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The pathogenic yeast Candida glabrata has become a public health issue due to the
increasing number of echinocandin resistant clinical strains reported. In this study,
acquisition and development of resistance to this antifungal class were studied in
serial C. glabrata isolates from five patients admitted in two Spanish hospitals with
a resistant profile against echinocandins associated with different mutations in hot-
spot 1 of FKS2 gene. For two of these patients susceptible FKS wild-type isolates
obtained prior to resistant ones were also investigated. Isolates were genotyped using
multilocus sequence typing and microsatellite length polymorphism techniques, which
yielded comparable results. Susceptible and resistant isolates from the same patient
had the same genotype, being sequence type (ST) 3 the most prevalent among
them. Isolates with different FKS mutations but the same ST were present in the
same patient. MSH2 gene alterations were also studied to investigate their correlation
with antifungal resistance acquisition but no association was found with antifungal
resistance nor with specific genotypes. In vitro exposure to increasing concentrations
of micafungin to susceptible isolates developed colonies carrying FKS mutations in agar
plates containing a minimum concentration of 0.06 mg/L of micafungin after less than
48 h of exposure. We investigated the correlation between development of resistance
and genotype in a set of susceptible strains after being in vitro exposed to micafungin
and anidulafungin but no correlation was found. Mutant prevention concentration values
and spontaneous growth frequencies after selection with both echinocandins were
statistically similar, although FKS mutant colonies were more abundant after micafungin
exposure (p < 0.001). Mutation S663P and F659 deletion were the most common ones
found after selection with both echinocandins.

Keywords: Candida glabrata, echinocandins, antifungal resistance, FKS, MSH2, genotyping, anidulafungin,
micafungin
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INTRODUCTION

Infections caused by Candida species, extensively referred to as
candidiasis, have been described as the most common fungal
disease globally (Pappas et al., 2018). Although Candida albicans
is the species causing the highest number of infections in clinical
settings, an increasing prevalence of other Candida species has
been reported in the last years, being Candida glabrata the
second most common species isolated from invasive candidiasis
in North America and central and northern countries in Europe
(Pfaller et al., 2012; Asmundsdottir et al., 2013; Lortholary
et al., 2014; Milazzo et al., 2014; Castanheira et al., 2016).
In Spain, only C. albicans and Candida parapsilosis are more
frequently isolated than C. glabrata from patients with fungemia
(Guinea et al., 2014).

Echinocandins are the first line antifungal therapy against
C. glabrata infections, as this species generally presents low
susceptibility to azole drugs. Echinocandins non-competitively
inhibit the 1–3-β-D-glucan synthase, which is responsible for
the synthesis of β-glucan polymers that confer integrity to
the fungal cell wall. Nevertheless, an ever-growing number of
echinocandin resistant clinical isolates have been reported
worldwide in the last years and population studies in
the United States and Denmark have shown an increase
in echinocandin resistance rate (Alexander et al., 2013;
Farmakiotis et al., 2014; Vallabhaneni et al., 2015; Astvad
et al., 2017), which is conferred by the presence of point
mutations in specific regions (denominated as hot-spots) of
FKS genes, which encode this enzyme’s catalytic subunits
(Katiyar et al., 2012).

FKS mutations have been reported to correlate with
elevated in vitro minimal inhibitory concentrations (MICs) and
clinical failure (Alexander et al., 2013), yet an explanation
for this increase in echinocandin resistant strains has not
been proved. Several possibilities are being studied, such
as strains proneness to acquire resistance as an answer to
echinocandin exposure (Bordallo-Cardona et al., 2017, 2018a,c;
Shields et al., 2019), the existence of hidden reservoirs in
the human body of echinocandin resistant C. glabrata isolates
(Shields et al., 2014; Grau et al., 2015; Jensen et al., 2015;
Healey et al., 2017) or molecular mechanisms like MSH2
mutator phenotype (Delliere et al., 2016; Healey et al., 2016b;
Byun et al., 2018; Hou et al., 2018; Singh et al., 2018;
Bordallo-Cardona et al., 2019).

Multilocus sequence typing (MLST) and microsatellite
length polymorphism (MLP) have been described as typing
methodologies with high discrimination power (Dodgson et al.,
2003; Foulet et al., 2005; Abbes et al., 2012) for assesing C. glabrata
strain relatedness.

The objective of the present study was to investigate the
antifungal susceptibility, molecular mechanisms of echinocandin
resistance and strain relatedness of a series of C. glabrata
sequentially isolated from patients admitted in two hospitals in
Madrid; and also the potential development of echinocandin
resistance of susceptible C. glabrata isolates collected from 2013
to 2017 after in vitro exposure to a range of micafungin and
anidulafungin concentrations.

MATERIALS AND METHODS

Yeast Isolates: Patients and
Identification
Eighteen C. glabrata strains sequentially isolated from five
patients admitted in two centers (Hospital Universitario Puerta
de Hierro and Hospital Universitario 12 de Octubre, both
located in Madrid, Spain) were selected for showing a resistance
profile against echinocandins. For two of these patients previous
susceptible isolates were also available and analyzed. 89% (16/18)
of them were obtained from blood cultures, while the two
remaining were isolated from a catheter (one isolate from Patient
1) and from ascitic liquid (one isolate from Patient 2) (Table 1).
For in vitro exposure to micafungin and anidulafungin assays,
14 C. glabrata strains collected from 2012 to 2017 from Hospital
Universitario Puerta de Hierro, all isolated from blood cultures
except one from ascitic liquid, were chosen for being susceptible
to echinocandin drugs. All strains were isolated during routine
diagnostic procedures at the hospitals and received at the
Mycology Reference Laboratory of the Spanish National Centre
for Microbiology. Isolates were characterized by morphological
features and confirmed as C. glabrata by amplification and
sequencing of their ITS1-5.8S-ITS2 regions (White et al., 1990).
According to the Law 14/2007 of 3rd July on Biomedical Research
and the Recommendation CM/Rec(2016)6 of the Committee of
Ministers to member States on research on biological materials
of human origin, no informed consent was required as no
work was performed neither with samples of human origin nor
with clinical data. The Mycology Reference Laboratory directly
received fungal strains, isolated from the patients as routine
diagnostic procedures in the hospital and referred to the National
Centre for Microbiology according to routine procedures.

Antifungal Susceptibility Testing
Minimal inhibitory concentrations were determined and
confirmed following EUCAST 7.3.1 reference method for yeasts1.
Antifungals tested were anidulafungin (range 0.007–4 mg/L;
Pfizer, Madrid, Spain), micafungin (range 0.004–2 mg/L; Astellas
Pharma Inc., Tokyo, Japan), caspofungin (range 0.032–16 mg/L;
Merck Sharp & Dohme, United Kingdom) and fluconazole
(range 0.125–64 mg/L; Pfizer, Madrid, Spain).

Candida krusei ATCC 6258 and C. parapsilosis ATCC 22019
were used as quality control strains in all test performed. The
optical density of the inoculated plates was determined after
24 and 48 h of incubation at 35◦C in a humid atmosphere,
and strains were classified as susceptible or resistant according
to clinical breakpoints established by EUCAST for C. glabrata:
MIC > 0.032 mg/L for micafungin, MIC > 0.064 mg/L for
anidulafungin and MIC > 32 mg/L for fluconazole2.

DNA Extraction and FKS Sequencing
Genomic DNA of all isolates was extracted using the
phenol-chloroform method (Tang et al., 1992). Molecular

1http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/
EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf (accessed April 8, 2019).
2http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/
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TABLE 1 | Candida glabrata sequential isolates from five patients admitted in two hospitals in Madrid: isolation dates, anatomic sources, FKS2 alterations, in vitro
susceptibility to echinocandins and fluconazole performed by EUCAST and genotyping results by MLST and MLP.

Hospital Patient Strain Isolation
date

Anatomic
source

FKS 2
alteration

MIC EUCAST (mg/L) Typing

ANF CPF MCF FLC MLP∗ (bp) MLST (ST)

Hospital 1 CNM-CL9829 14/03/16 Blood culture – 0.007 0.25 0.007 4 205-243-134-267- ST3

Universitario Puerta CNM-CL9835 17/03/16 Catheter – 0.015 0.25 0.007 4 262-325

de Hierro, Madrid, CNM-CL9975 17/04/16 Blood culture D666H 0.125 0.5 0.03 4

Spain CNM-CL9877 17/06/16 Blood culture L664R 0.125 1 0.06 2

CNM-CL9889 07/07/16 Blood culture L664R 0.125 1 0.125 2

2 CNM-CL9857 21/05/16 Blood culture – 0.03 0.25 0.007 2 205-243-134-267- ST3

CNM-CL9883 23/06/16 Ascitic fluid D666E 0.25 1 0.06 4 262-325

CNM-CL9897 17/07/16 Blood culture S663P 2 >16 >2 32

3 CNM-CL9931 21/10/16 Blood culture 1F659 2 >16 2 2 187-251-122-270- ST2

CNM-CL9939 14/11/16 Blood culture 1F659 2 >16 2 64 265-296

CNM-CL9991 23/11/16 Blood culture 1F659 2 >16 2 >64

4 CNM-CL9932 21/10/16 Blood culture S663P 2 >16 2 32 205-243-134-267- ST3

CNM-CL9981 12/11/16 Blood culture S663P 2 >16 >2 32 262-325

CNM-CL9992 24/11/16 Blood culture S663P 2 >16 >2 64

Hospital 5 CNM-CL9646 25/02/15 Blood culture D666N 0.125 0.5 0.06 64 237-236-128-270- ST149

Universitario 12 de CNM-CL9775 11/11/15 Blood culture D666N 0.125 0.5 0.06 2 262-290

Octubre, Madrid, CNM-CL9988 16/11/16 Blood culture D666N 0.25 2 0.06 2

Spain CNM-CL10047 16/01/17 Blood culture 1F659+ D666N >4 16 2 64

CNM-CL, Yeast Collection of the Spanish National Center for Microbiology; ANF, anidulafungin; CPF, caspofungin; MCF, micafungin; FLC, fluconazole; MLP, Microsatellite
Length Polymorphism; bp, base pairs; MLST, Multilocus Sequence Typing; ST, sequence type. In bold letters, MIC values that are above the EUCAST clinical breakpoints
stablished for those antifungals. ∗MLP: ERG3-MTI-RPM2-GLM4-GLM5-GLM6.

mechanisms of echinocandin resistance were studied by
amplifying hot-spot regions 1 and 2 of FKS1 and FKS2
(Thompson et al., 2008; Zimbeck et al., 2010; Duran-Valle
et al., 2012; Bizerra et al., 2013) as previously described
with the following modifications: PCR reaction mixtures
contained 25 ng of DNA, 0.2 µM of each primer, 0.2 µM
of deoxynucleoside triphosphate (Roche, Spain), 5 µL
of PCR 10× buffer (Applied Biosystems, Foster City, CA,
United States), 2 mM of MgCl2 (Applied Biosystems, Foster
City, CA, United States), 5.2% DMSO and 2.5 U of Taq
DNA polymerase (Applied Biosystems, Foster City, CA,
United States) in a final volume of 50 µL. PCRs conditions
used were set as previously described (Duran-Valle et al.,
2012), with an annealing temperature of 52◦C for hot-
spot regions 1 and 2 of FKS1, 53◦C for hot-spot region
1 of FKS2 and 58◦C for hot-spot region 2 of FKS2. PCR
amplicons were purified using Illustra ExoProStar 1-step
(GE Healthcare Life Science, United Kingdom), and were
sequenced after by Sanger method with an ABI3730XLsequencer
(Applied Biosystems, Foster City, CA, United States). DNA
sequences were analyzed with DNAStar Lasergene 12 software
(DNAStar Inc., United States), and queried against FKS1
(GenBank number CAGL0G01034g) and FKS2 (GenBank
number CAGL0K04037g) sequences of the type strain
CBS 1383.

3http://www.ncbi.nlm.nih.gov/

Assessment of Pooled Reservoir of
Mixed Resistant Isolates
For two patients with isolates harboring two different FKS
mutations, the possible coexistence of diverse populations within
the same sample was studied by randomly isolating ten colonies
from the original samples sent from the hospital for DNA
extraction and FKS amplification and sequencing.

Genotyping by MLST
Six housekeeping gene loci (FKS, LEU2, NMT1, TRP1, UGP1,
and URA3) were studied for all isolates as previously described
(Dodgson et al., 2003), with the following modifications: PCR
reaction mixtures contained 25 ng of DNA, 1 µM of each primer,
0.05 µM of deoxynucleoside triphosphate, 5 µL of PCR 10×
buffer, 2 mM of MgCl2, and 2.5 U of Taq DNA polymerase
in a final volume of 50 µL. 5.2% of DMSO was added only
to amplify NMT1. PCR conditions were set as described, but
with an annealing temperature of 62◦C for FKS and URA3.
DNA sequences obtained were compared to C. glabrata MLST
database4 to assign an allele number for each locus in order to
define a sequence type (ST) or genotype according to the isolates’
allelic profile.

Genotyping by MLP
Six short tandem repeat markers described for C. glabrata (ERG3,
MTI, RPM2, GLM4, GLM5, and GLM6) (Foulet et al., 2005;

4https://pubmlst.org/cglabrata/
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Abbes et al., 2012) were amplified by PCR for all isolates using
forward labeled primers as previously described (Foulet et al.,
2005; Abbes et al., 2012; Duran-Valle et al., 2012) with the
following modifications: GLM5 was labeled with HEX and GLM6
with NED fluorochromes. PCR reaction mixtures contained
20 ng of DNA, 0.2 µM of deoxynucleoside triphosphate, 2 µL
of PCR 10× buffer, 2.5 mM of MgCl2, 5 U of Taq DNA,
0.25 µM of RPM2 and ERG3 primers and 1 µM of MTI,
GLM4, GLM5, and GLM6 primers in a final volume of 20 µL.
PCR program used from amplifying all markers consisted on
an initial step of 5 min at 95◦C, followed by 40 cycles of
95◦C for 30 s, 57◦C for 1 min and 72◦C for 1 min, and
an additional step of 7 min at 72◦C. Amplicons were sized
by capillary electrophoresis using Hi-Di formamide (Applied
Biosystems, Foster City, CA, United States) and ROX 500
(Applied Biosystems, Foster City, CA, United States) as internal
size standard, as described (Duran-Valle et al., 2012). Reactions
were analyzed in duplicate, and fragment sizes were calculated
using Peak Scanner software 1.0 (Applied Biosystems, Foster
City, CA, United States).

MSH2 Sequencing
MSH2 gene of sequentially isolated strains from patients
was amplified and sequenced as previously described (Healey
et al., 2016b), and DNA sequences were queried against
MSH2 (Genbank number CAGL0I07733g) sequence of CBS
138 type strain.

In vitro Exposure to Growing
Concentrations of Micafungin and
Anidulafungin and Analysis of Generated
Isolates
The potential development of micafungin and anidulafungin
resistance of susceptible C. glabrata isolates was studied following
a previously reported procedure (Bordallo-Cardona et al., 2017)
with some modifications.

Adjusted inocula (2 × 109 to 4 × 109 CFU/mL) from
overnight cultures in 7 mL of yeast extract-peptone-dextrose
broth of these isolates were cultured on Sabouraud plates
containing eight different echinocandin concentrations (from
0.015 to 2 mg/L). Two different sets of experiments were
tested at first. Plates at all concentrations were stroked
at once with 100 µL of inocula and checked for growth
daily for up to 5 days at 35◦C. For progressive exposure,
the lowest concentration plate was inoculated and checked
for growth after 24 h at 35◦C. If isolates were observed,
they were cultured on a plate containing the next twofold
concentration. The procedure was repeated up to highest
concentration available.

After exposure, mutant prevention concentration (MPC) and
mutant selection window (MSW) were calculated for each isolate
as previously reported (Zhao and Drlica, 2001; Drlica, 2003;
Bordallo-Cardona et al., 2018c). Briefly, MPCs were defined as
the lowest concentration that can totally inhibit fungal growth for
each isolate after 5 days of incubation; for calculation purposes,
MPC values that exceeded the highest concentration tested were

transformed to the next dilution (i.e., if MPC >2 mg/L, it was
changed to MPC = 4 mg/L). MSWs were defined as the range of
concentrations between the MIC, obtained by EUCAST method,
and the MPC for each isolate.

Spontaneous growth frequency was also calculated as the ratio
of viable colonies growing on 2 mg/L echinocandin-containing
plates and the initial inoculum stroked in them, as some plates
containing lower concentrations did not allow the counting of
individual colonies.

Micafungin and anidulafungin susceptibility of up to
four isolates selected from each growing concentration was
performed, and the hot-spot regions 1 and 2 of FKS1 and FKS2
genes were sequenced.

Statistical Analysis
All data obtained after in vitro exposure to echinocandins assays
were compared using the Wilcoxon signed-rank test and the
Fisher’s exact test (IBM SPSS Statistics for Windows, version
22.0; United States), considering as statistically significant a P-
value of <0.05.

RESULTS

In vitro Susceptibility and Determination
of FKS Mutations of Sequentially
Isolated Strains
Control strains were within the accepted ranges according to
EUCAST QC ranges for all antifungals tested.

As shown in Table 1, a wide range of fluconazole MIC values
was found among isolates tested. All strains isolated from Patients
3, 4, and 5 were echinocandin resistant, according to EUCAST
breakpoints established for anidulafungin and micafungin. For
Patients 1 and 2, echinocandin susceptible isolates were also
available and analyzed. The first resistant isolate from Patient 1
was only resistant to anidulafungin.

All resistant isolates harbored an echinocandin resistance
related mutation at hot-spot region 1 of FKS2 gene.
Mutations found were S663P (n = 4), D666N (n = 4),
1F659 (n = 4), L664R (n = 2), D666E (n = 1), and D666H
(n = 1). No mutations were found at FKS1 nor at hot-spot
region 2 of FKS2. Each mutation was related to a different
echinocandin resistant profile, as S663P and 1F659 showed
higher MIC values than the rest of the isolates that harbored
other mutations.

Isolates With Different FKS Mutations
Can Be Present in the Same Patient
Resistant isolates with different FKS2 mutations were found in
the same patient in two cases (Patient 1: D666H and L664R;
and Patient 2: D666E and S663P). FKS2 gene sequencing of 10
randomly selected colonies from the original samples of those
isolates sent from the hospital led to the same FKS mutation
in all of them, so the absence of a mixed culture of resistant
isolates was confirmed.
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MLST and MLP Analysis
Three different STs were differentiated by MLST among the 18
isolates studied (Table 1). All isolates from the same patient had
the same genotype. ST3 was found in three out of four patients
of one hospital. The other two STs found were ST2 and a recently
described ST149.

MLP methodology yield comparable results to those of
MLST (Table 1).

MSH2 Gene Sequencing
All isolates from the same patient harbored the same SNPs
in MSH2 gene. Non-synonymous loss-of-function combined
mutations V239L/A942T were found in all isolates coming from
one patient, while the rest of isolates did not harbor any non-
synonymous mutations in this gene.

Behavior of Echinocandin Susceptible
C. glabrata Isolates From Patients 1 and
2 When in vitro Exposed to Growing
Concentrations of Micafungin
In vitro exposure of echinocandin susceptible isolates CNM-
CL9829, CNM-CL9835, and CNM-CL9857 from Patients 1
and 2 to micafungin generated FKS mutations that conferred
echinocandin resistance after less than 48 h of incubation.
Progressive exposure allowed the collection of isolates up to
2 mg/L, while colonies in direct exposure grew only up to
0.5 mg/L. All colonies obtained in plates containing 0.015 and
0.03 µg/mL were susceptible to micafungin and anidulafungin
and had no mutations in hot-spot regions of FKS genes.
All isolates growing from 0.06 µg/mL were resistant to both
echinocandins and harbored the resistant related mutation S663P
in FKS2 gene (Figure 1).

Correlation Between Potential
Development of Echinocandin
Resistance After in vitro Exposure to
Micafungin and Anidulafungin of
Echinocandin Susceptible Isolates of
C. glabrata and Their Genotype
Table 2 shows genotyping results by MLST and MLP,
echinocandin susceptibility by EUCAST, MPC and MSW
after in vitro direct exposure to micafungin and anidulafungin of
fourteen echinocandin susceptible C. glabrata strains collected
from 2012 to 2017 from Hospital Universitario Puerta de
Hierro, total number of colonies analyzed per isolate (up to 4
colonies per concentration) after 5 days of incubation and FKS
mutations found.

Four different STs were found among these strains. The most
common one was ST3, found in half of the isolates (n = 7),
followed by ST19 (29%, n = 4), ST149 (14%, n = 2), and ST6
(7%, n = 1).

Mutant prevention concentration values after anidulafungin
and micafungin exposure differ widely between strains (Table 2),
although no significant differences were found between the
geometric mean of MPCs after anidulafungin exposure and after
micafungin exposure after 5 days of incubation (2.44 mg/L
versus 1.72 mg/L).

Geometric mean of spontaneous growth frequency for
micafungin-containing plates had no significant difference with
that for anidulafungin-containing plates (8 × 10−8 versus
4.1 × 10−8; p = 0.78), and ranges were very similar for both of
them (4.1 × 10−7 to 3.2 × 10−9 in the presence of micafungin
and 3.7× 10−7 to 5.3× 10−9 in the presence of anidulafungin).

A total number of 296 and 258 isolates were analyzed after
micafungin and anidulafungin exposure, respectively (Figure 2).

FIGURE 1 | Results from in vitro direct and progressive exposure to micafungin of susceptible C. glabrata isolates from Patients 1 and 2.
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TABLE 2 | Isolation year, micafungin and anidulafungin MIC values, mutant prevention concentration (MPC), mutant selection window (MSW), total number of colonies analyzed and FKS alterations found in them after
5 days of incubation for each isolate, and their genotype by MLP and MLST.

Strain Isolation
year

Anidulafungin exposure Micafungin exposure MLP∗ (bp) MLST
(ST)

MIC
(mg/L)

MPC
(mg/L)

MSW
(mg/L)

Total no.
isolates
analyzed

FKS
alteration

MIC
(mg/L)

MPC
(mg/L)

MSW
(mg/L)

Total no.
isolates
analyzed

FKS
alteration

CNM-CL9210 2012 0.03 2 0.03–2 14 – 0.007 4 0.007–4 27 2-S663P 237-236-128-
270-262-290

149

CNM-CL9215 2012 0.03 2 0.03–2 13 – 0.007 4 0.007–4 26 2-S663P 237-236-128-
270-262-290

149

CNM-CL9269 2012 0.03 4 0.03–4 26 2-S663P 0.007 4 0.007–4 27 2-S663P 205-243-134-
267-262-325

3

CNM-CL9332 2013 0.03 4 0.03–4 19 1-S629P;
2-F659Y

0.015 4 0.015–4 27 2-S663P 215-242-134-
282-265-298

19

CNM-CL9342 2013 0.06 2 0.06–2 11 – 0.015 0.25 0.015–0.25 13 2-1F659 215-242-134-
282-265-298

19

CNM-CL9392 2013 0.06 4 0.06–4 26 2-S663P 0.015 4 0.015–4 27 2-S663P 215-242-134-
282-265-298

19

CNM-CL9555 2014 0.03 4 0.03–4 26 2-S663P 0.015 4 0.015–4 20 2-1F659 205-243-134-
267-262-325

3

CNM-CL9571 2014 0.03 2 0.03–2 12 – 0.015 0.5 0.015–0.5 13 – 205-243-134-
267-262-325

3

CNM-CL9780 2015 0.03 4 0.03–4 25 2-S663P 0.007 4 0.007–4 20 1-S629P;
2-1F659;
2-L662W

215-242-134-
282-265-298

19

CNM-CL9785 2015 0.03 0.5 0.03–0.5 13 – 0.007 4 0.007–4 26 2-S663P 205-243-134-
267-262-325

3

CNM-CL9862 2016 0.03 0.5 0.03–0.5 10 – 0.007 0.5 0.007–0.5 11 – 230-243-128-
270-262-325

6

CNM-CL9906 2016 0.03 4 0.03–4 18 2-S663P 0.007 0.5 0.007–0.5 14 2-1F659 205-243-134-
267-262-325

3

CNM-CL10190 2017 0.03 4 0.03–4 16 2-1F659 0.007 0.5 0.007–0.5 19 – 205-243-134-
267-262-325

3

CNM-CL10194 2017 0.03 4 0.03–4 29 2-S663P 0.007 2 0.007–2 26 2-1F659;
2-S663P

205-243-134-
267-262-325

3

Global GM 0.03 2.44 Total = 258 0.01 1.72 Total = 296

Range 0.03–0.06 0.5–>2 0.03–>2 0.007–
0.015

0.25–>2 0.007–>2

GM, geometric mean. FKS alteration: (1) mutation in FKS1 gene; (2) mutation in FKS2 gene. ∗MLP: ERG3-MTI-RPM2-GLM4-GLM5-GLM6.
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FIGURE 2 | FKS mutant and wild-type colony rates with their MIC ranges (Top), and FKS mutations found with range of MIC values per mutation (Bottom) after
in vitro exposure to micafungin and anidulafungin.

The lowest concentrations of these antifungals in which resistant
colonies harboring FKS mutations were found were 0.06 mg/L
and 0.12 mg/L, respectively, while they appeared up to the highest
concentration tested in both cases, 2 mg/L. 58% of the isolates
yielded in micafungin plates harbored FKS mutations related to
echinocandin resistance, which was a significantly higher number
than the 42% of the isolates that did so after anidulafungin
exposure (p < 0.0001). The most prevalent mutation found
was S663P (no significant differences were found among the
frequency of occurrence of this substitution after exposure to
both echinocandins: n = 159 from MCF plates and n = 102 from
AND plates; 92.4 and 93.5% of FKS mutant isolates generated,
p = 0.8147), followed by 1F659 (its appearance rate was close
to be significantly different after exposure to both antifungals:
n = 10 from MCF plates and n = 1 from AND plates, p = 0.0552),
F659Y (n = 1 from AND plates) and L662W (n = 1 from MCF
plates) in hot-spot 1 from FKS2 gene and S629P (n = 5 from
AND plates and n = 2 from MCF plates) in hot-spot 1 from
FKS1 gene. All of these isolates were echinocandin resistant by
EUCAST, and their FKS mutations and resistance were stable
and reproducible after subculturing on antifungal-free plates.
The same isolate could develop different FKS mutations after
exposure. Out of the total number of isolates analyzed after
micafungin and anidulafungin exposure, 1 and 19%, respectively,

were resistant to micafungin and/or anidulafungin but did not
carry any FKS mutation.

DISCUSSION

The increasing number of C. glabrata clinical isolates reported
showing decreased susceptibility for echinocandins is a
growing concern. Recent studies indicate that echinocandin
resistance rates among C. glabrata clinical isolates have
risen worldwide (Kiraz et al., 2010; Bourgeois et al., 2014;
Guinea et al., 2014; Orasch et al., 2014; Klotz et al., 2016;
Chapman et al., 2017; Hou et al., 2017). Resistance has
been reported to easily develop in vitro (Bordallo-Cardona
et al., 2017, 2018a,c; Shields et al., 2019) and in patients
after echinocandin exposure (Dannaoui et al., 2012; Shields
et al., 2012; Alexander et al., 2013; Bizerra et al., 2014;
Sasso et al., 2017), being conferred by the presence of point
mutations in hot-spot regions of FKS1 and FKS2 genes
(Castanheira et al., 2014; Pham et al., 2014) that have been
associated with higher MICs and therapeutic failure (Shields
et al., 2012). Our study provides a new insight into the
development of echinocandin resistance of C. glabrata strains
both sequentially isolated from several patients and after
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in vitro exposure to growing concentrations of micafungin
and anidulafungin.

FKS Mutations
All isolates from five patients admitted in two Spanish
hospitals that were resistant to at least one echinocandin
carried mutations in FKS2 gene (Zimbeck et al., 2010;
Castanheira et al., 2014; Locke et al., 2016). The most common
ones found were S663P and 1F659, as in previous studies
(Zimbeck et al., 2010; Beyda et al., 2014; Castanheira et al.,
2014). Some isolates carried less frequently found substitutions
L664R, D666E, and D666N (Castanheira et al., 2014; Prigent
et al., 2017; Bordallo-Cardona et al., 2018b) and, although
it has been found after in vitro exposure to the novel
antifungal rezafungin (Locke et al., 2016), we believe that
this is the first time that D666H mutation is reported in a
clinical isolate.

From two of the studied patients, echinocandin susceptible
isolates without mutations in FKS genes were detected before
the isolation of the resistant ones, indicating that echinocandin
resistance could had been acquired due to therapy, as previously
reported in other studies (Cleary et al., 2008; Thompson
et al., 2008; Ishikawa et al., 2010; Costa-de-Oliveira et al.,
2011; Dannaoui et al., 2012; Shields et al., 2012; Alexander
et al., 2013; Lewis et al., 2013; Beyda et al., 2014). All
isolates with FKS mutations had MIC values above the clinical
breakpoints established by EUCAST both for anidulafungin
and for micafungin, except one isolate that was resistant
to anidulafungin but not to micafungin despite harboring
an FKS mutation (D666H). This case has been described
before (Arendrup et al., 2012; Shields et al., 2012; Jensen
et al., 2015; Bordallo-Cardona et al., 2017) but should be
taken into account when testing only one echinocandin to
detect resistance.

Glucan synthase enzyme sensitivity has been described to
be affected by FKS mutations on different degrees (Garcia-
Effron et al., 2009). In this study, S663P and 1F659 were
associated with higher echinocandin MIC values, as previously
reported (Arendrup and Perlin, 2014). Isolates harboring D666H,
D666N, D666E, and L664R substitutions showed lower MIC
values and conferred weaker echinocandin resistance. Patient
5 simultaneously carried 1F659 and D666N substitutions in
CNM-CL10047 isolate, which had high echinocandin MIC
values. A double mutation in these two amino acid positions
has been previously found (F659S and D666E) (Prigent et al.,
2017), but we are reporting the association of 1F659 and D666N
for the first time.

As we found sequential isolates from the same patient carrying
different FKS mutations, we studied the possible coexistence
of a mixed population of resistant isolates within the same
sample, confirming its absence. Nevertheless, this experiment had
some limitations, as the original samples sent from the hospital
could be an already isolated colony. Serial C. glabrata isolates
from the same patient showing different antifungal resistance
profiles due to the selective pressure induced by changes in
antifungal treatment have been previously reported (Cho et al.,
2015; Imbert et al., 2016).

Genotyping
Strain relatedness was determined by MLST and MLP, which
led to similar results evidencing that both methodologies are
equally useful for genotyping purposes, as previously reported
(Brisse et al., 2009). Nevertheless, in other investigations a higher
number of genotypes were obtained by MLP than by MLST (Hou
et al., 2018; Bordallo-Cardona et al., 2019). Isolates from the same
patient seemed to have a clonal origin by using these two typing
techniques, although the use of next generation sequencing in
order to compare their genomes would be necessary to prove
if they are isogenic. The most frequent genotype among these
patients was ST3, which has been reported as one of the most
prevalent STs worldwide (Dodgson et al., 2003; Lott et al., 2012;
Hou et al., 2017; Biswas et al., 2018; Byun et al., 2018; Mushi
et al., 2018). No association between echinocandin resistance
development and genetic type was found, which was in agreement
with other reports (Dodgson et al., 2003; Abbes et al., 2012).
A recent study has found a link between certain STs and reduced
susceptibility to fluconazole (Mushi et al., 2018), something that
we did not see when performing fluconazole susceptibility to all
the isolates. Genotypes were also independent of the anatomic
source of the isolates (Lin et al., 2007).

MSH2
MSH2 mismatch repair gene involved in DNA repair has been
described as a promoter of the acquisition of resistance to
antifungals of C. glabrata (Healey et al., 2016b), but in this
study all isolates belonging to the same patient had the same
MSH2 gene sequence, regardless their susceptibility pattern
to echinocandins. Echinocandin susceptible isolates with and
without MSH2 mutations yielded echinocandin resistant isolates
with FKS mutations. Also, FKS mutant isolates for three patients
had a wild-type MSH2 gene. Altogether, this supports that
echinocandin resistance cannot be explained by MSH2 mutator
phenotype, as previously reported (Delliere et al., 2016; Healey
et al., 2016a; Biswas et al., 2018; Byun et al., 2018; Hou et al.,
2018; Singh et al., 2018; Bordallo-Cardona et al., 2019). Likewise,
no clear association between MSH2 sequence and increased
fluconazole resistance or genotypes was detected on these isolates
either (Biswas et al., 2018; Bordallo-Cardona et al., 2019),
although a correlation with specific genetic types was previously
described (Delliere et al., 2016; Byun et al., 2018; Hou et al.,
2018). These results confirm that MSH2 substitutions may be
constitutive variations from the gene rather than resistance-
related or genotype-related mutations (Carrete et al., 2019).
Still, it cannot be dismissed that MSH2 may just be one of
a higher number of C. glabrata genes involved in mismatch
repair mechanisms influencing on the development of antifungal
resistance, as it happens for other yeasts (Legrand et al., 2007;
Boyce et al., 2017).

In vitro Resistance Development
It is of interest to gain a deeper understanding of how C. glabrata
isolates behave when in vitro exposed to echinocandins, and
correlate these results with clinical findings or to anticipate to
possible clinical cases. Susceptible isolates from Patients 1 and 2
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were in vitro exposed to a range of growing concentrations of
micafungin, obtaining echinocandin resistant and FKS mutant
colonies after exposure to the lowest micafungin concentration
considered resistant by EUCAST (0.06 mg/L) in less than 48 h of
incubation. These results are in agreement with those previously
reported (Bordallo-Cardona et al., 2017, 2018a). In our study,
FKS mutations found after in vitro micafungin exposure were
different from those isolated from the patients, something that
evinces C. glabrata’s facility to develop resistance and to acquire
different mutations under drug pressure.

It has been hypothesized that certain STs may have a
better competence than others to acquire resistance through
antifungal exposure at different frequencies (Lott et al., 2012;
Hou et al., 2017). Therefore, we aimed to compare the
potential development of in vitro echinocandin resistance of
a set of susceptible C. glabrata isolates collected in 6 years
from one hospital after exposure to a range of micafungin
and anidulafungin concentrations, and to correlate this with
their genotype. MLST and MLP revealed four different STs
among these fourteen isolates. Not all strains isolated on
the same year showed the same ST in all cases and no
clear trend on the evolution of C. glabrata population in
this center was found. No statistical differences were found
among MPC values and spontaneous growth frequencies for
both agents, something in concordance with previous results
published (Bordallo-Cardona et al., 2018c). Results in our study
varied between strains, being echinocandin resistant colonies
harboring FKS mutations isolated from plates containing the
first micafungin and anidulafungin concentrations considered as
resistant by EUCAST. Nevertheless, a significantly higher FKS
mutant rate was found after micafungin exposure than after
anidulafungin selection.

In vitro micafungin and anidulafungin exposure allowed
the selection of different FKS mutations grown at different
concentrations and even at the same one for some strains. S663P
was the most frequently found mutation following exposure
to both echinocandins, although in previous in vitro selection
studies 1F659 was the most prevalent one (Bordallo-Cardona
et al., 2018c; Shields et al., 2019),which was the second most
common one in our study.

We found 53 colonies with MICs onefold or twofold
above the established breakpoint for anidulafungin that did
not carry any FKS mutations. This finding was especially
detected after exposure to anidulafungin, as 50 colonies out of
258 isolated were anidulafungin resistant but FKS wild-type,
while only three out of 296 colonies analyzed after micafungin
exposure had this categorization. This similar case and also
echinocandin susceptible isolates harboring FKS substitutions
have been previously found, both in clinical isolates and
after in vitro exposure (Castanheira et al., 2014; Pham et al.,
2014; Shields et al., 2015, 2019; Locke et al., 2016). Precisely,
anidulafungin resistance, according to EUCAST breakpoints,
was vastly sensitive (100%; all colonies that were FKS mutant
showed a MIC value above its clinical breakpoint for EUCAST)
but showed lower specificity (80.6%; as 53 colonies out of a
total of 273 that were FKS wild-type showed MICs above the
EUCAST breakpoint) than in another study (Shields et al., 2019)

for the identification of in vitro selected FKS mutant colonies.
Micafungin showed higher sensitivity (99.3%; 279 out of 281
isolates that harbored FKS mutations were micafungin resistant
according to EUCAST breakpoint) and similar specificity (99.8%;
only one FKS wild-type colony was micafungin resistant) to
those reported in that study. Taken together, this confirmed
that both antifungals are suitable echinocandin resistance
markers for C. glabrata, unlike caspofungin (Shields et al., 2013;
Eschenauer et al., 2014).

We concluded that the development of echinocandin
resistance in C. glabrata after in vitro exposure to micafungin
and anidulafungin has no association with specific genotypes.
Results obtained in all these in vitro studies on how echinocandin
susceptible C. glabrata strains are able to develop resistance
after exposure to low echinocandin concentrations supports the
fact that C. glabrata is able to colonize and survive in certain
reservoirs of the human body, such as the abdomen (Shields et al.,
2014), the peritoneum (Grau et al., 2015), the gastrointestinal
tract (Healey et al., 2017) or the mucosal surfaces (Jensen et al.,
2015), due to long-term penetration of echinocandins in lower
concentrations than those that prevent resistance acquisition.
Since sometimes this required dose could lead to toxicity,
the use of newly developed drugs that target the 1–3-β-D-
glucan synthase, such as ibrexafungerp (Scynexis, Jersey City, NJ,
United States), which has shown potential effectiveness against
echinocandin resistant C. glabrata isolates (Wiederhold et al.,
2018), or rezafungin (Cidara, San Diego, CA, United States),
which has an extended-interval administration due to its
improved pharmacodynamics (Sandison et al., 2017) could help
to overcome echinocandin resistance. Nevertheless, C. glabrata
strains have been in vitro exposed to both drugs, leading to
similar results than those against other echinocandins (Locke
et al., 2016; Jimenez-Ortigosa et al., 2017), so further research
for new compounds that have a role on novel mechanisms of
action is assured.

In summary, the present study analyzes the relevance of
certain hypothesis raised on the increase of echinocandin
resistance in C. glabrata, and sheds light on several important
aspects related to its acquisition and development, both in
genetically related serial isolates from the same patient and after
in vitro exposure to micafungin and anidulafungin.
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