

where 𝑏 , 𝑐  and 𝑒  are model coefficients which can be 

determined for each location and 𝑥  denotes either spatial 

integration length 𝐿, or temporal integration length 𝑇. 

It has been shown in [32] that a zero mean, unit variance 

discrete Gaussian field, 𝑔(𝐱), can be modeled with a spatial 

covariance predetermined by the desired rain field 

covariance. Over long term periods i.e. many 2D maps 𝑔𝑡(𝐱), 

the Gaussian field can be transformed into a rain field 

𝑟(𝑔𝑡(𝐱)) using nonlinear transformation: 

𝑟{𝑔𝑡(𝐱)} = {
0,                                  𝑔𝑡(𝐱) < 𝑔0

exp (𝜎𝑄−1 (
𝑄(𝑔𝑡(𝐱))

𝑃0
) + 𝜇) ,   otherwise

    (5) 

then a rain field with the PDF in Eq. (3) can be produced 

provided 𝑔0 = 𝑄−1(𝑃0) is the chosen threshold, here 

𝑃0 = ∫
1

√2𝜋
exp (−

𝑢2

2
) 𝑑𝑢 ≡ 𝑄(𝑔0)

∞

𝑔0
                 (6) 

It is worth highlighting that the above transformation links to 

the correlation coefficient 𝜌 of the Gaussian rain field. The 

space correlation function, which is equal to the inverse 

Fourier transform of the normalized spectrum, is always used 
to assess the horizontal structure of rainfall field. Given that 

rain is wide sense stationary, the time correlation function 

strongly depends on the time difference between 𝑡1 and 𝑡2. 

The correlation function of rainfall rate can be expressed as 

[42]; 

𝜌𝑅 =
𝐸{𝑅𝑖𝑅𝑗}−𝐸{𝑅𝑖}𝐸{𝑅𝑗}

√𝑣𝑎𝑟(𝑅𝑖)𝑣𝑎𝑟(𝑅𝑗)
=

𝑐𝑜𝑣(𝑅𝑖,𝑅𝑗)

𝜀𝑖𝜀𝑗
= Υ(𝜌)         (7)                                        

where 𝑅𝑖  and 𝑅𝑗  are the point rainfall rates at either two 

locations or two times 𝑖 and 𝑗, 𝑐𝑜𝑣( ) is the covariance and 

𝜀 is the variance with |𝜌| ≤ 1and 𝑐𝑜𝑣(𝑅𝑖 , 𝑅𝑗) ≤ 𝜀𝑖𝜀𝑗 . 

  

The correlation of rainfall rate can be calculated from radar-

derived rain rate and 𝜌  can be obtained using functional 

inverse 𝜌 = Υ−1(𝜌𝑅) , see [41]. Taking the correlation 

coefficient into account, a logical extension of Eq. (3) is that 

the distribution of rain rate at two points on a horizontal 

plane at a particular time or two time periods at the same 

location is jointly lognormal with the joint PDF (see [3]): 

𝑓(𝑅1, 𝑅2, 𝜌) =
1

2𝜋𝜎1𝜎2𝑅1𝑅2√1−𝜌2
exp (−

1

2(1−𝜌2)
∙

                    ((
𝑙𝑛𝑅1−𝜇1

𝜎1
)

2

−
(𝑙𝑛𝑅1−𝜇1)(𝑙𝑛𝑅2−𝜇2)

𝜎1𝜎2
+ (

𝑙𝑛𝑅2−𝜇2

𝜎2
)

2

))       

(8) 

For simplicity, Eq. (8) can be denoted as 

 𝑓(𝑅1, 𝑅2, 𝜌) = 𝛹𝑅1 ,𝑅2
(𝜇1, 𝜎1, 𝜇2 , 𝜎2)               (9) 

where parameters {𝜇𝑘 , 𝜎𝑘}, 𝑘 = 1, 2 describe the lognormal 

statistics of point rain rate at either two locations or two time 

periods of interest. The four parameters at varying 

integration lengths can be estimated from empirical 

distribution function of rainfall rate using the technique 

proposed in [43]. 

IV. INTEGRATION AND DOWNSCALING OF RAIN 
CHARACTERISTICS 

A. Probability of rain occurrence 

To assess the impact of space-time averaging on rain 

intermittence, the theory presented in [34] and the mixed rain 

distribution in Eq. (3) can be used to obtain 𝑃0  at different 

space-time scales. In this paper, 𝑃0  at increasing spatial-

temporal integration lengths ranging from 5 𝑘𝑚 to 75 𝑘𝑚 

and 15 𝑚𝑖𝑛𝑠 to 120 𝑚𝑖𝑛𝑠 at all locations within the studied 

area have been analyzed. Taking Portsmouth as an example, 

the probability of rain occurrence at 96  space-time 

combinations have been calculated and listed in Table 1.  

Whilst it is challenging to derive a physical model for rain 

intermittence, modeling 𝑃0 based on the calculated values is 

more expeditious. Eq. (4) can be used for downscaling 𝑃0  to 

other space and time scales, particularly those smaller than 

radar estimates. 

Table 1: Probability of rain occurrence (%) for increasing spatial-temporal 

integration lengths ranging from 5 𝑘𝑚 to 75 𝑘𝑚 and 15 𝑚𝑖𝑛𝑠 to 120 𝑚𝑖𝑛𝑠 

at Portsmouth. 

 𝑇(𝑚𝑖𝑛𝑠) 

𝐿(𝑘𝑚) 15 𝑚𝑖𝑛𝑠 30 𝑚𝑖𝑛𝑠 45 𝑚𝑖𝑛𝑠 60 𝑚𝑖𝑛𝑠 75 𝑚𝑖𝑛𝑠 90 𝑚𝑖𝑛𝑠 105 𝑚𝑖𝑛𝑠 120 𝑚𝑖𝑛𝑠 

5 𝑘𝑚 18.67 22.86 25.90 28.51 30.55 32.64 34.33 36.07 

10 𝑘𝑚 23.43 28.62 32.28 35.01 37.44 40.04 41.12 43.24 

15 𝑘𝑚 28.64 33.74 37.55 40.32 42.88 44.91 46.74 48.59 

20 𝑘𝑚 32.59 37.93 41.59 44.69 47.14 49.37 51.40 53.14 

25 𝑘𝑚 35.25 40.58 46.15 48.21 51.49 54. 67 56.73 59.23 

35 𝑘𝑚 42.49 48.33 52.25 55.42 57.91 60.11 61.97 63.07 

40 𝑘𝑚 47.86 53.40 55.19 58.11 61.86 63.22 64.01 66.15 

45 𝑘𝑚 48.81 55.64 59.46 62.24 64.66 66.64 69.18 70.62 

50 𝑘𝑚 51.87 56.17 60.18 63.97 65.59 67.17 70.21 71.45 

55 𝑘𝑚 56.51 62.15 65.80 68.48 70.73 72.21 73.51 75.30 

65 𝑘𝑚 60.98 65.52 68.51 70.64 72.30 74.23 75.77 76.45 

75 𝑘𝑚 63.88 69.06 72.41 74.45 76.29 78.79 79.68 80.93 
 

Table 2 and 3 list the fitted coefficient values of Eq. (4)for 

space domain and time domain, respectively. Using these 

coefficients together with values from Table 1, we can 

produce a 3D space-time plot of 𝑷𝟎 distribution as shown in 

Fig. 1. For small space-time scales, it is realistic to assume 
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that 𝑷𝟎(𝑳 → 𝟎, 𝑻 → 𝟎) → 𝟎  and for large scales, 𝑷𝟎(𝑳 →
∞, 𝑻 → ∞) → 𝟏. 

Table 2: Equation 11 fitted coefficients for a range of spatial integration 

lengths at Portsmouth. 

𝑇 (𝑚𝑖𝑛𝑠) 𝑏 𝑐 𝑒 

15 𝑚𝑖𝑛𝑠 88.8065 −0.0219 0.8638 

30 𝑚𝑖𝑛𝑠 84.8571 −0.0233  0.8755 

45 𝑚𝑖𝑛𝑠 81.9313 −0.0239 0.8922 

60 𝑚𝑖𝑛𝑠 79.3851 −0.0248 0.8952 

75 𝑚𝑖𝑛𝑠 77.4635 −0.0256 0.9013 

90 𝑚𝑖𝑛𝑠 75.5877 −0.0268 0.9063 

105 𝑚𝑖𝑛𝑠 74.0168 −0.0277 0.9091 

120 𝑚𝑖𝑛𝑠 72.2612 −0.0283 0.9104 

Table 3: Equation 12 fitted coefficients for a range of temporal integration 

lengths at Portsmouth. 

𝐿 (𝑘𝑚) 𝑏 𝑐 𝑒 

5 𝑘𝑚 90.7081 −0.0239 0.5608 

10 𝑘𝑚 91.3798 −0.0483 0.4792 

15 𝑘𝑚 87.9657 −0.0618 0.4503 

20 𝑘𝑚 83.8751 −0.0614 0.4688 

25 𝑘𝑚 82.8319 −0.0634 0.5011 

35 𝑘𝑚 73.0206 −0.0588 0.5175 

40 𝑘𝑚 65.7772 −0.0588 0.5074 

45 𝑘𝑚 71.0355 −0.0894 0.4796 

50 𝑘𝑚 58.6189 −0.0361 0.6269 

55 𝑘𝑚 58.6876 −0.0738 0.5175 

65 𝑘𝑚 52.7114 −0.0824 0.4781 

75 𝑘𝑚 50.5571 −0.0824 0.5193 

 
Figure 1: Plot of 𝑷𝟎  distribution for increasing spatial and temporal 

integration length at Portsmouth in the southern UK. 

It is therefore adequate to re-evaluate Eq. (4) to produce a 

space-time prediction formula for 𝑃0  in 3D space-time scales: 

𝑃0(𝐿, 𝑇) = 100 − 𝑏𝑒𝑥𝑝(𝑐𝐿𝐿𝑒𝐿 + 𝑐𝑇𝑇𝑒𝑇)          (10)            

From UK NIMROD radar data at Portsmouth, the 

calculated 𝑃0(𝐿 = 1 𝑘𝑚, 𝑇 = 5 𝑚𝑖𝑛𝑠) = 12. 56, whilst the 

estimated 𝑃0(𝐿 = 1 𝑘𝑚, 𝑇 = 5 𝑚𝑖𝑛𝑠)  from Eq. (10) is 

12.18 , giving a difference of 3%. This is deemed to be 

acceptable taking into account the varying space-time 

resolutions. Therefore for Portsmouth, Eq. (10) can be 

expressed as. 

𝑃Portsmoutℎ(𝐿, 𝑇) = 100 − 92.12 ∗ exp (−0.0215 ∗
                                     𝐿0.8211 − 0.0125 ∗ 𝑇0.6383) 1           (11) 

Similar results can be produced for any location within the 

studied region of North West Europe. 

                                                
1 Note: The fitted coefficient values given in Eq. (11) are examples that 

estimate the smaller space-time scales values of interest. So the accuracy for 

B. Statistics of rain  

The statistics of rainfall rate over a grid area were 

computed to obtain the values for each central location. The 

area size 𝒜 = 400 𝑘𝑚 × 400 𝑘𝑚 was chosen as studies in 

[44] have shown that log-normal parameters {𝜇, 𝜎} become 

stable and converge to virtually constant values for any 

combination of spatial and temporal integration lengths 

when 𝒜 >  350 𝑘𝑚 × 350 𝑘𝑚 . Using the technique 

described in [43], the transformed complementary 

cumulative distribution function (CCDF) can be achieved 

together with estimates of the log-normal parameters {𝜇, 𝜎}.  
Fig. 2 shows the test for log-Normality of rainfall rate 

distribution for four locations. The straight lines clearly 

shows that rain rate at each location is log-normally 

distributed. The log-Normality property of rain can be 

observed at other space-time combinations (for brevity other 

results are not presented in this paper). It has also been found 

that the log-normal parameters exhibit monotonous changes. 

To be specific, 𝜇  gradually decreases with increasing 

integration length while 𝜎  shows a completely opposite 

tendency. This paper presents some of the derived values of 

{𝜇, 𝜎}  at Portsmouth with increasing spatial integration 

lengths ranging from 5 𝑘𝑚  to 75 𝑘𝑚  and the temporal 

periods between 15 𝑚𝑖𝑛𝑠  and 120 𝑚𝑖𝑛𝑠  to show these 

tendencies, see Table 4.  

 

Figure 2: Test for log-Normality of rainfall rate distribution for each 

location with space resolution of 5 𝑘𝑚 and time intervals of 15 𝑚𝑖𝑛𝑠. The 

dots are values calculated from measured radar data and the straight lines 

(fitted curves) are transformed CCDF using the fitting method described in 

[43]. 

Fig. 3, as an example, shows that the log-normal 

parameters, in both space and time, can be approximated by 

a second order polynomial: 

𝜓(𝑥) ≈ ∑ 𝑝𝑘𝑥2−𝑘2
𝑘=0                            (12) 

which is appropriate to conveniently downscaled {𝜇, 𝜎} to 

any other space-time scales with reasonable accuracy. In this 

particular example the polynomial coefficients are given in 

Table 5. This polynomial conversion has been used 

extensively to downscale {𝜇, 𝜎}  values to other scales of 

interest and validated using rain rate distribution estimates.  

From the ITU-R P.838-7 [45], rain rate exceedance 

distribution is required by radio communications engineers, 

large scales is relatively low. However, the values are adjustable to meet the 

requirements of users (i.e. other range of scales). 
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and the percentage of exceeded rain rate between 𝑅0.001 and  

𝑅0.01 is of particular important. The study in [41] showed 

that the first and second order moments of rainfall rates are: 

𝐸{𝑅} = 𝑃0exp (𝜇 +
𝜎2

2
) ≡ 𝜇𝑅                   (13) 

and 

𝐸{𝑅2} = 𝑃0exp(2𝜇 + 𝜎2)，                  (14) 

and the variance of 𝑅 is: 

𝜎𝑅
2 = 𝑃0[exp(𝜎2) − 1]exp(2𝜇 + 𝜎2).             (15) 

Therefore the lognormal parameters at other space-time 

scales can be derived as follows: 

𝜇(𝐿, 𝑇) = 𝑙𝑛 (
𝜇𝑅

𝑃0(𝐿,𝑇)
) −

1

2
−

𝑃0(𝐿,𝑇)𝜎𝑅
2(𝐿,𝑇)

𝜇𝑅
              (16) 

𝜎(𝐿, 𝑇) = √1 +
𝑃0(𝐿,𝑇)𝜎𝑅

2(𝐿,𝑇)

𝜇𝑅
                       (17) 

The exceeded rain distribution can be plotted using 

𝑃ℛ{𝑅 > ℛ|ℛ > 0} = 𝑃0(𝐿, 𝑇) × 𝑄 (
𝑙𝑛𝑅−𝜇(𝐿,𝑇)

𝜎(𝐿,𝑇)
)         (18) 

where Q( )is the complementary error function, ℛ is the 

given rain rate and Pℛ  represents the percentage of 

exceedance of that given rain rate. 

 
(a) 

 

 
(b) 

Figure 3: Plot of lognormal distribution parameters 𝜇 for different space 

scales when 𝑇 = 15 𝑚𝑖𝑛𝑠  and different time scales when 𝐿 = 5 𝑘𝑚  (for 

Portsmouth UK): (a) plot of 𝜇, and (b) plot of σ.   

Fig. 4 compares the rainfall rate exceedance distributions 

for Portsmouth at different combinations of space-time 

scales using model-derived {𝑃0 , 𝜇, 𝜎}  and the calculated 

values from measured radar data. The results of three 

combinations ({ 1 𝑘𝑚, 5 𝑚𝑖𝑛𝑠 }, { 2 𝑘𝑚, 10 𝑚𝑖𝑛𝑠 } and 

{3 𝑘𝑚, 15 𝑚𝑖𝑛𝑠 }) are presented.  Fig. 4 show that the 

exceeded rainfall rate distributions yielded by the model and 

calculated from radar measured data are accurate with root 

mean square errors of less than 0.005. The rainfall rate 

exceeded for 0.01%  of time is approximately between 

18 𝑚𝑚/ℎ and 37 𝑚𝑚/ℎ depending on the spatial-temporal 

integration length. In addition, 𝑅0.01  value from ITU-R 

P838-7 is about 45 𝑚𝑚/ℎ for Portsmouth, which is higher 

than the model prediction and values calculated from 

measured data. This is consistent with the findings in many 

other studies. For example, in [46] the authors evaluated 1-

mins rain rate interpolation models and compared the results 

of 𝑅0.01exceedance distribution with ITU-R model for nine 

sites in South Korea. They obtained error percentage of 3.32% 

and 12.59% for 5-mins and 10 mins conversions, 

respectively, to 1 min but the error percentage increases 

rapidly for conversions from longer duration measurements. 

The ITU-R P838-7 model is a general model and therefore is 

not accurate at specific locations.  Hence the ITU 

recommends that users should use their own data to produce 

better results. Assessments show that the model proposed in 

this paper provides good estimates of 𝑃0  at the scale range 

between {100 𝑚, 20 𝑠}  and {35 𝑘𝑚, 60 𝑚𝑖𝑛𝑠} . However 

an assessment of accuracy for all space-time scales could not 

be ascertain due to lack of data at all space-time resolutions. 

Table 4: Experimental value of log-normal distributions for increasing scale 

at Portsmouth. 

 𝑇 = 15 𝑚𝑖𝑛𝑠  𝐿 = 5 𝑘𝑚 

𝐿 (𝑘𝑚) 𝜇 𝜎 𝑇 (𝑚𝑖𝑛𝑠) 𝜇 𝜎 

5 -4.7793 1.8784 15 -4.7793 1.8784 

10 -4.1709 1.6293 30 -4.0058 1.3853 

15 -3.8074 1.3488 45 -2.9180 1.0427 

20 -3.5492 1.1508 60 -2.2292 0.8629 

25 -2.9969 0.9912 75 -1.5284 0.6839 

35 -2.3952 0.7290 90 -1.2615 0.5731 

40 -2.2435 0.6584 105 -0.7931 0.4578 

45 -1.9421 0.5270 120 -0.7043 0.3693 

50 -1.8396 0.5211    

55 -1.7547 0.4439    

65 -1.5247 0.3434    

75 -1.3306 0.2569    
 

 
)  

Table 5: Fitted coefficient values of Eq. (12) for lognormal parameters in 

both space and time domains. 

 𝜇 𝜎 

𝑝1 𝑝2 𝑝3 𝑝1 𝑝2 𝑝3 

Space −0.007 0.1037 −5.2292 0.0003 -0.0493 2.0536 

Time -0.003 0.0810 -5.9859 0.0001 -0.0314 2.2591 

 

 
Figure 4: Complementary cumulative distribution function of rainfall rate 

for different spatial-temporal integration lengths. 

 

To reduce computation time, the authors have created 

databases for users to easily obtain the rain characteristic 

parameter values using Eq. (19) and (20) [33] to convert the 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2983919, IEEE Access

    G. Yang, D.L. Ndzi, A.-H. Al-Hassani, M. Filip, D. Paul: Preparation of Papers for IEEE Access (February 2020) 

2 VOLUME XX, 2020 

coordinates into longitude and latitude values at location of 

interest; 

𝑧(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒) = 0.0658𝑦 − 19.8364                 (19)                                                                                                                                               

𝑧(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = −0.0409𝑦 + 59.430                  (20)                                                                                                                                          

where 𝑦  denotes either row or column number of the 

NIMROD data grid and 𝑧 is the corresponding coordinate 

value in either latitude or longitude.  

 𝑅0.01 has been analyzed over the whole of the British Isles 

using the downscaled data from the proposed model and the 

error percentages (𝐸)  between the model estimates and 

values calculated from UK measured data is calculated using 

𝐸 =
|𝑃𝑣−𝑀𝑣|

𝑀𝑣
× 100%                          (21) 

where, 𝑃𝑣  and 𝑀𝑣  are the model predicted and measured 

values, respectively. 

An example of a contour map of error percentage of 𝑅0.01 

at scale of { 𝐿 = 1 𝑘𝑚, 𝑇 = 5 𝑚𝑖𝑛𝑠 } is presented for 

discussion. Fig. 5 shows that the model accuracy for the 

British Isles is very high with error percentage values 

generally lower than 2.5% except in the south-east of 

England. However, the 𝐸 value tends to be high towards the 

edges of radar scan region due to insufficient data, especially 

in the oceanic area.  

 
Figure 5: Contour maps of error percentage of 𝑅0.01 over the British Isle at 

spatial integration length of 1 𝑘𝑚 and temporal period of 5 𝑚𝑖𝑛𝑠. 

C. Correlation function of rain 

   High frequency wireless networks planning require 

knowledge of the horizontal structure of rain fields and the 

evolution of rain events. The analysis of the correlation 

properties of rain is not always straightforward due to non-
stationary, non-homogeneous and irregular rainfall patterns. 

To simplify the study, the spatial structure of rainfall field is 

usually assumed to be homogeneous and isotropic such that 

the space correlation function only depends on the separation 

distance 𝑑 = |𝐱 − 𝐲|. Given that such assumptions are only 

valid over small areas and short time periods, they allow the 

effects caused by factors such as rainfall field shape as well 

as intermittent sampling of rain events to be avoided.  

   The general empirical equation for both the space and time 

correlation, 𝐶𝑅
𝑒𝑥𝑝(𝑓),  of rainfall rate obtained from 

NIMROD rain radar maps takes the form [34]: 

𝐶𝑅
𝑒𝑥𝑝(𝑓) =

𝑎

𝑎+𝑓𝑛                                (22) 

where 𝑎 > 0  and 𝑛 > 0  are parameters to be determined 

from data and 𝑓  can either be 𝑑  (where 𝑑  represents the 

distance in kilometer) or 𝑡  (where 𝑡  is the time lag in 

minutes).  

   𝐶𝑅
𝑒𝑥𝑝(𝑑)  was analyzed at a range of combinations of 

spatial-temporal integration lengths. Fig. 6 shows a plot of 

the correlation coefficient values as a function of the 

separation distance for four randomly chosen space-time 

scales at Portsmouth. The curves are the best fit curves using 

Eq. (22). The root mean square errors (RMSE) between the 
correlation coefficients derived from measured data and 

those calculated using estimates of 𝑎 and 𝑛 for a number of 

space-time combinations are presented in Table 6. It shows 

that Eq. (22) gives accurate estimates of the correlation 

coefficient values for a wide range of integration scales. 

Longer integration lengths yield higher values than smaller 

ones due to the averaging out of local variations that exist at 

smaller dimensions. The near linear sections in Fig. 6 suggest 

an exponential tendency of the correlation coefficient with 

distance, and this is true for other combinations of space-time 

integration volumes although the results are not presented in 
this paper. It also indicates that the exponential law is 

appropriate for the prediction of rainfall field structure for 

North West Europe.  

Table 6: Coefficient values of space correlation functions of rainfall rate at 

selected spatial-temporal integration length at Portsmouth. 

Integration length    

{𝐿, 𝑇}                  𝑎𝐿                 𝑛𝐿      RMSE 
 

{5 𝑘𝑚, 15 𝑚𝑖𝑛𝑠} 12.92 1.12 0.011 

{10 𝑘𝑚, 30𝑚𝑖𝑛𝑠} 27.93 1.22 0.023 

{15 𝑘𝑚, 45 𝑚𝑖𝑛𝑠} 45.92 1.31 0.037 

{20 𝑘𝑚, 60 𝑚𝑖𝑛𝑠} 58.99 1.34 0.065 

 

 
Figure 6: Space correlation functions of rainfall rate at different space-time 

scales (Portsmouth). 

   Correlation coefficient of rainfall in time, 𝐶𝑅
𝑒𝑥𝑝(𝑡), is also 

an important parameter for the design and implementation of 

fade mitigation techniques, especially for links with high 

elevation paths. Considering rain cloud movement and the 

evolution of rain events, it can be argued that time correlation 

of rainfall is primarily affected by advection. The same as in 

space, 𝐶𝑅
𝑒𝑥𝑝(𝑡) at different integrated space-time scales was 

studied. Fig. 7 shows plots of the calculated and fitted 

correlation coefficients as a function of time. The time 

correlation of rainfall also significantly changes with varying 

spatial-temporal integration lengths. The longer the 

integration time, the smoother the time correlation would be 
due to decreasing variance with increasing integration period. 
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However, the correlation coefficient values become 

unpredictable when the time lag is longer than 1000 𝑚𝑖𝑛𝑠 

and the space resolution exceeds 30 𝑘𝑚 for time resolution 

of 120 𝑚𝑖𝑛𝑠 at one location. It also shows that the fitted 

curves using Eq. (22) agree well with the measured data with 

RMSE ranging from 0.007 for {5 𝑘𝑚, 15 𝑚𝑖𝑛𝑠} to 0.156 

for {20 𝑘𝑚, 60 𝑚𝑖𝑛𝑠}. The best fit coefficient values for 

𝐶𝑅
𝑒𝑥𝑝(𝑡) with increasing space-time scales are given in Table 

7.   

 
Figure 7: Time correlation functions of rainfall rate at different space-time 

scales (Portsmouth). 

Table 7: Coefficient values of temporal correlation functions of rainfall rate 

for different spatial-temporal integration lengths at Portsmouth. 

Integration length    

{𝐿, 𝑇}                  𝑎𝑇                  𝑛𝑇      RMSE 
 

{5 𝑘𝑚, 15 𝑚𝑖𝑛𝑠} 18.75 0.84 0.007 

{10 𝑘𝑚, 30𝑚𝑖𝑛𝑠} 44.03 0.94 0.036 

{15 𝑘𝑚, 45 𝑚𝑖𝑛𝑠} 58.24 0.98 0.073 

{20 𝑘𝑚, 60 𝑚𝑖𝑛𝑠} 72.68 1.01 0.156 

   From Table 6 and 7, it is noted that the coefficients {𝑎, 

𝑛}in both space and time domains increase with increasing 

integration volumes, and this has been confirmed after 

analysis of the integrated data with a wide range of 

combinations of space-time scales between { 5 𝑘𝑚,
15 𝑚𝑖𝑛𝑠} and {20 𝑘𝑚, 60 𝑚𝑖𝑛𝑠}.   

Eq. (22) therefore can be written in the form 

𝐶𝑅
𝑒𝑥𝑝(𝑓) ≅

𝑎𝜓(𝐿,𝑇)

𝑎𝜓(𝐿,𝑇)+𝑓
𝑛𝜓(𝐿,𝑇)                    (23)                                               

with factorable parameters, for a set of values of distance 𝑑 

or time 𝑡. The coefficients 𝑎𝜓(𝐿, 𝑇) and 𝑛𝜓(𝐿, 𝑇) explicitly 

depend on the space resolution, 𝐿,  and time interval, 𝑇 . 

Models that have been derived and proposed in this paper to 
represent these coefficients for all locations at varying space-

time combinations can be expressed as: 

𝑎𝜓(𝐿, 𝑇) ≅ 𝑏1𝐿𝑏2 + 𝑏3𝑇𝑏4 + 𝑏5               (24)                                              

 𝑛𝜓(𝐿, 𝑇) ≅ 𝑐1 + 𝑐2𝑒(𝑐3𝐿𝑐4+𝑐5𝑇𝑐6)              (25)                                          

where 𝑏1, … 𝑏5 ,and 𝑐1, … 𝑐6  can be determined using 

nonlinear least square method.  

   The specific forms of Eq. (24) and Eq. (25) are developed 

primarily to allow efficient computation without significant 

loss of accuracy. However, an assurance of accuracy is based 

on sacrificing algebraic tractability as a result of the 

numerous coefficients involved.  
   Given that UK NIMROD holds another database for the 

British Isles with the higher resolutions of 1 𝑘𝑚 in space and 

5 𝑚𝑖𝑛𝑠  in time, the correlation coefficient values at a 

number of space-time combinations that are smaller than 

{5 𝑘𝑚, 15 𝑚𝑖𝑛𝑠} have been calculated from the data. The 

values of the coefficients in Eq. (24) and Eq. (25) for 

Portsmouth are presented as an example, the fitted 
coefficient values are given in Table 8.  

   A comparison of the correlation coefficient values of 

rainfall rate calculated from measured data and the proposed 

model prediction are presented in Fig. 8. The model 

predictions show high agreement with real measurements at 

different space-time scales for both space and time 

correlation with averaged RMSE of 0.025  in space and 

0.049  in time. This is true for other combinations. This 

shows that Eq. (24) and Eq. (25) can be applied to estimate 

rain characteristic parameters at space and time resolutions 
for which there is no data, particularly at higher resolutions. 

The application of the proposed model also serves to reduce 

the long computing time often required to process data to 

obtain correlation coefficient values of rain at multiple 

space-time scales. 

Table 8: Parameter values of Eq. (24) and Eq. (25) at Portsmouth 

          parameter Space  

correlation 

Time  

correlation 
 

𝑏1 1.6231 1.9714 

𝑏2 1.0010 1.0200 

𝑏3 0.6192 0.7033 

𝑏4 0.8394 0.8810 

𝑏5 0.9010 0.9311 

𝑐1 10 10 

𝑐2 −11.3352 −11.6513 

𝑐3 −0.0846 −0.0893 

𝑐4 0.0513 0.0289 

𝑐5 

𝑐6 

−0.1291 

0.0686 

−0.1216 

0.0701 

 
 

 
(a) 

 

 
(b) 

Figure 8: Comparison of measured and model predicted correlation 

function of rainfall rate at Portsmouth, (a) is space correlation, and (b) is 

time correlation. 
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V. CONCLUSIONS 

This paper has proposed a numerical models that can be used 

to predict point rainfall rate in space and time simultaneously, 

particularly at higher resolutions than are currently available 

from NIMROD rain radar. Dynamic description of the 

parameters associated with rain field estimates has been 

presented with extensive investigation of area-time average 

of rainfall rate. This is because integration over varying 

spatial and temporal integration lengths changes the first and 

second order statistics of rainfall rate and thus rain-induced 

attenuation on radio links. 

The paper has proposed a set of empirical equations that can 

be used to estimate rain parameters at varying space-time 

scales with fairly high accuracy. The results have been 

validated by comparing model predictions with values 

calculated from measured data. Databases of rain parameters 
spanning North West Europe have been produced for users 

to conveniently obtain rain rate information at any location 

of interest for any combination of spatial-temporal 

integration lengths. This offers great convenience as almost 

no computation time is required. Given these databases, the 

prediction of rain characteristics at other space-time 

resolutions, especially those that are not available from rain 

radar measurements, can be obtained. The accuracy was 

tested by analyzing the rain rate exceedance distribution at 

different space-time scales and the model validity is for 

space and time scales between {100𝑚, 20𝑠}  and {35𝑘𝑚,
60𝑚𝑖𝑛𝑠}.  

A contour map of the error percentage (𝐸) of exceeded 

rain rate value of 𝑅0.01 for the British Isle at the scale of {𝐿 =

1 𝑘𝑚, 𝑇 = 5 𝑚𝑖𝑛𝑠} has been presented and the results show 

that the error percentage is very low for the continental area 

where the calculated 𝐸  is less than 3% for all areas apart 

from the south-east of England. It has also been noted that 

the 𝐸 values tend to be high towards the edges of radar scan 

region, such as the oceanic area due to low availability or 

lack of data. An empirical model to estimate the correlation 

coefficient values at any location for a wide range of time 

and space separation and validated using measured data. The 

model estimates the correlation coefficient with RMSE of 

less than 0.03 in space and 0.05 in time. The model will not 

only help researchers and practitioners estimate values at 

time and space separations at which they may not have data 

but reduce the time it takes to compute the values from 

measured data.  

The models proposed in this paper will assist engineers 

and scientists in developing a number applications, e.g. 

allocating additional satellite resources to mitigate against 

adverse weather conditions, site diversity techniques and 

instantaneous joint fade experienced by all links in a 

microwave network, etc.. It is particularly true for satellite 

network systems where the optimization of an adaptive 

onboard common resource-sharing system and fade 

mitigation technique require detailed knowledge of the 

space-time characterization of rain fields. The models 

proposed in this paper can be applied to a detailed study of 

rain attenuation statistics at any location in North West 

Europe. 
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