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Abstract

This paper describes, for the first time, the construction of equilib-
rium configurations for smectic A liquid crystals subjected to nonuni-
form physical boundary conditions, with two-dimensional dependence
on the director and layer normal, and a nonlinear layer function.
Euler-Lagrange equations are constructed that describe key properties
of liquid crystals confined between two boundaries exhibiting spatial
imperfections. The results of the model are shown to be consistent
with previous published findings in simple domains while novel re-
sults are obtained on how the structure of the liquid crystals changes
in response to boundary perturbations. Domain sizes are considered
representing those currently used in applications while predictions in
smaller domains at the limit of current technologies are also made. In
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particular, it is shown that the curvature along a boundary impacts
on the liquid crystal’s structure distant from the boundary feature
and therefore previously developed mathematical models, that essen-
tially reduced the problem to a single spatial dimension, cannot be
used in such circumstances. Consequences for practical applications
are briefly discussed.

Keywords smectic A, non-uniform domain, smectic layers, liquid
crystals, boundary value problem, partial differential equations

PACS Numbers 02.60.Lj, 61.30.Dk, 61.30.Hn

1 Introduction

Liquid crystals are anisotropic fluids, first discovered in the 19th century by
the Austrian botanist Friedrich Reinitzer [58, 59]. Most liquid crystals are
organic substances that can be induced to exhibit liquid crystal phases by
changing either the temperature (thermotropic) or the concentration in a
solvent (lyotropic). The most common type of molecule that forms a liquid
crystal is an elongated rod-shaped molecule; that is, where one molecular
axis is much longer than the other two. This axis is known as the anisotropic
axis.

Liquid crystals are classified according to their molecular structure and
organisation. For example, the nematic phase, where the molecules have no
specific positional order but exhibit a common directional alignment known
as the director (usually denoted by the unit vector n) [66, p. 14], has received
significant mathematical treatment [41, 70, 38, 39, 27, 66, 37, 49, 50, 52, 53,
51, 32, 8, 6, 7, 57, 78, 24]. However, the smectic phase, where the molecules
display both positional and orientational order, has received considerably less
attention. Specifically, smectic liquid crystals are layered structures with a
well-defined interlayer distance, which is in the range 20 − 80 Å[66, p. 6].
These layers may be described by a scalar function Φ that can be used to
investigate layer undulations [64, 65, 68, 67, 74, 76, 22, 43, 42, 69, 73, 71, 72,
75] and is often assumed to be of the form Φ(x, y, z, t) = x+ u(x, y, z, t) (or
Φ(x, y, z, t) = z + u(x, y, z, t) depending on the layer orientation), where u
denotes layer undulations. However, this ansatz does not accurately describe
the underlying features of the smectic layers. Moreover, while there are a
number of smectic phases [20, p. 45], this article will focus exclusively on
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smectic A, the first discovered and most common of the smectic phases [19,
p.6].

It was previously believed that when the smectic A phase arose in equi-
librium the molecules were aligned in parallel and equidistant layers and
where each layer was perpendicular to the director (Fig. 1(a)). Mathe-
matically, this was represented by assuming the layer normal, denoted by
a = ∇Φ/|∇Φ| [27, 66, 68], was identical to the director n. However, as
hypothesized by de Gennes [27] and later demonstrated by Elston [35], the
layer normal and the director can decouple when surface pretilt is applied.
Furthermore, Auernhammer et al. [9, 10, 11], Soddemann et al. [62], and
Stewart and Stewart [69] indicated that samples of smectic A under simple
shear may exhibit a decoupling between the director n and the unit layer
normal a.

Figure 1: Planar alignment of smectic A liquid crystals; (a) in equilibrium,
where the director n is parallel to the smectic layer normal a, (b) where the
director n does not necessarily coincide with the layer normal a and each are
at angles θ(x, z) and δ(x, z) respectively to the horizontal.

In order to model this, and other phenomena, Stewart developed a dy-
namic theory, and a free energy density function, for smectic A liquid crystals
[68]. This theory was developed to allow for occurrences in which the director
n and the unit layer normal a do not always necessarily coincide. The theory
was based in part upon many of the ideas that were used in the formulation
of dynamics for nematics by Ericksen [36, 37] and Leslie [49, 50, 51] and the
dynamics for smectic A by Martin et al. [54], de Gennes [25, 26], Ahmadi [4]
and E [34].

Stewart studied “bookshelf”-aligned smectic A liquid crystals (so-called
due to the similarities between the orientation of molecules in adjacent layers
in Fig. 1(a) and the spines of books when arranged on bookshelves) with sur-

3



face pretilt akin to the experimental work of Elston, and assumed that the
orientation of the smectic layers, and the director, was solely dependent on
the in-plane spatial variable (i.e. z in Fig. 1(a))[67]. When Walker considered
the decoupling of the layer normal and the director in cylindrically layered
smectic liquid crystals [71], he illustrated that the orientation of the smectic
layers and the director may indeed be dependent on both the in-plane spatial
variable and the out-of-plane spatial variable (that is, the spatial variable that
crosses the smectic layers). Consequently, there is a need to investigate the
dependence on the out-of-plane spatial variable in planar samples of smec-
tic A liquid crystals with uniform and non-uniform cell boundaries. These
non-uniform boundaries could account for naturally occuring imperfections
in cell boundaries, or in circumstances where the smectic layer deformations
are used to highlight a foreign body on a cell boundary.

This article considers a smectic A liquid crystal, arranged in a suite of
standard and non-standard “bookshelf” geometries where the orientation of
the director and layer normal are, and in the authors’ knowledge for the
first time, assumed to be functions of both the in- and out-of-plane vari-
ables while the layer function is calculated explicitly from the layer normal.
Surface pretilt is applied on one or more boundaries, and at the boundaries
the smectic layers are assumed to take the orientation of the physical cell
wall. A free energy associated with this experiment is created and the cor-
responding Euler-Lagrange equations are constructed. The Euler-Lagrange
equations and the constraint relating the layer function to the layer normal
are then integrated numerically. Indeed, due to the complexity of the model
equations, this aspect is significantly more challenging than simply including
a further spatial dimension into previous investigations. The dependence of
the orientation of the director and the layer normal on these spatial variables
is shown throughout the samples and the extent to which the director and
layer normal decouple is highlighted.

To begin, in Section 2, we provide the energy density function for the
liquid crystal, the associated boundary conditions and construct the stan-
dard Euler-Lagrange equations. In Section 3, a standard “bookshelf”-aligned
smectic A liquid crystal is investigated, where the angles describing the di-
rection of the director and layer normal are assumed to be functions of both
spatial variables. The results are consistent with those of Elston [35] and
Stewart [67], validating the solution method developed. Then, in Sections 4
and 5, we investigate an array of non-uniform “bookshelf”-aligned smectic A
liquid crystals. The dependence of the layer normal and the director on
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both spatial variables is illustrated. Comments are made on the results, and
possible future work, in Section 6.

2 Free Energy and Minimization

In this section, we provide the free energy density for a smectic A liquid
crystal. We then proceed to obtain coupled partial differential equations
that minimize the free energy density function by using the standard Euler-
Lagrange equations. This then allows us, in the subsequent sections, to
introduce appropriate boundary conditions and solve, numerically.

2.1 Construction of Free Energy Density

We consider a sample of “bookshelf”-aligned smectic A where the orientation
of the director n and the layer normal a depend on two spatial variables x
and z, as described in Fig. 1(b). The layer normal and director are assumed
to make angles δ(x, z) and θ(x, z), to the horizontal in the xz-plane so that
the unit layer normal a and unit director n are given by

a = (cos(δ(x, z)) , 0 , sin(δ(x, z))) , (1)

n = (cos(θ(x, z)) , 0 , sin(θ(x, z))) , (2)

respectively. When δ = θ = 0, we have the usual level sets of undisturbed
“bookshelf”-aligned smectic A, i.e. a ≡ n ≡ (1, 0, 0), as shown in Fig. 1(a).
As is common, a scalar function Φ(x, z) is introduced, where

a =
∇Φ(x, z)

|∇Φ(x, z)|
, (3)

so that the gradient of Φ(x, z) describes the local layer structure. The layer
normal (1), director (2) and layer function (3) are used to compose an energy
density that describes the liquid crystal system. The energy density used by
Stewart [68, 67], De Vita and Stewart [28], and Walker [71] will be employed
here. This energy density is based upon the work of Auernhammer et al.
[9, 10, 11], E [34], Ribotta and Durand [60] and Soddemann et al. [62] and
takes the form

w =
1

2
Ka

1 (∇ · a)2+
1

2
Kn

1 (∇ · n)2+
1

2
B0 (|∇Φ|+ n · a− 2)2+

1

2
B1

(
1− (n · a)2

)
,

(4)
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with the total bulk energy being given by

W =

∫
V

w dV, (5)

where V is the sample volume. In the above expression Ka
1 is a measure

of the bending of the smectic layers, while Kn
1 represents the elastic splay

deformation of the director n; both Ka
1 and Kn

1 are positive elastic constants
with dimensions of force. The constant Ka

1 relates to the influence of the
orientation of the smectic layers upon the total distortion energy. The elastic
constant Kn

1 is related to K1 in the usual elastic theory connected with the
nematic splay deformation [50, 66]. Quantitative measures of these elastic
terms have been proposed to be of the same order of magnitude as the elastic
constant K1 [10], which we shall adopt later. The B0 term is related to
smectic layer compression and its coefficient is an extended version of that
known for smectic A, based upon the results in [10, 27, 34, 47, 60], having
dimensions of energy per unit volume (Nm−2). The fourth term is a measure
of the strength of the coupling between a and n. The positive constant B1

has comparable magnitude to B0 and the same dimensions. We note that in
an equilibrium situation this contribution to the energy is minimised when
the director and the layer normal are parallel. We also note that alternative
energy formulations are possible; for example, the formulation proposed by de
Vita and Stewart [29, 30] differs in the representation of the layer compression
term. Indeed, de Vita and Stewart’s energy formulation can be treated using
similar methods to those proposed in below. It can be seen that the main
behaviour and characteristics of the solutions are unchanged except in certain
key cases [5].

From equations (1) and (3), it follows that

Φ,x

|∇Φ|
= cos(δ(x, z)), (6)

Φ,y

|∇Φ|
= 0, (7)

Φ,z

|∇Φ|
= sin(δ(x, z)), (8)

where the comma in a subscript indicates the partial derivative with respect
to any following variables. From equation (7) Φ,y = 0, and while assuming
that the layer function is continuously differentiable across the sample, and
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Φ,x 6≡ 0 (i.e. δ 6= π/2), we can create from (6) and (8) the partial differential
equation

Φ,z − Φ,x tan(δ(x, z)) = 0. (9)

This equation, and its cylindrical coordinate counterparts, was investigated
by Walker [72, 71] where the angles that describe the orientation of the layers
and the director were assumed to be functions of the in-plane spatial variable
only. In those cases, the method of characteristics provided an analytical
solution for the layer function Φ, and the free energy was minimised using
the standard Euler-Lagrange equations. However, due to the nature of the
nonlinear boundary conditions to be applied in this work, we retain the
dependence of the layer normal and the director on both spatial variables.
Consequently there is no simple analytical solution to equation (9) and hence
we seek an alternative numerical solution.

Using (9), and to be consistent with equation (6), |∇Φ| can be expressed
as

|∇Φ| = Φ,x sec δ(x, z). (10)

Consequently, using equations (1), (2), (4) and (10), we may write the non-
linear free energy of the system to be

w =
1

2
Ka

1 (δ,z cos δ − δ,x sin δ)2 +
1

2
Kn

1 (θ,z cos θ − θ,x sin θ)2

+
1

2
B0 (Φ,x sec δ + cos(θ − δ)− 2)2 +

1

2
B1 sin2(θ − δ). (11)

We are now required to minimise this free energy function in order to consider
the equilibrium forms of the layer normal and the director.

2.2 Minimization of Free Energy

The minimisation of the energy density function in equation (11) can be
investigated by using the Euler-Lagrange equations

∂w̄

∂θ
− ∂

∂x

(
∂w̄

∂θ,x

)
− ∂

∂z

(
∂w̄

∂θ,z

)
= 0, (12)

∂w̄

∂δ
− ∂

∂x

(
∂w̄

∂δ,x

)
− ∂

∂z

(
∂w̄

∂δ,z

)
= 0, (13)

∂w̄

∂Φ
− ∂

∂x

(
∂w̄

∂Φ,x

)
− ∂

∂z

(
∂w̄

∂Φ,z

)
= 0, (14)
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resulting in the following three coupled partial differential equations:

0 = Kn
1 (θ,z cos θ − θ,x sin θ)(−θ,z sin θ − θ,x cos θ)

− B0 sin(θ − δ)(Φ,x sec δ + cos(θ − δ)− 2) +B1 sin(θ − δ) cos(θ − δ)
+ Kn

1 (sin θ(θ,z cos θ − θ,x sin θ)),x −Kn
1 (cos θ(θ,z cos θ − θ,x sin θ)),z,(15)

0 = Ka
1 (δ,z cos δ − δ,x sin δ)(−δ,z sin δ − δ,x cos δ)

+ B0(Φ,x sec δ + cos(θ − δ)− 2)(Φ,x sec δ tan δ + sin(θ − δ))
− B1 sin(θ − δ) cos(θ − δ) +Ka

1 (sin δ(δ,z cos δ − δ,x sin δ)),x

− Ka
1 (cos δ(δ,z cos δ − δ,x sin δ)),z, (16)

0 = (B0 sec δ(Φ,x sec δ + cos(θ − δ)− 2)),x. (17)

Following previous techniques [68, 71], the above Euler-Lagrange equations
(15-17) are non-dimensionalised by introducing

λ =

√
Kn

1

B0

, κ =
Ka

1

Kn
1

, B =
B1

B0

, Φ̄ =
Φ

λ
, z̄ =

z

λ
, x̄ =

x

λ
, (18)

where λ is a molecular length scale [27, p.344]. The compression constant
B0 typically takes a value of the order 106 Nm−2, while the elastic splay
deformation parameter Kn

1 typically takes a value of the order 10−12 N [68,
71]. Consequently, the molecular length scale λ is of the order of 10−9 m (10Å)
which is comparable to the smectic layer thickness (20− 80Å), as stipulated
by de Gennes [27]. In the above non-dimensionalisation, κ is a measure
of the elastic properties of the liquid crystal, with its magnitude playing a
particular role in the reorientation of the smectic layers in previous research,
while the constant B is a relative measure of the layer compression constant
and the strength of the coupling between the layer normal and the director
and it, too, has shown significant influence in the reorientation of the smectic
layers in previous research [68, 71]. Consistent with other investigations [67],
it is assumed that B1 and Ka

1 take values with approximately similar orders
of magnitude to B0 and Kn

1 respectively and hence, for the purpose of a
thorough investigation, B and κ will accordingly take values between 10−3

and 103.
Consequently, the Euler-Lagrange equations (15), (16) and (17) now re-

duce to

0 = (θ,z̄ cos θ − θ,x̄ sin θ)(−θ,z̄ sin θ − θ,x̄ cos θ)
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− sin(θ − δ)(Φ̄,x̄ sec δ + cos(θ − δ)− 2) +B sin(θ − δ) cos(θ − δ)
+ (sin θ(θ,z̄ cos θ − θ,z̄ sin θ)),x̄ − (cos θ(θ,z̄ cos θ − θ,x̄ sin θ)),z̄, (19)

0 = κ(δ,z̄ cos δ − δ,x̄ sin δ)(−δ,z̄ sin δ − δ,x̄ cos δ)

+ (Φ̄,x̄ sec δ + cos(θ − δ)− 2)(Φ̄,x̄ sec δ tan δ + sin(θ − δ))
− B sin(θ − δ) cos(θ − δ) + κ(sin δ(δ,z̄ cos δ − δ,x̄ sin δ)),x̄

− κ(cos δ(δ,z̄ cos δ − δ,x̄ sin δ)),z̄, (20)

0 = (Φ̄,x̄ sec δ + cos(θ − δ)− 2)),x̄. (21)

The solutions of equations (19), (20) and (21) correspond to the minimisation
of the energy function (11). Clearly, there is no non-trivial analytical solution
to the above equations. However, insightful numerical solutions are sought for
a suite of problems with various applied boundary conditions in the following
sections.

3 Uniform Boundary Conditions

We first reconsider the set-up investigated experimentally by Elston [35] and
analytically by Stewart [67]. That is, “bookshelf”-aligned smectic A liquid
crystals confined between two parallel glass plates, a distance 2d = 2d̄λ units
apart, as described in Fig. 2. Surface pretilt of the director is applied so
that θ(x̄,−d̄) = −θ(x̄, d̄) = θ0 and it will also be assumed that the smectic
layers will exhibit a fixed layer tilt at the boundaries, so that δ(x̄,−d̄) =
−δ(x̄, d̄) = δ0. Periodic conditions are applied on the fictitious x̄ = −L̄ and
x̄ = L̄ boundaries, i.e. θ(−L̄, z̄) = θ(L̄, z̄) and δ(−L̄, z̄) = δ(L̄, z̄).

The model equations (19) and (20) were solved numerically using COM-
SOL Multiphysics [21], which uses the method of finite elements by con-
structing a suitable triangular mesh over the domain. The constraint (9)
was imposed in the numerical scheme, via COMSOL’s model builder. Post-
solution testing showed that the magnitude of the left-hand side of (9) to not
exceed 10−12, whilst generally falling between 10−16 and 10−14.

Previous investigations on smectic A liquid crystal structure in a single
spatial dimension have shown that non-zero boundary conditions induce a
boundary layer region in which the director and layer normal attempt to
align [71, 68, 67, 28]. In anticipation of similar effects in this higher spatial
dimension investigation, boundary layers are incorporated into the upper
and lower surfaces of the domains by refining the mesh on the corresponding
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Figure 2: Planar alignment of smectic A liquid crystals in a regular rectangu-
lar domain with pretilt applied on boundaries z̄ = ±d̄ and periodic conditions
on x̄ = ±L̄ as described in the text.

boundaries. In all numerical solutions, the mesh resolution was selected so
that further mesh refinement produced graphically indistinguishable results.

The numerical routines utilised by COMSOL require initial values for the
model variables to be defined from which the final solution is constructed.
Crucially, the efficiency of the method was seen to depend upon the choice of
these initial values. Provided the initial values satisfied the boundary condi-
tions for θ and δ at z̄ = ±d̄, COMSOL was usually able to iterate the initial
distributions so that these iterations converged rapidly to the final equilib-
rium configuration. As expected, the convergence was observed to be fastest
when the initial values were chosen to be “close” to the equilibrium solution.
Therefore, by exploiting known results for the single spatial configuration in
a standard “bookshelf” geometry [67], initial values of θ and δ were selected
to be zero for z̄ ∈ [−d̄+ 1, d̄− 1] and changing linearly outwith this region to
take the specified values at z̄ = ±d̄ and so displaying similar characteristics
to the solutions of [67], namely steep changes in the director and layer normal
angles close to the boundary and values close to zero elsewhere. The initial
value of Φ was taken to be unity throughout the domain.

It should be noted that the solutions of the above Euler-Lagrange equa-
tions correspond to local energy minimizers. Hence there is a risk that the
numerical iterations converge on a local minimizer, but not necessarily the
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global energy minimizer. To mitigate against this possibility, alternative ini-
tial iterates also satisfying the boundary conditions were considered in an
attempt to obtain different local minimizers but in all cases the numerical
iterates converged on the same solution.

With the above choice of initial values and running on a desktop computer
with an Intel Core i7 processor with 6GB of RAM, the computational times
for the domains described in this investigation were typically between 1 and
2 minutes.

Typical values obtained for θ(x̄, z̄), δ(x̄, z̄) and their difference θ(x̄, z̄) −
δ(x̄, z̄) are shown in Fig. 3 for a range of domains corresponding to 10nm×
10nm (d̄ = L̄ = 5), 0.1µm × 0.1µm (d̄ = L̄ = 50), and 1µm × 1µm
(d̄ = L̄ = 500), therefore representing current typical liquid crystal technolo-
gies along with potential future scenarios [35]. While smaller domains can be
considered from a purely mathematical perspective, from a physical perspec-
tive the continuum approach would cease to be valid in such circumstances.
Notice that the director angle θ(x̄, z̄) and layer normal angle δ(x̄, z̄) appear
independent of the variable x̄ and hence their alignment depends only on
the spatial variable z̄. Indeed, this independence was confirmed numerically
in COMSOL since the computed values of θ,x̄(x̄, z̄) and δ,x̄(x̄, z̄) had abso-
lute values less than 10−6 throughout all the domains compared to θ,z̄(x̄, z̄)
and δ,z̄(x̄, z̄) which had maximum values of orders between 100 and 101. In
all cases, the value of the director angle θ declined from its value θ0 at the
boundary z̄ = −d̄ (or increased from −θ0 at z̄ = d̄) to take a value close to
zero typically within 5-10 spatial units from the boundaries. The layer nor-
mal angle increased from δ0 on the z̄ = −d̄ boundary (or decreased from −δ0

on the z̄ = d̄ boundary) to take the same value as the director angle, usually
within 2 spatial units. Thus, and as in [67], there are typically two boundary
layers; the first where the director and layer normal mutually align, and the
second where both simultaneously reorient to zero.

The manner of the alignment between the director and layer normal can
be more easily compared by considering their orientation along a single layer
(i.e. a given value of x̄), thereby allowing a direct comparison with the stud-
ies of Elston [35] and Stewart [68]. The resultant alignment depends on the
values of the model parameters B and κ in the same manner obtained by
Elston [35] and Stewart [68]. Fig. 4 illustrates typical values of θ(x̄, z̄) and
δ(x̄, z̄) along the layer x̄ = 0 where a logarithmic scale in terms of the dis-
tance from the z̄ = −d̄ boundary has been adopted to fully illustrate the
convergence properties between the layer normal and director angles away
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Figure 3: Solutions of model equations (19) and (20) for different domain
sizes with B = κ = 1 in a rectangular domain using boundary conditions as
described in text with θ0 = π/12 and δ0 = 0. Arrows indicate the director
and layer normal vectors where appropriate.
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from a boundary where pretilt has been applied. Notice that for κ < 1, the
layer normal angle δ increases to the director angle θ in a region close to the
boundary while θ declines to δ in the instance of κ > 1; this behaviour is
consistent with the definition of κ = Ka

1/K
n
1 where Ka

1 and Kn
1 denote the

desire of δ and θ, respectively, to change over a spatial interval. Addition-
ally, as B is increased, the director and layer normal angles converge over a
shorter spatial distance before both tend to zero away from the boundary,
consistent with B representing the coupling between the layer normal and
director vectors. (Note that due to the symmetry embedded in the model
equations and imposed through the boundary conditions, similar behaviour
is observed around the z̄ = d̄ boundary, albeit with the signs of the angles
reversed.) Consequently, we deduce that a key prediction of those previ-
ous investigations, namely that there are no inter-layer effects for smectic
liquid crystals in a bookshelf geometry, is indeed valid. However, when the
boundaries of the domain are perturbed, the “bookshelf” geometry no longer
applies and far more complex behaviour is possible, as we now investigate.

4 Non-Uniform Boundary Conditions

The uniform boundary conditions investigated above demonstrated that the
standard “bookshelf” geometry considered in previous investigations is in-
deed a suitable approach for such domains and also that the minimisation
approach outlined in Section 2 coupled with the numerical solution method
provides consistent results. However, de Gennes states that “the notion of a
perfectly flat or locally smooth surface is an ad hoc idealization” [27, P. 353]
and hence we must take into account the possibility of undulations in the
surfaces and surface dislocation densities. Consequently, the validity of the
standard “bookshelf” approach requires investigation in such settings. To
this end, we now consider a suite of smectic A samples confined between
non-uniform boundaries, as schematically illustrated in Fig. 5. In this arti-
cle, we have restricted our attention to non-uniform boundaries having cyclic
perturbations, similar to that of de Gennes [27]. This allows us to consider
the possibility of warped physical boundaries through possible manufacturing
defects, heat distortions, or poor treatment. We investigate the effect that
the boundaries have on the realignment of the layer normal and the director,
and show the differences compared uniform boundary conditions.

To isolate the effect of perturbations at the boundaries on the director

13



Figure 4: Solutions of model equations (19) and (20) in a rectangular domain
with d̄ = L̄ = 500 and for different values of B and κ using boundary
conditions as described in text with θ0 = π/12 and δ0 = 0 along the layer
x̄ = 0 where θ and δ are shown by the solid and dashed lines respectively.
The horizontal axes utilise a logarithmic scale of the distance from the lower
surface, i.e. z̄ + d̄.
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Figure 5: Planar alignment of smectic A liquid crystals; (a) configuration
(I) with one non-uniform boundary displaying a cyclic perturbation, (b) con-
figuration (II) with two non-uniform boundaries having cyclic perturbations
(that may be out of phase).

and layer alignments, we consider the equilibrium configurations that min-
imize the energy function (11) in a semi-rectangular region in the xz-plane
bounded by x̄ = −L̄ (representing the (fictitious) left side of the domain),
x̄ = L̄ (representing the (fictitious) right side of the domain), z̄ = d̄ + f(x̄)
(representing the top of the domain), and z̄ = −d̄ + g(x̄) (representing the
bottom of the domain), where L̄ and d̄ are as defined in Section 3. To inves-
tigate the effect of different types of perturbations on the layer structure at
the upper and lower boundaries, two different configurations were considered
(see Fig. 5):

(I) f(x̄) = Ā sin(π(x̄+ L̄)/L̄), g(x̄) = 0, representing a cyclic perturbation
on one boundary only (Fig. 5(a)),

(II) f(x̄) = Ā sin(nπ(x̄+L̄)/L̄), g(x̄) = Ā sin(nπ(x̄+L̄)/L̄+ω), representing
cyclic perturbations on both boundaries (Fig. 5(b)),

where in each instance Ā < d̄ represents the maximum magnitude of the
perturbations, the integer n denotes the frequency of oscillations and ω the
phase shift between boundaries in the second configuration. Periodic bound-
ary conditions were applied to the layer normal angle δ and the director angle
θ on the x̄ = ±L̄ boundaries as described previously, i.e. θ(−L̄, z̄) = θ(L̄, z̄)
and δ(−L̄, z̄) = δ(L̄, z̄). Surface pretilt was applied to the upper and lower
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boundaries through fixed boundary conditions that specified the director and
layer normal relative to the boundary. Thus on the upper surface z̄ = d̄+f(x̄),
the director angle θ was set to be tan−1(f ′(x̄))−θ0 and the layer normal angle
was set to be tan−1(f ′(x̄))−δ0 for specified values of θ0 and δ0. This choice of
boundary condition is consistent with previous studies on uniform domains
[68, 71]. Depending on the geometry of the domain, different boundary con-
ditions were used on the lower surface. In configuration (I) (i.e. Fig. 5(I))
where g(x̄) = 0, both θ and δ were set to be zero on z̄ = −d̄. In config-
uration (II), similar conditions to those applied on the upper surface were
used on the lower boundary except the director and layer normal angles were
reflected with respect to the boundary; specifically θ and δ were taken to be
tan−1(g′(x̄)) + θ0 and tan−1(g′(x̄)) + δ0, respectively, again consistent with
previous studies.

Model equations (19) and (20) with constraint (9) were solved using the
boundary conditions as described above using the same method developed
in Section 3.

4.1 Configuration (I)

The numerical solution with B = κ = 1 for the configuration shown in
Fig. 5(I) with the same range of values of L̄ and d̄ used previously and an
oscillation of amplitude Ā = 0.1d̄ is shown in Fig. 6. The boundary conditions
applied on the lower surface (i.e. z̄ = −d̄) ensured that the director angle θ
and the layer normal angle δ coincided and were both zero at that boundary.
On the opposite boundary, there was a constant separation between θ and
δ, corresponding to θ0 − δ0, and the transition between the two boundaries
gives information on the realignment characteristics of the smectic A liquid
crystals in irregular domains. Unlike in the uniform domain of Section 3,
this transition depended on the variable x̄ and on the domain size, as shown
by values of θ(x̄, z̄) and δ(x̄, z̄) along different layers (i.e. different values of
x̄), in the different domains (Fig. 7).

In all cases, the director and layer normal vectors aligned with each other
a short distance away from the upper boundary where pretilt was applied.
Whereas with the same control parameters in the uniform domain where
there was a symmetry in how the smectic layers and the director aligned
(Fig. 4 with κ = B = 1), the realignment processes in Configuration (I)
displayed no such consistent symmetry for many layers. For example, along
the layers x̄ = 0.6L̄, and to a lesser extent along x̄ = 0.2L̄, the change in

16



Figure 6: Solutions of model equations (19) and (20) in configuration (I) of
Fig. 5 B = κ = 1 and Ā = 0.1d̄ using boundary conditions as described in
text with θ0 = π/12 and δ0 = 0 for domain sizes as indicated.

the director angle θ was greater than the change in the layer normal angle
δ to achieve alignment. Following their mutual alignment, both θ and δ
approached zero at greater distances from the boundary. In the smallest do-
main, where d̄ = L̄ = 5, this approach to zero occurred over a shorter spatial
scale than the other domains due to the influence of the lower boundary.

This configuration can be compared with that studied by de Gennes [27].
de Gennes considered a smectic A in contact with an undulating glass sur-
face, where the smectic planes stay locally tangent to the surface (and the
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Figure 7: The director angle θ(x, z) (solid line) and layer normal angle δ(x, z)
(dashed line) are shown for numerical solutions of model equations (19)
and (20) for configuration (I) in Fig. 5 for different size domains as indi-
cated. Parameter values are B = κ = 1, Ā = 0.1d̄ with (a) x̄ = ±L̄, (b)
x̄ = −0.6L̄, (c) x̄ = −0.2L̄, (d) x̄ = 0.2L̄ and (e) x̄ = 0.6L̄. The horiz-
tonal axes utilizes a logarithmic scale of the vertical distance from the upper
surface, i.e. d̄+ f(x̄)− z̄.
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molecules stay in-line with the layer normal). Assuming that the height of
the local amplitude of the undulation takes the form α cos(kx), where α is
assumed to be small, de Gennes stated that the thickness of the distorted
region was given by l = 1/(k2λ), where 2π/k is the wavelength of the un-
dulation. The numerical results provided here do not show quite as large a
deformation thickness as predicted by de Gennes, no doubt due to the fact
that opposite boundary conditions are forcing a realignment sooner into the
sample. Nevertheless, this thickness is significantly larger than the thickness
of the distorted region which would be found under similar conditions with
a nematic liquid crystal, which is found to be around 1/k.

4.2 Configuration (II)

The numerical solutions with B = κ = 1 for the configuration shown in
Fig. 5(II) using different values of d̄ and L̄ with a single oscillation of ampli-
tude Ā = 0.1d̄ and with no phase shift between boundaries (i.e. n = 1, ω = 0)
is shown in Fig. 8.

The smaller domain d̄ = L̄ = 5 exhibits an interesting phenomenon absent
from the larger domains; namely the existence of “bands” of molecules and
layers taking similar orientations that connect the upper and lower surfaces.
These “bands” essentially connect regions of the upper and lower surfaces
with similar imposed values of θ and δ. However, in the larger domains,
i.e. d̄, L̄ ≥ 50, these “bands” cease to exist and instead both the director
and layer normal angles approach zero away from the boundaries; clearly
demonstrating the influence of the boundaries within the sample, and the
sample size itself. As before, close to the upper and lower boundaries, both θ
and δ align with each another (Fig. 9) in a similar manner to that observed
in Configuration (I) (cf. Fig. 7).

Clearly these results in both configurations demonstrate that a rigid
“bookshelf” geometry, that has been previously used throughout some math-
ematical investigations of the structure of smectic liquid crystals, no longer
applies when boundary distortions are involved.

5 Investigation of non-uniform domains

Previous studies, e.g. Stewart [68], investigated how the structure of the smec-
tic liquid crystals arranged in a regular “bookshelf” formation depended on
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Figure 8: Solutions of model equations (19) and (20) in configuration (II) of
Fig. 5 for different domain sizes with B = κ = 1, n = 1, ω = 0 and Ā = 0.1d̄
using boundary conditions as described in text with θ0 = π/12 and δ0 = 0
for the domain sizes indicated. The arrows indicate the director and layer
normal vectors n and a.

the model parameters B and κ. Here we utilize a similar approach but cru-
cially significantly extend that analysis to incorporate the role of the domain
shape and the irregular boundaries of the forms introduced above. It was
seen above that, except at the boundaries, the director and layer normal
mutually align themselves with the horizontal and hence the impact of non-
uniform domains are most evident close to the boundary. Consequently, we
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Figure 9: The director angle θ(x, z) (solid line) and layer normal angle δ(x, z)
(dashed line) are shown for numerical solutions of model equations (19)
and (20) for configuration (II) in Fig. 5 for different size domains as indicated
plotted against the vertical distance from the upper surface, i.e. d̄+f(x̄)− z̄.
B = κ = n = 1, Ā = 0.1d̄, ω = 0 for (a) x̄ = ±L̄, (b) x̄ = −0.6L̄, (c)
x̄ = −0.2L̄, (d) x̄ = 0.2L̄ and (e) x̄ = 0.6L̄.
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henceforth focus attention on the smaller domain with d̄ = L̄ = 5 (corre-
sponding to d = L = 10 nm) where boundary contributions across the entire
domain are more significant.

To quantify the overall alignment characteristics of the liquid crystal
structure in response to the boundaries and model parameters, we introduce
a perturbation measure that captures the discrepancy between the system
in its lowest energy state as a result of the boundary conditions compared
to that without any. In the absence of boundary conditions, as described
above, the default state for the liquid crystal structure is for the director and
layer normal angles to co-align with the positive x̄-axis, i.e. in the absence
of boundary conditions model equations (19) and (20) will have solution
θ(x̄, z̄) = δ(x̄, z̄) = 0 for all x̄, z̄. Consequently, any deviation from this de-
fault state indicates the impact of boundary conditions. To quantify these
deviations, we construct a normalized measure of the perturbations over the
domain by introducing the integral function

Ω(ξ) =

∫ L̄

−L̄

∫ d̄+f(x̄)

−d̄+g(x̄)

√
ξ(x̄, z̄)2 dz̄dx̄,

so that variations in the angle ξ (taken to be θ, δ and θ− δ) over the domain
are quantified by the normalized measure

M(ξ) =
Ω(ξ)

Ω(1)
, (22)

where Ω(1) corresponds to the area of the domain. In the configurations
described above, trivial integration yields Ω(1) = 4d̄L̄.

5.1 Variations in the physical parameters B and κ

As the parameter B, representing the ratio of n and a coupling to layer
compression, was increased beyond unity in both configurations, there were
minimal changes in the orientation of the director angle θ but more pro-
nounced changes in the smectic layer angle δ. However, the most significant
change was in the difference θ − δ (Fig. 10). For B > 1, the director angle θ
and layer normal angle δ more readily combined closer to the upper surface
z̄ = d̄+ f(x̄) resulting in a reduction of the size of the boundary layer where
θ and δ differed. There was no significant change in the director or layer
normal angles as B was reduced below unity in either configuration. This is
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Figure 10: Values of θ (with director n), δ (with layer normal a) and θ − δ
obtained from the solutions of model equations (19) and (20) for configuration
(I) in Fig. 5 where d̄ = L̄ = 5, κ = 1, Ā = 0.5, θ0 = π/12, δ0 = 0 and B took
values as indicated.

expected from previous studies [67, 71, 72] where it was found that for small
values of B, i.e. B0 > B1, the director does not realign to be parallel to the
layer normal until further into the bulk of the liquid crystal sample. This
is related to the minimization of the coefficient of B0, i.e. the minimization
of (|∇Φ| + n · a − 2). For large values of B, the angles defining the direc-
tor and layer normal are forced to become closer in magnitude closer to the
boundaries.

Variations in the parameter κ, representing the elastic properties of the
sample, impacted on both the director and the layer normal angles (Fig. 11).
In configuration (I), for κ < 1, both the director and layer normal angles
took values close to zero only in the vicinity of the lower boundary z̄ = −d̄
due to the imposed boundary conditions whereas the pretilt applied at the
upper boundary z̄ = d̄ + f(x̄) forced these angles to take mostly nonzero
values elsewhere. As κ increased, both θ and δ took values closer to zero
throughout greater regions of the domain. The difference θ− δ had a signif-
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Figure 11: Values of θ (with director n), δ (with layer normal a) and θ − δ
obtained from the solutions of model equations (19) and (20) for configuration
(I) in Fig. 5 where d̄ = L̄ = 5, B = 1, Ā = 0.5, θ0 = π/12, δ0 = 0 and κ took
values as indicated.

icant dependence on κ; for small κ the layer normal and director converged
close to the upper boundary z̄ = d̄+ f(x̄) while for κ > 1 the mutual align-
ment arose over a greater spatial region. Again, this is somewhat expected
from previous studies [67, 71, 72] where it was found that if κ is small, i.e.
Kn

1 > Ka
1 , then the layer angle δ increases so that the layer normal is parallel

to the director and if κ is large, i.e. Ka
1 > Kn

1 , than the layers remain fixed
at their boundary states until the director has reoriented to be parallel to
the layer normal, they then both reorient to the equilibrium state δ = θ = 0.

The perturbation measure (22) captured the dependence of the angles θ
and δ and their difference on variations of the parameters B and κ in both
configurations (Fig. 12). As expected, due to the additional pretilt imposed
on the lower boundary in configuration (II), M(θ), M(δ) and M(θ− δ) were
greater in configuration (II) compared to configuration (I). In both configu-
rations, variations in the parameter B had minimal impact on either M(θ)
or M(δ). However, there was a marked reduction in M(θ− δ) as B increased
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from being less than unity to more than unity, quantifying the observations
made in Fig. 10 concerning the mutual alignment between the layer normal
and director. Again, this is an expected result and in line with previous re-
search in the one-dimensional Cartesian “bookshelf” case [67], and the one-
dimensional “cylindrical bookshelf” case [71, 72]. In both configurations,
increases in κ marginally reduced M(θ) and M(δ) in both configurations,
suggesting that the director and layer normal align with the horizontal more
readily for larger values of κ. However, increases in κ coincided with an
increase in M(θ− δ) indicating less mutual alignment between the layer nor-
mal and directors, again quantifying the graphical observations of Fig. 11.
Of course, an increase in κ relates to an increase in Ka

1 in relation to Kn
1 ,

meaning that the director is more free to orient than the layers. Hence we
would expect to see a larger difference in M(θ − δ) as the director is not so
constrained to be parallel to the layer normal.

5.2 Variations in domain structure

Amplitude of oscillations

Variations in Ā, representing the amplitude of oscillations, had a significant
impact on the alignment of the director and layer normal vectors (Fig. 13).
While the director and layer normal angles changed as expected, their differ-
ence θ−δ displayed an unexpected phenomenon as the amplitude Ā increased.
Specifically, differences in the distance over which θ and δ aligned close to
the boundary, along with the quantitative change in their relative alignment,
emerged in different layers as Ā changed (Fig. 14).

The differences in the alignment characteristics between two different
layers increased with the amplitude Ā. When Ā = 0, corresponding to a
uniform domain, there was no difference in the relative alignment of θ and
δ in different layers (Fig. 14(a)). However, as Ā increased, the differences
between θ and δ depended on the layer and the differences increased with
Ā (Fig. 14(b,c,d)). Notice that the origin of this increased alignment dis-
tance corresponds to a region in the domain that exhibits the greatest in-
fluence from boundary conditions. For illustration, consider a point in the
domain with x̄ = −0.5L̄ a short distance r directly below the local maximum,
i.e. (x̄, z̄) = (−0.5L̄, d̄+ f(−0.5L̄)− r) in Fig. 13. There is a significant con-
centration of the domain’s boundary close to this point, and thus a significant
imposed discrepancy between θ and δ, and furthermore this concentration of

25



10-3 100 103

 B

0

1

2

M
(

),
 M

(
),

 M
(

-
)

10-3 (a)

10-3 100 103
0

1

2

M
(

),
 M

(
),

 M
(

-
)

10-3

10-3 100 103

 B

0

1

2
10-3 (b)

10-3 100 103
0

1

2
10-3

Figure 12: The perturbation measures M(θ) (denoted by ◦), M(δ) (denoted
by ∗) and M(θ−δ) (denoted by �) from numerical solutions of equations (19)
and (20) for (a) configuration (I) and (b) configuration (II) in Fig. 5 where
d̄ = L̄ = 5, Ā = 0.5, n = 1, ω = π/2, θ0 = π/12 and δ0 = 0. Unless indicated,
B = 1 or κ = 1.

boundaries increases with Ā. Notice this boundary concentration is clearly
less than at the point (x̄, z̄) = (0.5L̄, d̄ + f(0.5L̄) − r) in Fig. 13. Conse-
quently, the concentration of boundaries close to a surface, and therefore the
curvature of the boundary, appears to play an important role in the align-
ment of the director and layer normal, and which may therefore explain the
differences in the alignment properties shown in Fig. 14.

Intriguingly, while the perturbation measures M(θ) and M(δ) increased
with Ā as expected due to the increased values of θ and δ imposed at the
boundaries, there was only a relatively small increase in M(θ − δ) in either
of the configurations (Fig. 15).
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Figure 13: Values of θ (with director n), δ (with layer normal a) and θ − δ
obtained from the solutions of model equations (19) and (20) for configuration
(I) in Fig. 5 where B = κ = 1, θ0 = π/12, δ0 = 0 and Ā took values as
indicated.
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(dashed line) as a distance from the upper surface d̄ + f(x̄) obtained from
the solutions of model equations (19) and (20) for configuration (I) in Fig. 5
with d̄ = L̄ = 5 where B = κ = 1, θ0 = π/12, δ0 = 0 and (a) Ā = 0, (b)
Ā = 1, (c) Ā = 2, (d) Ā = 3.
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Figure 15: The perturbation measures M(θ) (denoted by ◦), M(δ) (denoted
by ∗) and M(θ − δ) (denoted by �) in terms of Ā from numerical solutions
of equations (19) and (20) for (a) configuration (I) and (b) configuration (II)
in Fig. 5 where B = κ = 1, n = 1, ω = π/2, θ0 = π/12 and δ0 = 0.
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Frequency of oscillations

Variations in the oscillation frequencies of the surfaces in configuration (II)
had a significant impact on the alignment of the director and layer normal
vectors (Fig. 16). When the frequency of the oscillations on the upper and
lower boundaries were increased, a series of “bands” were introduced connect-
ing the upper and lower surfaces within which the director and layer normal
angles were similar. These bands connected regions on opposite boundaries
that had similar gradients. Consequently, the width of these bands decreased
with the frequency of the oscillations since the gradients along the boundary
changed over shorter spatial scales. Moreover, the differences between the
director and layer normal angles, i.e. θ− δ, displayed interesting phenomena.
For large oscillation frequencies there were noticeable distortion “spikes” in
the difference θ−δ radiating into the domain originating from the local max-
ima on the upper surface and from the local minima on the lower surface.
These “spikes” represent significant discrepancies between the director and
layer normal angles not present in nearby layers and are consistent with the
above observations concerning how the boundaries influence the alignment
distances between the director and layer normal.

As expected, the perturbation measure applied to both the layer normal
and director angles increased with the oscillation frequency n but the differ-
ence θ − δ only underwent a small increase with n (Fig. 17 (a)), suggesting
that the total region in which the director and layer normal do not align was
largely unaffected by n and hence the formation of the narrow “spikes” are
partially cancelled out elsewhere.

Phase shift in oscillations

It was shown above that for sufficiently large frequencies of oscillations on
the upper and lower surfaces of configuration (II), “bands” connecting simi-
lar gradients on opposite surfaces were formed within which the director and
layer normal angles were similar. The orientation of these bands was natu-
rally influenced by the phase shift ω between the upper and lower surfaces
(Fig. 18). Specifically, bands in both θ and δ arose between the closest re-
gions on opposite surfaces that exhibited similar gradients in either a positive
or negative direction. The edge of these bands coincided with regions where
there was a significant discrepancy between the director and layer normal,
as illustrated by the previously observed “spiked” structures arising in the
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Figure 16: Values of θ (with director n), δ (with layer normal a) and θ − δ
obtained from the solutions of model equations (19) and (20) for configuration
(II) in Fig. 5 with d̄ = L̄ = 5 where B = κ = 1, Ā = 0.5, θ0 = π/12, δ0 = 0,
ω = 0 and n took values as indicated.
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Figure 17: The perturbation measures M(θ) (denoted by ◦), M(δ) (denoted
by ∗) andM(θ−δ) (denoted by �) of equations (19) and (20) for configuration
(II) in Fig. 5 with d̄ = L̄ = 5. (a) B = κ = 1, Ā = 0.5, ω = 0, θ0 = π/12,
δ0 = 0 and the oscillation frequency n is varied as indicated. (b) B = κ =
n = 1, Ā = 0.5, θ0 = π/12, δ0 = 0 and the phase shift ω is varied as indicated.

θ − δ plots.
The perturbation measure for both the director angle θ and layer normal

angle δ changed with the phase shift ω (Fig. 17(b)). Indeed, when ω = π,
representing a half-cycle phase shift between upper and lower boundaries, the
measures M(θ) and M(δ) were minimised. Notice this particular phase shift
corresponds to a symmetry in the domain when viewed along the z̄ = 0 axis,
due to the pretilt applied. Changes in ω did not alter M(θ − δ), indicating
discrepancies between the director and the layer normal are local to the
boundaries.

5.3 Discussion

A short summary of all of the investigations within this article can be found
in Table 1. The reorientation of the molecules and the layers seems to be
highly dependent on the size of the nondimensionalised parameter B, which
itself is a measure of the strength of the ratio of the coupling of the director
and the layer normal to the layer compression constant. That is, when B
is large (i.e. when B1 � B0) it would appear that the layer compression
forces the molecules and layers to realign to be parallel to the x-axis closer
the boundaries compared to when B is small. We also find that the size of
the nondimensionalised parameter κ (the ratio of the layer splay constant to
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Figure 18: Values of θ (with director n), δ (with layer normal a) and θ − δ
obtained from the solutions of model equations (19) and (20) for configuration
(II) in Fig. 5 with d̄ = L̄ = 5 where B = κ = 1, Ā = 0.5, n = 3, θ0 = π/12,
δ0 = 0 and ω took values as indicated.
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the molecule splay constant) impacts on the realignment of the director and
layer normal; specifically realignment arises over shorter distances when κ is
small.

However, there does not seem to be a strong immediate requirement for
the director and the layer normal to align parallel to the x-axis. In fact,
the studies show that the molecules and layers seem to realign in order to
minimize any deviation of gradients from the cell boundaries. This means
that distortion spikes, which permeate through the sample for d̄ = L̄ = 5,
are shown. The presence of these distortion spikes are highly dependent on
the size of the cell boundary distortion, and the size of the cell itself, as
expected. It should be noted that these distortion spikes may not necessarily
correspond to a global energy minimization as, despite the variations used in
the selection of the initial iterates, there is a possibility that the numerical
iteration scheme used to investigate the Euler-Lagrange equations converged
to a different local minimizer instead. Indeed, the existence of more than a
single energy minimizer remains an interesting open problem.

These results are consistent with those found in the one-dimensional
Cartesian “bookshelf” case [67] and the one-dimensional “cylindrical book-
shelf” case [71]. Of course, the two-dimensional “cylindrical bookshelf” case
can now be investigated using the technique described above. It will be in-
teresting to note how important a role the radius plays in the orientation of
the smectic layers and molecules.

Many more boundary structures can also now be studied. For example,
boundaries which exhibit localised distortions, such as that which might ap-
pear due to dust particles on the boundary, have been studied in [5] and
will appear in future publications. Further, the challenge of considering non-
smooth boundaries, such as those found in saw-tooth profiles or well geome-
tries can now be considered for Smectic A materials, as they have been for
nematics [24, 40, 23, 48]. These nematic studies and many smectic stud-
ies [17, 13, 56, 18] evidence the possibility of multi-stable states which is of
particular use in bistable displays.

As mentioned, localised boundary defects have been studied in [5], us-
ing the energy minimisation approach given here. Smectic A defects have
been the focus of much analytical and experimental attention, as they pose
significant challenges to those who wish to use these materials in display
applications [61, 55, 46, 45, 15, 63]. While non-boundary defects were not
considered in this work, some defects within a planar, cylindrical or spherical
sample of Smectic A could also be considered using the method introduced
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here. Of course, defects such as dislocations and disclinations cannot be con-
sidered using this model, which assumes that layer number is constant, but
must be considered by the application of parameter models such as those
detailed and implemented in [12, 1, 2, 3, 15].

6 Conclusions

In this study, we have introduced a technique for solving the nonlinear Euler-
Lagrange equations associated with the free energy density of a smectic A
liquid crystal in a variety of cell designs with layer and director pretilt. For
the first time in the literature, the layer normal and the director have been
assumed to be functions of both the in-plane and the out-of-plane spatial
variables whilst including a truly nonlinear layer function. We corroborated
the results of Elston [35] and Stewart [68] for “bookshelf” aligned smectic A.
That is, when a uniform boundary and constant surface pre-tilt is applied,
the orientation of the smectic layers and the director is shown to be only
dependent on the in-plane spatial variable.

We then investigated non-uniform boundaries and showed that the cou-
pling of the director and the layer normal is highly dependent on the bound-
ary conditions applied, the spatial variables, and some of the physical proper-
ties of the liquid crystal. A number of cell designs were studied, including si-
nusoidal perturbations on one boundary, in-phase sinusoidal perturbations on
both boundaries, and out-of-phase sinusoidal perturbations on both bound-
aries. We found that, in all cases, the liquid crystal molecules and layers
orient to be parallel (and hence minimise the free energy of the system) as
soon into the sample as possible, whilst not necessarily aligning parallel to
the boundaries. Consequently, throughout the bulk of the sample, i.e. ex-
cept at the boundaries, since the layer normal and the director align, the free
energy function (4) reduces to the form K(∇ · n)2 + B(|∇φ| − 1)2 and so is
consistent with that of de Gennes [27].

These results have immediate consequences on the use of smectic A liquid
crystals in two physical applications, namely; display technologies, and sen-
sors. In display applications, we see that small distortions at the cell bound-
aries, caused by uneven plates for example, can create distortions through
some of the smectic A sample, leading to areas of non-operability. Of course,
smectic layer instabilities have been recorded previously [33, 31, 44, 60], as
has the difficulty with the tilt of smectic molecules with respect to boundary
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interfaces [27, p. 403]. However, given a smectic A material where B � 1,
these distortions can be minimised. Indeed, in sensor applications, these
distortions could be used to identify roughness of a boundary, or even the
introduction of a foreign body. These materials, therefore, could be used as
sensors in large public spaces to detect the release of potentially dangerous
molecules into the atmosphere.

Whilst this research has considered only the static equilibrium solutions
of Smectic A confined between non-uniform boundaries, there exists a fur-
ther myriad of investigations to be considered by including flow regimes.
Some research exists concerning Couette and Poiseuille flow of Smectic A
[74, 76, 14, 16] and flow past finite obstacles [77], however these have not
allowed for nonlinear layer functions dependent on more than one spatial
variable. Investigations of these types are paramount for investigating the
material parameter value ranges which create instabilities, defects, and phase
transitions, all of which which are anathema to display technologies.

This research has also allowed for a suite of further investigations that
include the use of different energy densities relating to similar materials (such
as other smectics), or materials with similar free-energy constructions (such
as bi-layer lipids).

Finally, previous research has considered the use of weak anchoring of
the director on cell boundaries [73] and even free boundary conditions on the
smectic layers [28] (but with the single variable dependence assumption). It
remains an open problem to incorporate similar ideas to the alignment of
smectic A molecules and layers, where dependence on two spatial variables
is allowed.
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