
Reprogramming Embedded Systems at Run-Time

Richard Oliver, Adriana Wilde IEEE(S) and Ed Zaluska SMIEEE
Electronics and Computer Science

University of Southampton, United Kingdom
{rjo2g10,agw106,ejz}@ecs.soton.ac.uk

Abstract—The dynamic re-programming of embedded systems is
a long-standing problem in the field. With the advent of wireless
sensor networks and the ‘Internet of Things’ it has now become
necessary to be able to reprogram at run-time due to the
difficulty of gaining access to such systems once deployed. The
issues of power consumption, flexibility, and operating system
protections are examined for a range of approaches, and a
critical comparison is given. A combination of approaches is
recommended for the implementation of real-world systems and
areas where further work is required are highlighted.

Keywords-Wireless sensor networks; Programming; Runtime,
Energy consumption

I. INTRODUCTION

Embedded systems are pervasive in the modern world,
being found in systems as widely ranging as fridges, cars,
traffic lights, and industrial automation. In the past, embedded
systems have relied on purpose-built chips or large and
expensive circuits in order to implement their functionality.
Due to the availability of inexpensive microcontrollers
designed for use in embedded systems, much of the
implementation details of such systems has moved from the
hardware to the software domain. A long standing problem in
the field of embedded systems has been the reprogramming of
such systems once deployed. Reprogramming is often required
during the initial development of these systems, or to add new
functionality and fix bugs once deployed [1], [2]. The
relevance of this problem has been highlighted with the advent
of the ‘Internet of Things’ and wireless sensor networks
(WSNs). Many of these systems will be difficult (or
impossible) to gain physical access to once deployed as well as
costly and labour-intensive if nodes are distributed over a wide
area, so methods must be devised if we wish to reprogram them
[3], [4].

When we consider this problem in the context of WSNs, it
is important to realise that the programmers wishing to use the
network may not be embedded systems experts, so they may
lack an understanding of the underlying operating system (OS).
Also, the research areas of the end-users can be as wide-
ranging as biology and environmental engineering [4], [5], [6].
Though this factor of accessibility for non-experts is arguably
holding back the wider adoption of WSNs [3], [6], this paper
focuses more closely on the lower-level problems of embedded
systems reprogramming such as power, speed, down-time, and
reliability [7]. There have been many different approaches
proposed that solve this problem including scripting languages
[8], [9], virtual machines (VMs), and various run-time link and

load mechanisms. This paper aims to address the problem of
dynamic reprogramming of such systems, and will offer
comparison and a critical appraisal of the methods currently
being used in the field.

The remainder of this paper is structured as follows.
Section II explains code execution on embedded devices,
section III discusses various existing methods, focusing on the
issues of power consumption, flexibility of approach, and OS
protection. Section IV follows with conclusions and suggests
future work in the area.

II. BACKGROUND

This section will cover the execution of code on
microcontrollers. This is typically of no concern when flashing
a static image to a microcontroller but a greater understanding
is required to implement dynamic code loading.

A factor of considerable importance is the addressing
modes available for particular architectures. Two common
addressing modes are absolute and relative addressing. With
absolute addressing, jump instructions are provided with the
actual address in memory of the destination. With relative
addressing, jump instructions are provided with an offset that is
added to the current value of the program counter. This is an
important distinction to make as, with an embedded system, the
program may be loaded at any arbitrary position in program
memory. If relative addressing is used then this is not a
problem and the program is able to execute from any location
in memory without any further changes. If absolute addressing
is used then the addresses must be changed to the correct
values for the programs placement in memory before execution
occurs. Relative addressing can be used as a basis for Position-
independent code (PIC), whilst the use of absolute addressing
would be an example of relocatable code.

Another important factor is linking. The process of linking
is required if the address of a symbol (variable or function) is
not known when the code is compiled (e.g., a call to a function
provided by the operating system). If the application is
compiled separately from the OS and the location of the
desired function in memory is unknown, then the device must
correctly insert the address of the function before execution.
Some embedded operating systems avoid the need for linking
by providing a kernel ‘jump table’. The jump table is always at
the same address in memory and it contains the addresses of
any kernel-provided functions. In this way, linking becomes
unnecessary. An example of the relocating, linking, and
loading process is shown in Figure 1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/304199792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III. ISSUES

To offer a critical comparison of the mechanisms available
we will examine three issues in detail. These issues are power
consumption, flexibility of approach, and operating system
protection. Table I lists the approaches that will be studied and
gives an overview of the features of each approach. The
mechanism by which code is executed is listed for each
approach as either virtual machine, position independent code,
or relocatable code. The flexibility of each approach is shown
by the kernel modification, kernel replacement, and loose
coupling columns. An indication of whether the OS is
protected in any way from remotely programmed code is given
in the OS Protection column. These issues will be discussed in
detail in what follows.

A. Power Consumption

In the area of embedded systems (wireless sensor networks
in particular), power consumption is often of critical
importance. In the case of WSNs, where many of the devices
may be inaccessible, nodes may be expected to run for weeks
(if not months) entirely unattended. All efforts must therefore
be made to minimise power consumption when implementing a
remote reprogramming mechanism. Considerations must be
made when making use of the packet radio and when writing to
flash, as these are typically considered some of the most energy

intensive activities [7]. Also, when we consider reprogramming
at run-time, we must consider if any CPU overhead exists
(compared to native code) and whether rebooting the node is
required (another power intensive operation).

Levis et al. [11] emphasise the importance of power
consumption as a “precious resource” in their development of
Maté. Maté is an application-specific virtual machine (or
bytecode interpreter) with a high-level interface allowing
complex applications to be written in a small amount of code.
Programs implemented with Maté are made up of one or more
capsules. Each capsule can contain 24 instructions and is the
size of a single TinyOS packet1. This approach greatly reduces
application upload energy requirements for certain applications
with the most extreme example being gdi-comm, a program of
7130 bytes, being expressed in a single Maté capsule. Maté,
however, exhibits a significant CPU overhead per instruction
issued because it is a virtual machine. This overhead varies
depending on the complexity of the instruction issued with the
two extremes being 33:1 for a logical and, and 1.03:1 for a
packet send. Besides making programs take longer to execute,
this also increases power consumption due to the CPU having
to remain powered for longer than it otherwise would before
returning to sleep mode. Testing by Levis et al. [11] suggests
that this CPU overhead outweighs the energy savings of the
concise capsules after running for six days. This figure will
vary for different applications but it suggests that Maté is only
suitable for non-permanent changes to application code.

Another approach, TOSBoot [12], is a full binary
replacement mechanism. The core of the paper concerns the
Deluge data dissemination protocol; however, it is the
TOSBoot bootloader that is used to re-image the device. This
mechanism, although flexible, is exceptionally power
intensive. The image transmitted over the network must
contain the full operating system (including all libraries,
applications, and deluge itself), and is written to external flash,

1 TinyOS is the operating system that Maté is implemented on top of.

Figure 1. Dynamic linking and loading, adapted from [10]

TABLE 1: FEATURE COMPARISON OF STUDIED METHODS
 Mechanism

 VM PIC Reloc. OS Protection Kernel Modification Kernel Replacement Loose Coupling

Maté [11] ● ● ●1

TOSBoot [12] ●

SOS [13] ● ● ●

Contiki [1] ● ● ●

RETOS [14] ● ● ● ●

Darjeeling [15] ● ● ●

SenSpire [10] ● ● ●

Enix [16] ●2

 1 Only if user-specified instructions are omitted.

 2 Kernel-supported PIC

a power intensive operation. The node is then rebooted (also
power intensive), and TOSBoot copies the image from external
flash into program flash before executing the code, also energy
intensive. This is certainly the most power intensive solution
discussed in this paper.

Another approach is the SOS operating system by Han et
al. [13]. SOS supports dynamically linked modules, enabled
with Position Independent Code (PIC). The use of PIC
mitigates the need for run-time relocation of code as it is
possible to run PIC code anywhere in memory because of the
use of relative jumps rather than absolute addresses. It is also
possible that PIC code introduces a CPU overhead in the form
of an indirection cost [10]; the address that must first be loaded
before a jump can be made. In some applications, non-PIC
code has been reported to run about 13% faster than PIC code
[10]. Further CPU overheads are incurred if a call is made to
another module or the kernel. These overheads are 21 and 12
clock cycles respectively, compared to only 4 clock cycles for a
direct function call. This mechanism for communication with
the kernel is known as a ‘jump table’. Overheads are also
incurred for function registration and de-registration. Despite
these overheads, the execution of the majority of code will be
as efficient as code flashed directly to the node. SOS never
requires the node to be rebooted which also saves power.

Dunkels et al. present a run-time dynamic linking,
relocating, and loading mechanism built on top of the Contiki
operating system [1]. This is similar to the loadable modules
mechanism provided by SOS. The use of dynamic linking
incurs a large overhead as any addresses that were not resolved
at compile time must be resolved by the OS. This also incurs a
cost when the application is transferred over the network as any
unresolved addresses must instead be represented by a much
larger symbolic name to enable the dynamic linking. As
absolute addresses are used for jumps rather than PIC code,
these must be adjusted appropriately by the OS depending on
the module’s placement in memory; this also incurs overhead.
This detailed information of unresolved symbols is typically
held (with program code and data) in an executable file format
such as the Executable and Linkable Format (ELF). Although
the ELF file-format is supported for loading modules, a
significant overhead for transferring programs is incurred by its
use due to it being designed for 32 and 64-bit systems. Contiki
provides the Compact-ELF (CELF) file format designed for
embedded systems; this file format is typically half the size of
ELF, greatly reducing the transmission overhead.

Cha et al. present RETOS, a Resilient, Expandable, and
Threaded Operating System [14]. RETOS implements
multithreading unlike the previous event-driven kernels studied
such as Contiki and SOS. This is known to cause very large
CPU overheads (and hence power use) in embedded systems as
during a context switch the stack of one application must be
saved whilst that of another is copied into its place. RETOS
makes use of dynamic relocation and linking (the mechanism
used in Contiki), but makes use of a RETOS-specific file
format instead of ELF/CELF. This appears to contain an
unnecessary overhead as the file format must contain a
hardware-specific section in order to aid the kernel with the
relocation process.

Brouwers et al. [15] present Darjeeling, a byte code
interpretation approach, similar to that of Maté. Whereas Maté
has an application-specific instruction set, Darjeeling is
modelled after the Java VM and is a generic VM. As a result,
Darjeeling programs will have a larger code size than Maté’s
thereby causing more power to be used during program upload
to the nodes. However, the code size is still significantly
smaller than that of native code with the authors demonstrating
size reductions of 260 and 215 for the AVR microcontroller
and MSP430 respectively for the implementation of the MD5
hashing algorithm. As with Maté, there is also a significant
CPU overhead for the interpretation of instructions. CPU
overhead was estimated with three real-world examples:
bubble sort, vector convolution, and MD5 hashing. CPU
overhead was estimated to be between 30–113 times worse
than that of native code, depending on application.

Dong et al. have implemented Dynamic Linking and
Loading in Networked Embedded Systems [10] on the SenSpire
OS. This approach is similar to that of both SOS and Contiki.
This approach uses relocatable rather than PIC code in the style
of Contiki, but also uses the kernel jump table mechanism of
SOS. Further improvements have been made over Contiki’s
CELF executable file format with Slim-ELF (SELF) tested as
being 38%–83% the size of CELF. This is achieved by
merging the relocation entries for identical symbols causing the
relocation to grow linearly with the number of unique symbols
rather than the number of unresolved references. The symbol
and string tables are also tailored to reduce the total size of the
file. The overheads incurred by run-time relocating and linking
have also been greatly reduced due to a novel mechanism,
shown in Figure 2, which has the host perform the CPU-
intensive relocation once program and data memory have been
allocated on the node. Pre-linking to kernel functions may also
be performed due to the existence of the jump table which is
alwasys in the same memory location. Dong et al. estimate that
their improvements to loading speed over standard mechanisms
are 40%–50%. This represents significant power saving as
radio communication is the most expensive activity in a WSN.

Chen et al. present Enix: A Lightweight Dynamic Operating
System for Tightly Constrained Wireless Sensor Platforms [16].
The size of uploaded programs is expected to be vastly reduced
as Enix contains a large library called ELIB (contained on a
Micro-SD card) which implements a wide range of common
high-level activities. Both ELIB and user programs make use
of kernel-supported PIC via code-modification. All calls to
kernel functions or the ELIB library are linked fully at compile
time removing any need for run-time linking for these calls.
However, calls to ELIB could potentially be expensive as it
exists in virtual memory and may have to be loaded itself when
called. To avoid relocation costs, any code that makes use of an
absolute jump is replaced at compile-time. The code that
replaces it causes the program to store the program counter at
run-time, and add the relative offset to it before making the
jump. In this way relocation does not have to be handled at
run-time, however, the single ljmp instruction is replaced
instead by 18 instructions and includes a function call which
will increase the transmitted program size and power
requirements.

B. Flexibility of Approach

This section will discuss the flexibility of the various
different approaches. In particular, the granularity of the code
update mechanism will be examined. That is whether variables,
programs, or the entire system image must be changed. The
nature of applications for these different solutions will be
examined, in particular, whether applications may be shipped
as different modules that can communicate with each other. An
account will be given as to whether or not the update
mechanism allows for kernel, driver, or other low-level
functionality to be updated. The coupling for applications and
kernels will also be discussed, i.e. whether the core and
application must be compiled by the same developer and
whether or not applications rely on a specific kernel version.

Maté [11] is a relatively inflexible solution. The constructs/
instructions that Maté provides makes it possible to easily write
and rapidly prototype common sensor network applications
with a minimal amount of code. As Maté is Turing complete, it
is technically possible to represent any algorithm with the
instructions provided. This is ill-advised, however, if the
algorithm is mathematically complex as the overhead on
simple operations may be too great for Maté to compete with
the other approaches. To solve this problem, the authors of
Maté reserve eight instructions that can be user defined in the
initial image placed on the device. Although this appears to
address the above problem, these custom-defined instructions
cannot be modified once the device has been deployed
meaning their use is limited if vastly different behaviour is
required. Maté also cannot be used to modify any other native
code, meaning that it is not possible to modify the kernel or fix
bugs in drivers. Many Maté applications may run
simultaneously, and they can communicate with each other
through a single shared variable, or more permanent storage.
Maté applications are entirely independent of kernel versions
and hardware platforms, and are entirely portable as long as the
custom-defined instructions are not used. Maté’s ‘capsules’ are
also version numbered, meaning that they can be replaced
without difficulty as the latest version of any program will
always be automatically acquired.

TOSBoot [12] is an exceptionally flexible, albeit low
complxity, approach. As TOSBoot is a complete binary-image
replacement mechanism then any system functionality may be
changed including bug-fixes, driver updates, or even an
entirely new operating system if so desired. TOSBoot provides
additional flexibility by having the ability to handle multiple
binary images. This allows the node to be imaged with any of
the stored images at boot-time meaning an older version of an
image does not have to be re-uploaded over the network if it
should be required again at a later date. TOSBoot is inflexible
however in the fact that large binary images must be sent over
the network, this mechanism may be too slow for a large
amount of nodes. Also, any image that is used must have
support for the Deluge protocol included if any other updates
are to be carried out in the future; this also increases the size of
the binary images that must be sent. TOSBoot also requires
that nodes have access to external storage, such as flash, to
store uploaded images, something that may not be present on
all systems.

SOS [13] could be considered an intermediate solution
between Maté and TOSBoot. As SOS programs are written in
native code, it offers more flexibility than Maté because the
programs are not limited by the expressibility of the underlying
VM. SOS can handle multiple applications running
simultaneously, and applications are able to communicate with
each other by registering function entry points with the kernel.
This, however, requires a message handler function to be
placed at a specific place in the binary image. This could be
viewed as an inflexible solution because it requires non-
standard actions to be taken during the compilation process.
Applications are also able to make use of dynamic memory and
may transfer ownership to other applications as a means of
inter-process communication (IPC). The mechanism provided
by SOS can be used to update low-level functionality such as
drivers, but cannot be used to update the SOS kernel. As in
Maté, modules in SOS are version numbered and SOS will
automatically acquire new versions of modules and insert them
if it is able to do so. SOS programs are limited to 4KB on the
AVR platform due to the use of PIC code. They also cannot
make use of global variables as no address information for
them is available at compile time. SOS is an example of a
loosely coupled OS because of the use of a jump table. This
means that SOS programs are independent of different kernel
versions, applications may be distributed in binary form and
recompilation is not required if the underlying OS is updated or
upgraded.

Contiki [1] provides similar flexibility to SOS being a
‘loadable module’ solution. Contiki makes use of relocatable
rather than PIC code, avoiding the disadvantages discussed
previously. As Contiki provides dynamic linking and
relocation, a standard compilation procedure can be used to
create a binary in the ELF file format. This increases flexibility
and simplifies the compilation process. As ELF is a standard
format, various development tools are available that are able to
operate on it. In a similar fashion to SOS, Contiki modules are
able to communicate with each other by registering
functionality with the kernel. Module versioning is not
explicitly supported as in SOS; however, a program may
replace a currently running program acquiring its state resulting
in no downtime whatsoever. Mottola et al. have attempted to

Figure 2. The pre-relocating process in SenSpire, reproduced from [10]

implement versioning of modules on top of Contiki with
FiGaRo [17]. The mechanism provided by Contiki cannot
replace any of the core functionality at run-time including any
low-level device drivers. Contiki does, however, contain a
mechanism similar in functionality to TOSBoot that will allow
the kernel and device drivers to be updated with the aid of a
reboot. Contiki also achieves loose coupling due to the core’s
ability to perform dynamic linking with the use of a full
symbol table. Although this symbol table is larger than SOS’s
jump table, Contiki’s method avoids the indirection cost of
using such a system.

RETOS [14] is another loadable module approach which
uses relocatable code in a similar fashion to Contiki. Compiled
code is stored in a RETOS-specific custom file format which
potentially could reduce the flexibility of the system as
standard analysis tools can no longer be used. The core system
is able to dynamically link and relocate code, similar to
Contiki. The RETOS kernel is split into a static image and
loadable kernel modules. These modules are dynamically
loaded/unloaded depending on the current requirements of user
applications meaning that a minimal system is maintained at all
times. RETOS does not provide any mechanism to update the
static kernel image, but loadable kernel modules may be
replaced. RETOS makes use of a jump table to access kernel
and kernel module functionality. Modules may also make their
functionality available and enable IPC by registering their
functionality in this table. Due to the use of a jump-table,
RETOS is another example of loose coupling.

Darjeeling [15] (the Java inspired VM) is similar to Maté in
its abilities. As Darjeeling enables programs to be written in
Java, it is straightforward for a programmer to write large and
complex programs that take full advantage of the Java
language features (e.g. object orientation, dynamic memory
management, threading, exception handling, and garbage
collection). As Darjeeling is a VM, it cannot be used to update
any native code such as device drivers or the core kernel.
Darjeeling provides support for calling native code but this
must be compiled into the static image originally flashed to the
node. This means that support for all hardware and any node-
tonode communication must be written in advance. Although
multiple Java applications are able to run simultaneously, they
are unable to communicate with each other because of the lack
of support for reflection.

SenSpire [10] is very similar to Contiki in concept with its
dynamic link and load mechanism. However, unlike Contiki,
SenSpire makes use of a kernel jump table which enables
lowlevel kernel functions to be incrementally upgraded. The
inclusion of a jump table also enables loose coupling.
SenSpire, like Contiki, also makes use of a variation of the
ELF file format which may be judged as being advantageous. It
is unclear how IPC is handled in SenSpire, or indeed if it is
possible at all.

Enix [16] makes use of ELIB, a dynamic loading library.
Due to Enix’s fast loading times due to kernel-supported PIC,
components from ELIB may be loaded from virtual memory as
applications require them in a similar style to RETOS. Whilst
this mechanism can be used to access library functionality
existing on the node when it was deployed, Enix currently does

not have the ability to add additional programs to virtual
memory at run-time. This seems to suggest that loose coupling
is not available on Enix as the position of the required library
in virtual memory must be known at compile time. No mention
is made of IPC in Enix, although it is assumed that this is not
possible due to the one-way nature of communication between
remote programmed applications and the kernel/ELIB.

C. OS Protection

This section will give an account of OS protections for the
approaches that implement them. In particular, whether or not
an application is able to write to arbitrary memory locations
and interrupt execution of other applications (or even the kernel
itself) will be examined.

Both Maté [11] and Darjeeling [15] as virtual machines
offer protection of the underlying OS. The code for both of
these approaches is interpreted meaning that they have no way
of executing code on hardware or otherwise disrupting the
operating system. This is typically an issue for embedded
operating systems as the lack of Memory Management Unit
(MMU) means that applications may arbitrarily write to any
memory location, potentially crashing the node. Because an
embedded OS usually does not offer pre-emptive threading it is
often possible for an errant application to crash the node (as it
is never forced to pass execution back to the scheduler/kernel).

RETOS [14] makes use of a software technique known as
‘application code checking’ to work around the shortcomings
of typical embedded system hardware, principally the lack of
hardware memory protection such as a MMU. This technique
operates by checking the source/destination field of hardware
instructions to ensure they are in fact reading/writing to
permitted memory locations. This is split up into both static
and dynamic checks. Static checks can be carried out at
compile-time for direct or immediate addressing instructions.
Some checks, however, must be carried out at run-time if they
use indirect addressing; these checks form the dynamic
category of checks. These dynamic checks are inserted into the
code at compile-time. Any illegal memory accesses not
detected by the static checks will be caught when the
application is run and errors will be reported to the kernel.
RETOS also has dual mode operation (i.e. user/kernel modes)
which is enabled by stack switching. Because of this context
switching, threads are not forced to share the same stack which
makes it easier for the end user to write code and offers
additional protections. As user-mode threads are preempted in
RTOS, an errant thread is unable to impede the proper
execution of other threads or indeed the kernel.

Kajtazovic et al. have examined the use of dynamic loading
mechanisms in safety-critical domains and suggest an approach
where the results of linking can be predicted at compile-time
rather than run-time [18].

IV. CONCLUSION AND FUTURE WORK

This paper has examined several approaches for the run-
time reprogramming of embedded systems. These methods
included virtual machines, full binary image replacement
mechanisms, kernel-supported PIC code, dynamic
linking/loading and variations thereupon. The issue of power
consumption was identified as being the one of most

significance, particularly in the area of wireless sensor
networks.

Virtual machines such as in Maté [11] and Darjeeling [15]
allow complex programs to be expressed in a very small
amount of code. Due to the associated smaller data
dissemination costs and the expressibility of their instruction
sets, it would appear that VMs offer the best approach for the
remote reprogramming of embedded systems. However, the
CPU overhead of using such systems quickly mitigates any
power savings from lower network communication costs. This,
coupled with the lack of flexibility for fixing low-level bugs,
makes VMs only suitable for temporarily re-tasking an
embedded system or for rapid prototyping. The use of VMs is
reliable however, and they offer the most protection to the
underlying OS out of all the methods studied.

TOSBoot [12], conversely, allows any part of the system to
be updated but is too power inefficient to be used for frequent
updates such as those that might be generated during rapid
prototyping of a network. The approach implemented by SOS
[13] is also limited in its utility due to its reliance on PIC code,
a mode of addressing only supported by certain hardware
architectures and compilers. Although Enix [16] attempts a fix
by the use of kernel-supported PIC, this mechanism incurs
significant runtime overhead for jump instructions. Coupled
with the lack of loose coupling, the inability to fix kernel/driver
bugs and the lack of OS protection, Enix will not be suitable
for many practical applications.

The approaches used by Contiki [1], RETOS [14], and
SenSpire [10] all make use of relocatable code. Although this
mechanism is typically associated with the large CPU
overheads required for dynamic relocating and linking,
SenSpire avoids this cost by pre-relocation of code. This
approach, although innovative, is only of use if a single device
is to be updated. If a bug-fix is to be distributed to an entire
network, the same overheads present in Contiki and RETOS
will be incurred. Contiki is clearly the most flexibile solution,
as it is possible to replace the core kernel. However, RETOS is
the only native code mechanism that implements any kind of
OS protection.

In conclusion, native code update mechanisms using
relocatable code are clearly the best solution for long-term
updates to embedded systems because of their lack of run-time
overhead once loaded. However, virtual machines should be
used in conjunction with such mechanisms to allow temporary
repurposing of the system and for rapid prototyping. Future
work should focus on operating system protection. Currently
remote reprogramming mechanisms are undermined as it is
possible for incorrectly written programs to crash the nodes
they are executing on. If the reliability of these mechanisms is
improved, their use will become more widespread, and can be
expected to include many practical, real-world applications.

REFERENCES

[1] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic

linking for reprogramming wireless sensor networks,” in Proceedings of
the 4th international conference on Embedded networked sensor
systems. ACM, 2006, pp. 15–28.

[2] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Efficient incremental code
update for sensor networks,” ACM Transactions on Sensor Networks
(TOSN), vol. 7, no. 4, p. 30, 2011.

[3] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming wireless sensor
networks: challenges and approaches,” Network, IEEE, vol. 20, no. 3,
pp. 48–55, 2006.

[4] R. Sugihara and R. K. Gupta, “Programming models for sensor
networks: A survey,” ACM Transactions on Sensor Networks (TOSN),
vol. 4, no. 2, pp. 8:1–8:29, 2008.

[5] L. S. Bai, R. P. Dick, and P. A. Dinda, “Archetype-based design: Sensor
network programming for application experts, not just programming
experts,” in Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, ser. IPSN ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 85–96. [Online].
Available: http://dl.acm.org/citation.cfm?id=1602165.1602175

[6] L. Mottola and G. P. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Computing Surveys
(CSUR), vol. 43, no. 3, p. 19, 2011.

[7] N. Bin Shafi, K. Ali, and H. S. Hassanein, “No-reboot and zero-flash
over-the-air programming for wireless sensor networks,” in Sensor,
Mesh and Ad Hoc Communications and Networks (SECON), 2012 9th
Annual IEEE Communications Society Conference on, 2012, pp. 371–
379.

[8] A. Dunkels, “A low-overhead script language for tiny nenetwork
embedded systems,” SICS Research Report, 2006.

[9] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A restful
runtime container for scriptable internet of things applications,” in
Internet of Things (IOT), 2012 3rd International Conference on the.
IEEE, 2012, pp. 135–142.

[10] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Liu, “Dynamic linking and
loading in network embedded systems,” in Mobile Adhoc and Sensor
Systems, 2009. MASS’09. IEEE 6th International Conference on. IEEE,
2009, pp. 554–562.

[11] P. Levis and D. Culler, “Mat´e: A tiny virtual machine for sensor
networks,” in ACM Sigplan Notices, vol. 37, no. 10, 2002, pp. 85–95.

[12] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in Proceedings of the 2nd
international conference on Embedded networked sensor systems. ACM,
2004, pp. 81–94.

[13] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A
dynamic operating system for sensor nodes,” in Proceedings of the 3rd
international conference on Mobile systems, applications, and services.
ACM, 2005, pp. 163–176.

[14] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon, “Retos:
Resilient, expandable, and threaded operating system for wireless sensor
networks,” in Information Processing in Sensor Networks, 2007. IPSN
2007. 6th International Symposium on, April 2007, pp. 148–157.

[15] N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a feature-rich
vm for the resource poor,” in Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems. ACM, 2009, pp. 169–182.

[16] Y.-T. Chen, T.-C. Chien, and P. H. Chou, “Enix: a lightweight dynamic
operating system for tightly constrained wireless sensor platforms,” in
Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2010, pp. 183–196.

[17] L. Mottola, G. P. Picco, and A. A. Sheikh, “Figaro: Fine-grained
software reconfiguration for wireless sensor networks,” in Wireless
Sensor Networks. Springer, 2008, pp. 286–304.

[18] N. Kajtazovic, C. Preschern, and C. Kreiner, “A component-based
dynamic link support for safety-critical embedded systems,” in
Engineering of Computer Based Systems (ECBS), 2013 20th IEEE
International Conference and Workshops on the. IEEE, 2013.

