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The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the
astrophysical r process in producing nuclei heavier than A ∼ 190. Despite their importance, the structure
and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear
reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in
207Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics. The radioactive
beam of 206Hg was delivered to the new ISOLDE Solenoidal Spectrometer at an energy above the Coulomb
barrier. The spectroscopy of 207Hg marks a first step in improving our understanding of the relevant
structural properties of nuclei involved in a key part of the path of the r process.

DOI: 10.1103/PhysRevLett.124.062502

The nucleus 207Hg lies in the almost completely unex-
plored region of the nuclear chart below proton number 82
and just above neutron number 126, both “magic” numbers
representing closed shells in the nuclear shell model [1].
The doubly magic nucleus 208Pb is the cornerstone of this
region, a benchmark nucleus in our understanding of the
single-particle foundation of nuclear structure. This region,
highlighted on the nuclear chart in Fig. 1, is unique in that
its single-particle structure remains unexplored.

The nucleosynthesis of heavy elements via the rapid
neutron-capture (r-) process path [6] crosses this region, as
shown in Fig. 1. The robustness of the N ¼ 126 neutron
shell closure plays a crucial role in the nucleosynthesis of
the actinides [7–11]. The recent observation of a neutron
star merger has provided a new focus of interest [12,13],
suggesting a possible astrophysical environment for r-
process nucleosynthesis [14–17].
Approaching the r-process path along the N ¼ 126

isotonic chain from Pb, the binding energies (the degree
to which neutrons are bound by the mean-field potential
created by the decreasing number of all other nucleons)
decrease, eventually crossing zero binding and becoming
unbound. Near closed shells, the level density is low, so the
usual statistical assumptions of many resonances parti-
cipating in neutron capture are not valid, and specific
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nuclear-structure properties become important. Knowledge
of ground-state binding energies of nuclei withN ¼ 126þ n
is important in defining the waiting point caused by the
N ¼ 126 closure, the bottleneck which is responsible for
the third peak in solar system elemental abundances at nuclear
mass A ∼ 195 [18]. The binding energies are critical to how
the r process evolves. The energies of ground and excited
states have significant consequences for the rate atwhichdirect
s-wave and p-wave (and possibly d-wave) neutron-capture
ðn; γÞ reactions proceed [19–21]. This was discussed recently
in the context of the N ¼ 82 shell closure in Ref. [22].
As zero binding is approached, the energies of s orbitals

increase less rapidly than those of states with higher angular
momenta [23]. This behavior has been studied for light
nuclei [24,25] and, in the vicinity of N ¼ 126, it is likely to
play an important role in neutron-capture reactions. Direct
measurements of properties of nuclei in the r-process path
in this region will not be possible for many years, if not
decades. Experimentally, this region of the nuclear chart has
remained largely inaccessible. Fragmentation and isotope
separation online, which are the methods of choice at current
and next generation radioactive ion beam facilities, only
produce low-intensity beams of neutron-rich (N ≥ 126)
nuclei below 208Pb. Techniques that could produce these
nuclei with significant yields, such as multinucleon transfer,
look promising although technological developments are
necessary tomanipulate the reactionproducts for spectroscopy

]26,27 ]. New data on 207Hg mark a first step in the study of
these systems.

Only one transfer-reaction study has probed the Z < 82,
N > 126 region using a long-lived radioactive target of
210Pb [28], providing some limited information on proton-
hole states in 209Tl. Beyond the simple existence of some
nuclei, derived from decay studies, only limited knowl-
edge of a few excitations in 208−210Tl (neighboring Pb
isotopes) and 208;210Hg are known [4,29]. Most recently,
γ-ray transitions have been seen in 211;213Tl [30]. In no
instance is any direct knowledge of single-neutron struc-
ture known. All that has been previously established
about 207Hg, the next even-proton member of the N ¼
127 isotonic chain below Pb, is an estimate of its lifetime
(T1=2 ¼ 2.9 m), its mass [31,32], and that its ground state
decays via β decay.
In this work, we report the first study of single-neutron

excitations beyond N ¼ 126 for elements below Pb,
achieved using a transfer reaction in inverse kinematics
with a radioactive beam of 206Hg, accelerated to energies
above the Coulomb barrier for collisions with deuterium.
This study was made possible by new advances in
technology at the ISOLDE radioactive-beam facility at
CERN [33–35] and with the development of the ISOLDE
Solenoidal Spectrometer (ISS) [36] based on a technique
pioneered at Argonne National Laboratory (ANL). As
was demonstrated with HELIOS at ANL [37], factors of
2–3 improvements in Q-value resolution can be achieved
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FIG. 1. Chart of nuclides color coded to show the stable nuclei (288) in black and nuclei that have been shown to exist in gray (∼3350).
Approximately 7000 nuclei, inside the drip lines, are predicted to exist [2]. Nuclei estimated to be involved in the astrophysical r process
[3] are shown in blue. The isotope 207Hg is marked with a red asterisk, lying in the region shaded yellow with boundaries at Z ¼ 82 and
N ¼ 126. The bold lines show the traditional magic numbers. The inset shows the region around 207Hg. In the inset only, nuclei with at
least one known excited state (∼2100 across the entire chart) are shown in green [4,5].
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in the study of these types of reactions using the
solenoidal-spectrometer technique [38,39].
In this study, about 6000 protons were identified from

the 206Hgðd;pÞ207Hg reaction. These result from the bom-
bardment of approximately 1.5 × 1011 206Hg ions with
deuterated polyethylene targets of nominal thickness
165 μg=cm2 at a rate of around 3 to 8 × 105 206Hg ions
per second and an energy of 1.52 GeV (7.38 MeV=u), the
highest energy available at the time.
The preparation of the radioactive Hg ions is described

elsewhere [40,41]. The Hg ions (46þ) were injected into the
REX/HIE-ISOLDE linear accelerator in bursts of width
∼800 μs, every 450 ms. The beam was contaminated with
130Xe at a level of < 2%. The level of the Xe impurity was
determined from background runs with the ion-source
lasers off. A measurement using a pure 130Xe beam, at
the same MeV/u as the Hg, was carried out to corroborate
this.
Thin deuterated polyethylene targets are susceptible to

damage even with relatively low (≪ 109 pps) intensity
beams. The damage is reasonably well characterized for
light and medium mass beams [42,43] but not for heavier
beams. In the experiment described here, the target was
replaced every 4 h, on average, resulting in the use of 20
targets in the 82-h duration. No evidence of target degra-
dation was observed via elastically scattered deuterons and
carbon ions in a monitor detector.
The ISS, in this first stage of its development, was set up

in a manner similar to that described in Ref. [43] using the
HELIOS detector system. A 2.5-T magnetic field was used.
The data acquisition was triggered by signals in the on-axis
Si array [37]. A signal from the REXEBIS was used to gate
the data acquisition system during the beam release,
disabling it during the charge-breeding process. This sup-
pressed spurious background, such as α decays present due
to nuclei produced in fusion-evaporation reactions.
The excitation-energy spectrum for 207Hg is shown in

Fig. 2 both with and without a background subtraction. The
background is predominately prompt protons from fusion-
evaporation reactions of the beam and 12C in the target. The
Q-value resolution was ∼140 keV FWHM. The spectrum
represents a sum of all detectors on the Si array which
corresponds to center-of-mass angles, 20°≲ θc:m: ≲ 40°.
From the data, seven states have been observed below

3 MeV, which are associated with adding a neutron in the
vacant 1g9=2, 2d5=2, 3s1=2, 2d3=2, and 1g7=2 orbitals beyond
N ¼ 126, as shown in Table I. The high-j 0i11=2l ¼ 6

strength, estimated to lie at around 0.8 MeV, is not seen; at
an incident beam energy of 7.38 MeV=u, (d,p) yields
corresponding to l ¼ 6 transfer are expected to be <10

counts (for a pure single-particle state) in total. The
negative parity 0j15=2 orbital is expected to lie around
1.2 MeV, but yields would be smaller still. The absolute
cross sections have uncertainties of around 30%. Only

relative cross sections were used in the analysis, which are
known to better than 5%.
Calculations used to extract spectroscopic factors and

predict angular distributions were performed using the
distorted-wave Born approximation (DWBA) with the
code PTOLEMY [45]. The bound-state form factors were
taken from Ref. [46] and optical-model potentials from
Refs. [47,48] were used. Normalized spectroscopic factors
are listed in Table I; the uncertainties are dominated by the
relative variation due to different choices in the optical-
model potentials.

TABLE I. Excitation energies, tentative l and Jπ assignments,
and normalized spectroscopic factors S for states assigned to
207Hg. The normalization is such that the 3s1=2 strength is equal to
unity.

E (keV) l Jπ nls S

0 4 9=2þ 1g9=2 0.82(13)
1195(20) (2) (5=2þ) (2d5=2)

a 0.47(9)
1600(45) (2) (5=2þ) (2d5=2)

a 0.13(2)
1810(20) (2) (5=2þ) (2d5=2)

a 0.42(7)
1960(30) (0) (1=2þ) (3s1=2) ≡1.00
2335(20) (2) (3=2þ) (2d3=2) 1.00(17)
2530(20) (4) (7=2þ) (1g7=2) 0.62(12)
aThe centroid of the 2d5=2 strength lies at 1500(50) keV, withP

C2S ¼ 1.02ð17Þ.
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FIG. 2. (a) The low-lying excitation-energy spectrum of 207Hg
as measured via the (d,p) reaction on 206Hg at 7.38 MeV=u.
States are labeled by their energies in keV and l value. (b) Same
spectrum with a linear background subtracted and with fits
shown [44].

PHYSICAL REVIEW LETTERS 124, 062502 (2020)

062502-3



The calculated angular distributions are fitted to the
experimental data in Fig. 3. While at 7.38 MeV=u the
distributions are relatively indistinct, tentative l-value
assignments have been made. Each state was fitted with
l ¼ 0, 2, and 4 shapes using a χ2 minimization technique.
The l value for the resulting best-fit shape was adopted.
In the case of the l ¼ 0 state, while having the smallest χ2,
the value was similar to the values for l ¼ 2 and 4, but
because of its large cross section, an assignment other than
l ¼ 0would cause serious inconsistencies in the sum rules.
The ground state is identified as l ¼ 4 and corresponds to
Jπ ¼ 9=2þ. The states at 1195, 1600, and 1810 keV are
assigned as l ¼ 2, which is similar to the pattern seen in
Z ¼ 84, 211Po [49]. The core 2þ excitations in 206Hg and
210Po are at similar energies of ∼1.1 MeV. This can cause
fragmentation of the excited states and is likely to be
responsible for the three 5=2þ fragments and for any other
fragmentation of the 2d3=2 and 1g7=2 strengths. The details,
of course, depend on specific structural considerations.
The 3s1=2 strength is carried by the state at 1960 keV, and
the l ¼ 2 transfer to the 2335-keV state is presumed to
carry the full 2d3=2 strength, lying just over 0.8 MeVabove
the 2d5=2 centroid. The state at 2530 keV is populated via

l ¼ 4 transfer and is assigned Jπ ¼ 7=2þ, a major frag-
ment of the spin-orbit partner to the ground state.
A sum-rule analysis of the spectroscopic factors gives a

consistent picture of the assignments. The spectroscopic
factors in Table I are normalized, arbitrarily, such that the
1960-keV l ¼ 0 transition has S≡ 1.00. The summed
strength for 1g9=2, 2d5=2, 3s1=2, 2d3=2, and 1g7=2 are then
0.82(13), 1.02(14), 1.00, 1.00(17), and 0.62(12), respec-
tively, implying that the bulk of the strength is carried by
these states. The observed 1g7=2 strength is notably lower
than others, suggesting fragments of this strength lie at
higher excitation energy than was probed here. The order-
ing of states is consistent with trends seen in 209Pb and
211Po, and that expected of single-neutron orbitals outside
of the N ¼ 126 shell closure.
Figure 4 shows the experimentally determined binding

energies of the 1g9=2, 2d5=2, 3s1=2, 2d3=2, and 1g7=2 orbitals
for 207Hg, and those of 209Pb and 211Po from (d,p)-reaction
data. For Pb and Po, the 0i11=2 and 0j15=2 excitations are
also known.
The binding energies of the neutron orbitals at N ¼ 127

have been calculated using a Woods-Saxon potential, with
an asymmetry term in the potential depth as defined in
Ref. [53]. The potential depth, spin-orbit strength, radius,
and diffuseness parameters were determined by fitting them
to the experimental data for the five known single-particle
centroids in 207Hg and the seven in 209Pb. The rms deviation
of the fit from the experimental data was ∼200 keV and
yielded physically sensible parameters.
The binding energies of the ground and excited states,

using the parameters derived from the fitting described
above, were extrapolated to zero binding along N ¼ 127.
These extrapolations suggest that below Gd (Z ¼ 64),
N ¼ 127 nuclei are unbound. The uncertainties on this
approach are about two units of Z. This assumption
depends on the robustness of the closed shell at N ¼ 126.
Indeed, above Pb, the 2þ energies are essentially constant
through to Th (Z ¼ 90), beyond which there are no data [4].
Heavier Th isotopes away from the closed shell are known
to exhibit strong quadrupole deformation, much like the
neutron-rich rare-earth nuclei (Z ≲ 70), but the shell closure
seems to restore the spherical shape.
For the ground states, results from the Woods-Saxon

calculations, constrained by the new experimental data, are
compared to results from 21 models used for determining
Sn that are commonly used in r-process calculations [50].
These are shown by the gray band in Fig. 4. Two models
close to the extremes with regards to predicting zero binding
energy at N ¼ 127 nuclei are highlighted, UNEDF (univer-
sal nuclear energy density functional) [51] and FRDM
(finite-range droplet model) [52]. The latter agrees well with
the simple Woods-Saxon extrapolation guided by the exper-
imental data.
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The Woods-Saxon calculations suggest that between
Gd (Z ¼ 64) and Er (Z ¼ 68) there are no bound excited
states in these N ¼ 127 nuclei. If there are no bound
excited states and only a bound 9=2þ ground state, it is
difficult to see how capture would proceed. The level
density in the continuum will be very low and the usual
statistical estimates are not applicable. Direct capture can
take place if there is an appreciable component of odd-
parity phase shifts with l ¼ 4� 1. But such single-neutron
excitations are far from the neutron threshold. Direct
capture with higher than an E1 multipole is inhibited
[20]. In odd-Z nuclei, a member of a multiplet coupled
to an h11=2 proton hole may provide a basis for a neutron
capture and subsequent β decays. A microscopic descrip-
tion of the bottleneck for the r process will need consid-
erably more data to allow for a more quantitative
description. The bottleneck for N ¼ 126 appears to be
more significant than for N ¼ 82, where for N > 82 there
are odd-parity p orbitals [22].
Referring back to the r-process path shown in Fig. 1, the

N ¼ 126 bottleneck starts around Z ¼ 54, and capture
reactions beyondN ¼ 126, starting in the first few tenths of
a second into the r process, occur around Z ¼ 64� 2.
The Woods-Saxon calculations shown here, constrained to
new data at 207Hg which includes excited states, are broadly
in line with this picture. The UNEDF0 and FRDM2012
models used to predict the neutron separation energy also
agree with the experimental data at 80 < Z < 84, the latter
consistent with the Woods-Saxon calculations when
extrapolated to low Z.
Beyond knowing the ground-state binding energy,

knowledge of the excited states in 207Hg offers a first

glimpse of the changes of shell structure of this region,
changes that might impact the r process. This work marks
the first exploration of the structure of the N ¼ 127 nucleus
207Hg, and paves the way for future experimental studies
of this region with the new ISS at ISOLDE and at next
generation radioactive ion beam facilities about to come
on-line.
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