
 

 

Abstract—Data integrity is a term used when referring to the 

accuracy and reliability of data. It ensures that data is not altered 

during operations, such as transfer, storage, or retrieval. Any 

changes to the data for example malicious intention, unpredicted 

hardware failure or human error would results in failure of data 

integrity. Cryptographic hash functions are generally used for 

the verification of data integrity. For many Internet of Things 

(IoT) applications, hardware implementations of cryptographic 

hash functions are needed to provide near real time data integrity 

checking. The IoT is a world where billions of objects can sense, 

share information and communicate over interconnected public 

or private Internet Protocol (IP) networks. This paper provides 

an implementation of a newly selected cryptographic hash 

algorithm called Secure Hash Algorithm – 3 (SHA-3) on Xilinx 

FPGAs (Spartan, Virtex, Kintex and Artix) and also provides the 

power analysis of the implemented design. An FPGA is the best 

leading platform of the modern era in terms of flexibility, 

reliability and re-configurability. In this implementation the core 

functionality of SHA-3 is implemented using LUT-6 primitives 

and then these primitives are instantiated for the complete 

implementation of SHA-3. The Xilinx Xpower tool is used for 

power analysis of the implemented design. This implementation 

can be used with IoT applications to provide near real time data 

integrity checks. 

 
Index Terms— FPGA, IoT, SHA-3, Data Integrity 

 

1. INTRODUCTION 

In a public network, data flow between the IoT applications 

can be visible to a number of nodes on the network. Although 

data can be secured using encryption there may be a chance of 

data alteration on the network, whether the data is encrypted or 

not. This alteration can be catastrophic for the applications 

running at the destination node and can often lead to incorrect 

responses. For example, in a fund transfer if the hacker alters 

random pieces of data this may lead to incorrect funds being 

transferred, or even transfer to an incorrect account. Data can 

be altered due to many reasons; malicious intention, 

unpredicted hardware failure and human error in the network. 

With data integrity implemented data alteration can be 

detected, if the data integrity check is applied at the receiver 

side. This check can detect incorrect data transfer and therefore 

incorrect transactions or operations can be prevented.  

 

 

 
 
 

 

Hash functions can be used for the verification of data 
integrity. This is a one-way deterministic procedure whose 
input is an arbitrary block of data and whose output is a fixed-
size bit string, which is known as the hash value. The data to be 
encoded is called the message, and the hash value is called 
the message digest. In short, a message digest is a fingerprint of 
the data. If the data changes the fingerprint changes. In 
addition, if a secret is used in the process to generate the hash 
(called a HMAC) then no one can predict the corresponding 
digest of the data without knowing the secret and also the 
content of the hashed data cannot be determined from the hash 
value. This is why it is called a one-way procedure. 

The hash of the data is calculated and appended to the data. 

When the message arrives at its destination (in the case of data 

transfer) or is retrieved (in the case of data storage), the hash is 

recalculated from the data and compared to the hash that was 

appended to the original message. If the values do not match, 

then it means that the data has been altered. Fig. 1 shows how a 

HMAC is generated and compared using a shared secret K. A 

HMAC, a Hash generated Message Authentication Code can 

be used to verify both integrity of a message and its source. 

 

 
Figure 1. Secure Hash generation and comparison (HMAC). 

 

Commonly used Hash functions are SHA-1, SHA-256, 
SHA-512, RIPEMD, MD4 and MD5. In previous years 
Cryptanalysis of these algorithms has found serious 
vulnerabilities [1][2][3]. Although no attacks have yet been 
reported on the SHA-2 variants, but due to their algorithmically 
similarities to SHA-1, there are fears that SHA-2 could also be 
cracked in the near future. The National Institute of Standards 
and Technology (NIST), USA announced the SHA-3 Contest 
in Nov 2007 [4]. This contest was to result in a new and secure 
cryptographic hash algorithm. This competition ended on 2

nd
 

October‟12, after the announcement of Keccak, one of the 
finalists of SHA-3 competition, as the winner for the title of 
SHA-3[5]. 

For the IoT applications, hardware implementations of 

cryptographic hash algorithms are needed to provide high 

speed and near-real time results.  ASICs and FPGAs are the 
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two hardware platforms that can be used for these 

implementations. FPGAs offer numerous advantages for 

algorithm implementations over ASICs, such as: reliability, 

flexibility, low cost, rapid time-to-market and long-term 

maintenance [6]. 

 

Power efficiency is a critical issue in IoT applications, since 

the devices connected in IoT are often not connected to power 

directly and have to operate using energy harvesting sources or 

a single battery for several years without maintenance or 

battery replacement. So, the Xilinx Xpower tool is used for 

power analysis of the implemented design to have an idea 

about the power consumption on different Xilinx FPGAs. 

 

In this paper the LUT-6 (Look-Up-Table -6) primitives of 

FPGA are used for the SHA-3 implementation. The LUT-6 

primitive can be used to implement any function of 6-inputs. 

The logical function of the SHA-3 core is divided into two 

parts (1) 5- input XOR logic (2) 5-input Chi logic. The chi logic 

consist of XOR, NOT & AND logical operation. Both of these 

5-input logics are stored in a single LUT-6 primitive where the 

remaining input of the LUT-6 primitive is used as a control 

signal for the selection between the XOR and chi logic. For the 

complete implementation of SHA-3 a number of LUT-6 

primitives are used. 

 

Our proposed FPGA architecture is implemented on 

different Xilinx FPGA platforms. The implementation results 

on Artix-7 FPGA are better (because of the less static power 

consumption) for low power operations as compare to other 

FPGAs. The proposed architecture can be used with any IoT 

application to provide up-to-date data integrity check using the 

newly selected hash algorithm i.e. SHA-3. In this paper we also 

discuss some specific IoT applications to emphasis the 

importance of data integrity. 

 

The remainder of the paper is organized as follows: Section 

II gives details about IoT applications, Section III provides 

FPGA details and in section IV the SHA-3 algorithm is 

discussed. Section V is about the I/O interface for 

implementation. The detail of SHA-3 implementation is given 

in section VI. Power analysis is discussed in section VII and 

section VIII provides the Implementation results. Finally, the 

conclusion is presented in section IX. 

II. INTERNET OF THINGS APPLICATIONS 

The Internet of Things (IoT) is where millions of 

independent objects can sense, share information and 

communicate over interconnected public or private networks. 

These interconnected objects can collect data, analyze it and 

make decisions on the basis of the collected data. This is the 

world of the Internet of Things (IoT). In this mixed wired and 

wireless world there is a significant chance of data alteration at 

network nodes. So, without data integrity checks one cannot be 

sure about the originality/source of received data. This 

dilemma can be largely solved using HMACs. Let‟s have a 

look on some of the IoT applications.  

 

One of the important IoT application areas is a Patient 

Monitoring System. Continuous patient monitoring application 

requires the use of medical body sensors to monitor vital body 

conditions such as heartbeat, temperature and sugar levels. This 

application examines the current state of the patient‟s health for 

any abnormalities and can predict if the patient is going to 

encounter any health problems. The sensor data must be 

correctly received at the physician‟s network node as any 

alteration in original data may provide wrong information 

about patient‟s health there by leading to potentially fatal 

mistreatment of the patient. 

 

Crowd control applications will allow relevant government 

authorities to estimate the number of people gathering at an 

event and determine what necessary actions need to be taken 

during an emergency. The application could be installed on 

mobile devices and users would need to agree to share their 

location data for the application to be effective. Using 

location-based technologies such as cellular, WiFi and GPS, 

the application could generate virtual “heat maps” of crowds. 

These maps could be combined with sensor information 

obtained from street cameras, motion sensors and officers on 

patrol to evaluate the condition of the crowded areas. 

Emergency vehicles can also be informed of the best possible 

routes to take, using information from real-time traffic sensor 

data. Again we can see that if the application doesn‟t have a 

data integrity check, any corrupt data can lead to false 

information being received with potentially fatal 

consequences. 

 

The intelligent streetlamp is a network of streetlamps that 

are tied together in a WAN that can be controlled and 

monitored from a central point. It captures data such as ambient 

temperature, visibility, rain, GPS location and traffic density 

which can be fed into applications to manage road maintenance 

operations, traffic management and vicinity mapping. With the 

availability of such real-time data, government can respond 

quicker to changing environments to address citizen needs. 

Implementation of data integrity checks is again important for 

this application. 

 

In short, data privacy and security is very important and is 

one of the key challenges that need to be addressed before 

mass adoption of the IoT applications. In the IoT, a lot of data 

flows autonomously and without human knowledge, so it is 

necessary that the data received at the receiving node must be 

correct and unaltered from the transmitted data. To achieve 

data integrity and source authentication HMACs can be used 

with a shared secret (Fig. 2). 

 

 
 

Figure 2. Data Origin and Integrity check 

 



 

III.  FIELD PROGRAMMABLE GATE ARRAY 

FPGAs are made up of an interconnection of logic blocks in 

the form of a two-dimensional array. The logic blocks consist 

of look-up tables (LUTs) constructed over simple memories 

that store Boolean functions. Each LUT has a fixed number of 

inputs and is coupled to a multiplexor and a Flip-Flop in order 

to build sequential circuits. Likewise, several LUTs can be 

combined in order to implement complex functions. The FPGA 

architecture makes it possible to implement any combinational 

and sequential circuit, which can range from a simple logic 

function to a high-end processor [7]. In order to reduce the 

complexity of designing FPGA systems, Hardware Description 

Languages (HDL) such as VHDL and Verilog HDL are used. 

Likewise, the vendor‟s synthesizer seeks for an optimized 

arrangement of the FPGA‟s resources based on the hardware 

description (particularly the content of the LUTs and 

interconnectors) during the process of mapping and routing in 

order to generate a bit stream, which afterwards is loaded into 

the targeted platform. 

 

Xilinx classifies their FPGAs in three series: Virtex (high-

end), Artix (low-power), and Kintex (low-cost). The Spartan 

series of Xilinx FPGAs is also low cost, but now this series is 

replaced by Kintex. 

 

In terms of power consumption, FPGA power is divided into 

two parts: static power (or quiescent power) and dynamic 

power [8]. Static power is the intrinsic power of the device and 

cannot be changed. It exists once the chip is powered on, even 

if there is no activity in the device. It includes transistor 

leakage, power consumed internally, and power dissipated in 

external termination resistors. Dynamic power is caused by the 

switching activity of CMOS transistors. Dynamic power is 

only consumed when the state of transistors changes, which 

depends on the specific implementation of the design. A design 

can consume less power if it is implemented in an appropriate 

way. 

 

Table I shows that the Artix-7 FPGA has similar static 

power consumption to the Spartan-3, but it provides a larger 

space and better optimized blocks. Table I presents the static 

power consumption and space/LUTs features of the different 

series of Xilinx FPGAs. 

TABLE I. POWER CONSUMPTION OF XILINX FPGAS 

 

IV. SECURE HASH ALGORITHM-3 (SHA-3) 

SHA-3[9] is a family of sponge functions characterized by 

two parameters, the bitrate r and capacity c. The sum, r + c 

determine the width of the SHA-3 function permutation used in 

the sponge construction and is restricted to a maximum value 

of 1600. Selection of r and c depends on the desired hash 

output value. Ex.: for a 256-bit hash output r = 1088 and c = 

512 and for 512-bit hash output r = 576 and c = 1024 is 

selected. The 1600-bit state of SHA-3 consists of a 5x5 matrix 

of 64-bit words as shown in Fig. 3. 

 
Figure 3.  State Matrix (A) of SHA-3 

 

There are 24 rounds in the  compression function (Core) of 

SHA-3 and each round consists of 5 steps, Theta (θ), Rho(ρ), 

Pi(π),  Chi (χ) and Iota (i) as shown in eq.  (1) to (6). 

 

Theta (θ) Step:  (0 ≤x,y≤  4) 

C[x] = A[x,0]⊕A[x,1]⊕A[x,2]⊕A[x,3]⊕A[x,4];         (1) 

D[x] = C[x–1]⊕ROT(C[x+1],1) ;                                       (2) 

A[x, y] = A[x, y]⊕D[x];                                                     (3) 

 

Rho (ρ) and Pi (π) Step:     (0 ≤x,y≤  4) 

B [y, 2x+3y] =ROT (A[x,y], r[x, y]);                                  (4) 

Where r [x, y] is the Cyclic Shift Offset   

Chi (χ) Step:(0 ≤x, y≤ 4)                                             

A[x, y] =B[x,y]⊕((NOTB[x+1,y])ANDB[x+2,y]);            (5) 

Iota (i): 

A[0, 0] =A[0, 0]⊕RC ;                                 (6) 

Where RC is the Round Constant 

 
In the above equations all operations within indices are 

done modulo 5. In eq. (1) A denotes the state matrix of 1600-

bits and A[x, y] denotes a particular 64-bit word in that state. 

B[x, y], C[x] and D[x] are intermediate variables. Other 

operations include bitwise XOR, NOT and the bitwise AND 

logical operation. Finally, ROT denotes the bit wise cyclic 

shift operation. The constants r[x, y] and RC are cyclic shift 

offset and round constant respectively and are given in the 

specifications [9]. 

 

The SHA-3 hash function operation consists of three phases: 

initialization, absorbing and squeezing. Initialization is simply 

the initialization of state matrix (A) with all zeros. In the 

absorbing phase each r-bit wide block of the message is 

XORed with the current matrix state and 24 rounds of the 



 

compression functions are performed. In the squeezing phase 

the state matrix is simply truncated to the desired length of 

hash output. 

V. INPUT / OUTPUT INTERFACE 

To ensure and control the availability of input data at each 

rising edge of the clock cycle the Load and Acknowledgment 

signals are used. The length of the input data to be loaded is a 

64-bit word at each rising edge of the clock cycle. Similarly if 

the hash output is ready then it is indicated by putting 

hash_valid signal to a high logic and then the 64-bit word of 

hash value is available at each rising edge of the clock. The 

control path consists of a Finite State Machine, State register, 

clock and a counter. The data path consists of an Input register 

Serial-In Parallel- Out (SIPO), a SHA-3 Core and an Output 

register Parallel-In Serial-Out (PISO). The 1600-bit state 

matrix is stored in the 1600-bit register. The 0‟s are used in the 

initialization phase to initialize the state matrix with all 0‟s. In 

the absorbing phase each r-bit wide block of the input message 

is XORed with the r-bit current state matrix and then 

concatenation is used to combine r and c to form a new state 

and store it in the 1600-bit Register. The compression function 

is implemented using LUT-6 primitives. The round constants 

(RC) are stored in ROM using a 24x64 bit distributed ROM. 

Respective round constants are addressed during each round 

using the round number as the ROM address. In the last phase 

of squeezing the state matrix is simply truncated to the desired 

length of the hash output. The implementation of SHA-3 core 

(compression function) is given below in detail. 

VI. IMPLEMENTATION OF THE SHA-3 CORE 

LUTs are the basic logic building blocks of an FPGA and 

are used to implement most logic functions of a design. LUT_6 

as shown in Figure 4, is a 6-input, 1-output look-up table 

(LUT) that can either act as an asynchronous 64-bit ROM (with 

6-bit addressing) or implement any 6-input logic function. The 

INIT parameter for the FPGA LUT primitive provides the 

logical value of the LUT and consists of a 64-bit Hexadecimal 

value. 

 
Figure 4.  LUT_6 Primitive 

 

It is obvious from the compression function steps that there 

are two types of logical operations throughout the compression 

function (a) XOR logic (b) χ (chi) logic. In this design we have 

stored the result of these logics manually in a single LUT_6 

primitive as an INIT value. The MSB of the LUT_6 input is 

used as a control bit for the selection between XOR and χ logic. 

If the control bit is „0‟ then XOR logic is selected and in the 

case of the control bit being a „1‟, χ logic is selected. The INIT 

value of the LUT_6 primitive is 64‟h D2D2D2D296696996. 

This is derived by using the truth table for all possible 

combinations of 6- input LUTs. 

 

The 1600- bits of the compression function are divided into a 

5x5 matrix (A) in such a way that each position of the state 

matrix contains a 64-bit word. All the bitwise logical 

operations are performed between these 64-bit words. So, there 

should be 64 LUTs to perform bitwise logical operation 

between any 64-bit inputs at a time. Because of this an 

architecture is proposed using 64 LUT-6 primitives with the 

same INIT value as shown in Fig. 5. In Fig.5 all the input bits 

are arranged in a way so that this architecture can be used to 

perform bitwise logical operation of either XOR or chi logic 

between any five 64-bit inputs. As the maximum number of 

inputs in eq. (1) to eq.(6) are five that‟s why the Fig.5 

architecture is suitable for the implementation of these 

equations and the remaining input can be used as „control‟ bit 

to select between XOR and chi logic. 

 

 
 

Figure 5.  64 LUT_6 architecture to implement SHA-3 Core 



 

In eq. (1) a 5-input XOR function is performed between the 

64-bit word of each row of state matrix (A). To implement eq. 

(1) the architecture of Fig.5 is instantiated 5 times with control 

bit equal to „0‟ to select the XOR logic. The output of this XOR 

operation is stored in an intermediate register of C[x]. 

 

In eq. (2) C[x] position is rotated 1-time in clock wise 

(C[x+1]) and anti-clockwise (C[x-1]) direction. The 64-bits of 

C[x+1] are also rotated one time. This rotation operation is 

implemented manually using concatenation operation. After 

this rotation operation, the rotated 64-bits of C[x+1] and 64-

bits of C[x-1] are XORed. To perform this XOR operation, 

again Fig.5 architecture is instantiated 5 times with control bit 

set to „0‟ and the output is stored in an intermediate register 

D[x]. This time only two inputs of Fig. 5 are used (excluding 

control bit) and the other inputs are grounded. 

 

 In eq. (3) the resultant D[x] is XORed with each 64-bit row 

of input state matrix (A) and the entire state of 1600-bits is 

updated. There are 25 rows of 64-bits in state matrix (A). So, to 

implement this XOR function, Fig. 5 architecture is instantiated 

25 times with control bit set to „0‟.  

 

Eq. (4) involves the bit rotation of each 64-bit row of the 

updated 1600-bit state of A[x, y] according to the bit rotation 

scheme of r[x, y]. After the rotation operation all the rotated 

bits are stored at new position. The rotation operation is 

performed by using concatenation. 

 

In eq. (5) chi logic is used that consists of XOR, NOT& AND 

logical operation. To implement this logic Fig. 5 architecture is 

instantiated 25 times and entire state of 1600-bit is updated. 

But now control bit is set to „1‟ to select chi logic.  

 

In eq. (6) only 64-bit of updated A[0, 0] are updated by 

XORring with 64-bit round constant (RC).  To implement eq. 

(6), Fig.5 architecture is instantiated one time with control 

logic set to „0‟. 

 

So, in this way one round of compression function is 

implemented within one clock cycle. The remaining 23 rounds 

of the compression functions are completed in the same way 

sequentially. Therefore, total 24 clock cycles are required for 

the complete implementation of the compression function. 

VII. POWER ANALYSIS USING XILINX XPOWER 

Xilinx Xpower [10] is a tool providing the power estimation 

for an FPGA design. The power of a design can only be 

analyzed after the process of “place and route”. Xpower 

calculates the power based on the switching activity of the 

transistors. Any component in an FPGA design with switching 

activity has a corresponding capacitance model used for the 

power calculation. There are two methods for power estimation 

using Xpower: (1) A rough estimation by setting an expected 

toggle rate; (2) A more accurate estimation by providing 

detailed transistor switching activity. Here, we choose the 

second method to get an accurate result for our designs. 

 

The flow for the power estimation is shown in Fig. 6, where 

the value change dump file (VCD) is a file to record the signal 

state at different timeslots and can be obtained by simulation. 

The switching activity of the circuit can be recorded in the 

VCD file when we simulate the gate-level netlist of the design. 

Another purpose of the simulation at gate level is to examine 

whether the register transfer level (RTL) code is successfully 

synthesized into the gate level netlist. Finally, Xpower reads 

the VCD file and generates the power estimation report.  

 

 
 

Figure 6.  Power estimation flow by Xpower 

 

VIII. IMPLEMENTATION RESULTS 

Table II shows the implementation results in terms of area 

utilization, frequency of the implemented design, power 

consumption, throughput (TP) and TPA (throughput/area). We 

have implemented the proposed architecture in all Xilinx 

FPGA platforms to show which platform is suitable for use in 

the IoT application environment.  

 

The implementation results from table II shows that the 

Artix-7 FPGA utilizes less power as compare to the other 

Xilinx FPGAs and also consumes less area. Virtex FPGAs are 

power hungry, so these FPGAs are not suitable for IoT 

applications. The implementation on Spartan-6 consumes less 

power as compare to Virtex-6 but the throughput is less as 

compare to other Xilinx FPGAs. The throughput result on 

Kintex FPGA is better but it utilizes more area making its TPA 

less attractive. 

 

The throughput and TPA are calculated by using eq. (7) and 

eq. (8) respectively. 

 

                      TP = Block Size / (T. NCLK)            (7) 

TPA = TP / Area                      (8) 

 

The Block Size is the block size of the message in bits i.e 1088 

for 256-bit variant. T is the time period of the system clock and 

Nclk is the number of clock cycles required for a valid hash 

output. 
 

 

 



 

TABLE II. IMPLEMENTATION RESULTS ON XILINX FPGAS 

IX. CONCLUSION 

This work presents an implementation of the newly selected 

cryptographic hash algorithm called SHA-3 on Xilinx FPGAs. 

On the basis of the implementation results, the Artix-7 FPGA 

is recommended for the SHA-3 implementation as this 

platform is more suitable for IoT applications because of its 

lower power consumption and it also utilizes less area than the 

other devices. This implementation proposes a hardware 

architecture that is based on LUT-6 primitives. The logical 

functions of SHA-3 core are stored in LUT-6 primitives and 

these primitives are instantiated for the complete 

implementation of SHA-3. The power analysis of the 

implemented design is also provided by using the Xilinx 

Xpower tool. The authors believe that this implementation is 

suitable for high data throughput IoT applications that require 

data integrity and source authentication security services while 

still remaining power efficient. 
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    Device 

  Area 

(Slices) 

Freq. 

(MHz) 

 Power 

(mW)  

 TP 

(Gbps) 

 

𝐓𝐏𝐀 

[TP(Mbps) 

/Area] 

   Artix-7 

 

982  192.75   612 8.738 8.89 

  Virtex-6 
 

1,048 194.78 2026 8.830 8.45 

 Spartan-6 

 

1,162 111.73   823 5.065 4.35 

  Kintex-7 
 

1,185 213.17   629 9.660 8.15 


