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Abstract
Corrosion of external cast-iron pipe surfaces, a major contributor 
to pipe failure, has been attributed to the free water in the soil 
surrounding the pipe. Because observation at pipe depth is difficult, 
a potential proxy is the soil surface moisture. Herein highly accurate 
elevation data derived from airborne light detection and ranging is 
used to model the distribution of soil water in urban catchments 
containing pipe infrastructure. The results are compared with local 
soil moisture Theta Probe measurements along the pipe. The 
results show potential to identify wetter spots above underground 
infrastructure, which may inform its corrosion potential, without 
digging up the asset.
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Many major cities such as Sydney have extensive 
networks of water supply pipelines, including major 
trunk lines that are ageing and increasingly prone to 
failure. Many of these pipes are made of cast iron. 
This material is traditional and has been shown to 
have excellent long-term durability, with many pipes 
surviving well past 100 years. Others, however, fail 
much earlier, and often this is through corrosion of 
the external surfaces of pipes. Such corrosion usually 
leads to weakening of pipe walls and eventually 
to pipe failure (Melchers, 2017). The mechanisms 
involved have been the subject of an extensive 
recent research programme (Melchers et al., 2018, 
2019; Petersen and Melchers, 2014, 2019). Previous 
work identified that, apart from workmanship issues 
associated with the initial installation of the pipes 
and their burial, a major factor in the corrosion of the 
pipes at depth, typically one metre but sometimes 
much more, is the free water that can make its way 
from the surface through the backfill soil to the pipe 
exterior walls. The major contributor to this free water 
is rainfall, and the associated accumulation of water in 
the soil surrounding the pipe.

Terrain indices are commonly used to map 
the spatial variability of soil moisture and identify 
those areas prone to saturation (Kemppinen et al., 
2018; Kim, 2009; Tenenbaum et al., 2006; Western 
et al., 1999). These indices describe the spatial 
distribution of soil moisture through a catchment 
based on elevation change (i.e. local slope) and the 
contributing area. Originally these techniques are 
used in natural catchments, although they show 
potential for testing in urban catchments, similar 
to that described in this work. For example, a 
topographic wetness index (TWI) (Beven and Kirkby, 
1979) has been used successfully to assess the 
stability of a rail line corridor in the United Kingdom 
based on the soil moisture distribution (Hardy, 
2010). For any assessment with terrain indices, 
accurate elevation data is required. Airborne light 
detection and ranging (LiDAR) technology measures 
return laser pulses, typically from an aircraft. This 
technique has the ability to estimate distances, and 
hence elevations, extremely accurately at a high 
spatial resolution. LiDAR data are commonly used 
for terrain indices analysis and have been shown to 
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provide accurate results (Kemppinen et al., 2018; 
Tenenbaum et al., 2006; Hardy, 2010; Thomas 
et al., 2017; Lang et al., 2012; Vaze and Teng, 2007; 
Vaze et al., 2010).

The work described herein shows that terrain 
indices derived from airborne LiDAR can be used 
to map the spatial variability of soil moisture in the 
corridors along pipe infrastructure. This will be of 
assistance in the assessment of corrosion potential of 
buried infrastructure and aid in mitigating its impacts, 
both economically for the water authority and for the 
community.

Methodology

Study area and data

The study area for the present project was limited 
to a single pipeline. It is located within Jesmond 
Park, a public park located in Newcastle, NSW, 
Australia (Figure 1). The pipeline is part of the water 
supply infrastructure managed by Hunter Water 

Corporation (HWC), the local water authority. The 
park is managed by the City of Newcastle and 
subject to typical management practices and 
maintenance, including watering. The catchment 
was selected because it has a mixture of pervious 
and impervious surfaces, each of which contribute 
in a different way to surface and subsurface water 
runoff and routing. This was considered desirable 
to test the effectiveness of the LiDAR terrain index 
methodology and also to permit comparison with 
previous work that involved measurements of 
corrosion pitting depth (Melchers, 2019).

LiDAR data were provided by HWC for their area 
of operations. This data set was originally collected 
by NSW Land and Property Information over NSW 
(now held by NSW Spatial Services). It was provided 
in a point-cloud format that allowed different point 
classifications to be included in the creation of the 
elevation model. The data set used in this study 
was collected with a Leica ALS50-II device on 14 
September 2014 and was provided with points 
already classified. The accuracy of the data is 0.3 m 

Figure 1: Location of study catchment and example of soil moisture transect.
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vertically and 0.8 m horizontally with 95% confidence 
(Batchelor, 2015).

Terrain index

Terrain indices are used to calculate the accumulation 
of soil moisture for each cell, into which the catchment 
of interest has been divided. For a rectilinear regular 
grid this means that each cell is surrounded by eight 
neighbouring cells, including those at the corners. The 
water accumulation is derived from the catchment 
contributing area and its slope, to obtain the spatial 
distribution of relative wetness. An important aspect 
of each terrain index is the flow routing algorithm 
associated with it since this algorithm calculates the 
water flow direction based on elevation changes in 
neighbouring cells.

The terrain index used in the present study is 
the SAGA wetness index (SWI) (Conrad et al., 2015). 
According to Lang et al. (2012), this uses the FD8 flow 
routing algorithm (Freeman, 1991). The FD8 algorithm 
routes water to all eight neighbouring cells determined 
by slope, with steeper slopes causing more water to 
move in that direction. Other algorithms such as D8 
or D∞ route to only one or two neighbouring cells 
(Lang et al., 2012).

The SWI is recommended for use on valley floors as 
it represents more accurately the lateral redistribution 
of moisture, at least to compare the TWI (Millard and 
Richardson, 2014). This might be expected as SWI 
was designed for use where there are small vertical 
distances between channels and the base of the valley 
(Olaya and Conrad, 2009; Boehner et al., 2002). The 
SWI has been preferred in other studies (Kemppinen 
et al., 2018). Since the present study is in an urban 
setting, many of the flow paths are altered from their 
natural conditions and to better fit those of a valley 
floor with little difference in vertical elevation between 
neighbouring cells. The SWI is defined as:

SWI
SCAm= ( )
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,

b  
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where SWI is the SAGA wetness index at a given 
point, SCAm is the modified specific catchment area 
draining to that cell, and β is the slope angle of the 
point (Boehner and Selige, 2006). Higher values of 
the SWI represent wetter conditions.

For the present study, the SWI was calculated using 
the notion that depressions in the (local) topography 
are not filled with water. This is considered more 
representative of local-scale elevation depressions 
(Lang et al., 2012) and how free moisture may 
accumulate around pipe infrastructure.

LiDAR processing

The LiDAR point cloud data set was processed to 
remove high and medium vegetation from the data 
set to create an elevation model that shows minor 
vegetation noise on the ground as well as urban 
infrastructure (i.e. houses, buildings and roads). 
This was done to allow the flow routing of the SWI 
function to portray realistic flow directions. The point 
cloud data set was processed using ArcMap v10.6.1 
to create an elevation data set with a 1 m resolution 
over the study catchment. The 1 m resolution 
was adopted for the present study as it has been 
reported to provide accurate results for larger-scale 
topographic indices and hydrologic modelling (Vaze 
and Teng, 2007; Vaze et al., 2010). The resulting 
elevations were used to delineate the catchment 
using functions from SAGA v2.3.2 (Conrad et al., 
2015) via the QGIS v3.4.9 long-term release 
interface. This was done to reduce the number of 
cells used in computations without removing any 
that affect the contributing area (i.e. SCAm) from the 
SWI calculations. The catchment delineation was 
completed using a catchment depression filling 
routine (Wang and Liu, 2006) which fills localised 
depressions to ensure hydrologically connected 
contributing upland areas (i.e. SCAm) are derived. It 
is important to note, although the catchment was 
derived using a filled elevation, the unfilled catchment 
elevation was used for the SWI calculation for a given 
point, as discussed in the previous section.

Soil moisture data collection

Soil moisture data were collected using a Delta-T 
Theta Probe (ML3), with a Delta-T HH2 Moisture 
Meter for reading values (Delta-T Devices Ltd, 2013). 
The probe can penetrate approximately 6 cm into the 
soil, and works by measuring the dielectric constant 
of the soil (Figure 2). More detailed information about 
the procedure and the measurement technique is 
available, as reported by Matula et al. (2016). Soil 
moisture observations were collected on three 
transects along the specified pipeline. This was to 
allow various moisture conditions to be observed. At 
each point, the probe was inserted into the ground 
at three locations within a 0.5 m × 0.5 m quadrat. 
To account for the localised spatial variability of 
soil moisture, three readings were taken and then 
averaged for the comparison with the SWI. The soil 
moisture transects were completed on 23 August 
2019, 5 September 2019 and 24 September 2019.

The location of each sampling point was recorded 
with a Garmin eTrex H GPS unit for georeferencing 
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Figure 2: Theta Probe used for soil 
moisture measurements along the 
transect.

to compare with the SWI. The location of each 
measurement along transects 2 is plotted in Figures 1 
and 3 (lower).

Results and discussion

The soil moisture readings taken at transects 1, 2 and 
3 had average values of 14.25, 30.59 and 31.68%, 
respectively, with standard deviations 5.56, 10.69 and 
9.64%. For transect 1, the average moisture readings 
are consistent with the occurrence of some minor 
recent rainfall events but no significant rainfall for many 

Figure 3: SAGA wetness index (SWI) results over the Jesmond study catchment.

weeks before the soil moisture readings were taken. 
However, for transects 2 and 3, large storm events 
occurred in the week leading up to the sampling date. 
Although the minimum soil moisture content readings 
remained relatively constant (6.0, 8.1 and 9.0%) the 
maximum and range varied quite significantly between 
the transects. The maximum soil moisture of 29.0% in 
transect 1 compares with 53.7 and 55.0% in transects 
2 and 3. The differences in maximum and minimum 
soil moisture follow a similar pattern, with transects 
1, 2 and 3 returning values of 23.0, 45.6 and 46.0%. 
It should be noted that the transects were to be 
performed at various times after rain, in order to allow 
estimation of the changes in moisture conditions and 
their spatial distributions between sampling dates. In 
turn, this was done to allow assessment of the effect 
differing moisture contents and thus the suitability of 
SWI for predicting soil moisture distributions in various 
degrees of wetness.

Figure 3 shows the output of the SWI calculations 
for the catchment area and the observation points for 
transect number 2. The locations marked in red show 
depressions with relatively large contributing area, 
which would be expected to permit more soil moisture 
accumulation. The point-wise variation demonstrates 
the spatial variability of wetness identified across 
the pipeline. Extremely low and negative values are 
seen at houses and for steep slopes (i.e. high β, see 
Equation (1)) with small catchment areas (i.e. low 
SCAm), indicating these cells have low soil moisture 
accumulation.

Figure 4 shows the regression equations of the 
three transects considered herein. The derived 
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Figure 4: SAGA wetness index (SWI) and soil moisture probe data. The three transects are 
presented together to show the difference in wetness between the sampling dates.

regression coefficients R indicate a reasonable 
correlation between the SWI and the soil moisture in 
all conditions. Additionally, each regression equation 
returned a p-value of less than 0.05, indicating all 
correlations are significant. Better results are seen 
for transects 2 and 3, when the average soil moisture 
increases (to 30.59 and 31.68%) leading to an R value 
of 0.81 and 0.87 (p-value  <  0.05). This trend agrees 
with similar results in the literature using terrain 
indices that observed wetter conditions providing 
better correlations with soil moisture (Tenenbaum 
et al., 2006; Western et al., 1999; Hardy, 2010). It is 
considered likely that the lower accuracy during drier 
conditions is caused by a continuous lack of rain, 
and hence very low levels of soil moisture, as well as 
the drying of soil across horizontal planes, without 
runoff routing occurring for redistribution of stored 
soil water (i.e. for transect 1, when the average soil 
moisture was 14.25% the correlations returned an  
R value of 0.68 (p-value < 0.05). This indicates that the 
LiDAR-based procedure still provided a reasonable 
estimation of the soil moisture content and its spatial 
distribution. Under the dry conditions experienced 
when observations for transect 1 were performed, the 
reduced soil moisture range could be responsible for 
the poorer correlation results (compared to transects 
2 and 3), as a smaller range prevents the SWI from 
establishing the relative moisture as is seen in wetter 
conditions.

It is likely that in extremely wet conditions  
the terrain indices will reduce in effectiveness as the 
spatial distribution of water will show high moisture 

at all points being assessed. This aspect will need 
further investigation.

In addition to the work described above using 
SWI, the standard TWI technique was tested over 
the three transects using the D8 and D∞ flow routing 
algorithm. The results from these tests are not 
presented herein but showed poor relationships with 
the soil moisture probe measurements. This suggests 
that for urban environments such as studied herein, 
SWI may be better suited to soil wetness modelling.

Although the Theta Probe only measures soil 
moisture 6 cm deep, previous studies indicate that 
these values are likely to have closely similar mean, 
variance and frequency distribution to soil moisture 
values at depths up to 30 cm (Wilson et al., 2003; 
Bretreger et al., under review). The correlation of 
the 6 cm soil layer to deeper layers needs further 
investigation.

As mentioned, the measurement of moisture at 
pipe depth (around 1 m deep or more) is problematic. 
However, the 6 cm validation as reported herein 
may be sufficient to give confidence to inform asset 
managers of the relative accumulation of soil moisture 
at practical pipe depths, although further investigation 
with conditions at greater depth is considered 
warranted.

Although the SWI is providing a good correlation 
with soil moisture for the three transects considered 
herein, it is clearly a relative measure that must be 
interpreted such as through correlations as shown in 
Figure 4. Finally, it is important to note that the SWI is 
a static measure of relative wetness for the specific 
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catchment for which it was determined. As such it 
cannot be directly used to compare soil moisture in 
the time domain (i.e. temporally).

Conclusion

The SWI was found to give an indication of the 
spatial distribution of relative soil moisture around a 
localised catchment, based on elevation changes, 
and subsequent runoff and routing flow paths and 
potential moisture accumulation. The presented 
results show that SWI is effective in providing trends 
of soil moisture distribution at up to a 6 cm depths 
along a pipeline in this catchment. The effectiveness 
of the SWI based method was reduced when using it 
in drier conditions. This is likely due to less variability 
in soil moisture.

The results presented herein provide support for 
further work to assess the ability of SWI for predicting 
spatial soil moisture variability and patterns for the 
localised catchments relevant for underground 
pipelines and other infrastructure and their condition 
and corrosion assessment.
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