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Abstract— A real-time Raman mapping system for detecting and 

discriminating a range of industrially relevant materials such as 

glasses and various minerals is presented. The system is built 

from components that are suitable for industrial conditions. 

Together with a signal processing and a chemo-metric model, the 

system was shown to be capable of discriminating between the 

test materials. We argue that the approach is a novel alternative 

to established sorting sensors. 
 

Keywords- Raman, spectroscopy, industry, high-speed 

I.  INTRODUCTION 

Sensor based sorting has been a subject of research for 
many decades. Current methods use various regions of the 
electromagnetic spectrum: near-infrared, X-ray and visible 
light [1, 2, 3, 4]. Sensor based sorters are important at two 
stages of processing. They can be used as a preliminary sorting 
method to reduce the throughput and they can also be applied 
to purify an already high concentrate which can be sold to sub-
contractors. In both cases sensor based sorters can also reduce 
the consumption of energy in the process [2]. 

This paper describes a macroscopic Raman mapping 
prototype for industrial sorting of glasses minerals.  

A. Glass sorting 

As with polymer [5, 6] and paper recycling [7], recycled 
glass must be sorted within the recycling process. However 
different glass formulations have different melting points. An 
uncontrolled mixture of glass types will result in recovered 
glass that is prone to cracking during cooling, and non-molten 
components in the melt can damage production machines [8]. 
The standard methods are: sorting with visual camera 
systems—these have limited selectivity; and x-ray fluorescence 
systems, which are expensive. As an alternative, the viability of 
Raman spectroscopy for glass sorting has been investigated.  

B. Mineral sorting 

The majority of all ore minerals belong to the sulfides 
group. Yet sulfides are difficult to detect with current sensors 
[3]. X-ray fluorescence (XRF) sensors are limited to minerals 
which can be excited to fluorescence---this is rare for sulfides. 

Visible light (VIS) systems are also very limited for sulfides 
because the proportion of ore minerals in sulfides is often small 
and have the same color as the rock in which they are 
embedded. Near-infrared (NIR) techniques are limited to 
minerals which are sufficiently reflective or sufficiently 
transparent [9]. Raman spectroscopy can give information 
about the mass composition of the analyzed object. This 
property is critical for minerals sorting because the 
concentration of the mineral in the rock affects the desired 
result of the sorting process [9].  

In this paper we describe experiments in which a specially 
built Raman system was used to classify mineral samples. 
Samples of important mineral groups: dolomite, marble, calcite 
and pyrite were measured with the Raman system. The 
measured spectra were then processed to isolate the Raman 
peaks from the ambient components of the spectrum. The 
estimated Raman spectra were used with a correlation classifier 
to determine which measurements belong to which class of 
material. We found that although several of the material classes 
can be easily discriminated, the spectra of calcite and marble, 
and pyrite and some samples of dolomite, were sufficiently 
similar to cause confusion between the classes. Nonetheless the 
ability of the approach to discriminate calcite from dolomite 
and pyrite makes Raman spectroscopy a promising approach 
for mineral sorting. 

II. RAMAN SPECTROSCOPY 

Raman spectroscopy is classical laboratory method for 
material analysis and, until recently, was considered unsuitable 
for most industrial imaging applications as it requires long 
measuring times and is sensitive to stray light. Advances in 
camera and spectrometer technology now allow Raman signals 
to be acquired with high spatial and spectral resolution. It can 
be applied to determine the chemical composition 
quantitatively and qualitatively and can measure the chemical 
structure of almost any kind of object. It can be used to identify 
single materials as well as composites of several materials. 
Like NIR and XRF sensors, Raman analysis is limited to the 
surface of objects.  
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The Raman effect occurs when light is scattered by the 
chemical structures in a material. While most of the incident 
light is elastically (Rayleigh) scattered at the wavelength of the 
excitation light source, a small proportion is in-elastically 
scattered. This causes an energy difference between the 
incident light that can be measured as a wavelength shift in the 
spectrum. The shift is characteristic of the material's molecular 
composition and is referred to the material’s fingerprint. 

III. MEASUREMENT SYSTEM 

A. Raman measurement system 

A custom measurement system consisting of an OEM 
Raman spectrometer (Horiba Scientific) and a Raman 
measurement head (or super head) measures point spectra of 
the samples. The super head consists of a narrow-band pass 
filter that blocks the sidebands of the excitation laser and a 
Rayleigh filter that blocks Rayleigh scattered light in the 
Raman spectrum. Raman shifts between -233 cm

-1
 and 3300 

cm
-1

 can be measured with a spectral resolution of about 4 cm
-

1
. To achieve the maximum possible signal intensities a back 

thinned CCD sensor is used in the spectrometer. A 532nm fiber 
coupled laser with an output power of 2W (post fiber 
approximately 1.5W) is used to excite the measurement 
samples. The described measurement system was installed into 
a Titech scanner housing, see Figure 1. A specifically designed 
front lens (diameter of 3 inches) focused the laser spot to a spot 
size of around 600µm

2
 on the measurement samples at a 

distance of 250 mm. The front lens also collected the scattered 
Raman light from the measurement samples. A scanning mirror 
was used to measure the Raman signals at different positions 
on the conveyor belt.  

 
Figure 1 Industrial Raman prototype 

IV. MEASUREMENTS & ANALYSIS 

A. Mineral Sorting 

We measured dolomite, marble, calcite and pyrite samples 
approximately 1 to 10 cm in diameter. The samples differed 
slightly in color and shape. An example for each class is shown 
in Figure 2. 

For the data analysis we resolved the Raman peaks from the 
ambient spectrum by fitting a 4th order polynomial curve to the 
raw spectrum and then measuring the difference between the 
raw and fitted curves. This residue spectrum contains both 
random noise and distinctive sharp peaks; we will assume that 

these peaks are due to Raman scattering, Figure 3. We can 
improve the estimate of the Raman spectra by further 
processing the residue. First we apply a median filter and 
subtract the result from the residue. Then we apply a 
smoothing filter to the new residue. 

 
Figure 2 Mineral samples. Marble (a), dolomite (b), calcite (c) and 

calcite/dolomite + pyrite (d) 

Next we model the residual as a sparse Gaussian mixture 
using a greedy estimation algorithm. The residue spectrum is 
modeled as a Gaussian centered at the maxima of the spectrum 
using a simplex fitting algorithm. The fitted Gaussian is then 
subtracted from the spectrum and the process is repeated. After 
nine repetitions the list of Gaussians is pruned to exclude 
Gaussians whose standard deviation exceeds 5 nm. The 
standard deviations of remaining Gaussians are then doubled 
and the distributions used to construct a mask. The earlier 
result of filtering the residue is then multiplied by this mask to 
suppress non-Raman components of the spectrum. 

 
Figure 3 Measured, fitted and residue spectra for a pyrite sample 

Figure 4 shows typical Raman spectra of the investigated 
minerals. The spectra were processed as described earlier. 
Although the test materials have a similar molecular structure, 
differences of the Raman peaks are apparent. The main 
differences between the materials lie in the relative heights of 
their Raman peaks. Using the processed Raman spectra we 
created Raman maps of the measurement results. An example 
Raman map of a marble sample is shown in Figure 5. The left 



image in the figure shows an intensity map of the marble 
sample. 

 
Figure 4 Raman spectra of the minerals marble, pyrite, dolomite and 

calcite. 

The spatial structure of the sample can only be 
approximately inferred. This is because we measured with a 
relatively low resolution--measurements were made at intervals 
of 1 mm. The right hand image in Figure 5 shows the 
corresponding classification result of the Raman intensity map. 
Pixels in the classification result with label zero belong to the 
background, label one pixels mark calcite, label three pixels 
dolomite and label five pixels mark marble. The measurement 
result shows that the classification works well for marble. 
Some pixels classified as dolomite, but the majority of the 
sample is correctly classified as marble. 

 
Figure 5 Raman classification result of a marble sample. 0 represents 

the background, 1 calcite, 3 dolomite and 5 marble. 

Figure 6 shows a correlation matrix of all the minerals 
under investigation. The main tasks are to discriminate 
between calcite and dolomite and to detect pyrite inclusions in 
marble. The confusion matrix shows that there is some 
correlation between calcite and dolomite, but the correlation is 
not high. Therefore these two materials can be distinguished 
using Raman spectroscopy. As there is a high correlation 
between pyrite and dolomite, detecting the inclusion in marble 
is a challenging task and would need further data analysis. 
Moreover, the discrimination of calcite, dolomite, pyrite and 
marble needs a lot of data analysis as there are correlations 
between all the materials. This is clearly shown by the 
correlation matrix.  

 
Figure 6 Correlation matrix of the analyzed data sets 

B. Glass Sorting 

Test sets of samples of mineral glasses and fireproof 

glasses approximately 1 -2 cm in diameter were extracted from 

an industrial recycling process and Raman spectra of the 

samples measured using our industrial Raman prototype. The 

mineral glasses were divided into green glass, flint glass and 

amber glass. Fireproof glasses were divided into 8 classes: 

peach glass, caramel glass, faint yellow glass, yellow glass and 

honey glass. An example of each class is shown in Figure 7.  

 

 
Figure 7 Glass samples extracted from an industrial sorting process 

Figure 8 shows mean spectra of the different glass types. The 
data was acquired with an integration time of 100 ms. As a  
post-processing step we used a first order Savitzky Golay with 
a filter width of 30 cm

-1
 and calculated the L1-norm of the 

Raman spectra in the range from 200 cm
-1

 to 1200 cm
-1

. In the 
Raman shift range there is one significant feature for fire 
protection glasses at 477 cm

-1
 and there are two features for 

mineral glasses at 552 cm
-1

 and 1080 cm
-1

.  
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� ���….(Eq. 1) 

For the following scatter plot we used the equation Eq. 1 to 
calculate the local peak intensity of the spectral features. The 
Raman shifts used for A, B and C are listed in Table 1. 



Table 1 Raman shift features  

 A B C 

Feature 1 427 cm
-1

 499 cm
-1

 477 cm
-1

 

Feature 2 537 cm
-1

 594 cm
-1

 552 cm
-1

 

 

Plotting the two features in a 2D scatter plot shows that the 

point clouds of mineral glasses and fire protection glasses are 

separable. 

 

 
Figure 8 Typical Raman spectra of different glass types 

V. CONCLUSION 

In this paper we have shown that Raman spectroscopy is a 
promising technique for mineral sorting. Inhomogeneous 
mineral samples were scanned: i.e. Raman spectra were 
measured at a series of points on the sample's surface to give a 
low resolution image. The Raman peaks were resolved from 
background fluorescence using signal processing techniques. 
The similarity of measurements was calculated using the 
correlation of the estimated Raman spectra. A feature based on 
this correlation was used to classify the spectra, and so segment 
the image. Our classification results are mixed: the Raman 
spectra for several material classes were indistinguishable; 
other classes have distinctive spectra. Raman spectroscopy, is 
not, of itself, a universal solution for mineral sorting. However, 
it does give information that is useful for discriminating 
between several mineral classes.  

Our results showed also that mineral glasses and fireproof 
glasses are linearly separable using two peaks in the Raman 
spectrum at 470 cm

-1
 and 540 cm

-1
.  

The main obstacle to applying Raman spectroscopy to both 
mineral sorting and glass sorting is not the accuracy of 
classification, but rather the speed of the measurement. The 
Raman effect is faint; to detect it we require intense 
illumination and long exposure times. State of the art sorting 
systems, working in the NIR, scan between 25 kHz and 80 
kHz-our system operates currently at only 10 Hz. The exposure 
times used in this paper preclude the application of this 
technique from industrial systems that require high speed 
sorting. We are currently working to increase the intensity of 
illumination and the optical efficiency of the sensor. We argue 
that once the speed of the system has been sufficiently 

improved, the system can be applied to sorting applications in 
an industrial recycling facility. 

 
Figure 9 Scatter plot of mineral glass vs. fire protection glass with an 

integration time of 100ms 
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