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Background: Few recent studies examined acute effects on health of individual chemical species in the particulate
matter (PM) mixture, and most of them have been conducted in North America. Studies in Southern Europe are
scarce. The aim of this study is to examine the relationship between particulate matter constituents and daily
hospital admissions and mortality in five cities in Southern Europe.
Methods: The study included five cities in Southern Europe, three cities in Spain: Barcelona (2003–2010), Madrid
(2007–2008) and Huelva (2003–2010); and two cities in Italy: Rome (2005–2007) and Bologna (2011–2013). A
case-crossover designwas used to link cardiovascular and respiratory hospital admissions and total, cardiovascu-
lar and respiratory mortality with a pre-defined list of 16 PM10 and PM2.5 constituents. Lags 0 to 2 were exam-
ined. City-specific results were combined by random-effects meta-analysis.
Results: Most of the elements studied, namely EC, SO4

2−, SiO2, Ca, Fe, Zn, Cu, Ti, Mn, V and Ni, showed increased

percent changes in cardiovascular and/or respiratory hospitalizations, mainly at lags 0 and 1. The percent in-
crease by one interquartile range (IQR) change ranged from 0.69% to 3.29%. After adjustment for total PM levels,
only associations for Mn, Zn and Ni remained significant. For mortality, although positive associations were
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identified (Fe and Ti for total mortality; EC andMg for cardiovascularmortality; and NO3
− for respiratorymortal-

ity) the patterns were less clear.
Conclusions: The associations found in this study reflect that several PM constituents, originating from different
sources, may drive previously reported results between PM and hospital admissions in the Mediterranean area.
© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Dozens of studies link increases in daily particulate matter (PM)
levels to increases in mortality and hospital admissions (Brook et al.,
2010; Brunekreef and Holgate, 2002), some in the Mediterranean area
(Samoli et al., 2013; Stafoggia et al., 2013). However, particulate matter
is a location- and season-dependent complex mixture of different com-
ponents with potentially different toxicity. Several recent investigations
have also examined the relationship between concentrations of individ-
ual chemical species and mortality or hospital admissions (Bell et al.,
2009, 2014; Burnett et al., 2000; Franklin et al., 2008; Ito et al., 2011;
Lall et al., 2011; Levy et al., 2012; Lippmann et al., 2006; Mar et al.,
2000; Ostro et al., 2007, 2010, 2011; Peng et al., 2009; Sarnat et al.,
2008; Son et al., 2012; Zanobetti et al., 2009; Zhou et al., 2011). Most
of these studies were conducted in North America, while studies in
other parts of the world, where chemical composition may be different,
are still limited. In Europe, such studies are scarce and only included one
city Ostro et al., 2011; Andersen et al., 2007; Atkinson et al., 2010.While
it seems that some elements such as elemental carbon, nickel, and sili-
con are among the components most commonly associated with ad-
verse health, the main conclusion derived from existing studies is that
there is no sufficient evidence to identify the constituents more closely
related to health outcomes (Environmental Protection Agency, 2009;
Rohr and Wyzga, 2012; WHO (World Health Organization), 2013).

In this study, we examine the relationship between PM constituents
and hospitalizations andmortality infive cities in Southern Europe, a re-
gion characterized by high vehicle and population densities, a high pro-
portion of diesel cars, high sea traffic and peculiar meteorology with
intense solar radiation, low precipitation and stagnation of regional air
masses. These patterns confer to PM distinctive grain size and chemical
patterns that are characterized by an important fraction of coarse (2.5–
10 μm) PM into PM10 and relatively high proportions of mineral (an-
thropogenic and natural) dust and sulfate (Querol et al., 2009).

2. Methods

2.1. Study population and data

This study, within the context of the MED-PARTICLES project, in-
cluded five cities, three in Spain (Barcelona, Madrid and Huelva) and
two in Italy (Rome and Bologna) (Fig. A.1). City characteristics are pro-
vided in the Appendix. The overall period of study was from January
2003 to April 2013, although the different cities contributed to different
periods according to data availability. Daily mortality counts for all non-
external causes [International Classification of Diseases, 9th Revision
(ICD­9) codes 001–799; 10th revision (ICD­10) codes A00–R99]
(WHO (World Health Organization), 1999), for cardiovascular causes
(ICD­9 codes 390–459, ICD-10 codes I00–I99) and for respiratory causes
(ICD­9 codes 460–519, ICD10 codes J00–J99)were collected for all cities
using death registries. Daily counts of emergency hospital admissions
were collected from the national or regional health information sys-
tems. Repeated hospitalizations within 28 days since the previous one
and with the same primary diagnosis were eliminated. Cardiovascular
and respiratory hospitalizationswere defined on the basis of the prima-
ry discharge diagnosis using the same ICD codes defined above. Since
data were anonymous and collected as daily counts and the analysis
was conducted by a public health institute, there was no need for in-
formed consent and approval by an institutional review board.
PM10 and PM2.5 data for speciation analysis were available from a
single station in each city. Madrid's station was urban while all other
were urban background stations. More details about the stations are
provided in the Appendix. PM2.5 data were not available for Rome
while PM10 data were not available for Bologna. The period and fre-
quency of sampling is shown in Table 1. The specific methods used to
measure the elements are described in the Appendix.

Only 16 pre-specified PM constituents were included in the associa-
tion analyses: total carbon (TC), elemental carbon (EC), organic carbon
(OC), sulfate (SO4

2−), nitrate (NO3
−), silica (SiO2) (calculated as 3 times

the alumina concentration in the Spanish cities), calcium (Ca), iron
(Fe), potassium (K), magnesium (Mg), zinc (Zn), copper (Cu), titanium
(Ti), manganese (Mn), vanadium (V) and nickel (Ni). The list of 16 spe-
cies was based on their detectability in the included cities and on a re-
view of the literature linking PM constituents and health. If one of the
above constituents had more than 20% of values missing or below the
limit of detection or quantification in a certain city, the city was exclud-
ed from the analysis of that particular constituent. Otherwise, non-
detectable values were replaced by half the limit of detection.

Daily average temperature andbankholidayswere collected for each city.
Information on influenza epidemics was obtained from hospital admission
records. The collection of environmental and health data was performed by
each partner and each one had its own quality control procedures, described
in detail in the project website (www.epidemiologia.lazio.it/medparticles/
index.php/en/). They included the use of international reference materials
as test samples, and calculation of mass balances between the PMmass and
the addition of all the components analyzed.

2.2. Study design and data analysis

In cities with daily data, we used a time-stratified case-crossover
study design (Levy et al., 2001), according to which all days from the
same year, month and day of the week were grouped in the same stra-
tum. In cities without daily data, a simplified version of the case-
crossover approach was adopted: strata were composed of days from
the same year andmonth, and days of theweekweremodeled separately
with indicator variables (Ostro et al., 2011). Since the case-crossover anal-
ysis conducts comparisons within strata, seasonal and long-term effects
are eliminated and they do not confound the results. Analyses were per-
formed using conditional Poisson regression (Whitaker et al., 2006) and
were further adjusted for holidays (different categories for isolated holi-
days, Christmas and Easter, and periods surrounding Christmas and Eas-
ter), summer population decrease (one indicator variable for the 2-
week period around 15 August and another for the remaining days be-
tween July 16th and August 31st), influenza epidemics, and temperature.
To account for non-linearity and for the different lag structures of cold
andhot temperatures,we included two separate spline terms for temper-
ature, one for the cold period (temperatures below the annual median)
using the average temperature for lags 1–6 and 2 degrees of freedom,
and another for the warm period using average temperature for lags
0–1 and 3 degrees of freedom (Stafoggia et al., 2013).

All analyses were conducted separately for each city, and results
were combined using random-effects meta-analysis. Lags 0, 1 and 2 of
the effect of each pollutant were examined in different models, as
models accounting for cumulative lags could not be built in cities with-
out daily data. In citieswithout daily exposure data,models for different
lags are based on non-overlapping sets of mortality days. For example,
with PM data collected on time t, lag 0 analyses link these data to

http://www.epidemiologia.lazio.it/medparticles/index.php/en/
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Table 1
Data availability and summary of daily deaths and hospital admissions by city.

City Date beginning–date end Number
of days

Frequency of
sampling

Daily admissions (mean ± standard
deviation)

Daily deaths (mean ± standard deviation)

Cardiovascular Respiratory Total Cardiovascular Respiratory

Barcelona 2003/01/01–2010/12/31 736 Twice a week 55.5 ± 10.6 55.1 ± 19.4 41.5 ± 8.6 13.0 ± 4.1 4.4 ± 2.6
Madrid 2007/01/01–2008/02/29 104 Twice a week 127.6 ± 30.3 142.2 ± 45.7 72.1 ± 11.0 21.7 ± 5.0 12.2 ± 4.7
Huelva 2003/01/01–2010/12/31 406 Once a week 1.8 ± 2.3 0.9 ± 1.2 2.9 ± 1.7 1.0 ± 1.0 0.3 ± 0.6
Roma 2005/01/01–2007/12/31 1059 Daily 81.9 ± 18.7 35.5 ± 11.3 57.0 ± 10.5 23.5 ± 6.3 3.5 ± 2.2
Bologna 2011/11/15–2013/02/28 472 Daily 16.8 ± 4.6 9.7 ± 3.7 12.2 ± 3.7 – –
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mortality on day t, lag 1 analyses link them tomortality on day t+1and
lag 2 analyses link them to mortality on day t + 2 (Ostro et al., 2011).
Results are reported for an interquartile range (IQR) increase in pollut-
ant concentrations.

In order to account for potential confounding for total PM levels,
while accounting for the fact that PM constituents are components of
PM, we applied the recently proposed constituent residual method
(Mostofsky et al., 2012). First, a linear regression model for the constit-
uent as a function of total PM levels was fitted. Then, the residuals for
this model, which represent the variation in constituent levels indepen-
dent of PM, were included as an explanatory variable in the case-
crossover model, along with total PM levels. The coefficient for the
residuals represents the effect of the constituent while holding PM con-
stant, i.e. the independent contribution of the constituent; and the PM
coefficient represents the independent effect of total PM.

3. Results

Table 1 summarizes the daily number cardiovascular and respiratory
hospital admissions and of deaths by natural, cardiovascular and respi-
ratory causes in the five participating cities. Madrid, Rome and Barcelo-
na are large cities with a high number of events, while Bologna and
Huelva had lower numbers. Rome and Barcelona were the cities con-
tributing most days to the analyses for PM10 and PM2.5, respectively.

The concentrations of PM10 and PM2.5 and of their selected constitu-
ents in thefive cities are summarized in Table 2. The highest PM10 levels
were observed for Barcelona and Madrid, with levels above 40 μg/m3,
while Huelva and Rome showed levels between 30 and 35 μg/m3. In
terms of PM2.5, the highest levels were found in Barcelona and Bologna,
with values above 25 μg/m3, while Madrid and Huelva had values
Table 2
Description (mean ± standard deviation) of PM speciesa levels (μg/m3) by city.

Barcelona
(2003–2010)

Madrid
(2007–2008)

Hu
(2

PM10 PM2.5 PM10 PM2.5 PM

Total PM 40.3 ± 17.4 26.3 ± 12.2 41.5 ± 19.5 20.7 ± 9.2 35
Total carbon 6.9 ± 3.7 4.9 ± 2.6 10.4 ± 5.6 7.6 ± 3.9 5.4
OC 3.3 ± 1.8 2.9 ± 1.8 na 6.0 ± 2.7 na
EC 1.8 ± 1.2 1.5 ± 1.0 na 3.5 ± 1.5 na
SO4

2− 3.8 ± 2.6 3.4 ± 2.3 3.2 ± 1.4 2.4 ± 1.1 3.8
NO3

− 4.3 ± 3.5 2.4 ± 3.2 2.5 ± 2.1 1.5 ± 1.7 2.7
SiO2 3.8 ± 3.6 1.4 ± 1.8 2.2 ± 1.8 1.0 ± 0.8 4.9
Ca 2.13 ± 1.64 0.60 ± 0.62 2.10 ± 1.35 0.26 ± 0.16 1.1
Fe 0.86 ± 0.54 0.28 ± 0.21 1.67 ± 0.87 0.20 ± 0.15 0.6
K 0.38 ± 0.29 0.20 ± 0.23 0.33 ± 0.22 0.20 ± 0.41 0.4
Mg 0.279 ± 0.165 0.082 ± 0.072 0.225 ± 0.150 0.083 ± 0.084 0.2
Zn 0.085 ± 0.080 0.059 ± 0.068 0.059 ± 0.044 0.050 ± 0.026 0.0
Cu 0.056 ± 0.051 0.027 ± 0.036 0.113 ± 0.069 0.019 ± 0.010 0.0
Ti 0.040 ± 0.033 0.014 ± 0.013 0.040 ± 0.031 0.008 ± 0.014 0.0
Mn 0.018 ± 0.011 0.009 ± 0.006 0.020 ± 0.011 0.005 ± 0.003 0.0
V 0.010 ± 0.007 0.008 ± 0.006 0.002 ± 0.001 0.001 ± 0.001 0.0
Ni 0.005 ± 0.003 0.004 ± 0.003 0.002 ± 0.001 0.004 ± 0.003 0.0

na: not available.
nd: non-detectable.

a Ordered by PM10 mass contribution when pooling all cities.
around 20 μg/m3. The selected species represented between 51% and
65% of the total PM levels depending on the city and fraction. TC,
SO4

2−, NO3
−, SiO2 and Ca were among the species with the highest con-

tribution in terms of mass, while the other species had much smaller
contributions that did not exceed 4% of themass in any city. Correlations
between species and total PM are described in Tables A.1a–e.

Fig. 1 shows the associations between total PM10 and each PM10

component and cardiovascular and respiratory admissions, while
Fig. 2 shows the corresponding results for PM2.5. Both total PM10 and
PM2.5 were associated with cardiovascular admissions at lag 0 and
with respiratory admissions at lags 1 and 2. For cardiovascular admis-
sions, we observed increased percent changes for Ca, Fe, Zn, Cu, Ti and
Mn from PM10. For PM2.5, we found increased percent changes for EC,
SO4

2− and Mn. For respiratory admissions, we found increased percent
changes for SO4

2−, SiO2, Zn, V andNi for PM10; while for PM2.5, increased
percent changes were found for EC, Fe, Zn, V and Ni. While most of the
effects on cardiovascular hospitalizations were observed at lag 0, the
patternwas less clear for respiratory admissionswherewe found effects
at lags 0, 1 and 2. Results from PM10 and PM2.5 are not directly compa-
rable, as they did not include the same cities. A comparison between
the PM10 and PM2.5 results in cities that measured both fractions is
shown in Figs. A.2 and A.3. For cardiovascular admissions, associations
tended to be stronger for PM10, with the notable exception of EC. Pat-
terns were less obvious for respiratory admissions.

Most of the increased percent changes were around 1% or 2% in-
crease for one IQR increase in pollutant levels, reaching almost 3% for
EC from PM2.5 for cardiovascular admissions and for EC and Ni from
PM2.5 for respiratory admissions. The numeric results for all elements
are shown in Table A.2. When adjusting for total PM levels using the
constituent residual method, only Mn and Zn from PM10 for CV
elva
003–2010)

Rome
(2005–2007)

Bologna
(2011–2013)

Common IQR

10 PM2.5 PM10 PM2.5 PM10 PM2.5

.2 ± 15.2 20.8 ± 10.7 30.1 ± 12.6 27.6 ± 19.5 19.6 16.0
± 3.4 3.9 ± 2.3 10.6 ± 5.2 6.7 ± 4.7 5.2 3.8

na 8.6 ± 4.2 5.1 ± 3.9 3.4 3.0
na 2.2 ± 1.3 1.6 ± 1.0 1.4 1.1

± 3.2 3.3 ± 2.7 3.4 ± 2.0 2.4 ± 1.6 2.7 2.3
± 1.8 1.2 ± 1.2 2.1 ± 1.4 5.1 ± 7.9 2.2 3.0
± 4.4 1.4 ± 2.0 1.0 ± 0.9 nd 2.7 1.1
6 ± 0.94 0.33 ± 0.52 1.29 ± 0.68 0.10 ± 0.06 1.32 0.27
6 ± 0.52 0.18 ± 0.20 0.46 ± 0.26 0.11 ± 0.07 0.63 0.18
1 ± 0.30 0.21 ± 0.20 0.39 ± 0.32 0.18 ± 0.30 0.26 0.15
95 ± 0.193 0.084 ± 0.093 0.095 ± 0.098 nd 0.153 0.069
49 ± 0.074 0.045 ± 0.084 0.037 ± 0.035 nd 0.047 0.039
47 ± 0.078 0.029 ± 0.033 0.040 ± 0.020 nd 0.051 0.021
56 ± 0.084 0.020 ± 0.039 0.021 ± 0.023 nd 0.030 0.010
13 ± 0.024 0.004 ± 0.004 0.012 ± 0.008 nd 0.011 0.004
05 ± 0.004 0.004 ± 0.003 0.006 ± 0.004 nd 0.005 0.004
03 ± 0.003 0.002 ± 0.003 0.005 ± 0.003 nd 0.003 0.004



Fig. 1. Association between cardiovascular and respiratory hospital admissions and PM10 constituents for lags 0, 1 and 2, expressed as the percent change in hospital admissions for an interquartile range increase in PM10 constituent levels with 95%
confidence intervals. Results were obtained from a meta-analysis combining the city-specific results of the cities with available data on each constituent. The cities contributing to the results for a particular constituent are indicated on top of each
graph (Bc: Barcelona, M: Madrid, H: Huelva, R: Rome). (*) indicates a p-value b 0.10, while (**) indicates a p-value b 0.05.
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Fig. 2. Association between cardiovascular and respiratory hospital admissions and PM2.5 constituents for lags 0, 1 and 2, expressed as the percent change in hospital admissions for an interquartile range increase in PM2.5 constituent levels with 95%
confidence intervals. Results were obtained from a meta-analysis combining the city-specific results of the cities with available data on each constituent. The cities contributing to the results for a particular constituent are indicated on top of each
graph (Bc: Barcelona, M: Madrid, H: Huelva, Bg: Bologna). (*) indicates a p-value b 0.10, while (**) indicate a p-value b 0.05.
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admissions and only Ni (PM10) andNi and Zn (PM2.5) for respiratory ad-
missions had 95% confidence intervals not including one and remained
with similar magnitude (Table A.4).

We foundno increased percent changes in dailymortality in relation
to total PM10 or PM2.5 (Figs. A.4 and A.5). In contrast, when the analysis
was performed using complete time series (i.e. using daily data instead
of restricting the analyses to days with data on PM species), significant
associations with total PM were found (Samoli et al., 2013). We found
increased percent changes in mortality for TC, Fe, K and Ti from PM10

and for SiO2 from PM2.5 (Figs. A.4 and A.5). For cardiovascularmortality,
increased percent changeswere found for EC fromPM10, and forMg and
Mn from PM2.5. For respiratory deaths, we found increased percent
changes for EC and Ni from PM10 and sulfate from PM2.5. We also
found some decreased percent changes (TC, OC and NO3

− for some
models). The numerical results of the mortality analyses are presented
in Table A.3. Most of the associations ranged from 1 to 2% change per
one IQR increase, although for respiratory deaths, the effect of SO4

2−

from PM2.5 (lag 2) was 5.26% (0.79–9.92) and the effect of EC from
PM10 (lag 1) was 5.29% (1.37–9.37).

When adjusting for total PM, few associations persisted: SiO2, Fe and
Ti for total mortality; for cardiovascular mortality, EC and Mg persisted
and Ca, SiO2 and Fe, showed increased percent changes only after
adjusting for total PM; and for respiratory mortality, SO4

2− persisted
and K showed increased percent changes after adjustment (Table A.5).

The between-city variation in effects and the weight of each city for
four selected analyses at lag 0 are illustrated in Fig. A.6. Rome and Bar-
celona were the cities contributing the most to the total effects.

4. Discussion

This study investigated the relationship between PM10 and PM2.5

constituents and hospital admissions and mortality in five South-Euro-
pean cities. Several individual PM components showed increased per-
cent changes in hospital admissions and/or mortality. More consistent
results were found for hospital admissions, which had increased
power due to a greater frequency of the outcome. The highest effects
were found for EC andNi butmany other species showed increased per-
cent changes. Formortality, the highest effectswere found for respirato-
ry mortality and EC, Ni and SO4

2-. A few other species showed increased
percent changes in mortality, and a few of them showed decreased per-
cent changes. Most commonly, increased percent changes were found
for hospitalizations at lag 0 and for mortality at lag 1.

The associations found in this study reflect that acute exposure to
several PM constituents, originating from different sources, may play a
role in the association between PM and health. This general conclusion
is in agreement with other reports that reviewed the available evidence
(Environmental Protection Agency, 2009; Rohr andWyzga, 2012;WHO
(World Health Organization), 2013). Most of the PM constituents for
which we found positive associations are the ones that have been
most commonly reported in the literature. Although several epidemio-
logical studies have evaluated the role of specific PM components on
health, our study contributes to the gap of knowledge on this topic in
Europe (Ostro et al., 2011; Andersen et al., 2007; Atkinson et al., 2010)
and in particular in the Mediterranean area.

Carbonaceous particles are emitted fromburning fossil fuels and bio-
mass, as well as from the oxidation of natural and anthropogenic vola-
tile organic compounds (VOCs) and from bioaerosols. Total carbon, EC
and OC in urban areas have been used as markers for traffic emissions,
and EC is considered to be a good marker of diesel vehicle emissions.
OC is made of a highly complex mixture of compounds from combus-
tion and non-combustion, anthropogenic and natural, and primary
and secondary compounds (Jimenez et al., 2009). EC levels in PM2.5

were between 1.5 and 3.5 μg/m3 in the studied cities, higher than
those found in most cities in the US (average 0.7 μg/m3 with range
0.3–1.7) (Bell et al., 2009), and somewhat similar to those reported for
Seoul (Korea) (2.2 μg/m3) (Son et al., 2012). We found consistent
increased risks of mortality and hospitalizations associated with EC.
Other epidemiological studies have found associations with EC with
total (Zhou et al., 2011) and cardiovascular mortality (Ito et al., 2011;
Mar et al., 2000; Ostro et al., 2007; Zhou et al., 2011) and other with car-
diovascular (Bell et al., 2009; Ito et al., 2011; Levy et al., 2012) and respi-
ratory admissions (Bell et al., 2009). In fact, and especially for
cardiovascular outcomes, most of the studies on mortality or hospital
admissions, the studies on systemic biomarkers and the few controlled
human exposure studies report significant associations with either EC
or OC (or both) (Rohr and Wyzga, 2012). Positive results have also
been found for respiratory outcomes, but less consistently.

Toxicological studies have described several pathways responsible
for adverse health outcomes produced by diesel engine emissions.
One of the main mechanisms involves production of an inflammatory
response mediated by the induction of oxidative stress and the release
of pro-inflammatory cytokines, but other mechanisms include changes
in the bioavailability of NOwithin the vascular system,migration of leu-
kocytes into bronchial tissue and effects on the immune system
(Grahame et al., 2014). This evidence suggests a deleterious effect of
carbon-containing particles, although the WHO (World Health
Organization) (2012) stated that ECmaynot be a directly toxic PMcom-
ponent butmay act as a carrier for awide range of chemical compounds
of varying toxicity, such as aromatic polycyclic hydrocarbons, organic
acids, andmetals. Some animal studies found associations between car-
bon particles and increased heart rate, reduced heart rate variability, in-
creased blood pressure but no inflammatory response (WHO (World
Health Organization), 2013). However, studies in humans have linked
EC and OC to inflammatory biomarkers (Delfino et al., 2009), and it
has been suggested that the oxidative stress and inflammation associat-
ed with carbon particlesmay be due to the semivolatile organic fraction
on the carbon particle core (WHO (World Health Organization), 2013;
Cassee et al., 2013).

We studied two secondary inorganic aerosol species, NO3
− and SO4

2−.
We found increases in respiratory mortality and hospitalizations and in
cardiovascular hospitalizations associated with SO4

2 -. In the mortality
literature, SO4

2− has been linked to total and cardiovascular deaths
(Burnett et al., 2000; Franklin et al., 2008; Ito et al., 2011; Ostro et al.,
2011; Anderson et al., 2001), but respiratory effects of SO4

2− have
been reported when looking at hospital admissions (Sarnat et al.,
2008; Atkinson et al., 2010). A review of all the available evidence for
SO4

2− reported mixed results (Rohr and Wyzga, 2012). It has been sug-
gested that SO4

2− may act as a marker for other harmful constituents
from oil and coal combustion, and in addition it can increase the toxic
effects of Fe by increasing its solubility (WHO (World Health
Organization), 2013; Cassee et al., 2013). For NO3

−, we did not find con-
sistent results and few studies have reported adverse effects (Rohr and
Wyzga, 2012; WHO (World Health Organization), 2013). The available
toxicological evidence does not support a causal association between
SO4

2− or NO3
− and health risk (Cassee et al., 2013).

We found health effects of severalmetals. In particular, we found ef-
fects for a set of metals composed by SiO2, Ca, Fe and Ti that were highly
correlated in all participating cities. In addition, we also increased per-
cent changes for K, Mg and Mn, which were highly correlated with the
previous set in some but not all the cities. Most of the previous metals
havemineral origin and have been apportioned to road dust andmineral
factors in Southern European cities (Ostro et al., 2011; Amato et al.,
2009). The infrequent rainfall favors the accumulation of road dust in
the roads, which is then resuspended by traffic, a phenomenon particu-
larly relevant in theMediterranean area (Karanasiou et al., 2014). In this
area, road dust, apart from having substances emitted by vehicle ex-
haust andwear, contains a large fraction ofmineral dust, coming, for ex-
ample, from construction work (Ostro et al., 2011; Amato et al., 2009;
Querol et al., 2004). A recent review included Si and K among the
group of elements that have been most frequently associated with
health effects, along with Ni and V (discussed in the next paragraph),
and Zn and Cu (Rohr and Wyzga, 2012), for which we also detected
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increased percent changes in hospital admissions. However, a proper
assessment of the results in the literature is difficult, as not all studies in-
cluded the same elements. Although not included in the top list by the
review, it is worth noting that, as in our study, several epidemiological
studies have found effects for Fe (Burnett et al., 2000; Ostro et al.,
2007, 2009, 2010; Cakmak et al., 2009), and Mn (Lall et al., 2011;
Ostro et al., 2007; Zanobetti et al., 2009; Cakmak et al., 2009). There ex-
ists toxicological evidence for the deleterious effects of metals, but they
are not believed to account for all the health effects of PM (WHO (World
Health Organization), 2013). For example, Mn and Fe have been related
to oxidative stress markers in exposed human epithelial cells, and Cu
and Zn have been linked to decrease in spontaneous beat rate, vasocon-
striction and vasodilatation (Lippmann et al., 2013; Zhang et al., 2009).

Apart from the metals mentioned above, we also found effects of Ni
and V on respiratory admissions and of Ni on respiratory mortality. Ni
and V are typical markers for fuel oil combustion (Viana et al., 2008).
Ni has been themetal most commonly linkedwith health effects, main-
ly for cardiovascular outcomes (WHO (World Health Organization),
2013). A few studies have also reported effects of Ni on respiratory out-
comes (Bell et al., 2009, 2014; Cakmak et al., 2009). V has also been as-
sociated with cardiovascular and respiratory admissions (Bell et al.,
2009, 2014; Lippmann et al., 2006). Multiple toxicological studies in an-
imals have reported effects of Ni, including acute changes in heart rate
variability; delayed hypothermia, bradycardia and arrhythmogenesis;
respiratory carcinoma induction; expression of several genes involved
in oxidative stress response, inflammation, repair/remodeling and vas-
cular function; and apoptosis of ovary cells and T cell hybridoma cells
(Zhang et al., 2009). V can induce expression of genes involved in inju-
ry/inflammation and vascular function, and has been shown to produce
adverse reactions in human airway epithelial cells (Zhang et al., 2009).

We attempted to separate the effect of PM constituents and total PM
levels by using the constituent residual method. For hospital admis-
sions, only results from Mn, Zn and Ni were robust to adjustment for
total PM. An assessment of the results in the literature regardingmodels
adjusted for PM or models including more than one constituent is diffi-
cult, as not all studies fitted such models or included the same constitu-
ents. EC has been shown to be robust in multi-pollutant models and is
suggested to have a stronger effect than total PM (Grahame et al.,
2014). In our study, even though EC effects lost statistical significance,
point estimates were only slightly reduced. Ni has also shown some ro-
bustness in multi-pollutant models in some studies (Rohr and Wyzga,
2012). When adjusting for total PM in the mortality analyses, associa-
tions remained significant in some models for SiO2, Fe, Ti, EC, Mg,
SO4

2− and some associations were only significant after adjustment for
PM, as it was the case for Ca and K. It is important to note, though,
that PM mass was not associated with mortality in single pollutant
models. We believe that this may be due to a lack of power, since an as-
sociation for total PMwas detectedwhen using daily PM values (includ-
ing days without speciation data) (Samoli et al., 2013). Therefore, our
mortality analyses should be interpreted with caution.

The study of the health effects of PM components is hindered by the
large number of elements present in the PM mixture and the correla-
tions between them. In our study, we found 95% confidence intervals
not including 1 in 8.3% of the comparisons, a higher percentage than
what would be expected by chance, and all but six associations were
positive. Although this supports the likelihood of harmful effect of
some PM constituents, chance associations can be expected. The fact
that the components found in this study are the ones most commonly
reported in the literature gives more confidence in our results. The cor-
relation between PM constituents is also problematic. We found effects
for different constituents that were highly correlated. In such instances,
even if a single responsible pollutant exists, it is hard to single it out.
Models with multiple constituents were not fitted to avoid collinearity.

Our study suffered from additional limitations. Data were available
for a single monitoring station in each city and they might not be good
representatives of all the population. This introduces Berkson-type
measurement error, as is common inmost time-series studies of air pol-
lution, which leads to no or little bias but decreases statistical power
(Mostofsky et al., 2012). Themultiple components of PM have different
spatial distributions, and how well outdoor levels reflect indoor levels
also varies by component. This leads to different degrees of measure-
ment error – and therefore, of power – for each of them, and this may
influence which associations are detected (Mostofsky et al., 2012). The
study is also limited in not having daily data for some cities. This may
preclude an adequate correction for time trends, but also it prevented
the use of models combining the effects of multiple lags. Finally, our
data were heterogeneous in terms of years and PM fractions used in
each city and this may introduce some extra uncertainty in the meta-
analysis results. Rome, a city with important weight in the analysis,
did not have PM2.5 data. It is interesting to note, though, that there
was a moderate concordance in the results for PM10 and PM2.5 in cities
with both fractions available.

A better understanding of which elements, and therefore which
sources, are themost harmful for health is very important from the pol-
icy point of view. In order to confirm these results, future studies should
develop specific studies with a stronger focus on PM speciation, with
ad-hoc long term campaigns of daily data in several locations and
using the same protocols for data collection. Future studies should also
explore the role of combined effects of several PM constituents, as tox-
icological studies have provided some evidence on interactions (e.g. be-
tween C and Fe, or between Ni and V) and other interactive biological
effects have been suggested (e.g. secondary inorganic components
influencing the bioavailability of metals) (WHO (World Health
Organization), 2013; Cassee et al., 2013; Zhang et al., 2009).

This study examined the effects of PM constituents on hospitaliza-
tions andmortality in five Southern European cities. Our study suggests
that several PM constituents are associated with increases in daily hos-
pitalizations and mortality. Such elements come from different sources
and some of them are highly correlated and therefore it is difficult to at-
tribute effects to a particular constituent. Studies with larger datasets
and daily data are needed to confirm these results in the Southern
Europe.
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