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Abstract— In this paper a method based on the well-known 
frame theory is presented for the identification and classification 
of objects inside a scene. Three-dimensional (3D) point clouds 
have been firstly acquired using a laser triangulation system 
exploiting a high resolution camera, in order to derive accurate 
datasets for the method validation. The method performs a 
quadratic fit on the acquired samples and then extracts local 
curvatures from the analytical reconstructed surfaces. Such 
information is referred to a vocabulary of curvatures, created 
making use of the frame basis. Meaningful signatures can be 
finally analyzed to derive the recurrences of objects in the 
investigated scene. Specifically, by fixing a threshold value ζ, 
similarities can be estimated and thus objects can be recognized. 
Results prove the capability of the method to distinguish surface 
properties among several objects, validating this algorithm 
against the contributions of the measurement noise. 
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I. INTRODUCTION 

Object recognition is one of the most important issue in the 
field of three-dimensional (3D) environmental modeling. 
Although considerable progresses have been made in 
Literature, it is still widely accepted that the recognition of the 
real world is a difficult task, especially when the scene 
representation is affected by occlusions [1]. The scene 
understanding becomes challenging especially whenever 
complex-shaped objects with ambiguous geometries are 
investigated [2]. 

Model-based algorithms can be classified in those looking at 
global or local features [3]. 

Global methods can exploit a new reference system, referred 
to the object under investigation. These objects are then 
modeled in terms of a parametric function defined in the new 
system of coordinates. Among them, the 3D generalized 
cylinder (GC) can be used to approximate the shape of objects 
[4]. However, the parameters involved in the GC can fit objects 
only in intensity images, thus disabling their applicability for 
the analysis of complex 3D point clouds, where samples are 
expressed in terms of spatial coordinates. Also super-quadratics 
are often used to derive a global representation of complex-
shaped objects [5]. However, only few shapes can be 
represented with small residuals by means of this simple 
formulation and, consequently, intricate scenes incur huge 
computational costs, since objects have to be further 
segmented. Another global method is the one based on the 
Gauss Map [6], which confers good results that are 
independent of translations and perspective deformations. In 

this case, the limit of the technique is given by the presence of 
errors when the scene is partially occluded. 

On the other hand, local methods try to represent objects by 
segmenting them. An example, of local descriptor can be found 
in the Normal Aligned Radial Feature (NARF) algorithm [7], 
where different kinds of edges are investigated and classified to 
derive the properties of the scene objects. In this case, once 
edge points are found, radial tangent patches are analyzed to 
classify whether the considered edge divides foreground 
objects or background/occluded regions. Despite of the good 
results provided [8], the analysis of edges can suffer from 3D 
measurement noise.  

The problem of recognizing objects in a complex 
environment is one of the most considerable interest in the 
field of robotics, since it can be directly inverted for the 
motion estimation of autonomous vehicles (visual odometry 
[9]). In particular, whenever a couple of images can be 
acquired by a camera mounted on a mobile robot in two 
different consecutive time instants, it is possible to match the 
distinguishable features, i.e. signatures. As also valid for the 
well-known Iterative Closest Point (ICP) and RANdom 
SAmple Consensus (RANSAC) algorithms, relations can be 
inverted to estimate the robot movement in the environment 
[10]. In this context, the reference techniques for object 
recognition are the Scale Invariant Feature Transform (SIFT) 
[11] and the Speeded Up Robust Feature (SURF) [12], which 
operate only in two-dimensional images. As a consequence, 
this kind of algorithms need sophisticated camera calibrations 
to translate pixel displacements in terms of robot movements 
in world coordinates. 

In this paper a method based on the frame theory for the 
definition of local surface descriptors obtained by 3D datasets 
is developed. Preliminary analyses have been performed on 3D 
point clouds derived by means of a triangulation-based laser 
scanner assisted by a high definition camera. Each returned 
measurement is labeled by a set of coordinates in a given 
reference system. For each sample of the dataset, a set of points 
belonging to a spherical volume with known radius is 
extracted, and then processed to define a least square (LS) fit 
on a quadratic function. The curvature information is then 
represented on a vocabulary, defined following the frame 
theory. The non-orthonormal but complete basis of the 
equivalent space is able to express the contribution of 
precomputed Gaussian and mean curvatures on the actual 
surface under analysis, made of the actual points. The final 
feature descriptor is thus derived in terms of a surface 
signature, which is directly linked to the weight of each 
element of the initial characteristic basis (frame). The paper is 
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organized as follows: Section II discusses on the theory beside 
the proposed method and focuses attention of the steps for the 
method implementation, whereas Section III introduces results 
on real data derived by the analysis of actual objects. Final 
conclusion and remarks on further activities will be presented 
in Section IV. 

II. MATHEMATICAL FRAMEWORK 

A. Frame Theory 

As stated previously, the presented method represents the 
object properties, derived by the analysis of 3D data, in terms 
of a projection on an equivalent space, following the frame 
theory [13]. 

A frame F: ℝn ℝl can be expressed as a l×n matrix which 
constitutes a basis, or in other words, the dictionary of the 
equivalent space. The matrix F can be defined as: 

F = [φ1, φ2, φ3, …, φn]    given φi  ℝl (1) 

where the vectors φi that set up the dictionary are called 
atoms. Under these hypotheses, given an input vector α, which 
is related to the input points, it is possible to compute the 
corresponding signature vector c by means of the following 
formulation:  

F·c = αc = F*· α given α  ℝl (2) 

where F* is the pseudo-inverse of the Frame F. 

Accordingly to the frame theory, the matrix F can be 
effectively considered as a frame whether it satisfies a 
fundamental condition: the eigenvalues of the matrix F·FT have 
to be higher than zero, i.e. comparable to the order of 
magnitude of the entries of the input vector α. 

After this brief introduction to the Frame theory, it is 
fundamental to define the way the input vector α has to be 
created. As already described, the entries of the vector α are 
defined as an ordered set of couples of Gaussian and mean 
curvatures, computed punctually over a grid resampling the 
input surface. Given a generic point p of the input 
differentiable surface S, two principal curvatures, i.e. the 
maximum and the minimum curvatures (k1 and k2, 
respectively), can be determined. As known, the product of the 
principal curvatures is named as Gaussian curvature (K) of S 
in p, while the mean of the same is called mean curvature (H) 
of S in p. Qualitatively, these terms are linked to the maximum 
and minimum radii of a curve passing through p and 
belonging to the surface S. Therefore, elementary surfaces, 
such as planes, cylinders and spheres, have known curvature 
values, which are reported in Tab. I. 

From a computational point of view, given the 
differentiable surface z = f(x,y), where x and y are the 
independent variables belonging to ℝ, the Gaussian and the 
mean curvatures are defined as: 
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For more details the reader can refer to Ref. [14]. 

TABLE I: GAUSSIAN AND MEAN CURVATURES OF COMMON SURFACES 

Surfaces K H 
Plane 0 0 

Cylinder 0 1/2r 

Sphere 1/r2 1/r 

 
In this case, the local Gaussian and mean curvatures have 

been chosen as characteristic descriptors of the surface 
properties, since these are perspective invariant. In particular, 
the Gaussian curvature takes advantage of the theorema 
egregium, which states that this feature is only ascribable to the 
properties of the object surface, regardless the observer point of 
view. In actual context, also mean curvatures own the same 
property, since wrapped surfaces can be observed in a one-shot 
acquisition from a single point of view. As a consequence, 
perspective ambiguities due to the possible existence of 
negative values of the mean curvature are practically avoided. 
By this way, the method can overcome one of the most relevant 
problem in object recognition and modeling, regarding the 
perspective deformation of scenes, when the same environment 
is acquired in two consecutive time instants from different 
points of view [15]. 

B. Frame generation 

In the presented framework, a generic indoor environment 
is modeled as a combination of quadratic surfaces. In 
particular, paraboloid surfaces (Fig. 1) are the best candidate to 
fast and easily represent many kinds of actual primitive 
surfaces, such as spheres, cylinders and planes. The analytical 
formulation exploits within these lines is the following: 

Figure 1. Surface of a paraboloid in the 3D space 



 f+exy+dy+cxby+ax=z 22   (5) 

where, the values assumed by the coefficients in Eq. (5), 
determines whether the generic paraboloid is hyperbolic or 
elliptic. 

The generation of the dictionary, i.e. of the frame, is the 
first step in the dataset processing. As shown previously, 
curvatures can be easily derived by exploiting Eqns. (3) and 
(4). As a consequence a square domain of x and y, having side 
length of 40 mm, has been created and sampled by steps of 4 
mm. In this domain, several paraboloids have been artificially 
created by varying the values assumed by the parameters in Eq. 
(5). For this purpose, parameters have been limited within the 
boundaries in Tab. II.  

TABLE II: ADMISSIBLE RANGES OF PARABOLOID PARAMETERS 

Parameter Minimum value Maximum value 

a -100 100 

b -100 100 

c -1 1 

d -1 1 

e -100 100 

f -0.02 0.02 

 
Once all paraboloids have been generated, these are further 

selected by looking at their extensions. Since actual 
measurements will be limited by the sensor depth of field, only 
those paraboloids inscribed in a sphere of diameter equal to 3  

times the patch size are kept in the frame generation. Once 
again, in this way, the real surfaces and the ones that artificially 
constitute the dictionary will undergo the same geometrical 
constrains. 

Then, the Gaussian and mean curvatures of the generated 
paraboloids are computed for each point of the planar grid by 
using Eqns. (3) and (4). Here the partial derivatives are easily 
derivable: 

eycaxfx  2  (6) 

exdbyf y  2  (7) 

afxx 2  (8) 

bfxx 2  (9) 

efxy   (10) 

Therefore, K and H are two different matrices of the same 
size of the mesh grid (11×11 entries), representing the 
punctual values of the surface curvatures of the analytical 
functions z in Eq. (5). The two matrices are then reshaped 
columnwise in arrays of 121 elements each and then are 
concatenated to produce the specific atom φi of the frame. 
Therefore, each column of the frame comprises the Gaussian 
and mean curvatures of the analytical surfaces satisfying the 
previous fixed condition. 

The final check for the produced matrix consists of the 
verification of the condition of non-vanishing eigenvalues of 
the product F·FT. In this case, the smallest returned value was 
about 2.5×10-4, i.e. comparable with the size of the 
geometrical square domain of existence of the generated 
paraboloids. 

C. Processing of real data 

As shown in the previous paragraphs, the validity of the 
proposed method has been tested by processing real data. In 
particular, several primitive objects, such as spheres, cylinders 
and planes, have been acquired under altered conditions, 
residing in different relative displacements and orientations. 
For each object under investigation, a 3D point cloud is 
extracted. An example of real data is reported in Fig. 2, where 
two spheres having different radii are displayed. The green dots 
represent the points used for the signature extraction. These are 
enclosed in a sphere of diameter equal to the initial patch side 
D, and centered on a sample belonging to the object under 
analysis. It is important to notice that, from now on, the 
reference system is oriented oppositely with reference to the 
vertical axis, and therefore heights are developed along the 
negative part of the z-axis. 

The six parameters of the quadratic surface that best-fits the 
extracted points in the least square sense are determined by 
solving a system of nonlinear equations. Corresponding results 
are shown in Fig. 3, where the paraboloid approximating the 
green points in Fig. 2 is highlighted. It is worth noticing that 
the sampling grid is centered on the specific reference point 
around which the green dots in Fig. 2 are extracted. In this 
case, it is clear how real data suffers from the presence of 
measurements errors that produce holes in the acquired Figure 2. Real data of two spheres of different radius. 

Figure 3. Approximating quadratic surface of the extracted real data (see 
the green dots in Fig. 2). 



samples. Nevertheless, these issues do not affect the data 
processing, since the extraction of information is performed on 
the analytically reconstructed surface resulting from the non-
linear least square fit. 

The object under investigation is represented in terms of 
curvatures, which can be compared with the atoms of the 
vocabulary, i.e. the columns of the frame, by computing the 
partial derivatives in Eqns. (6) – (10), together with Eqns. (3) 
and (4). 

The local signature can be obtained as a linear combination 
of the frame columns. In other terms, the vector α, having 
information about the surface curvatures, is used in Eq. (2) to 
compute the signature vector c that contains the weights of the 
linear combination of the frame columns. Therefore, different 
measurements of the same object generates the same 
signatures. An example of signature vectors derived by the 
analysis of a planar and spherical surface is reported in Fig. 4. 

III. RESULTS 

As already discussed, object recognition is a complex task 
aimed to derive the recurring instances of a specific object in 
an actual environment, captured in several frames from 
different points of view. The following results are computed by 
comparing local signatures belonging to several real objects, 
scanned by means of a triangulation-based laser scanner. 

The comparison is performed using a metrics defined as the 
dot product of the two signature vectors. Exploiting the 
definition of the dot product in Eq. (11), the distance between 
vectors is carried out using the normalized form in Eq. (12). 
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The proposed normalize distance ζ can also play the role of 
a confidence level bounded between 0 and 1. In this case, the 
following classification can be derived: 

 ζ ≥ 0.9: optimal similarity; 
 0.5 ≤ ζ < 0.9: good similarity; 
 0 ≤ ζ < 0.5: dissimilarity. 

Although many experiments have been performed, for the 
sake of simplicity, only twenty acquisitions are reported in this 
manuscript. Tab. III lists the set of acquisitions performed for 
the model validation and the corresponding identification 
number used in the following lines. Specifically, acquisition 1, 
2 and 3 are derived from the inspection of three horizontal 
planes. The first is made of plastic, and the remaining of 
aluminum. The acquisitions of index i = 4,…,7 are obtained by 
tilting the plastic plane, following the direction described by 
the normal vectors ni. Acquisitions 8 and 9 are related to 
different cylinders with comparable radii (r8 and r9), whereas 
the acquisitions of index j = 10,…,19 are obtained by scanning 
the surfaces of seven spheres having different radius rj. 
Acquisitions 16, 18 and 19 are redundant, since these are 
obtained by applying rigid displacements to the spheres of 
acquisition 11, 14, and 15, respectively. Finally, acquisition 20 
is performed on an irregular surface. 

TABLE III: LIST OF ANALYZED OBJECTS  

# acq Kind of surface Object property 
1 Horizontal plane 1 Plastic medium 
2 Horizontal plane 2 Aluminum 
3 Horizontal plane 3 Aluminum 
4 Tilted plane 1 n4 = [0.781, -0.499, -0.375] 
5 Tilted plane 2 n5 = [-0.507, -0.028, -0.862] 
6 Tilted plane 3 n6 = [-0.381, -0.334, -0.862] 
7 Tilted plane 4 n7 = [-0.435, 0.268, -0.860] 
8 Cylinder 1 r8 = 24.27 mm 
9 Cylinder 2 r9 = 38.27 mm 

10 Sphere 1 r10 = 18.85 mm 
11 Sphere 2 r11 = 34.42 mm 
12 Sphere 3 r12 = 29.70 mm 
13 Sphere 4 r13 = 27.25 mm 
14 Sphere 5 r14 = 14.15 mm 
15 Sphere 6 r15 = 20.5 mm 
16 Sphere 2 r16 = r11 
17 Sphere 7 r17 = 35.12 mm 
18 Sphere 6 r18 = r15 
19 Sphere 5 r19 = r14 
20 Irregular surface - 

 

Fig. 5 reports the point cloud corresponding to the 
acquisition 5 (tilted plane 2). Green dots again displays the 
extracted patch used to derive the surface signatures. The 
inspection of Fig. 5 gives evidence to the contribution of noise 
due to the presence of cloud outliers, which can lead to 
processing errors.  

The signature vector is compared with those derived by the 
other acquisitions, producing the results in Tab. IV, which 

Figure 4. Examples of signature vectors extracted from a planar (a) and 
spherical (b) surface. 

(a) 

(b) 



reports the corresponding ζ values. Confidence values reported 
in bold are the ones that verify the similarity condition 
expressed previously, i.e. with the best matching of signatures. 
Quantitatively, ζ values are very close to the unity, regardless 
the tilt experienced by the planar regions. Equivalently, this 
outcome states that planar objects always produce the same 
signatures, as expected independently of the point of view of 
the acquisition system. 

TABLE IV: COMPARISON OF SIGNATURE VECTORS WITH THE ONE RELATED 

TO ACQUISITION 5 (TILTED PLANE 2) 

# acq ζ value # acq ζ value 
1 0.9996 11 0.1207 
2 0.9996 12 0.1687 
3 0.9996 13 0.0107 
4 0.9667 14 0.0174 
5 - 15 0.0955 
6 0.9997 16 0.1954 
7 0.9945 17 0.1855 
8 0.2615 18 0.0692 
9 0.1036 19 0.0066 

10 0.0795 20 0.2438 

 

The dataset reported in Fig.6 is related to acquisition 8, 
where a cylinder is scanned by the laser profilometer. Results 
of the comparison of signatures are highlighted in Tab. V, 

where the term ζ is shown. Also in this case bold values are 
those that indicate the best matching of signatures. Note that 
the only one value that passes the confidence check is the one 
related to the comparison with the second cylinder. In this case, 
the comparison produces a lower ζ value, since the considered 
cylinders have actually slightly different radii. On the contrary, 
the other values are much more different than the previous one, 
since different kinds of surfaces are compared. 

Finally, Fig. 7 shows the point cloud related to acquisition 
14, where a 28-mm-diameter sphere is investigated. 
Corresponding results of signature comparison are reported in 
Tab. VI. 

TABLE V: COMPARISON OF SIGNATURE VECTORS WITH THE ONE RELATED TO 

ACQUISITION 8 (CYLINDER 1) 

# acq ζ value # acq ζ value 
1 0.2710 11 0.0146 
2 0.2727 12 0.0182 
3 0.2727 13 0.0484 
4 0.3062 14 0.0024 
5 0.26154 15 0.0114 
6 0.2719 16 0.0230 
7 0.3052 17 0.0012 
8 - 18 0.0156 
9 0.5951 19 0.0025 

10 0.0005 20 0.0731 

TABLE VI: COMPARISION OF SIGNATURES WITH REFERENCE TO ACQUISITION 

14 (SPHERE 5) 

# acq ζ value # acq ζ value 
1 0.0170 11 0.0308 
2 0.0170 12 0.0012 
3 0.0173 13 0.0478 
4 0.0164 14 - 
5 0.0174 15 0.3034 
6 0.0172 16 0.0003 
7 0.0175 17 0.0011 
8 0.0021 18 0.1959 
9 0.0013 19 0.6935 

10 0.2306 20 0.0391 

 

Also the results in Tab. VI prove the capability of the 
proposed method to recognize the sphere 5 in the other 
measurements: the highest value, marked in bold, is obtained 
for acquisition 19, which is performed on the same object 
under different conditions. On the contrary, the remaining 
spheres produce lower values of ζ as the radius difference 
increases. 

Figure 5. Point cloud of acquisition 5 (blue) and corresponding extracted 
patch used for the computation of the signature vector (green). 

Figure 6. Point cloud of acquisition 8 (blue) and extracted points 
considered for the signature definition (green). 

Figure 7. Point cloud derived by the inspection of spheres 5 (green) and 
6. 



IV. CONCLUSION AND FUTURE WORKS 

In this paper a method object detection has been described 
and tested on real data. The method is implicitly unaffected by 
perspective deformations since it exploits Gaussian and mean 
curvatures to produce robust signatures, in accordance with 
the frame theory. An analytical basis of linearly dependent 
elements, the frame, is created by inspecting the curvature of 
parametric surfaces. This matrix is then used to derive the 
local signature of the actual surface, which is decomposed in 
terms of a weighted summation of the frame entries. Results 
confirm that the method can distinguish elementary objects 
among several primitives, i.e. planes, cylinders and spheres, 
regardless the entity of the measurement noise and without 
any ambiguity. This preliminary work opens the way for 
further activities which will lead to the use of the propose 
method for the motion estimation of autonomous vehicles 
through the pose estimation of recognized objects. Also the 
use of corner detectors for the unsupervised determination of 
interesting surface regions can improve the proposed method 
since it enables the automatic detection of the patch center, 
which constitutes the starting point of the proposed algorithm. 

ACKNOWLEDGMENT 

This work was funded within the CNR-ISSIA project “PI-
LOC – Technological system for the automation of logistics 
processes in critical contexts” (P.O. Puglia fesr 2007-2013 line 
1.2 – action 1.2.4). 

REFERENCES 

[1] F. Dell’acqua,R. Fisher,.“Reconstruction of planar surfaces behind 
occlusion in range images”, IEEE Trans. Pattern Anal. Mach. Intell., 
Vol. 24, No. 4, pp. 569-575, April 2002. 

[2] R. Benlamri, “Curved Shapes Construction for Object Recognition”, in 
Proc. IEEE Geometric Modeling and Processing (GMP), Wako, 
Saitama, Japan, 10-12 July 2002, pp. 197-204. 

[3] H. Delingette, M. Hebert and K. Ikeuchi, “A Spherical Representation 
for the Recognition of Curved Objects”, in Proc. IEEE Computer Vision, 
11-14 May 1993, pp. 103-112. 

[4] A. D. Gross and T. Boult, “An algorithm to recover Generalized 
Cylinders from a single intensity view”, in Proc. IEEE Trans. Robot. 
Autom., 13-18 May 1990, pp. 790-795. 

[5] A.P. Pentland, “Perceptual Organization and the Rapresentation of 
Natural Form”, Artificial Intelligence, Vol. 28, No. 3, pp. 293-331, May 
1986. 

[6] K. Ikeuchi, K.S. Hong, “Determining Linear Shape Change: Toward 
Automatic Generation of Object Recogniction Program” in Proc. IEEE 
Computer Vision and Pattern Recogniction (CVPR), 4-8 June 1989, pp. 
450- 457. 

[7] B. Stader, R.B. Rusu, K konolige and W.Bugard, “Point Feature 
extraction on 3D Range Scans taking into Account Object Boundaries”, 
in Proc. IEEE Trans. Robot. Autom., 9-13 May 2011, pp. 2601-2608. 

[8] M. Oshima, Y. Shirai, “Object recogniction using three-dimensional 
information”, IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-5, 
No. 4, pp. 353–361, July 1983. 

[9] F.Fraundorfer, D.Scaramuzza, “Visual Odometry part II: Matching, 
Robustness, Optimization and applications”, IEEE Trans. Robot. Autom. 
Mag., Vol. 19, No. 2,June 2012. 

[10] D.Scaramuzza, F. Fraundorfer, “Visual Odometry part I: The first 30 
years and fundamental”, IEEE Trans. Robot. Autom. Mag., Vol. 18, No. 
4, December 2011. 

[11] P. Scovanner, S. Ali, M. Shah, “A 3-Dimensional SIFT Descriptorand 
its application to Action recognition”, in Proc. 15th International 
Conference on Multimedia, pp. 357-360, 2007. 

[12] E. Oyallon, J. Rabin, "An analysis and implementation of the SURF 
method, and its comparison to SIFT”, Image Processing On Line, 2013. 

[13] E. Stella, “Novel Perspective on Automatic classification of Defects”, 
Institute on Intelligent Systems for Automation, National Research 
Council, Bari, Italy, Rep. RI-ISSIA/CNR 04-2008, July 2008. 

[14] M. P. Do Carmo, “Differential Geometry of Curves and Surfaces”, 
Prentice Hall, 1976, pp. 162-164. 

[15] A. Pogorelov, “Geometry”, Mir Publishers Moscow, 1987, pp. 175-184. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


