

Abstract—Data integrity is a term used when referring to the

accuracy and reliability of data. It ensures that data is not altered

during operations, such as transfer, storage, or retrieval. Any

changes to the data for example malicious intention, unpredicted

hardware failure or human error would results in failure of data

integrity. Cryptographic hash functions are generally used for

the verification of data integrity. For many Internet of Things

(IoT) applications, hardware implementations of cryptographic

hash functions are needed to provide near real time data integrity

checking. The IoT is a world where billions of objects can sense,

share information and communicate over interconnected public

or private Internet Protocol (IP) networks. This paper provides

an implementation of a newly selected cryptographic hash

algorithm called Secure Hash Algorithm – 3 (SHA-3) on Xilinx

FPGAs (Spartan, Virtex, Kintex and Artix) and also provides the

power analysis of the implemented design. An FPGA is the best

leading platform of the modern era in terms of flexibility,

reliability and re-configurability. In this implementation the core

functionality of SHA-3 is implemented using LUT-6 primitives

and then these primitives are instantiated for the complete

implementation of SHA-3. The Xilinx Xpower tool is used for

power analysis of the implemented design. This implementation

can be used with IoT applications to provide near real time data

integrity checks.

Index Terms— FPGA, IoT, SHA-3, Data Integrity

1. INTRODUCTION

In a public network, data flow between the IoT applications

can be visible to a number of nodes on the network. Although

data can be secured using encryption there may be a chance of

data alteration on the network, whether the data is encrypted or

not. This alteration can be catastrophic for the applications

running at the destination node and can often lead to incorrect

responses. For example, in a fund transfer if the hacker alters

random pieces of data this may lead to incorrect funds being

transferred, or even transfer to an incorrect account. Data can

be altered due to many reasons; malicious intention,

unpredicted hardware failure and human error in the network.

With data integrity implemented data alteration can be

detected, if the data integrity check is applied at the receiver

side. This check can detect incorrect data transfer and therefore

incorrect transactions or operations can be prevented.

Hash functions can be used for the verification of data
integrity. This is a one-way deterministic procedure whose
input is an arbitrary block of data and whose output is a fixed-
size bit string, which is known as the hash value. The data to be
encoded is called the message, and the hash value is called
the message digest. In short, a message digest is a fingerprint of
the data. If the data changes the fingerprint changes. In
addition, if a secret is used in the process to generate the hash
(called a HMAC) then no one can predict the corresponding
digest of the data without knowing the secret and also the
content of the hashed data cannot be determined from the hash
value. This is why it is called a one-way procedure.

The hash of the data is calculated and appended to the data.

When the message arrives at its destination (in the case of data

transfer) or is retrieved (in the case of data storage), the hash is

recalculated from the data and compared to the hash that was

appended to the original message. If the values do not match,

then it means that the data has been altered. Fig. 1 shows how a

HMAC is generated and compared using a shared secret K. A

HMAC, a Hash generated Message Authentication Code can

be used to verify both integrity of a message and its source.

Figure 1. Secure Hash generation and comparison (HMAC).

Commonly used Hash functions are SHA-1, SHA-256,
SHA-512, RIPEMD, MD4 and MD5. In previous years
Cryptanalysis of these algorithms has found serious
vulnerabilities [1][2][3]. Although no attacks have yet been
reported on the SHA-2 variants, but due to their algorithmically
similarities to SHA-1, there are fears that SHA-2 could also be
cracked in the near future. The National Institute of Standards
and Technology (NIST), USA announced the SHA-3 Contest
in Nov 2007 [4]. This contest was to result in a new and secure
cryptographic hash algorithm. This competition ended on 2

nd

October‟12, after the announcement of Keccak, one of the
finalists of SHA-3 competition, as the winner for the title of
SHA-3[5].

For the IoT applications, hardware implementations of

cryptographic hash algorithms are needed to provide high

speed and near-real time results. ASICs and FPGAs are the

Secure Hash Algorithm-3(SHA-3) implementation on

Xilinx FPGAs, Suitable for IoT Applications

Muzaffar Rao, Thomas Newe and Ian Grout

University of Limerick, Ireland

muhammad.rao @ ul.ie, thomas.newe @ ul.ie, Ian.grout @ ul.ie

The authors would like to thank the Erasmus Mundus

STRoNGTiES (Strengthening Training and Research through

Networking and Globalization of Teaching in Engineering Studies)

program for providing funding that has facilitated the completion of

this work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/304199727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

two hardware platforms that can be used for these

implementations. FPGAs offer numerous advantages for

algorithm implementations over ASICs, such as: reliability,

flexibility, low cost, rapid time-to-market and long-term

maintenance [6].

Power efficiency is a critical issue in IoT applications, since

the devices connected in IoT are often not connected to power

directly and have to operate using energy harvesting sources or

a single battery for several years without maintenance or

battery replacement. So, the Xilinx Xpower tool is used for

power analysis of the implemented design to have an idea

about the power consumption on different Xilinx FPGAs.

In this paper the LUT-6 (Look-Up-Table -6) primitives of

FPGA are used for the SHA-3 implementation. The LUT-6

primitive can be used to implement any function of 6-inputs.

The logical function of the SHA-3 core is divided into two

parts (1) 5- input XOR logic (2) 5-input Chi logic. The chi logic

consist of XOR, NOT & AND logical operation. Both of these

5-input logics are stored in a single LUT-6 primitive where the

remaining input of the LUT-6 primitive is used as a control

signal for the selection between the XOR and chi logic. For the

complete implementation of SHA-3 a number of LUT-6

primitives are used.

Our proposed FPGA architecture is implemented on

different Xilinx FPGA platforms. The implementation results

on Artix-7 FPGA are better (because of the less static power

consumption) for low power operations as compare to other

FPGAs. The proposed architecture can be used with any IoT

application to provide up-to-date data integrity check using the

newly selected hash algorithm i.e. SHA-3. In this paper we also

discuss some specific IoT applications to emphasis the

importance of data integrity.

The remainder of the paper is organized as follows: Section

II gives details about IoT applications, Section III provides

FPGA details and in section IV the SHA-3 algorithm is

discussed. Section V is about the I/O interface for

implementation. The detail of SHA-3 implementation is given

in section VI. Power analysis is discussed in section VII and

section VIII provides the Implementation results. Finally, the

conclusion is presented in section IX.

II. INTERNET OF THINGS APPLICATIONS

The Internet of Things (IoT) is where millions of

independent objects can sense, share information and

communicate over interconnected public or private networks.

These interconnected objects can collect data, analyze it and

make decisions on the basis of the collected data. This is the

world of the Internet of Things (IoT). In this mixed wired and

wireless world there is a significant chance of data alteration at

network nodes. So, without data integrity checks one cannot be

sure about the originality/source of received data. This

dilemma can be largely solved using HMACs. Let‟s have a

look on some of the IoT applications.

One of the important IoT application areas is a Patient

Monitoring System. Continuous patient monitoring application

requires the use of medical body sensors to monitor vital body

conditions such as heartbeat, temperature and sugar levels. This

application examines the current state of the patient‟s health for

any abnormalities and can predict if the patient is going to

encounter any health problems. The sensor data must be

correctly received at the physician‟s network node as any

alteration in original data may provide wrong information

about patient‟s health there by leading to potentially fatal

mistreatment of the patient.

Crowd control applications will allow relevant government

authorities to estimate the number of people gathering at an

event and determine what necessary actions need to be taken

during an emergency. The application could be installed on

mobile devices and users would need to agree to share their

location data for the application to be effective. Using

location-based technologies such as cellular, WiFi and GPS,

the application could generate virtual “heat maps” of crowds.

These maps could be combined with sensor information

obtained from street cameras, motion sensors and officers on

patrol to evaluate the condition of the crowded areas.

Emergency vehicles can also be informed of the best possible

routes to take, using information from real-time traffic sensor

data. Again we can see that if the application doesn‟t have a

data integrity check, any corrupt data can lead to false

information being received with potentially fatal

consequences.

The intelligent streetlamp is a network of streetlamps that

are tied together in a WAN that can be controlled and

monitored from a central point. It captures data such as ambient

temperature, visibility, rain, GPS location and traffic density

which can be fed into applications to manage road maintenance

operations, traffic management and vicinity mapping. With the

availability of such real-time data, government can respond

quicker to changing environments to address citizen needs.

Implementation of data integrity checks is again important for

this application.

In short, data privacy and security is very important and is

one of the key challenges that need to be addressed before

mass adoption of the IoT applications. In the IoT, a lot of data

flows autonomously and without human knowledge, so it is

necessary that the data received at the receiving node must be

correct and unaltered from the transmitted data. To achieve

data integrity and source authentication HMACs can be used

with a shared secret (Fig. 2).

Figure 2. Data Origin and Integrity check

III. FIELD PROGRAMMABLE GATE ARRAY

FPGAs are made up of an interconnection of logic blocks in

the form of a two-dimensional array. The logic blocks consist

of look-up tables (LUTs) constructed over simple memories

that store Boolean functions. Each LUT has a fixed number of

inputs and is coupled to a multiplexor and a Flip-Flop in order

to build sequential circuits. Likewise, several LUTs can be

combined in order to implement complex functions. The FPGA

architecture makes it possible to implement any combinational

and sequential circuit, which can range from a simple logic

function to a high-end processor [7]. In order to reduce the

complexity of designing FPGA systems, Hardware Description

Languages (HDL) such as VHDL and Verilog HDL are used.

Likewise, the vendor‟s synthesizer seeks for an optimized

arrangement of the FPGA‟s resources based on the hardware

description (particularly the content of the LUTs and

interconnectors) during the process of mapping and routing in

order to generate a bit stream, which afterwards is loaded into

the targeted platform.

Xilinx classifies their FPGAs in three series: Virtex (high-

end), Artix (low-power), and Kintex (low-cost). The Spartan

series of Xilinx FPGAs is also low cost, but now this series is

replaced by Kintex.

In terms of power consumption, FPGA power is divided into

two parts: static power (or quiescent power) and dynamic

power [8]. Static power is the intrinsic power of the device and

cannot be changed. It exists once the chip is powered on, even

if there is no activity in the device. It includes transistor

leakage, power consumed internally, and power dissipated in

external termination resistors. Dynamic power is caused by the

switching activity of CMOS transistors. Dynamic power is

only consumed when the state of transistors changes, which

depends on the specific implementation of the design. A design

can consume less power if it is implemented in an appropriate

way.

Table I shows that the Artix-7 FPGA has similar static

power consumption to the Spartan-3, but it provides a larger

space and better optimized blocks. Table I presents the static

power consumption and space/LUTs features of the different

series of Xilinx FPGAs.

TABLE I. POWER CONSUMPTION OF XILINX FPGAS

IV. SECURE HASH ALGORITHM-3 (SHA-3)

SHA-3[9] is a family of sponge functions characterized by

two parameters, the bitrate r and capacity c. The sum, r + c

determine the width of the SHA-3 function permutation used in

the sponge construction and is restricted to a maximum value

of 1600. Selection of r and c depends on the desired hash

output value. Ex.: for a 256-bit hash output r = 1088 and c =

512 and for 512-bit hash output r = 576 and c = 1024 is

selected. The 1600-bit state of SHA-3 consists of a 5x5 matrix

of 64-bit words as shown in Fig. 3.

Figure 3. State Matrix (A) of SHA-3

There are 24 rounds in the compression function (Core) of

SHA-3 and each round consists of 5 steps, Theta (θ), Rho(ρ),

Pi(π), Chi (χ) and Iota (i) as shown in eq. (1) to (6).

Theta (θ) Step: (0 ≤x,y≤ 4)

C[x] = A[x,0]⊕A[x,1]⊕A[x,2]⊕A[x,3]⊕A[x,4]; (1)

D[x] = C[x–1]⊕ROT(C[x+1],1) ; (2)

A[x, y] = A[x, y]⊕D[x]; (3)

Rho (ρ) and Pi (π) Step: (0 ≤x,y≤ 4)

B [y, 2x+3y] =ROT (A[x,y], r[x, y]); (4)

Where r [x, y] is the Cyclic Shift Offset

Chi (χ) Step:(0 ≤x, y≤ 4)

A[x, y] =B[x,y]⊕((NOTB[x+1,y])ANDB[x+2,y]); (5)

Iota (i):

A[0, 0] =A[0, 0]⊕RC ; (6)

Where RC is the Round Constant

In the above equations all operations within indices are

done modulo 5. In eq. (1) A denotes the state matrix of 1600-

bits and A[x, y] denotes a particular 64-bit word in that state.

B[x, y], C[x] and D[x] are intermediate variables. Other

operations include bitwise XOR, NOT and the bitwise AND

logical operation. Finally, ROT denotes the bit wise cyclic

shift operation. The constants r[x, y] and RC are cyclic shift

offset and round constant respectively and are given in the

specifications [9].

The SHA-3 hash function operation consists of three phases:

initialization, absorbing and squeezing. Initialization is simply

the initialization of state matrix (A) with all zeros. In the

absorbing phase each r-bit wide block of the message is

XORed with the current matrix state and 24 rounds of the

compression functions are performed. In the squeezing phase

the state matrix is simply truncated to the desired length of

hash output.

V. INPUT / OUTPUT INTERFACE

To ensure and control the availability of input data at each

rising edge of the clock cycle the Load and Acknowledgment

signals are used. The length of the input data to be loaded is a

64-bit word at each rising edge of the clock cycle. Similarly if

the hash output is ready then it is indicated by putting

hash_valid signal to a high logic and then the 64-bit word of

hash value is available at each rising edge of the clock. The

control path consists of a Finite State Machine, State register,

clock and a counter. The data path consists of an Input register

Serial-In Parallel- Out (SIPO), a SHA-3 Core and an Output

register Parallel-In Serial-Out (PISO). The 1600-bit state

matrix is stored in the 1600-bit register. The 0‟s are used in the

initialization phase to initialize the state matrix with all 0‟s. In

the absorbing phase each r-bit wide block of the input message

is XORed with the r-bit current state matrix and then

concatenation is used to combine r and c to form a new state

and store it in the 1600-bit Register. The compression function

is implemented using LUT-6 primitives. The round constants

(RC) are stored in ROM using a 24x64 bit distributed ROM.

Respective round constants are addressed during each round

using the round number as the ROM address. In the last phase

of squeezing the state matrix is simply truncated to the desired

length of the hash output. The implementation of SHA-3 core

(compression function) is given below in detail.

VI. IMPLEMENTATION OF THE SHA-3 CORE

LUTs are the basic logic building blocks of an FPGA and

are used to implement most logic functions of a design. LUT_6

as shown in Figure 4, is a 6-input, 1-output look-up table

(LUT) that can either act as an asynchronous 64-bit ROM (with

6-bit addressing) or implement any 6-input logic function. The

INIT parameter for the FPGA LUT primitive provides the

logical value of the LUT and consists of a 64-bit Hexadecimal

value.

Figure 4. LUT_6 Primitive

It is obvious from the compression function steps that there

are two types of logical operations throughout the compression

function (a) XOR logic (b) χ (chi) logic. In this design we have

stored the result of these logics manually in a single LUT_6

primitive as an INIT value. The MSB of the LUT_6 input is

used as a control bit for the selection between XOR and χ logic.

If the control bit is „0‟ then XOR logic is selected and in the

case of the control bit being a „1‟, χ logic is selected. The INIT

value of the LUT_6 primitive is 64‟h D2D2D2D296696996.

This is derived by using the truth table for all possible

combinations of 6- input LUTs.

The 1600- bits of the compression function are divided into a

5x5 matrix (A) in such a way that each position of the state

matrix contains a 64-bit word. All the bitwise logical

operations are performed between these 64-bit words. So, there

should be 64 LUTs to perform bitwise logical operation

between any 64-bit inputs at a time. Because of this an

architecture is proposed using 64 LUT-6 primitives with the

same INIT value as shown in Fig. 5. In Fig.5 all the input bits

are arranged in a way so that this architecture can be used to

perform bitwise logical operation of either XOR or chi logic

between any five 64-bit inputs. As the maximum number of

inputs in eq. (1) to eq.(6) are five that‟s why the Fig.5

architecture is suitable for the implementation of these

equations and the remaining input can be used as „control‟ bit

to select between XOR and chi logic.

Figure 5. 64 LUT_6 architecture to implement SHA-3 Core

In eq. (1) a 5-input XOR function is performed between the

64-bit word of each row of state matrix (A). To implement eq.

(1) the architecture of Fig.5 is instantiated 5 times with control

bit equal to „0‟ to select the XOR logic. The output of this XOR

operation is stored in an intermediate register of C[x].

In eq. (2) C[x] position is rotated 1-time in clock wise

(C[x+1]) and anti-clockwise (C[x-1]) direction. The 64-bits of

C[x+1] are also rotated one time. This rotation operation is

implemented manually using concatenation operation. After

this rotation operation, the rotated 64-bits of C[x+1] and 64-

bits of C[x-1] are XORed. To perform this XOR operation,

again Fig.5 architecture is instantiated 5 times with control bit

set to „0‟ and the output is stored in an intermediate register

D[x]. This time only two inputs of Fig. 5 are used (excluding

control bit) and the other inputs are grounded.

 In eq. (3) the resultant D[x] is XORed with each 64-bit row

of input state matrix (A) and the entire state of 1600-bits is

updated. There are 25 rows of 64-bits in state matrix (A). So, to

implement this XOR function, Fig. 5 architecture is instantiated

25 times with control bit set to „0‟.

Eq. (4) involves the bit rotation of each 64-bit row of the

updated 1600-bit state of A[x, y] according to the bit rotation

scheme of r[x, y]. After the rotation operation all the rotated

bits are stored at new position. The rotation operation is

performed by using concatenation.

In eq. (5) chi logic is used that consists of XOR, NOT& AND

logical operation. To implement this logic Fig. 5 architecture is

instantiated 25 times and entire state of 1600-bit is updated.

But now control bit is set to „1‟ to select chi logic.

In eq. (6) only 64-bit of updated A[0, 0] are updated by

XORring with 64-bit round constant (RC). To implement eq.

(6), Fig.5 architecture is instantiated one time with control

logic set to „0‟.

So, in this way one round of compression function is

implemented within one clock cycle. The remaining 23 rounds

of the compression functions are completed in the same way

sequentially. Therefore, total 24 clock cycles are required for

the complete implementation of the compression function.

VII. POWER ANALYSIS USING XILINX XPOWER

Xilinx Xpower [10] is a tool providing the power estimation

for an FPGA design. The power of a design can only be

analyzed after the process of “place and route”. Xpower

calculates the power based on the switching activity of the

transistors. Any component in an FPGA design with switching

activity has a corresponding capacitance model used for the

power calculation. There are two methods for power estimation

using Xpower: (1) A rough estimation by setting an expected

toggle rate; (2) A more accurate estimation by providing

detailed transistor switching activity. Here, we choose the

second method to get an accurate result for our designs.

The flow for the power estimation is shown in Fig. 6, where

the value change dump file (VCD) is a file to record the signal

state at different timeslots and can be obtained by simulation.

The switching activity of the circuit can be recorded in the

VCD file when we simulate the gate-level netlist of the design.

Another purpose of the simulation at gate level is to examine

whether the register transfer level (RTL) code is successfully

synthesized into the gate level netlist. Finally, Xpower reads

the VCD file and generates the power estimation report.

Figure 6. Power estimation flow by Xpower

VIII. IMPLEMENTATION RESULTS

Table II shows the implementation results in terms of area

utilization, frequency of the implemented design, power

consumption, throughput (TP) and TPA (throughput/area). We

have implemented the proposed architecture in all Xilinx

FPGA platforms to show which platform is suitable for use in

the IoT application environment.

The implementation results from table II shows that the

Artix-7 FPGA utilizes less power as compare to the other

Xilinx FPGAs and also consumes less area. Virtex FPGAs are

power hungry, so these FPGAs are not suitable for IoT

applications. The implementation on Spartan-6 consumes less

power as compare to Virtex-6 but the throughput is less as

compare to other Xilinx FPGAs. The throughput result on

Kintex FPGA is better but it utilizes more area making its TPA

less attractive.

The throughput and TPA are calculated by using eq. (7) and

eq. (8) respectively.

 TP = Block Size / (T. NCLK) (7)

TPA = TP / Area (8)

The Block Size is the block size of the message in bits i.e 1088

for 256-bit variant. T is the time period of the system clock and

Nclk is the number of clock cycles required for a valid hash

output.

TABLE II. IMPLEMENTATION RESULTS ON XILINX FPGAS

IX. CONCLUSION

This work presents an implementation of the newly selected

cryptographic hash algorithm called SHA-3 on Xilinx FPGAs.

On the basis of the implementation results, the Artix-7 FPGA

is recommended for the SHA-3 implementation as this

platform is more suitable for IoT applications because of its

lower power consumption and it also utilizes less area than the

other devices. This implementation proposes a hardware

architecture that is based on LUT-6 primitives. The logical

functions of SHA-3 core are stored in LUT-6 primitives and

these primitives are instantiated for the complete

implementation of SHA-3. The power analysis of the

implemented design is also provided by using the Xilinx

Xpower tool. The authors believe that this implementation is

suitable for high data throughput IoT applications that require

data integrity and source authentication security services while

still remaining power efficient.

REFERENCES

 [1] Xiaoyun Wang, X.L., Feng, D., Yu, H.: Collisions for hash functions

MD4, MD5,HAVAL-128 and RIPEMD. Cryptology ePrint Archive,

Report 2004/199, pp. 1–4 (2004), http: // eprint.iacr.org/2004/ 199

[2] Szydlo, M.: SHA-1 collisions can be found in 263 operations. Crypto

BytesTechnical Newsletter (2005)

[3] Stevens, M.: Fast collision attack on MD5. ePrint-2006-104, pp. 1–13

(2006), http: //eprint.iacr.org/2006/104.pdf

[4] Federal Register / Vol. 72, No. 212 / Friday, November 2 (2007),

Notices, http: // csrc.nist.gov/groups/ST/hash/documents/FR_Notice_

Nov07.pdf

[5] National Institute of Standards and Technology (NIST).SHA-3 Winner

announcement, http : // w w w. nis .gov / itl / csd / sha-100212.cfm

[6] F. Henriquez, N. Saqib, D. Prez, and C. Kaya Koc; “Cryptographic

Algorithms on Reconfigurable Hardware” Springer, November 2006.

[7] Kuon, I.; Tessier, R.; Rose, J. FPGA Architecture: Survey and

Challenges. Found. Trends Electron. Des. Autom. 2007, 2, 135–253.

[8] Xilinx 7 Series Overview; Datasheet DS180; Xilinx. Available online:

http: // w w w. xilinx. Com / support / documentation / datasheets /
ds1807 Series Overview.pdf.

[9] G. Bertoni, J. Daemen, M. Peeters, G. Assche “The Keccak SHA-3
Submission version 3” pp. 1-14, (2011), http : // Keccak . noekeon . org /

Keccak – reference -3.0.pdf

[10] “XPower Tutorial FPGA Design”, [online]. Available at: ftp.xilinx.

com/pub/documentation/tutorials/xpowerfpgatutorial.pdf

 Device

 Area

(Slices)

Freq.

(MHz)

 Power

(mW)

 TP

(Gbps)

𝐓𝐏𝐀

[TP(Mbps)

/Area]

 Artix-7

982 192.75 612 8.738 8.89

 Virtex-6

1,048 194.78 2026 8.830 8.45

 Spartan-6

1,162 111.73 823 5.065 4.35

 Kintex-7

1,185 213.17 629 9.660 8.15

