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24 ABSTRACT

25 The first find of micro-diamond in the Nordøyane UHP domain of the Western Gneiss 

26 Region (WGR) of the Scandinavian Caledonides reshaped tectonic models for the region. 

27 Nevertheless, in spite of much progress regarding the meaning and significance of this 

28 find, the history of rock that the diamonds were found in is complex and still largely 

29 ambiguous. To investigate this, we report U-Pb zircon ages obtained from the exact 

30 crushed sample material in which metamorphic diamond was first found. The grains 

31 exhibit complicated internal zoning with distinct detrital cores overgrown by 

32 metamorphic rims. The cores yielded a range of ages from the Archean to the late 

33 Neoproterozoic/early Cambrian. This detrital zircon age spectrum is broadly similar to 

34 detrital signatures recorded by metasedimentary rocks of the Lower and Middle 

35 allochthons elsewhere within the orogen. Thus, our dating results support the previously 

36 proposed affinity of the studied gneiss to the Seve-Blåhø Nappe of the Middle 

37 Allochthon. Metamorphic rims yielded a well-defined peak at 447 ± 2 Ma and a broad 

38 population that ranges between c. 437 and 423 Ma. The data reveal a prolonged 

39 metamorphic history of the Fjørtoft gneiss that is far more complex then would be 

40 expected for an UHP rock that has seen a single burial and exhumation cycle. The data 

41 are consistent with a model involving multiple such cycles, which would provide 

42 renewed support for the dunk tectonics model that has been postulated for the region. 

43

44 Key words: geochronology, Western Gneiss Region, ultrahigh pressure metamorphism 

45

46 1. Introduction
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47 The Scandinavian Caledonides is an archetypal collisional orogen, containing some of the 

48 world’s best preserved and most spectacular examples of deeply buried continental rocks. 

49 The mountain belt formed between the late Cambrian (Furongian) to early Ordovician 

50 and the late Silurian to early Devonian (e.g. Gee et al. 2013 and references therein), when 

51 the Iapetus basin contracted towards closure and multiple subduction-collision events 

52 occurred between the hyper-extended margin of Baltica and the outboard terranes (island 

53 arcs and/or microcontinents). The terminus of this period was the collision between 

54 Baltica and Laurentia, with the former undergoing transient subduction deeply beneath 

55 the latter (e.g. Krogh, 1977; Andersen et al. 1991; Brueckner & van Roermund, 2004; 

56 Majka et al. 2014). The various subduction-collision processes produced a multitude of 

57 (ultra-)high pressure (UHP-HP) rock types yielding various ages of peak metamorphism. 

58 The most pronounced of the early (late Cambrian and early to mid-Ordovician) UHP-HP 

59 events are those recorded in the Middle Allochthon (sensu e.g. Gee et al. 2010), which is 

60 exposed along the entire length of the Scandinavian Caledonides. UHP rocks are 

61 currently known from several localities spanning almost the full length of the outcrop of 

62 the Middle Allochthon, a few of which contain well-established metamorphic 

63 microdiamond (e.g. Smit et al. 2010; Janák et al. 2013; Majka et al. 2014; Gillio et al. 

64 2015; Klonowska et al. 2016, 2017; Bukała et al. 2018). While these occurrences are 

65 widely spaced and UHP metamorphism may not have been continuous or exactly 

66 contemporaneous between them, subduction of the Baltica continental margin was clearly 

67 an important and widespread process during the Caledonian orogenic cycle prior to the 

68 final Scandian collision.
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69 Vestiges of the Middle Allochthon also occur as deep infolds or tectonic intercalations 

70 within the largest UHP-HP province in the Scandinavian Caledonides (Terry & 

71 Robinson, 2004; Robinson et al. 2014), the Western Gneiss Region (WGR), which is a 

72 large tectonic window in which the Baltic cratonic margin, intensively reworked, 

73 emerges in the hinterland through the pile of allochthons. This giant UHP terrane 

74 represents the deeply subducted margin of Baltica (Krogh, 1977; Cuthbert et al. 1983). 

75 Here, the Middle Allochthon is intimately associated with HP or UHP Baltica basement 

76 rocks (Terry & Robinson, 2004). Differences between the ages for UHP metamorphism 

77 in the Middle Allochthon in Sweden (Ordovician) and in the basement orthogneisses of 

78 the WGR (latest Silurian to early Devonian) suggest that inliers of the Middle Allochthon 

79 in the WGR could have undergone both Ordovician and Silurian-Devonian 

80 metamorphism and thus may have been subducted at least twice during the Caledonian 

81 orogenic cycle.

82 The possibility of dual or even multiple subduction episodes was embodied in the ‘dunk 

83 tectonics’ evolutionary model proposed by Brueckner & van Roermund (2004) and 

84 Brueckner (2006) and revived by Majka et al. (2014), in which a continental margin is 

85 repeatedly subducted into the mantle (‘dunked’) during successive collisions with arcs 

86 and continental fragments during ocean closure, including the climactic final continental 

87 collision. The dunk tectonics model predicts repeated UHP-HP metamorphism across 

88 laterally extensive domains of the terranes now dispersed among the thrust stack in the 

89 orogenic foreland. If this is the case, the early to mid-Ordovician subduction-related 

90 metamorphism recorded in the Seve nappes exposed in Sweden (e.g. Janák et al. 2013; 

91 Klonowska et al. 2017; Bukała et al. 2018) should also have affected the Blåhø Nappe 
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92 (Middle Allochthon) in the WGR, but would have been strongly overprinted by the late 

93 Silurian-Devonian ‘Scandian’ collision between Baltica and Laurentia and the resulting 

94 (U)HP metamorphism that is so spectacularly recorded in the WGR basement. Tracing 

95 this early subduction record into the highest-grade domains of the WGR deep within the 

96 orogenic core has, indeed, proved difficult thus far. (U)HP rocks in these domains mostly 

97 belong to the Baltic basement and record only Siluro-Devonian (Scandian; 425-400 Ma) 

98 overprinting. However, a well-known but enigmatic occurrence of high-grade pelitic 

99 gneiss outcropping in the Nordøyane area of western Norway has yielded microdiamond 

100 (Dobrzhinetskaya et al. 1995) and thus shows petrological similarity to some metapelitic 

101 UHP rocks in the Seve Nappe Complex near the Caledonide foreland (Klonowska et al. 

102 2017). To trace the history of high-grade allochthonous rocks in the WGR and ultimately 

103 test the efficacy of the dunk tectonics model, we subjected zircon from this unusual 

104 lithology to U-Pb zircon chronology. These rocks have long been ascribed to the Seve-

105 Blåhø Nappe of the Middle Allochthon (e.g. Krill, 1985) and thus may provide a record 

106 of earlier metamorphic cycles that are otherwise overlooked or lacking.

107

108 2. Geological setting

109 This study focuses on high-grade gneisses exposed within the northern part of the WGR 

110 (Fig. 1a) - a giant Baltic (U)HP terrane exposed in the high-grade core of the 

111 Scandinavian Caledonides of western Norway (e.g. Hacker et al. 2010, 2015). The WGR 

112 is predominantly composed of felsic-to-intermediate orthogneisses and psammitic 

113 metasediments with Mesoproterozoic and Neoproterozoic protoliths derived from the 

114 Fennoscandian craton and its pre- to syn-orogenic metasedimentary cover (the ‘para-

Page 5 of 56 Proof For Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Proof For Review

115 autochthon’) rocks (e.g. Krill, 1980, 1985; Gaal & Gorbatschev, 1987; Tucker et al. 

116 1991, 2004; Robinson et al. 2014; Young, 2018). Near the southeastern margin of the 

117 WGR, the terrane is dominated by rocks resembling the pristine Baltican basement rocks 

118 of the foreland. Towards the northwest and west, however, the basement rocks are 

119 intensely Caledonized, i.e. reworked by Caledonian tectonism and metamorphism, and 

120 show widespread evidence for (U)HP metamorphism, mainly in the form of abundant 

121 pods of eclogite, but also HP or UHP felsic rocks (Krogh, 1977; Griffin & Brueckner, 

122 1985; Cuthbert et al. 2000; Hacker et al. 2010). In the highest-P parts of the WGR 

123 several isolated bodies of mantle-derived ultramafic rocks including dunite, garnet 

124 peridotite and garnet pyroxenites appear (e.g. Brueckner et al. 2010), reinforcing the 

125 evidence that the WGR rocks have been subducted into the mantle. The eclogite-facies 

126 mineral assemblages have been pervasively overprinted by amphibolite and granulite-

127 facies parageneses associated with exhumation, decompression, partial melting and late 

128 flattening and shearing (Wilks & Cuthbert, 1994; Labrousse et al. 2002; Hacker et al. 

129 2010). However, the overprint was not total and fresh eclogite bodies are still frequent 

130 across the WGR.

131 An exceptional effort in multi-method chronology during the past decades has 

132 constrained the age of (U)HP metamorphism to between 425 and 400 Ma, i.e. during the 

133 Scandian Orogeny (Hacker et al. 2010, and references therein). During this time, the 

134 hyper-extended Baltic margin was buried beneath the Laurentian continental lithosphere 

135 at rates of c. 5 mm yr-1 (Cutts & Smit, 2018), ultimately reaching depths of 100 km or 

136 more (Hacker et al. 2010 and references therein). The (U)HP stage was followed by 

137 amphibolite-facies overprinting between 400-385 Ma (Terry et al. 2000; Kylander-Clark 
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138 et al. 2008; Krogh et al. 2011) and cooling below 400°C by c. 375 Ma (Hacker & Gans, 

139 2005; Root et al. 2005; Walsh et al. 2013).

140 The WGR basement is bounded by the major Caledonide thrust complexes of the Middle 

141 and Upper Allochthons. The Middle Allochthon comprises discrete lithotectonic units 

142 that vary along the orogen. In southern Norway it is dominated by Proterozoic crystalline 

143 complexes with metasandstones, e.g. the Jotun Nappe Complex, Lindås and Jaeren 

144 Nappes. In central and northern Sweden and northern Norway Caledonian high-grade 

145 rocks, e.g., migmatite, granulite, metasandstone, augen gneiss, amphibolite and eclogite 

146 of the Seve and Kalak Nappe Complexes dominate (see e.g. Gee et al. 2013 and 

147 references therein). The Middle Allochthon is interpreted to represent the distal 

148 continental margin of Baltica and may include micro-continental fragments (Cuthbert et 

149 al. 1983; Emmett, 1996; Andersen et al. 1991; Gee et al. 2010, 2013). The Upper 

150 Allochthon contains a diverse assemblage of ophiolite and arc rocks that originated 

151 outboard of Baltica within the Iapetus Ocean between 490-440 Ma (Stephens & Gee, 

152 1985, 1989; Stephens, 1988).

153 Both allochthons underwent reworking and final emplacement onto the Baltican 

154 continental margin during the Scandian collision. In addition, however, they show 

155 evidence of earlier tectonometamorphic episodes. In the large Seve Nappe Complex in 

156 Sweden, as well as in small slivers of allochthonous rocks in southwesternmost Norway, 

157 this is indicated by (U)HP metamorphism at c. 460 – 445 Ma, which has been attributed 

158 to a pre-Scandian arc-continent collision (e.g. Brueckner et al. 2004; Brueckner & Van 

159 Roermund, 2004, 2007; Smit et al. 2010; 2011; Majka et al. 2012, 2014; Root & Corfu, 

160 2012; Grimmer et al. 2015; Klonowska et al. 2016, 2017; Fassmer et al. 2017). Yet older, 
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161 c. 500-485 Ma, (U)HP metamorphic rocks are also recognized in the Seve Nappe 

162 Complex of northern Sweden (Mørk et al. 1988, Root & Corfu, 2012, Barnes et al. 

163 2019).

164 In the foreland regions of southern Norway, and central and northern Sweden an 

165 additional nappe complex, the Lower Allochthon, underlies the Middle Allochthon and 

166 comprises thrusted repetitions of basement and sedimentary cover derived from the 

167 Fennoscandian shield (hereafter termed the Baltican basement). These rocks record the 

168 long-lived thrusting of the allochthons onto the Baltic margin during the Scandian. 

169 Outcropping within the high-grade sections of the Baltican basement in the WGR are 

170 belts (inliers) of more diverse lithological assemblages including psammitic and pelitic 

171 metasediments, anorthosites and distinctive megacrystic augen gneisses. Such 

172 assemblages may represent basement-cover repetitions derived from the Baltica slab (i.e. 

173 Lower Allochthon), although they commonly also exhibit lithological similarities with 

174 the Middle Allochthon in the main allochthon exposures (Krill, 1980; Robinson, 1995; 

175 Robinson et al. 2014). 

176 These inliers of the allochthons are conventionally regarded as being above the main 

177 mass of orthogneisses in the tectonostratigraphy and down-folded into these (Krill, 1985; 

178 Tucker et al. 2004; Robinson & Hollocher, 2008). The complete sequence is (from base 

179 to top above the Baltican basement) the Risberget nappe (augen orthogneisses, 

180 anorthosites, metagabbros); Saetra Nappe (quartzite with deformed dykes of 

181 metadolerite); Blåhø Nappe (high grade metapelite, calc-silicate, marble, amphibolite and 

182 mafic granulite); Støren Nappe (ophiolitic and arc rocks of greenschist to low 

183 amphibolite facies). The last of these is part of the Upper Allochthon, while the others are 
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184 correlated with the Middle Allochthon. The Blåhø Nappe is correlated with the high-

185 grade Middle Seve Nappe in the main allochthon outcrop in central and northern Sweden. 

186 Their structural evolution has been established in the north-eastern WGR in the 

187 Trollheimen-Trondheim district (Robinson et al. 2014), where tectonostratigraphic units 

188 of the Middle Allochthon were thrust over the Baltican basement, then this combined 

189 sequence was folded to form a basement cored nappe that was translated eastwards 

190 towards the foreland along the late, out-of-sequence, Storli Thrust. The nappe core 

191 contains eclogite dated at 425 ± 10 Ma (Beckman et al. 2013), but the lower basement 

192 unit below the thrust is devoid of eclogite. The same sequence can be traced to 

193 Moldefjord and the southern part of the Nordøyane, far to the west (Fig. 1; see also 

194 Robinson, 1985). A similar structural evolution was demonstrated by Young (2018) in 

195 the central WGR, where allochthonous rocks (‘mixed rocks’) were tectonically 

196 imbricated and infolded following emplacement onto the Baltica basement along major 

197 foreland-vergent shear zones.

198 The allochthons have also been mapped out eastwards into the main allochthon outcrop 

199 in the frontal zone in central Sweden (e.g. Gee et al. 2010). Here, the Middle Allochthon 

200 is more continuously exposed, is several km thick and bounded by major thrusts. In the 

201 WGR, however, these nappes are either extremely attenuated to a few meters in thickness 

202 or excised entirely (Robinson, 1995). In the Trondheim area and southwestwards to 

203 Moldefjord the upper boundary of the Middle Allochthon against the Upper Allochthon is 

204 a major west-vergent, late orogenic ductile detachment fault, the Agdenes Detachment 

205 (Robinson et al. 2014).

206
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207 2a. Nordøyane ultra-high pressure domain

208 The sample investigated here comes from the island of Fjørtoft (Fig. 1b) in the 

209 Nordøyane archipelago, immediately west of Moldefjord, which lies within the 

210 northernmost UHP domain of the WGR (Root et al. 2005). The Middle Allochthon 

211 sequence established in the Trollheimen-Moldefjord area has been mapped across the 

212 Nordøyane by Terry & Robinson (2003, 2004). The lithology of interest is a pelitic 

213 garnet-kyanite gneiss in an assemblage also including biotite-garnet migmatite, calc-

214 silicate, marble and eclogite, all correlated with the Blåhø Nappe. The structural and 

215 fabric evolution in the Nordøyane provides key constraints in the interpretation of the 

216 zircon dating set out in the following sections.

217 There are two major structural domains in Nordøyane (Terry & Robinson, 2013, 2014) 

218 separated by a major late-orogenic, steep sinistral discontinuity, the Åkre-Midøy shear 

219 zone. To its south the structural evolution resembles the situation in Trollheimen and 

220 Moldefjord. The northern structural domain has been brought in against the southern 

221 domain from the NE by motion along the Åkre-Midøy shear zone (Terry & Robinson, 

222 2003, 2004). Evidence for UHP metamorphism is found in the Baltican basement, the 

223 allochthons and in mantle-derived ultramafic massifs (Dobrzhinetskaya et al. 1995; Terry 

224 et al. 2000; Carswell et al. 2006; Vrijmoed et al. 2006; Spengler et al. 2009; Butler et al. 

225 2013). The Middle Allochthon is only represented by the Blåhø Nappe, which has been 

226 folded into the core of a large recumbent, isoclinal synform with dioritic to granitoid 

227 gneisses of the Baltican basement on either limb (Terry & Robinson, 2004). The contact 

228 is coincident with an eclogite- (or high-P granulite-) facies shear zone that extends 

229 through Blåhø and a few hundred meters into the adjacent basement, and in which 
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230 mylonite lineations and rotated porphyroclasts show top-SE shear sense when the folds 

231 are restored to pre-folding geometry (Terry et al. 2000a; Terry & Robinson, 2004). These 

232 fabrics are associated with transformation of two metagabbro lenses to eclogite (Mørk, 

233 1985; Terry & Robinson, 2004) dated at 410 ± 2 Ma (Krogh et al. 2011; see also Mørk & 

234 Mearns, 1986). Terry et al. (2000a) and Terry & Robinson (2004) proposed that this 

235 shear zone emplaced the UHP Blåhø Nappe over Baltican basement that had only 

236 experienced HP eclogite conditions, but Carswell et al. (2006) showed that nearby 

237 eclogites in the Baltican basement equilibrated under UHP conditions, in which case the 

238 shear zone operated during exhumation and the metamorphic assemblages are retrograde. 

239 It remains possible, however, that all the UHP eclogites are part of the sheared basement 

240 pediment attached to the underside Blåhø Nappe and a cryptic HP basement unit lies at a 

241 deeper structural level.

242 Lenses of garnet peridotite and pyroxenite derived from subcontinental mantle decorate 

243 the basement-cover contact and are scattered through the Baltica basement in a zone a 

244 few hundred meters below it, confirming the existence of a fundamentally important 

245 tectonic contact here. Late fabrics defined by UHP mineral assemblages in these garnet 

246 pyroxenites at Bardane, Fjørtoft and Flemsøy give P ≈ 6 GPa at sub-geotherm 

247 temperatures for cratonic mantle (e.g. Vrijmoed, van Roermund & Davies, 2006; 

248 Scambelluri, van Roermund & Pettke, 2010). A mineral isochron age of 429 ± 3.1 Ma for 

249 this mineral assemblage was interpreted to represent an early stage in the subduction of 

250 the outermost Baltica continental margin (Spengler et al. 2009).

251 Two kyanite eclogites from the Blåhø Nappe very close to its lower boundary record P-T 

252 conditions overlapping the diamond stability field (Terry et al. 2000) and one of these 
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253 gives a Lu-Hf mineral age of 404.9 ± 7.9 Ma (Cutts & Smit, 2018). A distinctive feature 

254 of the Blåhø in the Nordøyane and Moldefjord area is that eclogites and other mafic rocks 

255 are a common part of the rock assemblage, while these are  less common in the main 

256 outcrop of the equivalent Seve Nappe in Sweden. An eclogite from the island of Gossa, 

257 adjacent to Fjørtoft, gives a Scandian Sm-Nd mineral isochron age of 413.9 ± 3.7 Ma 

258 (Kylander-Clarke, 2009). Another two from the mainland along strike from Nordøyane 

259 have given Scandian ages for (U)HP metamorphism (418 ± 27 Ma, Tverfjell north of 

260 Molde; Griffin & Brueckner, 1985 and 415.2 ± 0.6 Ma, Averøya, near Kristiansund; 

261 Krogh et al. 2011).

262 The age of UHP metamorphism in the Baltican basement in the northern domain is 

263 constrained by a U-Pb zircon date of 405 ± 1 Ma from an eclogite at Midsund, Otrøy 

264 (Krogh et al. 2011) although, puzzlingly, Kylander-Clark  et al. (2007) derived Lu–Hf 

265 garnet and Sm–Nd garnet – whole-rock ages for this eclogite of 380 ± 14 Ma and 388 

266 ±10 Ma, respectively, which are significantly younger than any other UHP eclogite ages 

267 in the WGR; they are, however, Scandian. Zircons from the Svartberget microdiamond-

268 bearing metasomatic veins in garnet websterite within Baltican basement orthogneiss 

269 give a robust U-Pb (LA-ICP-MS) age for a cluster of concordant points of 410.6 ± 2.6 

270 Ma (Quas-Cohen, 2013) which is taken to date metasomatism and microdiamond 

271 formation. Samples from the same body also yielded significantly younger and perhaps 

272 less robust dates by U-Pb on zircon using ID-TIMS, which gave a discordia intercept of 

273 397.2 ± 1.2 Ma (Vrijmoed et al. 2013) and Sm-Nd mineral isochrons yielded dates of 393 

274 ± 3 Ma to 381 ± 6 Ma (Vrijmoed et al. 2008) interpreted to be cooling ages.
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275 Overall, it is possible to reconstruct an evolution for this northern, UHP domain, based on 

276 the tectonic model of Terry & Robinson (2004) in Nordøyane and adjacent areas:

277 1) The Blåhø Nappe is emplaced on to the Baltica basement (time uncertain but 

278 before 430 Ma).

279 2) Baltica basement and Blåhø Nappe are subducted deep enough to capture mantle 

280 ultramafic rocks (at least 200 km) at ~430 Ma during the early stages of the Scandian 

281 continent-continent collision.

282 3) UHP eclogites form, or continue to equilibrate, in both units until ~410 Ma.

283 4) The Blåhø Nappe and a detached pediment of Baltica Basement rise as a nappe 

284 over the (still descending?) deeper basement, generating the top-southeast HP 

285 eclogite or HP granulite shear fabrics (≤ 410 Ma).

286 The available evidence favours a common, roughly synchronous, Scandian diamond-

287 eclogite facies metamorphism for both the Blåhø Nappe and the Baltica basement in the 

288 northern domain of Nordøyane, with a basement-cover nappe similar in geometry to the 

289 Trollheimen-Moldefjord region but operating at much deeper levels. The whole 

290 basement-cover package in both northern and southern structural domains has then been 

291 refolded about upright, folds associated with a pervasive, sinistral or top-west 

292 amphibolite-facies fabric with horizontal lineations and fold axes (Terry & Robinson, 

293 2003) dated at 396 Ma from boudin-neck pegmatites (Krogh et al. 2011). (U)HP 

294 lithologies and fabrics are preserved only as rare relics where they have survived 

295 overprinting by the late-orogenic deformation. Any signature of pre-Scandian 

296 metamorphism must have survived both this and the Scandian UHP tectono-

297 metamorphism.
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298

299 3. Sample Description 

300 The sample investigated here was collected from an old quarry at Vågholmane, just north 

301 of the ferry terminal. It is the residue of the same sample (ID: Fj-19; Fig. 2) from which 

302 Dobrzhinetskaya et al. (1995) extracted metamorphic diamond by a chemical dissolution 

303 process performed on a crushed block. The lithology has been described previously by 

304 Dobrzhinetskaya et al. (1995), Holder et al. (2015), Liu & Massonne (2019) and Terry et 

305 al. (2000b); the latter’s sample (recoded by them as UHP1) was a thin section cut from 

306 the microdiamond-bearing sample, so is the same sample block from which our zircons 

307 were sourced. It is composed of garnet, kyanite, phlogopite, K-feldspar, plagioclase, 

308 quartz, graphite and additionally rutile, sulphides, monazite and zircon. Garnet is 

309 abundant, pale mauve-coloured, typically 0.5-1.0 cm in size, and locally occurs as 

310 globular megacrysts of 3-5 cm surrounded by conspicuous coronas of felsic minerals. It 

311 shows distinctive zoning with low Ca garnet cores (Terry et al. 2000b; Holder et al. 

312 2015; Liu & Massone, 2019; authors’ unpublished data) enclosing abundant, small 

313 needles of kyanite. High Ca rims contain larger inclusions of kyanite, quartz, rutile, 

314 graphite, perthitic feldspar and sulphides, along with rationally orientated needles of 

315 rutile. It has not often been recognised that the rock is a blastomylonite with streaky 

316 appearance suggesting pre-tectonic migmatization. Relics of granitic (partial) melt are 

317 preserved as embayments and inclusions in the garnet rims and are composed of perthite, 

318 quartz and phlogopite. Monazite and zircon are found in both cores and rims of garnet. 

319 The rock matrix is generally composed of fine-grained plagioclase and K-feldspar (from 

320 the breakdown of coarse perthite and garnet), quartz and large flakes of phlogopite and 
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321 graphite. No microdiamond has yet been found in-situ, nor any other (U)HP phases, 

322 although muscovite inclusions in garnet associated with phlogopite may be relics after 

323 phengite. Larsen et al. (1998), who described the rock as a ‘felsic granulite’, estimated P 

324 = 16-23 kbar at 600-800 °C for the matrix assemblage assuming equilibrium with garnet 

325 rims. However, the recent detailed study by Liu & Massonne (2019) suggests that this 

326 rock underwent most probably a prolonged anticlockwise P-T path, with peak conditions 

327 around 1.35-1.45 GPa and 770-820 °C and an earlier equilibration event at c. 1.35-1.45 

328 GPa and 770-820 °C.

329  In the field, two linear fabrics can be recognised in the Blåhø Nappe felsic gneisses 

330 (Terry et al. 2000; Terry & Robinson, 2004). The earlier fabric is represented by the 

331 sample UHP1 described above, and is defined by mineral-aggregate rods and common 

332 orientation of kyanite. Kinematic indicators on steep foliation surfaces including rotated 

333 kyanite and garnet porphyroclasts indicating north-side-up shear that translates to top-

334 southeast shear when the effects of later folding are removed, as found in the eclogite-

335 facies shear zones described above. Terry & Robinson (2004) attributed the tectonite 

336 fabrics of the basement metagabbros and dioritic orthogneisses to the same kinematic 

337 system as this early fabric in the Blåhø Nappe gneiss, suggesting that it operated at about 

338 410 Ma, postdating an episode of partial melting, and was related to foreland directed 

339 transport of a (U)HP basement with associated Seve-Blåhø allochthon.

340 The later fabric is a mineral-aggregate rodding lineation defined by sillimanite replacing 

341 deformed, fish-shaped kyanite porphyroclasts or disseminated in the matrix, which 

342 displays extreme grain-size reduction. Garnet porphyroclasts are dismembered and strung 

343 out in the lineation (Terry et al. 2000b). Mica- and sillimanite-rich elements of the matrix 
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344 display S-C fabrics. The lineations and associated fold axes are roughly horizontal and 

345 the kinematic indicators show consistent top-west or sinistral shear. This fabric overprints 

346 and re-orientates the steeper kyanite lineation. This late top-west shear fabric also 

347 dominates large parts of the allochthons and some of the adjacent basement gneisses in 

348 the westernmost WGR, indicating a top-to-the-west transport. This was related to reversal 

349 of motion on the major thrust surfaces, the development of Agdenes Detachment and 

350 Nordfjord-Sogn Detachment Zone and the late-orogenic Old Red Sandstone basins 

351 (Norton, 1987; Wilks & Cuthbert, 1994; Brueckner & Cuthbert, 2013; Robinson et al. 

352 2014; Young, 2018).

353 Zircons in the mineral separate that we obtained from sample Fj-19 contains micro-

354 inclusions of quartz, feldspar, mica, apatite, graphite and rutile (H.-J. Massonne, pers. 

355 comm. 2005). No HP or UHP indicator micro-inclusions such as diamond, coesite, 

356 phengitic mica or jadeitic clinopyroxene have been found. Monazite from the 

357 microdiamond-yielding sample has been analysed by electron microprobe (Th-U-total 

358 Pb) and secondary ionization mass spectrometry (U-Th-Pb), along with a sample of 

359 porphyroclastic mylonite with the younger lineation from 1km west of Vågholmane 

360 (Terry et al. 2000; their samples UHP1 and 929, respectively). The analyses yield a 

361 cluster of dates between 1100 and 950 Ma, a few scattered dates between 900 Ma and 

362 500 Ma, and other clusters at c. 415, 408, 395 Ma and c. 375 Ma. The older dates of 

363 415.0 ± 6.8 Ma (SIMS) and 408.0 ± 5.6 Ma (EPMA) were obtained from the same 

364 monazite inclusions in garnet and have been interpreted as indicating the maximum age 

365 of garnet growth. The two youngest dates were interpreted to represent different phases 

366 of exhumation from deep subduction conditions. Recently, Holder et al. (2015) have also 
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367 performed in-situ monazite U-Th-Pb dating using laser ablation split stream inductively 

368 coupled plasma mass spectrometry. These authors dated two samples of the same rock 

369 and obtained the following results: a cluster of ages between 1200 and 900 Ma, 

370 Caledonian concordia ages peaking at 431.1 ± 1.7 Ma, 426.8 ± 1.7 Ma, 425.5 ± 3.0, 393 

371 ± 3.0 Ma and 391.3 ± 2.7 Ma. Contrasting REE patterns for inclusions and matrix grains 

372 dated at c. 425 Ma suggest that garnet growth took place at this time, but other inclusions 

373 as young as c. 390 Ma may indicate either continued growth to this time or re-setting. A 

374 continued growth of monazite is also suggested by Liu & Massonne (2019), who reported 

375 Th-U-total Pb monazite dates spanning from 460 to 380 Ma and interpreted them to 

376 reflect a prolonged residence time under relatively high temperatures due to two burial 

377 events that have never reached UHP conditions. We differ by not ruling out diamond-

378 stable P-T conditions at some time during its history, as some stages of the rock history 

379 may have been destroyed during overprinting, for example during partial melting. 

380 To our knowledge, no zircon dates have so far been documented in the literature for this 

381 unusual and widely studied rock.

382

383 4. Methods

384 Uranium-lead dating was performed on zircon grains initially separated by D. A. 

385 Carswell and H.-J. Massonne for studies of inclusions; the separate was kindly provided 

386 by H.-J. Massonne, who mounted and polished the grains in an epoxy mount. The zircon 

387 grains are from the same rock volume from which micro-diamond was isolated 

388 (Dobrzhinetskaya et al. 1995). The grains are 100-250 μm in length and were polished to 

389 their geometric core. U-Pb dating of zircon was performed at the Swedish Museum of 
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390 Natural History, Stockholm, using a Nu Instruments Plasma II multi-collector inductively 

391 coupled plasma mass spectrometry (MC-ICPMS) instrument coupled to an ESI 

392 NWR193UC excimer laser ablation system. The m/z (mass-to-charge ratio) 

393 corresponding to masses 202, 204, 206, 207 and 208 were measured on ion counters, and 

394 those corresponding to 232, 235, and 238 were measured on Faraday collectors. The laser 

395 was fired for 35 s with a fluence of 3.5 J/cm2, a pulse rate of 8 Hz and a spots size of 15 

396 μm. Helium was used as a sample carrier gas (0.3 l/min) to flush the laser cell and was  

397 mixed with argon sample gas (0.9 l/min) before entering the ICP-MS. Analyses were 

398 corrected for mass bias and elemental fractionation using the protocols of Kooijman et al. 

399 (2012). The 91500 zircon reference material (1065 Ma; Wiedenbeck et al. 1995) was 

400 used for normalization and repeated analyses indicated external reproducibility of 1.0% 

401 2RSD for the 207Pb-206Pb age and 1.2% 2RSD for the 206Pb-238U age (n = 58). Accuracy 

402 was assessed by analysing the secondary reference zircons Plešovice (337 Ma; Sláma et 

403 al. 2008), GJ-1 (609 Ma; Jackson et al. 2004) and Temora 2 (417 Ma; Black et al. 2004). 

404 We obtained 336 ± 11 Ma (Plešovice; n = 8), 606 ± 3 Ma (GJ-1; n = 8), and 416 ± 9 Ma 

405 (Temora 2; n = 5), all of which agree within 1% of published age estimates for these 

406 materials. Data reduction employed in-house Excel macros. Age calculations and 

407 construction of concordia diagrams were prepared using the Excel extension Isoplot 3.75 

408 (Ludwig, 2012). All uncertainties are reported at the 2σ level. Age data are illustrated in 

409 Figure 4 and presented in Table 1.

410

411 5. Results
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412 Separated zircon grains are spherical or slightly elongated in shape, with rounded edges. 

413 Cathodoluminescence (CL) images reveal complex internal structure and most zircons 

414 display obvious multi-stage growth features (Fig. 3). Most commonly, zircon grains 

415 display cores with well-defined concentric oscillatory zoning, typical of magmatic zircon, 

416 which is overgrown by a bright-CL rims. Such rims show no visible zoning and are likely 

417 of metamorphic origin. U-Pb isotope data obtained from the dated grains are presented in 

418 Table 1 and reveal a complex multi-component age signature. The majority of dates older 

419 than 700 Ma were obtained from zircon cores and display significant degrees of 

420 discordance (Figs. 4a, d, f). Several 207Pb-206Pb date clusters can be distinguished among 

421 the obtained results: (1) a Neoarchean cluster between 2.8-2.5 Ga (n = 6); (2) a small 

422 cluster in the Mesoproterozoic (1.5-1.3 Ga; n = 3); (3) late Mesoproterozoic to early 

423 Neoproterozoic dates between 1.1-0.9 Ga (n = 6); and (4) a group of Neoproterozoic 

424 dates between 0.9-0.7 Ga (n = 7). A small group of three concordant dates between 540-

425 520 Ma (Table 1) was also obtained, one of which is from a core domain, whereas the 

426 other two were obtained from rims. A notable number of Caledonian spot dates range 

427 from 450 to 400 Ma (Fig. 4b). Two subgroups of dates can be distinguished among the 

428 concordant results (Fig. 4e). Five of the oldest Caledonian dates cluster between 450-440 

429 Ma and give a concordia age of 446.6 ± 2.1 Ma (Fig. 4c). Another cluster of concordant 

430 dates is observed between 437-423 Ma, and yield a weighted average 206Pb-238U date of 

431 428.3 ± 1.7 Ma. The three youngest dates are c. 415 Ma and younger. 

432

433 6. Discussion 

434 6.a. Provenance and exotic nature of the Fjørtoft diamondiferous gneiss 
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435 The oldest detrital ages (2.8-2.5 Ga) are not known from the Baltica basement rocks of 

436 the WGR. Such detrital ages are, however, observed in the Lower and Middle 

437 Allochthons in Sweden (e.g. Gee et al. 2014, 2015; Ladenberger et al. 2014), as well as 

438 in southwesternmost Norway (Smit et al. 2011). Two younger groups, 1.5-1.3 Ga and 

439 1.1-0.9 Ga, correspond to the Gothian and Sveconorwegian orogenies, respectively. The 

440 older group is widespread in the WGR and marks a major episode of magmatism within 

441 the Fennoscandian basement (e.g. Corfu & Andersen, 2002; Tucker et al. 2004; Krogh et 

442 al. 2011). The younger group is also common across the WGR, both in the allochthons 

443 and in the basement; it derives from magmatism and metamorphism during the 

444 Sveconorwegian Orogeny (e.g. Tucker et al. 1990; Bingen & van Breemmen, 1998; 

445 Bingen et al. 2001; Røhr et al. 2004; Walsh et al. 2007; Des Ormeau et al. 2015; Corfu & 

446 Andersen, 2002). Terry et al. (2000) recognised a similar group of ages among monazite 

447 cores from the diamond-bearing gneiss on Fjørtoft. These age components clearly 

448 establish the Baltic provenance of this rock, indicating that its sedimentary protolith was 

449 deposited within the Baltic continental realm or its Iapetus Ocean margin.

450 Neoproterozoic ages between 0.9 and 0.7 Ga are less common within the Baltic basement 

451 (Bingen & Solli, 2009). They are, however, reported from detrital zircons in the Seve 

452 Nappe Complex in Sweden (Gee et al. 2014) and igneous bodies of similar age are also 

453 known from other parts of the Middle Allochthon. Paulsson & Andréasson (2002) 

454 reported c. 845 Ma U–Pb age of the Vistas granite in the Seve Nappe Complex in 

455 northern Sweden, while c. 840 and 710 Ma ages are typical of granitic magmatism in the 

456 Sørøy-Seiland and Havvatnet nappes of the Kalak Nappe Complex in northernmost 

457 Norway (Kirkland et al. 2006). Walker et al. (2016) have also reported a c. 725-700 Ma 
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458 tectonothermal event recorded in the Caledonides of Shetland. Several of these possible 

459 sources derive from Neoproterozoic magmatism and tectonism (Renlandian and 

460 Knoydartian) whose products subsequently involved in the northern Iapetus-Caledonide 

461 cycle (Cawood et al. 2010). The exact source of zircons with 0.9-0.7 Ga ages in the 

462 Fjørtoft sample remains unresolved, but it is clear that these data represent an exotic 

463 component acquired when the sedimentary protolith was located in a palaeogeographic 

464 location distal to the Baltic craton.

465 A similar explanation may be proposed for the small group of 540 to 520 Ma ages, which 

466 were also obtained by Terry et al. (2000), but left them uninterpreted. The dates are 

467 concordant and form a distinct cluster, indicating that they have geological meaning. 

468 Components of similar age are extremely rare in the present-day Scandinavian 

469 Caledonides, and are mainly restricted to the Kalak Nappe Complex (e.g. Roberts et al. 

470 2010). Interestingly, dates in the range 650-500 Ma are rare but persistently found in the 

471 mantle-derived ultramafic rocks and enclosed eclogite in Nordøyane (Jamtveit et al. 

472 1991; Spengler et al. 2009) and in the central WGR (Medaris et al. 2018), suggesting 

473 magmatism or tectonism in the Iapetus realm during this interval that may have also had 

474 a crustal expression.

475 The spectrum of different age populations further distinguishes the Fjørtoft gneiss from 

476 the adjacent basement orthogneisses and confirms its profoundly allochthonous nature 

477 and reinforces its correlation with the Seve-Blåhø Nappe. Moreover, it suggests a 

478 previously unrecognised link between this lithotectonic unit and the terranes of the north-

479 Norwegian and Swedish Caledonides.

480
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481 6.b. Caledonian ages and evidence for double-dunking

482 U-Pb zircon dates from the Fjørtoft gneiss corresponding to the span of the Caledonian 

483 orogenic cycle cluster around c. 447 Ma and c. 437-423 Ma with three younger dates ≤ c. 

484 415 Ma. The oldest age of these mentioned above was not identified in published 

485 monazite age studies by Terry et al. (2000b) or Holder et al. (2015). This age is 

486 significantly earlier than almost all previous higher-precision ages for (U)HP-HT 

487 metamorphism in the WGR. 

488 This Ordovician age peak may be compared with dates in other outcrops of the 

489 allochthons in the WGR. Zircon U-Pb dates of 470-430 Ma were reported for eclogites in 

490 allochthonous units (Blåhø Nappe?) in the western and eastern-central parts of the WGR 

491 but were attributed to protolith ages (Walsh et al. 2007 - discordant dates; DesOrmeau et 

492 al. 2015). We speculate that these are lower Palaeozoic metavolcanics similar to the 

493 layered eclogites described in the Blåhø Nappe on Fjørtoft by Terry & Robinson (2004) 

494 and on the mainland north of Molde by Carswell & Harvey (1985). Walsh et al. (2007) 

495 also reported a protolith (detrital?) zircon age of 480 ± 12 Ma from a pelite in the Blåhø 

496 Nappe. However, our zircon ages are clearly metamorphic and do not represent growth in 

497 magmatic protoliths. In contrast, Gordon et al. (2016) presented U-Pb zircon age 

498 populations of c. 467 and c. 439 Ma obtained from leucosomes in metapelites of the 

499 Seve-Blåhø Nappe north of Trondheim, which they interpreted to represent (U)HP zircon 

500 growth and subsequent migmatization.

501 The younger of our two larger Caledonian U-Pb zircon age-peaks matches well with the 

502 timing of Ca-rich garnet rims as indicated by in-situ monazite ages of c. 425 Ma and 

503 perhaps as old as 430 Ma, (Holder et al. 2015) corresponding to an episode of 
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504 migmatisation evidenced by granitic melt inclusions enclosed in Ca-rich garnet rims. It is 

505 also not much younger than the earliest ages attributed to Scandian subduction of the 

506 Baltica margin around 430 Ma as indicated by garnet pyroxenites in mantle-derived 

507 ultramafites in Nordøyane (Jamtveit et al. 1991; Spengler et al. 2009) and elsewhere 

508 (Medaris et al. 2018). These ages are all significantly older than the timing of HP-

509 eclogite facies SE-vergent shearing involving the metagabbros in Nordøyane (Terry et al. 

510 2000a; Terry & Robinson, 2004) at 410 ± 2Ma (Krogh et al. 2011) which has been 

511 correlated with the SE-vergent shear overprinting the migmatite fabric in the Fjørtoft 

512 gneiss. This puts a younger age bracket on the duration of migmatisation. Also, ages 

513 around 410 Ma are relatively scarce in our dataset, suggesting that during this foreland-

514 directed shearing little new zircon was generated, and/or there was little resetting of the 

515 zircon U-Pb isotopic system.

516 The late Ordovician age components in our dataset (c. 447 Ma) are uncommon or absent 

517 in the WGR, but widely recognised within the Seve Nappe Complex of Jämtland in 

518 Sweden and in tectonic slivers of probable Middle Allochthon rocks in southwesternmost 

519 Norway (e.g. Brueckner et al. 2004; Brueckner & van Roermund, 2007; Smit et al. 2011; 

520 Majka et al. 2012; Root & Corfu, 2012; Ladenberger et al. 2014; Grimmer et al. 2015; 

521 Klonowska et al. 2017; Fassmer et al. 2017). These terranes record a mid- to late 

522 Ordovician  episode of (U)HP metamorphism. The lithologies in the Åreskutan Nappe, 

523 Middle Seve Nappe in Jamtland, central Sweden are similar to the Fjørtoft gneiss in that 

524 they are metapelitic sillimanite or kyanite-bearing migmatites that record a pre-

525 migmatite, diamond-stable UHP metamorphism. Granulite-facies metamorphism and 

526 migmatisation has been dated at c. 439 Ma during decompression and partial melting, 
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527 following UHP metamorphism at c. 455 Ma (Majka et al. 2012). Emplacement of these 

528 rocks as a hot nappe above the Lower Seve Nappe Complex was dated from monazite in 

529 basal mylonites at 424 ± 6 Ma (Majka et al. 2012) which was within error of the age for 

530 crystallisation of post-migmatite, pre-mylonite pegmatites during nappe emplacement at 

531 c. 430-428 Ma (Ladenberger et al. 2014). The close correspondence of the age for this 

532 migmatisation with the earliest Caledonian ages from the Fjørtoft gneiss encourages the 

533 tentative proposal that migmatisation took place there, too, at that time. While this may 

534 be true, the c. 430-428 Ma age for pegmatite intrusion at Åreskutan during Scandian 

535 nappe emplacement corresponds closely to the evidence for growth of high-Ca garnet 

536 rims in the Fjørtoft gneiss around 430-425 Ma (Holder et al. 2015), which we attribute to 

537 partial melting. This suggests that partial melting of the Fjørtoft gneiss took place during 

538 the earliest phase of exhumation of the far-western, Blåhø segment of the Seve Nappe 

539 Complex. If two episodes of partial melting took place in these rocks (late Ordovician 

540 and mid-Silurian), evidence must have been obscured by the subsequent intense ductile 

541 shearing. If the Blåhø Nappe in western Norway can be directly correlated with the Seve 

542 Nappe Complex in central Sweden, the evidence that the Blåhø Nappe, and possibly a 

543 sheared pediment of Baltica basement orthogneisses, was still moving forelandwards 

544 around 410 Ma suggest deformation at the base of the Åreskutan Nappe transferred to a 

545 deeper structural level soon after c. 425 Ma.

546 The interpretations above, based on geological evidence and previous geochronological 

547 studies, suggests that partial melting may have been significant in generating the zircon 

548 U-Pb age pattern. If representative of the rock, the 447 Ma and 437-423 Ma zircon age 

549 clusters probably represent discrete stages in which new zircon formed. This may have 

Page 24 of 56Proof For Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Proof For Review

550 involved complete neocrystallization and/or re-crystallisation of pre-existing zircon. The 

551 latter is common in (U)HP granulites in other collisional orogens (e.g., Bröcker et al. 

552 2010), as well as in ultra-high temperature (UHT-HT) rocks (e.g., Mezger & Krogstad, 

553 1997; Kooijman et al. 2010), where partial melting was an important process. In the 

554 Fjørtoft rocks there was an apparent cessation in zircon crystallisation (or 

555 neocrystallisation) during a period of c. 15 Ma, which also requires explanation. 

556 Zircon crystallisation in felsic rocks can take place following an excursion beyond the 

557 solidus (Yakymchuk & Brown, 2014), either by transient decompression or heating or 

558 both. The following two options are hence proposed for the interpretation of the 447 and 

559 437-423 Ma age clusters: (1) they postdate two distinct cycles of high-grade, possibly 

560 kyanite-stable high temperature (HT) metamorphism - one before 447 Ma and the other 

561 before 423 Ma; (2) they bracket two thermal excursions beyond, and back to, the solidus 

562 during a single protracted stage of possibly kyanite-stable HT metamorphism. Regardless 

563 of which of the two options proves true or which of these may be associated with micro-

564 diamond growth, the history and context of the rocks, as set out in the foregoing text, 

565 requires at least one pulse of pre-Scandian metamorphism. 

566 Previously published ages derived from the (U)HP eclogites in the Nordøyane and 

567 adjacent region in the WGR, mainly in the range 415-400 Ma, are only represented in our 

568 dataset by one concordant date of c. 415 Ma and a slightly discordant, similar date (Fig. 

569 4b). The presence of Scandian UHP eclogites in the basal parts of the Blåhø Nappe in 

570 Nordøyane (404.9 ± 7.9 Ma; Cutts & Smit, 2018) suggests that the Blåhø Nappe of 

571 Fjørtoft underwent Scandian, perhaps diamond-stable, UHP metamorphism. This 

572 apparently resulted in very little new zircon growth or re-crystallisation in the sample 
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573 examined here. Scandian UHP eclogite formation in the allochthons and Baltica 

574 basement evidently continued well after migmatisation of the Blåhø metapelitic gneisses 

575 such as those at Fjørtoft (there is evidence that gneisses in this area underwent partial 

576 melting during UHP metamorphism; see e.g. Vrijmoed et al. 2013; Quas-Cohen, 2013). 

577 The single concordant metamorphic zircon date at c. 396 Ma is identical within error with 

578 a cluster of U-Th-Pb ages for matrix monazites in the Fjørtoft gneiss (Terry et al. 2000b). 

579 This also closely corresponds to a regionally-distributed suite of titanite U-Pb ages 

580 (Tucker et al. 1991) interpreted to date a widespread cessation of Pb loss during 

581 exhumation of the WGR from below the major extensional Agdenes Detachment (Tucker 

582 et al. 2004). The late horizontal lineation and sinistral shear fabric in northern Fjørtoft 

583 may be attributed to this late-Scandian tectonism.

584 The zircon U-Pb dataset presented here demonstrates an early Caledonian, pre-Scandian 

585 metamorphic event in the northwestern WGR that corresponds to a mid-Ordovician to 

586 early Silurian subduction episode recorded in the main outcrop of the Seve Nappe. The 

587 evidence for coeval Scandian UHP metamorphism of the Blåhø Nappe and in the Baltica 

588 basement in Nordøyane (and probably more widely in the WGR) strongly suggests that 

589 both underwent subduction in the late Silurian and early Devonian, and thus a ‘double-

590 dunk’ for the Blåhø-Seve Nappe of Fjørtoft.

591 The ‘double-dunk’ hypothesis (Brueckner & Van Roermund, 2004; Brueckner, 2006) 

592 predicts both subduction and eduction of a continental margin, so evidence is required for 

593 an episode of exhumation of the subducted slab between any two ‘dunks’; if this is 

594 lacking it is difficult to refute a single, prolonged subduction episode. In the WGR, 

595 evidence for pre-Scandian tectonism and metamorphism has been effectively obliterated 
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596 by Scandian deformation and overprinting. All that can be deduced is that assembly of 

597 the Middle Allochthon nappe stack and its emplacement onto the Baltica basement was 

598 the earliest discernable event (e.g. Robinson et al. 2014). However, petrological evidence 

599 for migmatisation during decompression in the correlative Åreskutan Nappe in the 

600 foreland Seve Nappe Complex (Majka et al. 2012; Klonowska et al. 2014) shows that the 

601 Seve Nappe did, at least partially, exhume following the Ordovician subduction event, 

602 but before the Scandian subduction and climactic collision. The distribution of 

603 concordant ages in our U-Pb zircon dataset, while showing clear clustering at specific 

604 time intervals, does indicate some continuity of Caledonian zircon generation, which may 

605 be due to incomplete eduction after the first dunk and stalling at fairly deep, hot crustal 

606 levels during the relatively brief interval before the Scandian dunk. Overall, the age 

607 pattern from our new geochronological evidence for the Middle Allochthon within the 

608 WGR is consistent with the predictions of the dunk tectonics model.

609 The sample from which our zircon set was separated has been iconic in UHP 

610 metamorphic studies since the discovery of microdiamonds within it by Dobrzhinetskaya 

611 et al. (1995), as this was the first metamorphic microdiamond find in the Caledonides and 

612 one of the first globally. Yet, this sample remains enigmatic because no microdiamond 

613 has yet been found in-situ within it. The demonstration of multiple metamorphic events in 

614 this rock, of which two are probably high- or ultrahigh- grade, begs the question of the 

615 genesis of the diamonds, although this is challenging because of their lack of 

616 petrographic context. The possible double-dunk scenario for the Fjørtoft gneiss set out 

617 above permits that these rocks passed through diamond-stable physical conditions twice 

618 during the Caledonian cycle. Hence, a priority for future work is to find the 
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619 microdiamonds in-situ, although several workers have already made great efforts to do 

620 this. A possible barrier to success is the late structural-metamorphic overprint that this 

621 belt of Blåhø has suffered, so future efforts might be better focused on adjacent areas 

622 where this overprint is less complex and intense. 

623 Finally, it is worth noting the comparison between the zircon dates presented above and 

624 previously published monazite dates (Terry et al. 2000b; Holder et al. 2015; Liu & 

625 Massonne, 2019), which reinforce the common observation that zircon and monazite age 

626 records are complementary and that both only rarely provide the same age results, and 

627 represent the same petrological process, in a single rock (Kooijman et al. 2017). 

628

629 7. Conclusions

630 (1) The diamond-bearing gneiss from Fjørtoft in the Nordøyane UHP domain of the 

631 Western Gneiss Region contains detrital zircon cores that reveal Baltic provenance.  

632 This is consistent with previously proposed affinity of the studied gneiss to the Seve-

633 Blåhø Nappe of the Middle Allochthon. A few Archean ages are, however, clearly 

634 exotic in respect to the local basement of the WGR directly underlying the studied 

635 gneiss. Thus, a more exotic source is required for these zircons both at Fjørtoft and in 

636 the other diamond-bearing gneisses of the Seve Nappe Complex.

637 (2) At least two distinct high-grade metamorphic events preceding the final stage of the 

638 Scandian collision are recorded by the diamond-bearing gneiss from Fjørtoft: (1) at 

639 446.6 ± 2.1 Ma; and (2) prolonged or multiple event(s) lasting from c. 437 to c. 423 Ma. 

640 None of the above-mentioned ages can yet be unequivocally linked directly to UHP 
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641 metamorphism; they instead could represent P-T excursions related to episodes of 

642 partial melting, each most likely following an episode of UHP metamorphism.

643 (3) The youngest obtained metamorphic zircon dates, scattering from c. 415 to c. 397 Ma 

644 suggest a metamorphic overprint subsequent to the previous events, likely related to the 

645 exhumation following final stages of the Scandian phase of the Baltica-Laurentia 

646 collision, first of all by translation toward the foreland, then by motion on major west-

647 vergent detachments, but both relating to exhumation of Scandian UHP rocks.

648 (4) Multiple zircon growth events recorded in the Fjørtoft gneiss reflect its complicated 

649 and protracted metamorphic evolution. It is inferred that such complex metamorphic 

650 zircon ages pattern resulted from several subduction-exhumation cycles, as predicted by 

651 the dunk tectonics model for the Scandinavian Caledonides.

652 (5) The data are consistent with predictions of the dunk tectonics model, indicating that it 

653 provides a plausible explanation for the development of a major part of the 

654 Scandinavian Caledonides. 

655
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1102

1103 Figure captions

1104 Figure 1. (Colour online) (a) Simplified geological map of the Western Gneiss Region 

1105 (modified after Brueckner & Cuthbert, 2013) with (b) generalised geological map of 

1106 Fjørtoft (after Carswell & van Roermund, 2005) showing the location of the diamond-

1107 bearing garnet kyanite gneiss. NSD - Nordfjord-Sogn detachment zone, MTD - Møre 

1108 Trondelag detachment zone, black dashed line - early E/SE late W/NW décollements, 

1109 black thin lines - W/NW vergent lineation directions.

1110

1111 Figure 2. (Colour online) Hand specimen of the diamond-bearing garnet-kyanite gneiss 

1112 from Fjørtoft (sample ID: Fj-19).

1113
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1114 Figure 3. (Colour online) Cathodoluminescence images of representative zircon crystals 

1115 from the Fjørtoft diamond-bearing garnet kyanite gneiss. White circles mark analytical 

1116 spots and given numbers indicate 206Pb-238U dates.

1117

1118 Figure 4. (Colour online) (a-d) U-Pb concordia diagram for zircon analyses; (a) all 

1119 analyses for both metamorphic and detrital zircon domains, (b) concordia diagram of 

1120 zircon with Caledonian ages with inset (c) showing ages for which Concordia age has 

1121 been calculated. (d) Magnification of the fragment of Concordia diagram (a) showing late 

1122 Precambrian dates. (e) Histogram of 206Pb-238U age frequency of metamorphic zircon 

1123 domains. (f) Histogram of  207Pb-206Pb age frequency of concordant detrital zircon (10% 

1124 discordance accepted).

1125
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1126 Table 1. Summary of the U-Pb zircon analyses from the diamond-bearing garnet kyanite gneiss.
Analysis

U 
conc. Ratios  Common Pb

Degree of 
con- Ages (Ma) Comments

nr (ppm) 207Pb/206Pb ±2σ 207Pb/235U ±2σ 206Pb/238U ±2σ rho: 206Pb/204Pb ƒ206%
cordance 

(%) 206Pb/238U ±2σ 207Pb/235U ±2σ 207Pb/206Pb ±2σ  
2 236 0.0558 0.0004 0.5454 0.0048 0.0709 0.0004 0.69 146049 0.01 99.6 441.7 2.6 442.0 3.2 443 14 rim
6 286 0.0554 0.0004 0.5195 0.0047 0.0680 0.0004 0.71 6482 0.27 98.8 424.0 2.6 424.8 3.1 429 14 metamorphic (no core)
17 384 0.0560 0.0003 0.5538 0.0056 0.0717 0.0006 0.79  98.7 446.5 3.5 447.5 3.7 452 14 rim
22 35 0.0555 0.0006 0.5348 0.0074 0.0699 0.0006 0.58 688 2.37 101.2 435.8 3.4 435.0 4.9 431 25 core
23 549 0.0553 0.0002 0.5219 0.0040 0.0685 0.0004 0.81 12869 0.13 100.6 426.8 2.6 426.4 2.7 424 10 rim
24 387 0.0552 0.0003 0.5191 0.0043 0.0682 0.0005 0.82 7163 0.23 101.1 425.3 2.8 424.6 2.9 421 11 core
25 106 0.0557 0.0004 0.5339 0.0049 0.0695 0.0004 0.69 2278 0.72 98.6 433.4 2.7 434.4 3.3 440 15 rim
27 125 0.0553 0.0004 0.5499 0.0051 0.0721 0.0005 0.72 26178 0.06 105.6 448.8 2.9 445.0 3.3 425 14 rim
28 30 0.0555 0.0008 0.5517 0.0089 0.0721 0.0005 0.47 2025 0.81 103.5 448.6 3.3 446.1 5.8 434 32 rim
30 233 0.0550 0.0003 0.5154 0.0042 0.0679 0.0004 0.74 2733 0.60 102.3 423.5 2.5 422.1 2.8 414 12 rim
31 207 0.0554 0.0002 0.5473 0.0054 0.0717 0.0006 0.89 22998 0.08 104.4 446.2 3.8 443.2 3.6 428 10 metamorphic (no core)
36 197 0.0553 0.0002 0.5332 0.0050 0.0699 0.0006 0.88 20051 0.09 102.8 435.8 3.4 433.9 3.3 424 10 metamorphic (no core)
37 211 0.0552 0.0002 0.5299 0.0048 0.0696 0.0006 0.90 6968 0.25 103.4 434.0 3.4 431.8 3.2 420 9 fragment of zircon grain
46 87 0.0562 0.0004 0.5574 0.0051 0.0719 0.0003 0.50  97.2 447.7 2.0 449.8 3.3 461 17 rim
52 307 0.0544 0.0003 0.4764 0.0036 0.0635 0.0003 0.55 356385 0.00 102.5 397.0 1.6 395.6 2.5 387 14 metamorphic (no core)
53 863 0.0553 0.0003 0.5192 0.0038 0.0681 0.0003 0.63  100.6 425.0 1.9 424.6 2.6 423 13 metamorphic (no core)
54 185 0.0561 0.0005 0.5540 0.0050 0.0716 0.0003 0.44  97.5 445.7 1.7 447.6 3.3 457 18 rim 
55 839 0.0557 0.0004 0.5257 0.0061 0.0685 0.0006 0.81  97.1 427.0 3.9 429.0 4.0 440 15 core
61 182 0.0553 0.0002 0.5260 0.0044 0.0689 0.0005 0.87  100.8 429.7 3.0 429.2 2.9 426 9 metamorphic (no core)
62 265 0.0554 0.0002 0.5265 0.0031 0.0689 0.0003 0.83 15572 0.11 100.5 429.8 2.1 429.5 2.1 428 7 metamorphic (no core)
63 535 0.0553 0.0003 0.5171 0.0040 0.0678 0.0003 0.65 11250 0.16 99.4 422.8 2.1 423.2 2.7 425 13 fragment of zircon grain
64 189 0.0553 0.0002 0.5224 0.0031 0.0685 0.0003 0.78 2626 0.59 100.4 427.0 1.9 426.7 2.1 425 8 rim
65 81 0.0558 0.0004 0.5398 0.0048 0.0702 0.0003 0.52 1133 1.56 98.8 437.5 2.0 438.3 3.2 443 17 rim
67 160 0.0545 0.0005 0.5003 0.0056 0.0666 0.0004 0.53 3638 0.49 106.4 415.7 2.4 411.9 3.8 391 21 rim
71 249 0.0553 0.0002 0.5201 0.0040 0.0682 0.0004 0.86 6196 0.29 99.8 425.1 2.7 425.2 2.6 426 9 metamorphic (no core)
74 257 0.0554 0.0003 0.5264 0.0057 0.0689 0.0007 0.91 3931 0.42 100.1 429.5 4.1 429.4 3.8 429 10 rim
75 319 0.0554 0.0002 0.5258 0.0039 0.0688 0.0005 0.91  100.2 429.2 2.8 429.0 2.6 428 7 rim
78 157 0.0557 0.0003 0.5217 0.0041 0.0679 0.0004 0.78 2216 0.80 95.9 423.5 2.5 426.3 2.7 441 11 metamorphic (no core)
81 142 0.0556 0.0004 0.5335 0.0052 0.0696 0.0005 0.67 2456 0.72 99.3 433.7 2.8 434.1 3.5 437 16 metamorphic (no core)
96 250 0.0555 0.0004 0.5270 0.0044 0.0688 0.0004 0.61  98.9 429.0 2.1 429.8 2.9 434 15 metamorphic (no core)
97 385 0.0555 0.0004 0.5307 0.0044 0.0693 0.0003 0.60  99.8 432.2 2.1 432.3 2.9 433 15 core

101 147 0.0560 0.0003 0.5355 0.0047 0.0693 0.0005 0.74 3896 0.44 95.1 431.9 2.7 435.4 3.1 454 13 rim
102 233 0.0554 0.0003 0.5182 0.0041 0.0679 0.0004 0.70 103170 0.02 99.1 423.4 2.3 423.9 2.7 427 13 core
103 62 0.0554 0.0004 0.5233 0.0043 0.0685 0.0003 0.60 3546 0.46 99.5 427.0 2.0 427.4 2.9 429 15 metamorphic (no core)
104 223 0.0554 0.0003 0.5235 0.0040 0.0686 0.0004 0.71 20895 0.34 100.4 427.7 2.4 427.5 2.7 426 11 metamorphic (no core)
105 148 0.0559 0.0004 0.5068 0.0043 0.0658 0.0003 0.60  91.8 410.7 2.0 416.3 2.9 448 15 rim
60 78 0.0579 0.0005 0.6710 0.0061 0.0841 0.0003 0.43  99.2 520.6 2.0 521.3 3.7 525 18 rim
70 1362 0.0576 0.0001 0.6715 0.0040 0.0846 0.0005 0.94  101.8 523.4 2.9 521.6 2.5 514 4 core
69 118 0.0584 0.0004 0.7072 0.0063 0.0878 0.0005 0.58  99.4 542.5 2.7 543.1 3.8 546 16 rim
1 651 0.1042 0.0052 1.3385 0.0746 0.0932 0.0024 0.45 3766030 0.00 33.8 574.3 13.9 862.6 32.4 1700 92 core
5 261 0.0899 0.0005 3.0303 0.0281 0.2444 0.0017 0.77 53281 0.03 99.0 1409.5 9.0 1415.3 7.1 1424 11 core
7 251 0.2927 0.0021 16.1291 0.1504 0.3997 0.0023 0.62 9214 0.13 63.2 2167.4 10.7 2884.5 8.9 3432 11 core
12 191 0.1783 0.0010 12.5367 0.1365 0.5099 0.0048 0.86 43533 0.04 100.7 2656.0 20.5 2645.5 10.2 2637 9 core
13 128 0.0713 0.0004 1.6293 0.0273 0.1657 0.0026 0.94 3412 0.52 102.2 988.1 14.4 981.6 10.5 967 12 rim
14 1128 0.0653 0.0003 0.9729 0.0089 0.1081 0.0008 0.81 49091 0.04 84.6 661.9 4.7 690.0 4.6 783 11 core
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15 206 0.0713 0.0003 1.4834 0.0124 0.1509 0.0010 0.81  93.8 905.9 5.7 923.6 5.1 966 10 rim
16 51 0.1677 0.0012 11.2274 0.2311 0.4855 0.0093 0.93 8352 0.21 100.6 2551.0 40.5 2542.2 19.2 2535 12 core

506 201 0.0830 0.0015 0.9346 0.0211 0.0817 0.0011 0.58 9400 0.17 39.9 506.2 6.4 670.0 11.1 1269 36 core
19 145 0.0651 0.0006 1.0268 0.0207 0.1145 0.0020 0.89 1246 1.31 90.0 698.7 11.9 717.3 10.4 776 19 core

743 658 0.0847 0.0006 1.4270 0.0231 0.1222 0.0018 0.90  56.8 743.3 10.3 900.3 9.7 1308 14 core
26 726 0.0760 0.0003 1.9710 0.0202 0.1882 0.0017 0.91 34372 0.05 101.6 1111.6 9.5 1105.7 6.9 1094 9 core
29 129 0.0700 0.0006 1.3920 0.0154 0.1442 0.0011 0.67 4447 0.37 93.5 868.2 6.0 885.5 6.5 929 17 core
35 960 0.0726 0.0006 1.6851 0.0318 0.1684 0.0029 0.91 20931 0.08 100.2 1003.5 15.9 1002.9 12.0 1002 16 core
39 573 0.1552 0.0013 4.9275 0.0732 0.2303 0.0028 0.82 10407 0.17 55.6 1335.9 14.8 1807.0 12.5 2404 14 core
40 485 0.1580 0.0012 4.9258 0.0798 0.2261 0.0033 0.89 52300 0.03 54.0 1314.0 17.1 1806.7 13.7 2434 13 core
42 935 0.0883 0.0006 2.1687 0.0343 0.1781 0.0025 0.89 19352 0.09 76.0 1056.3 13.8 1171.1 11.0 1390 14 core
43 442 0.0677 0.0005 1.3162 0.0186 0.1409 0.0017 0.84 15083 0.10 98.7 849.8 9.4 852.9 8.1 861 16 rim
45 605 0.0912 0.0006 3.1539 0.0372 0.2507 0.0024 0.82 27975 0.06 99.3 1442.1 12.5 1446.0 9.1 1452 13 core
48 371 0.0652 0.0009 1.2208 0.0202 0.1357 0.0012 0.52 7296 0.24 104.9 820.4 6.6 810.1 9.2 782 30 core
50 507 0.1488 0.0015 4.5197 0.0673 0.2204 0.0024 0.74 4529 0.31 55.1 1283.7 12.9 1734.6 12.4 2332 17 core
57 330 0.2115 0.0017 17.3921 0.2252 0.5963 0.0061 0.78  103.3 3014.9 24.5 2956.7 12.4 2917 13 core
59 435 0.1326 0.0033 5.8086 0.1765 0.3178 0.0056 0.58 14261 0.10 83.4 1778.8 27.2 1947.7 26.3 2132 43 core
66 279 0.1064 0.0003 2.9824 0.0428 0.2032 0.0029 0.98 18269 0.09 68.6 1192.5 15.3 1403.2 10.9 1739 5 core
68 965 0.0725 0.0003 1.6708 0.0146 0.1672 0.0013 0.91 29862 0.06 99.7 996.7 7.3 997.5 5.6 999 8 core
73 663 0.1576 0.0018 5.2052 0.1127 0.2395 0.0044 0.85 9696 0.18 56.9 1384.0 22.8 1853.5 18.4 2431 20 core
76 191 0.1777 0.0009 10.4769 0.1101 0.4275 0.0039 0.86 9230 0.19 87.2 2294.5 17.5 2477.9 9.7 2632 9 core
77 512 0.0666 0.0003 1.2174 0.0115 0.1326 0.0011 0.84  97.2 802.5 6.0 808.6 5.3 825 11 rim
80 655 0.1319 0.0009 3.1985 0.0376 0.1758 0.0017 0.82 253587 0.01 49.2 1044.2 9.2 1456.8 9.1 2124 12 rim
84 1089 0.1395 0.0012 4.2227 0.0793 0.2195 0.0037 0.89 30084 0.06 57.6 1279.2 19.4 1678.4 15.4 2221 15 core
86 269 0.1755 0.0011 11.2620 0.0972 0.4654 0.0028 0.70  94.3 2463.2 12.4 2545.1 8.0 2611 10 rim
87 153 0.1847 0.0011 12.4118 0.1241 0.4874 0.0038 0.78 9232 0.19 94.9 2559.3 16.6 2636.1 9.4 2696 10 core
88 151 0.1921 0.0012 14.0338 0.1553 0.5298 0.0049 0.84 19746 0.09 99.3 2740.4 20.7 2752.0 10.5 2761 10 core
91 33 0.1452 0.0015 3.2180 0.0506 0.1607 0.0019 0.74  41.9 960.6 10.4 1461.5 12.2 2291 18 core
92 25 0.1828 0.0014 8.2464 0.1310 0.3272 0.0046 0.88  68.1 1824.9 22.2 2258.4 14.4 2678 13 core
94 223 0.1197 0.0022 5.7115 0.1074 0.3462 0.0014 0.21  98.2 1916.4 6.6 1933.1 16.2 1951 33 core
95 37 0.0844 0.0006 2.5112 0.0225 0.2157 0.0012 0.64  96.7 1259.3 6.6 1275.3 6.5 1302 13 fragment of zircon grain
98 39 0.0637 0.0005 1.0104 0.0122 0.1150 0.0010 0.72 5605 0.31 95.8 701.7 5.8 709.1 6.1 733 18 rim
99 113 0.0689 0.0005 1.2650 0.0124 0.1333 0.0009 0.71  90.2 806.4 5.3 830.2 5.6 894 14 core

100 166 0.0658 0.0008 1.1848 0.0166 0.1306 0.0008 0.46 3066 0.56 98.8 791.0 4.8 793.5 7.7 801 26 rim
108 54 0.1390 0.0020 2.6482 0.0522 0.1381 0.0019 0.69 6571 0.26 37.7 834.1 10.6 1314.2 14.5 2215 25 core
110 194 0.1678 0.0017 8.0060 0.0934 0.3460 0.0021 0.53 4178964 0.00 75.5 1915.5 10.2 2231.7 10.5 2536 17 core
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Figure 1. (Colour online) (a) Simplified geological map of the Western Gneiss Region (modified after 
Brueckner & Cuthbert, 2013) with (b) generalised geological map of Fjørtoft (after Carswell & van 

Roermund, 2005) showing the location of the diamond-bearing garnet kyanite gneiss. NSD - Nordfjord-Sogn 
detachment zone, MTD - Møre Trondelag detachment zone, black dashed line - early E/SE late W/NW 

décollements, black thin lines - W/NW vergent lineation directions. 
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Figure 2. (Colour online) Hand specimen of the diamond-bearing garnet-kyanite gneiss from Fjørtoft (sample 
ID: Fj-19). 
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Figure 3. (Colour online) Cathodoluminescence images of representative zircon crystals from the Fjørtoft 
diamond-bearing garnet kyanite gneiss. White circles mark analytical spots and given numbers indicate 

206Pb-238U dates. 
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Figure 4. (Colour online) (a-d) U-Pb concordia diagram for zircon analyses; (a) all analyses for both 
metamorphic and detrital zircon domains, (b) concordia diagram of zircon with Caledonian ages with inset 

(c) showing ages for which Concordia age has been calculated. (d) Magnification of the fragment of 
Concordia diagram (a) showing late Precambrian dates. (e) Histogram of 206Pb-238U age frequency of 
metamorphic zircon domains. (f) Histogram of  207Pb-206Pb age frequency of concordant detrital zircon 

(10% discordance accepted). 
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