
A design of PID controllers using FRIT-PSO 
 

Takehito Azuma 
Department of Electrical and Electronic Engineering 

Utsunomiya University 
7-1-2 Yoto, Utsunomiya 321-8585, Japan 

tazuma@cc.utsunomiya-u.ac.jp 

Sohei Watanabe 
Department of Electrical and Electronic Engineering 

Utsunomiya University 
7-1-2 Yoto, Utsunomiya 321-8585, Japan  

 
 

Abstract—This paper proposes the Fictitious Reference Iterative 
Tuning-Particle Swarm Optimization (PSO-FRIT) method to 
design PID controllers for control systems. The proposed method 
is an offline PID parameter tuning method and it is not necessary 
to derive any mathematical models of objected control systems. 
The proposed method is demonstrated by comparing with the 
FRIT method in numerical examples.  
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I.  INTRODUCTION 

Recently it is strongly needed to improve productivity and 
cost-saving in some process industries, which are chemical 
process, oil process and steel process and so on. In these process 
control systems, PID controllers are embedded to achieve 
stability and some performances which are good responses for 
reference signals. The PID controller is described as the 
following form and only three parameters

DIP KKK ,,  are 

designed.  
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Because the performance of the control system is directly 
dependent to

DIP KKK ,, , the PID parameter tuning is very 

important. 

Traditionally PID controllers are designed based on 
dynamical models of the considered systems. In the paper [1-4], 
the models are described as simple transfer functions such as 
first-order systems with a time-delay. In the book [6] and the 
references, general transfer functions are considered and PID 
controllers can be designed based on the Bode plots in viewpoint 
from the loop shaping method. However usual process control 
systems are difficult to derive exact transfer functions of the 
considered systems. Thus data-driven PID tuning techniques 
have been focused on [7-8]. In the data-driven PID tuning 
method, mathematical models of the considered control systems 
are not necessary at all. 

The data-driven PID tuning is an optimization problem. By 
using input and output data for process control systems, a given 
performance index which is dependent on PID parameters is 
optimized. One of data-driven PID tuning techniques is FRIT 
(Fictitious Reference Iterative Tuning) [8]. The advantage of 

FRIT is that PID tuning is possible based on a set of one-shot 
data and offline. However FRIT has a disadvantage such that 
local solution is easy to obtain after PID tuning because the 
nonlinear and non-convex optimization problem is considered.  

In this article, FRIT and the optimization technique, that is 
particle swarm optimization (PSO) [9], is applied to PID tuning 
and the FRIT-PSO method is proposed. This paper shows that 
the disadvantage of FRIT is solved by using the proposed FRIT-
PSO and FRIT-PSO achieves better performances than FRIT. 
This is because the proposed FRIT-PSO method can avoid to 
obtain local solution for nonlinear optimization problems. 

II. OPTIMAZATION PROBLEM IN FRIT 

A. A set of input and output data  

The control system is shown in the Fig. 1. Here assume that 
the control object is described as )(sP  in Fig. 1 but the 
mathematical model is not known in advance or is not necessary. 
Since PID gains are tuning parameters, the PID controller )( sC  
in the equation (1) is described as the following form. 
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 In Fig. 1, the reference signal is r , the control input is u  and 
the output is y . A reference model is given as )(sT d

 and the 

error signal is e  between y  and rsTd )( . It is assumed that a 

one-shot data set {
00 , yu } is given in advance by using an initial 

PID parameter 0 .  The data 
0u  is time series of the control 

input and 
0y  is time series of the output by using 0 . 

 

Figure 1. Feedback control systems and reference models 
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B. Optimization problem in FRIT 

Since the reference model is given as )(sT d
in Fig. 1, the 

error signal can be described as 

,)(),( rsTyse d  

,))(),(( rsTsT d   

where the transfer function ),( sT   from r to y  is given as the 
following equation. 
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Here note that ),( sT   is not known because )(sP  is not known 

in advance. The main optimization problem is to find the 
following optimal parameter based on the data set {

00 , yu } 

only. 
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On the FRIT, the following fictitious reference signal is 
introduced to solve the optimization problem in the equation (2). 
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Moreover a new error signal and a new performance index are 
defined as the following forms. 
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Then the main optimization problem is reduced to find  

),(
~
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J                                                           (4) 

instead of the problem in the equation (2). 

C.  Gradient method in FRIT 

To compute the optimal solution * in the equation (4), the 
iterative method is given as the equation (5). This is same as the 
steepest descent method [10].  
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Here note that it is possible to compute the equation (6) 
offline because the equations (7) and (8) can be computed offline. 
Thus the iteration in the equation (5) can be computed offline 
and suboptimal solutions are obtained because the optimization 
problem in the equation (4) with (3) is nonlinear and non-convex. 

 

(a) The input data )(0 tu   

 

(b) The output data )(0 ty  

Figure 2. A data set {
00 , yu }(  T151515 ) 

 

Figure 4. The output signals  T151515  
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Reference response
Output before FRIT
Output after FRIT



D. Motivated nnumerical examples 

Now we consider the vehicle system considered in the paper 
[11] and assume that the input and output data {

00 , yu } is 

obtained in the figure 2 in advance. The PID parameters are 
given as  T151515 . Based on the paper [4], we consider 
the following reference model which is described as the 3-order 
system. 
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The maximum number of iteration of FRIT is 1000 and the 
gain ia  is given adequately in the equation (5). Then we obtain 
the following PID parameter based on FRIT.  

  0.017.)(
~

,9.810.929.45 **   JT  

The figure 4 shows the output signals based on FRIT. The dotted 
line denotes the reference response rsTd )( , the dashed line 

denotes the output signal before FRIT and the solid line denotes 
the output signal after FRIT. From the figure 4, we can calculate 
the value of the performance index in the equation (2) as  

0.206.)( * J  

We can see that the output signals are improved. However it 
seems that the PID tuning is not enough since the value of 
performance index is not well improved after the iteration is 100 
(See the solid line in the figure 6).  

Next the parameters are given as  T202020 . The 
figure 5 shows the output signals after FRIT. The case 1 means 
the output using  T151515  and the case 2 means the 

output using  T202020 . In case 2, the PID parameters 
and the value of the performance index are obtained as                                         

  0.016.)(
~

,9.350.9912.39 **   JT  

The figure 6 shows the values of the performance index )(
~ iJ    

in case 1 and case 2. The value in case 2 is smaller than one in 
case 1 however the output signal in case 2 does not become 
better. From the figure 5, the value of the performance index in 
the equation (2) as  

0.268.)( * J  

Thus the output signal in case 2 is not improved and high gains 
does not achieve a better performance. 

From the above numerical examples, it seems that the 
optimal solution is difficult to obtain based on FRIT only and 
the suboptimal solutions are highly dependent to the initial PID 
parameters. Moreover the number of iteration is large because 
the values of performance indexes do not become small after the 
iteration is 100 in FRIT.  To overcome this problem, we propose 
the FRIT-PSO approach for PID parameter tuning by utilizing 
the advantage of FRIT. The advantage is offline computation of 
PID parameters. 

 

Figure 5. The output signals 

 

Figure 6. The values of the performance index )(
~ iJ    

(Case 1 vs Case 2) 

 

Remark 2. In this example, the following 4-order system is used 
to obtain the one-shot data set {

00 , yu }.  

.
86214711320

812
)(

234 



ssss

s
sP  

Because the reference model is given as the 3-order system in 
the equation (9), the optimization problem becomes nonlinear 
and non-convex. The above examples show that the suboptimal 
solutions exist. If the reference model is chosen as the higher 
order system, the optimization problem may become easy but it 
seems difficult to obtain the optimal solution by using FRIT.  

III. PID TUNING BASED ON FRIT-PSO 

In this section, the FRIT-PSO approach is proposed. Now we 
define the considered PID parameter tuning problem as the 
optimization problem again.  

Assuming that the reference model is given as )(sTd
, the error 

signal is defined as the following equation in the same way of 
the previous section.  

.)(),( rsTyse d  

where the output signal is y and the reference signal is r  in the 
figure 1.  
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Problem1. Find the following optimal parameter based on the 
one-shot data set {

00 , yu } only 
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A. Optimization and Algorithm of FRIT-PSO 

Since the proposed approach is based on PSO, it assumed 
that the number of particles is n  and each particle consists of 
PID gains. Each particle },,,{ 21 n   is described as a 3-

dimensional vector. 
 

Step 0: Initialization 
    The initial PID parameter is given as  TDIP KKK0  

and a one-shot data set {
00 , yu } is obtained based on the figure 

1. Here assume that the transfer function using 0 is proper. 

The initial values of particles are randomly assigned as 
)}(,),(),({ 21 kkk n   between a suitable range. The 

parameter k is the number of iteration for FRIT-PSO and the 

initial number is given as 1k . 
 
Step 1: Optimization using FRIT 

For each particle ( nj ,,2,1  ), the fictitious reference 

signals are defined as  
.)),(()),((~

00
1 yuskCskr jj                          (10) 

The error signal and the performance index are also defined as 
the following forms. Here assume that the reference model is

)(sTd
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The following optimization problems are solved for each 
particle ( nj ,,2,1  ) based on the equation (5).  
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Step 2: Updating particles based on the PSO algorithm 
Step 2-a: Updating the local best and the global best 

The parameters )(),( kk gjL   are defined as follows, 
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where the parameter )( kjL  is called as the local best of the 

jth particle and the parameter )(kg  is called as the global best.  

Remark 2. If ))1((
~

)),((
~

 kJTmJ jLj  , then the local best 

)(kjL  is updated as )()( mk ljL   . Otherwise the local best 

is not updated and the local best is kept as )1()(  kk jLjL  . 

Moreover if ))1((
~

))((
~  kJmJ gjL  , then the global best 

)(kg  is updated as )()( mk lLg   . Otherwise the global best 

is not updated and the global best is kept as )1()(  kk gg  . 

Step 2-b: Updating the vector and the position 

The vector of the jth particle jv is updated as follows, 

)}()({)()1( 110 kkckvckv jjLjj    

)}.()({22 kkc jg    

The parameters
21 ,  are random numbers between 0 to 1. The 

parameters 
210 ,, ccc are the weighting factors for stability and 

performance of PSO. Since the setting of the parameters is 
based on the paper [12], the parameters which satisfy the 
equation (11) are used. 
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Then the position of the jth particle j is updated as follows, 

)1()()1(  kvkk jjj  , 

where the position is the PID gain. Thus PID tuning is done by 
the above equation.  
 
Step 3: Iteration of the PSO algorithm 
The iteration of Step 2 is repeated until the iteration number of 

PSO becomes maxkk . maxk  is called as the maximum iteration 

number of FRIT-PSO in this paper. 
 

For the proposed FRIT-PSO, the following theorems are 
satisfied.  
Theorem 1. For each 

max,,2,1,,,2,1),( kknjkj   , 

0))(( kJ j  is satisfied, if and only if 0))((
~ kJ j is 

satisfied. Moreover the optimal solution is given as  

)( max
* kg   

with the minimum performance index )(
~ *J .  

Proof: The fictitious reference signal in the equation (10) can be 
rewritten as  
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On the other hand, the following equation is satisfied. 
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Then the error signal )),((~ ske j in the equation (11) is derived 

as follows, 

),),((~)()),((~)),(()),((~ skrsTskrskTske jdjjj    
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).),(()),(( skeskF jj                                      (13) 

Here note that 0)),((~ ske j  is satisfied if 0))((
~ kJ j  and 

0)),(( ske j is satisfied if 0))(( kJ j . Thus the equation 

(13) means that 0))((
~ kJ j  is a necessary and sufficient 

condition for 0))(( kJ j  because )),(( skF j  is proper. 

Moreover it is obvious that the optimal parameter *  is given 
as the global best )( maxkg  after the FRIT-PSO algorithm. 

Theorem 2.  For each
max,,2,1,,,2,1),( kknjkj   , 

there exists a positive scalar 0  which satisfies the 
following condition. 
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Proof : From the equation (13), the following condition is 
satisfied. 

22
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where 
2

x is a 2-norm of a signal )(tx  and 


)( sX is an 

infinity-norm of a transfer function. Moreover because  

,))(())((,))((~))((
~ 2

2

2

2
kekJkekJ jjjj    

are satisfied, then the inequality (15) can be described as  
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Thus the condition (14) is satisfied for the following positive 
scalar. 
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B. A numerical exmaple of FRIT-PSO 

Considering the result of Theorem 2, it is clear that the small 
value of the fictitious performance index is not equivalent to the 
small value of the real performance index. Thus the gain ia is 
important in the equation (5) of the gauss-newton method. 
Moreover the number of iteration of FRIT 

maxi can be small 

because the important problem is how to set the suitable initial 
PID gains for FRIT. The proposed FRIT-PSO can solve this 
problem. 

Here we demonstrate the proposed approach in comparison 
with the result shown in the figure 4.  The same data set in the 
previous section is used. The parameters are summarized as 
follows,  

 Data set : {
00 , yu } in the figure 2 

 The reference model: the equation (9) 
 The number of particles : 50n  
 The initial range of particles in FRIT-PSO: 

 ,51  PK ,201  IK .201  DK  

The advantage of the proposed FRIT-PSO method is to be 
able to select PID gains considering the forecasted 
information about the gains. 

 Parameters of PSO : 5.0,5.0,3.0 210  ccc  which 

satisfy the condition (12) 
 The maximum number of iteration in FRIT: 10max i  

This value is decided based on the figure 6.  
 The maximum number of iteration in FRIT-PSO:  

10max k  

By using the proposed FRIT-PSO, the following PID 
parameters are obtained. 
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The output signals are shown in the figure 6. In this figure, the 
dotted line denotes the reference response, the dashed line 
denotes the output signal using FRIT and the solid line denotes 
the output signal using FRIT-PSO. Moreover the value of the 
performance index is calculated as  

0.170)( * J   

 
Figure 6. The output signals (FRIT vs FRIT-PSO) 

 
Figure 7. The value of the performance index in FRIT-PSO 
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Figure 8. The particle positions before FRIT-PSO 

 
Figure 9. The particle positions after FRIT-PSO 

 
Figure 10. The particle positions after FRIT-PSO(closeup) 
 

  The figure 7 shows the value of the performance index for 
the global best. After the number of iteration 7k , the value 
decreases almost linearly. This means that FRIT-PSO finds a 
new global best and the updating of each particle performs well 
after 7k  . The figure 8 , 9 and 10 show the particle position 
before and after FRIT-PSO. Before FRIT-PSO, each particle is 
distributed in a wide space. After FRIT-PSO, the global best is 
found out and each particle is concentrating at the global best.  

It is suggested that FRIT-PSO is a better PID tuning approach 
than FRIT and FRIT-PSO can avoid to go to local minimums. 
Moreover it is possible to design an optimal PID controller by 
using FRIT-PSO based on one-shot data without the 
mathematical model of the control object. 

 

IV. CONCLUSIONS 

The FRIT-PSO approach is proposed for PID tuning. 
Because the proposed approach is based on FRIT, offline 
PID tuning is possible. Moreover the proposed approach can 
avoid to obtain the local solution since the PSO method is 
also applied. The performance of the proposed FRIT-PSO is 
demonstrated by comparing with the FRIT method in the 
numerical examples. 
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