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ARTICLE INFO ABSTRACT

Background: Prostate cancer is the second most common type of cancer among men but its aetiology is still
largely unknown. Different studies have proposed several risk factors such as ethnic origin, age, genetic
factors, hormonal factors, diet and insulin-like growth factor, but the spatial distribution of the disease
suggests that other environmental factors are involved. This paper studies the spatial distribution of prostate
cancer mortality in an industrialized area using distances from each of a number of industrial facilities as
indirect measures of exposure to industrial pollution.
Materials and methods: We studied the Gran Bilbao area (Spain) with a population of 791,519 inhabitants
distributed in 657 census tracts. There were 20 industrial facilities within the area, 8 of them in the central axis
of the region. We analysed prostate cancer mortality during the period 1996-2003. There were 883 deaths
giving a crude rate of 14 per 100,000 inhabitants.
We extended the standard Poisson regression model by the inclusion of a multiplicative non-linear function
to model the effect of distance from an industrial facility. The function's shape combined an elevated risk close
to the source with a neutral effect at large distance. We also included socio-demographic covariates in the
model to control potential confounding.
Results: We aggregated the industrial facilities by sector: metal, mineral, chemical and other activities. Results
relating to metal industries showed a significantly elevated risk by a factor of approximately 1.4 in the
immediate vicinity, decaying with distance to a value of 1.08 at 12 km. The remaining sectors did not show a
statistically significant excess of risk at the source.
Discussion: Notwithstanding the limitations of this kind of study, we found evidence of association between the
spatial distribution of prostate cancer mortality aggregated by census tracts and proximity to metal industrial
facilities located within the area, after adjusting for socio-demographic characteristics at municipality level.

© 2010 Elsevier Ltd. All rights reserved.

Article history:

Received 31 August 2010
Accepted 3 December 2010
Available online 8 January 2011

Keywords:

Prostate cancer
Environmental exposure
Industrial pollution
Metal industry
Non-linear model

1. Introduction metal working and the rubber industry, and with exposure to

hazardous substances such as pesticides, cadmium and polycyclic

Prostate cancer is the second most common type of cancer among
men, with higher risk in people aged over 65 years. Its incidence is
increasing throughout Europe (Ferlay et al, 2007). However,
increases in the late 1980s and 1990s are also associated with the
use of the prostate-specific antigen (PSA) test to screen for prostate
cancer (Post et al., 1998). The aetiology of the disease is still largely
unknown; however, different studies have proposed several risk
factors such as ethnic origin, age, genetic factors, hormonal factors,
diet and insulin-like growth factor (Gronberg, 2003). Alternatively,
occupational studies suggest possible associations with farming,
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aromatic hydrocarbons (Parent and Siemiatycki, 2001). The spatial
patterns shown in cancer atlases suggest the possibility that other
environmental factors may be involved; see Lopez-Abente (2006) (http://
www.isciii.es/htdocs/centros/epidemiologia/libros/Atlas_municipal.
pdf) and Martinez-Beneito et al. (2005) (http://www.sp.san.gva.es/
epidemiologia/atlas).

One such risk factor could be exposure to industrial pollution, but
evidence regarding the health risk of living near to polluting factories
is limited. Some authors have described associations of lung cancer
with metallurgical and other industries (Cambra et al., 2010; Monge-
Corella et al., 2008; Parodi et al., 2005; Gottlieb and Carr, 1982). Also,
lymphomas and leukaemia are more common near to industrial areas
(De Roos et al., 2010; Benedetti et al., 2001; Lopez-Abente et al., 1999;
Sharp et al.,, 1996; Sans et al., 1995). However, other studies have not
found any association between particular cancers and proximity to
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industrial facilities and incinerators (Michelozzi et al., 1998; Pekkanen
et al.,, 1995).

Assessment of exposure to environmental agents that are noxious to
human health is complicated by the variety of possible exposure
measurement strategies, including the use of remote sensors, biomar-
kers, or estimates of pollutant dispersion using theoretical or statistical
models (Nieuwenhuijsen et al., 2006). Studies of elevation in risk close
to potentially hazardous sites include Stone (1988), Elliott (1996),
Biggeri (1996), Viel (2000), Draper (2005) and Maule (2007). This paper
studies the spatial distribution of prostate cancer mortality in an
industrialized area using distance, from each of a number of industrial
facilities, to provide indirect measures of exposure to industrial
pollution.

2. Materials and methods

To assess the possible association between prostate cancer
mortality and environmental exposure to industrial pollution we
studied Gran Bilbao, the biggest urban area of the Basque Country,
sited in the north of Spain. This region is one of the most industrialized
parts of Spain. Specifically, there are 20 industrial facilities located
within the area that were included in the European Pollutant Emission
Register (EPER) (EPER, 2008).

2.1. Data

According to the 2001 official census, the population of Gran Bilbao
was 791,519 inhabitants, distributed between 17 municipalities
including the city of Bilbao, and 657 census tracts. The total area was
204 km?, hence the population average density was 3880 inhabitants/

km?.

2.1.1. Cases: mortality data

The mortality data were the number of deaths during the period
1996-2003, in each of the 657 census tracts. In this period there were
883 deaths attributed to prostate cancer with a crude rate per 100,000
inhabitants of 111.55. The populations of the individual census tracts
varied between 1000 and 2000 inhabitants.

2.1.2. Expected cases

We calculated the expected number of cases in each census tract
using indirect standardization as follows. Firstly, we stratified the
population by age and sex, producing 18 strata. Then, in each stratum
we obtained the number of person-years by multiplying the population
of the reference year 2001 by the number of studied years, namely eight.
Finally, we multiplied the overall Spanish mortality rate for prostate
cancer in each stratum by the number of person-years and added over
strata to give the total number of expected cases in each census tract
(Barcel6 et al., 2008).

2.1.3. Socio-demographic covariates

According to Anand the main risk factor for cancer mortality is
lifestyle, including diet, tobacco and obesity (Anand et al., 2008).
Another main factor is age. We included age in our models by the use of
indirect standardization as described above. Unfortunately there was no
available information on lifestyle for our study; however lifestyle is
related with socio-demographic characteristics of the population. We
used the 1991 Spanish census as our source of this socio-demographic
information; although this information was aggregated to the level of
municipality rather than census tract we considered it more important
to recognise the well-known long latency period of prostate cancer,
rather than to exploit the finer spatial resolution offered by more recent
census data.

Our municipal-level socioeconomic covariates were percentage of
illiterates, percentage of unemployed and cohabitants per house from
the 1991 census, and average income in 1991 provided by the Spanish

Credit Bank (BEC, 1993). All of these covariates were standardized at
national level. Ideally we would have included prevalence of tobacco
smoking as a covariate but, as mentioned above, such information was
not available at the required level of spatial aggregation. Therefore, we
used the Standardized Mortality Ratio of lung cancer as an
approximation to tobacco smoking prevalence (Lépez-Abente et al.,
20064a,b; Best and Hansell, 2009).

Summarizing, the five socio-demographic covariates included in our
analyses were: percentage of illiterates (Education (—)), percentage of
unemployed (unemployed), cohabitants per house (cph), income
(income) and SMR of lung cancer (tobacco).

2.1.4. Factories

As our source of information about the industrial facilities we used
the European Pollutant Emission Register (EPER) (EPER, 2008). The
information available allowed us to identify six types of industrial
activity, namely: 1) energy industries; 2) production and processing
of metals; 3) mineral industry; 4) chemical industry and chemical
installations; 5) waste management; and 6) other activities, including
paper and board production, manufacture of fibres or textiles, tanning
of hides and skins, slaughterhouses, intensive poultry or pig rearing,
installations using organic solvents, and the production of carbon or
graphite. Twelve of the 20 factories so identified were located far from
all residential areas. We therefore considered only the remaining
eight factories that were located along a central axis of the area; three
metal factories (smelting), one mineral factory (glass), three
chemicals factories (fertilizer, pharmaceutical products, plastic pro-
ducts) and one from the “other activities” group, specifically a food
factory (brewery). Our exposure variables were defined as the eight
distances between the centroid of the census tract and the location of
each factory. Finally, we assumed common parameters associated
within each of the four industrial categories so as to provide more
precise estimation of model parameters. Fig. 1 shows Gran Bilbao by
census tract with the locations of the eight factories represented by
circles of different colours according to their industrial categories.

2.2. Model

In epidemiology, the standard method for analysing aggregated
data on chronic disease is ecological regression, typically implemen-
ted through a Poisson log-linear model. To analyse the effect of the
exposure to industrial pollution on the spatial distribution of cancer
mortality the log-linear formulation is unrealistic because of the need
to combine an elevated risk close to the source with a neutral long-
range effect; therefore, we extended the model by the inclusion of a
multiplicative non-linear distance effect as proposed by Diggle et al.
(1997) for a single source, to give

O;~Po(E;j;)
i = pexp[2y (3 Zy)] l;lf(dy‘)i f(dij) =1+ EXP[_ (dij/ﬁj)z}
(1)

In Eq. (1), p is related to the overall risk, 6 are the parameters of the
socio-demographic covariates Zy; «; and 3 are the parameters of the
distance function, and dj; is the distance between the centroid of the area i
and the focus j. The exposure-related parameters ¢; and (3 are assumed to
take common values within each of the four industrial categories.

The approximate log-likelihood function for this model, up to a
constant term, is (Diggle et al., 1997):

Lip, ¥, ,p) = — ; i + ; Olog ;). (2)

A detailed description of likelihood-based parameter estimation
and model-fitting is given in Appendix A.
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Fig. 1. Gran Bilbao by census tract. Factory locations are shown as circles colour-coded according to industrial categories: purple for metal industry, blue for mineral industry, green
for chemical industry and yellow for other activities (food); factories not included in the analysis are shown as small blue dots.

Because of the potential for confounding between socio-demo-
graphic factors and proximity to industry, we adopted the conserva-
tive strategy of including adjustments for all five socio-demographic
variables (Cov) before exploring the possible distance-based effects.

3. Results

There were a total of 883 deaths attributed to prostate cancer in Gran Bilbao during
the period 1996-2003 (mean 1.34 cases per census tract, standard deviation 1.36). This
represent highly significant over-dispersion by comparison with a constant-mean
Poisson distribution (chi-squared =902.8 on 656 degrees of freedom, p<0.001).

Table 1
Log-likelihood, test statistic, df and P-value for a yZ for the multiple regressions.

Table 1 shows the sequence of fitted models with the different distance
variables included in each, together with the values of the maximised log-
likelihood test and the p-values of the likelihood ratios for each of the models 2 to
14 against Model 1 and Model 3. There was evidence that the inclusion of
the distance variables in Model 14 gave a significant improvement over Model 1.
The value of the D statistic was 10.42 with a P-value of 0.03. With regard to
remaining models, there seemed to be no significant improvement over Model 1
since all P-values are larger than 0.05.

The results for the socio-demographic covariates in our final model showed
estimated relative risks bigger than one for income, 1.26 (0.97-1.51); percentage
of illiterates (education), 1.19 (0.84-1.69); and RR of lung cancer (tobacco
prevalence), 1.08 (1.06-1.10); and estimated risk below one for percentage of

Models Covariates Log-likelihood Reference model = Model 1 Reference model = Model 3

Test statistic df P-value Test statistic df P-value
Model 1 Cov —537.88
Model 2 Cov + Metal —537.81 0.13 1 0.70
Model 3 Cov + Chemical —536.43 2.90 1 0.09
Model 4 Cov + Metal + Mineral —535.65 4.46 2 0.10
Model 5 Cov + Metal 4+ Chemical —535.39 4.97 2 0.08 2.08 1 0.15
Model 6 Cov + Metal + Others —537.61 0.54 2 0.76
Model 7 Cov + Chemical + Mineral —536.61 3.15 2 0.21 —0.36 1 1.00
Model 8 Cov + Chemical + Others 536.04 3.68 2 0.16 0.78 1 0.38
Model 9 Cov + Mineral + Others —537.86 0.04 2 0.98
Model 10 Cov + Metal 4+ Mineral + Others —537.61 0.40 3 0.94
Model 11 Cov + Metal + Chemical + Others —535.37 5.03 3 0.17 2.08 2 0.35
Model 12 Cov + Metal + Mineral + Chemical —534.89 5.98 3 0.11 3.08 2 0.21
Model 13 Cov + Mineral + Chemical + Others —535.84 4.06 3 0.25 1.18 2 0.55
Model 14 Cov + Metal + Mineral 4+ Chemical 4 Others —532.67 1042 4 0.03 7.52 3 0.05

Cov = Socio-demographic covariates: percentage of illiterates (Education ( —)), percentage of unemployed (unemployed), cohabitants per house (cph), income (income) and SMR of

lung cancer (tobacco).
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Table 2
Risk distance functions for the industrial sector.

Industrial area Distance function

Metal 1+ 0.4*exp (—(dist/10)?)
Mineral 1+ 0.42 *exp(—(dist/1810)?)
Chemical 1—0.18*exp(—(dist/4)?)

Other (food) 1+ 13.2*exp(—(dist/0.2)?)

unemployed, 0.67(0.51-0.95); and cohabitants per house, 0.48(0.32-0.73). The
estimated relative risks associated with distance from each factory type are
presented in Table 2 and, in a more easily interpretable graphical form, in Fig. 2.

Fig. 2 shows the estimated risk functions and 95% Monte Carlo confidence limits (as
described in Appendix A) for the effects of distance from each type of factory. Fig. 2a,
relating to metal industries, shows a significantly elevated risk by a factor of
approximately 1.4 in the immediate vicinity, decaying with distance to a value of
1.08 at 12 km, whilst the confidence interval includes the null value, 1, at distances
above 10 km. In contrast, the risk function relating to distance from a chemical factory
(Fig. 2b) has a positive slope with a risk of 0.83 at distance 0 increasing until 1 at 6 km,
but with a confidence interval that includes the value 1 for distances greater that 3 km.
Fig. 2c shows the estimated risk function relating to distance from a mineral factory to
be approximately constant within the plotted range. Finally, the estimated risk function
associated with the food factory (Fig. 2d) falls from 2.7 to 1 within 0.5 km, but the
confidence interval includes the value 1 at all distances.
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4. Discussion
4.1. Prostate cancer

Our analysis suggests an association with distance to some types of
factories, i.e. metal and chemical facilities. The estimated function
associated with proximity to metal industries decayed with distance
from a starting value of 1.4, reaching a value not significantly different
from 1.0 at a distance of 10 km. For chemical factories the estimated
function associated with proximity increased with distance from a
starting value of 0.82 and reached a value not significantly different
from 1.0 at a distance of 3 km. The estimated risk functions for the
remaining industrial categories, mineral and other (food), did not
show association between distance and prostate cancer risk. The
estimated risk function for mineral industry was flat, whereas the
estimated function for the food factory showed a steep slope but was
nevertheless not significantly different from constant. These results
suggest that these two industrial categories are not associated with
prostate cancer risk. However, unlike the full model (Model 14), the
model without those two covariates (Model 5) was not significantly
better that the baseline model (Model 1). This could reflect
confounding due to unmeasured variables such as diet, genetic or
hormonal factors (Rothman, 2002).

b) Chemicals
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Fig. 2. Risk functions and 95% Monte Carlo confident limits for the distance to: a) metal factories, b) mineral, ¢) chemical and d) other (food).
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The shape of the estimated risk function for chemical industry could
be considered counter intuitive. To explain it we consider the
geographical position of the chemical factories. Two of these were
located close together in the same industrial estate, whereas the third
was in the same area. During the nineties and early 00s the zone
changed substantially, some factories disappeared and new residential
areas were constructed originating the migration of new population.
Thus, the resulting risk function is prone to socio-demographic bias and
not reliable to explain the effect of exposure pollution from these
chemical industries over prostate cancer mortality. Its estimated shape
is probably related to the socio-demographic characteristics of the
incoming population, particularly to age which is a well-known risk
factor (Gronberg, 2003). Although we used indirect standardization to
control the age effects this technique does not always eliminate them
completely (Miettinen, 1972).

In relation to metal industry an examination of the information
contained in the EPER for 2001 showed that the three factories
reported emissions above the thresholds that determined their
inclusion in the registry for the following compounds: lead, cadmium,
zinc, chrome, copper, chlorine and PM10 particulate matter.
Taken individually, these industries also reported emissions of CO,
nitrogen dioxide, sulphur dioxide, arsenic, mercury, nickel, benzene
and polycyclic aromatic hydrocarbons (PAH). IARC classifies as
carcinogen 1 group: cadmium, chrome, nickel, arsenic and benzene;
and as carcinogen 2A group: lead and copper (IARC, 1993, 1987);
among them, cadmium and arsenic are specific carcinogens for
prostate cancer. Furthermore, a recent Italian case-control study
identifies cadmium as a possible risk factor for prostate cancer
(Vinceti et al., 2007). In addition, several occupational studies have
reported significant associations between metal industries and
prostate cancer. A recent study of aluminium smelter workers showed
an excess of mortality risk in production workers but not in office
workers (Sim et al., 2009). Another study linked prostate cancer with
exposure to metalworking fluids (Agalliu et al., 2005). Finally, an early
review of prostate cancer in metal workers and repairmen showed a
slightly elevated risk of prostate cancer for these occupations (Gulden,
1997). None of the other facilities reported emissions on heavy
metals.

We did not attempt a detailed interpretation of the risk estimates
associated with the socio-demographic covariates because, as noted
earlier, the spatial aggregation level for these covariates was the
municipality rather than the census tract. For the same reason, different
aggregation levels, we did not exclude Income and Education for the
model despite their not being statistically significant. Instead, we retained
these variables in our baseline model as the best available information
associated with lifestyle to control for the possible confounding of
distance-based effects with potential lifestyle risk-factors for prostate
cancer mortality.

4.2. Methodological issues

This is the first study to analyse the relation between the spatial
distribution of prostate cancer mortality in Spain and exposure to
industrial pollution, using a distance-based empirical model as a
surrogate for exposure at small-area (census tract) level. Thus, it is
important to discuss some methodological issues.

According to the literature, cancer's main risk factor is lifestyle. The
major contributions to overall cancer risk are: diet 30-35%; tobacco,
25-30%; and obesity, 10-20%. The contribution of infections is
estimated to be 15-20%. Finally, genetic predisposition contributes
5-10% (Anand et al., 2008). However, the interaction between these
factors may be very important in the development of the disease. In
the present study, only ecological data about the socio-demographic
status of the population and estimated exposure to industrial
pollution has been included, hence potentially important individual-
level variation is not being taken into account. Furthermore, only

mortality data are included and our analysis necessarily excludes
prevalent cases. This lack of information about non-lethal cancer cases
may bias the analysis; on the other hand, in Spain tumours with lower
survival rates are well represented using death certificates according
to Pérez-Gomez and Aragonés, specifically for prostate cancer death
certificates have high confirmation and detection rates (Pérez-Gémez
et al., 2006). The overall five-year survival rate for prostate cancer in
Spain is 77% and we believe there are at most small differences in
survival rates or quality of care between regions due to in universal
health system established in Spain since 1986.

Another limitation is our use of the centroid of each census tract as
the reference point to calculate distances from industrial locations.
This will bias the results if there is substantial variation in risk within
census tracts (Diggle and Elliott, 1995); note, however, that the
average area of a census tract is approximately 0.36 km?, whereas our
estimated exposure effects extend over several kilometres, hence this
source of bias is likely to be small. Furthermore, the use of small areas
as units in an ecological study reduces the risk of ecological bias.

As in all studies of this kind, we have assumed that place of current
residence determines the estimated exposure, hence no allowance is
made either for long-term movements between different addresses or
short-term movements between home and work. In particular, we
have acknowledged above that major migration over the relevant
time period may have introduced substantial bias into the estimated
risk function for proximity to chemical industry. Also, we have not
been able to include other sources of environmental pollution such as
traffic or indoor pollution. Exposure to such pollution can contribute
to the development of cancers (Belpomme et al., 2007). For example,
substances such as polycyclic aromatic hydrocarbons produced by
combustion of organic fuels are considered as mutagens (IARC, 1989),
whilst indoor pollutants such as benzene or other volatile organic
compounds are rated as carcinogens (IARC, 1995b). We have also not
been able to include either information on occupational exposures
even though we have mentioned several associations between
occupational exposures and prostate cancer.

Finally, we note that a new European Pollutant Release and Transfer
Register (E-PRTR) replaced the EPER in 2009, allowing enhancement of
the validity of a study of this type, with the possibility of evaluating the
effects of specific pollutants.

4.3. Model

The model was initially developed by Diggle and Rowlingson
(1994) to fit individual-level data with reference to a single point
source, and later adapted to be used with aggregated data, such us
census tract data by Diggle et al. (1997). That paper also gave the
theoretical formulation for multiple sources, but did not include an
empirical example. Other authors have formulated different models to
address the multi-source problem. Congdon (2003) proposed a model
for individual outcomes which uses a similar distance function, but
suggested an additive rather than a multiplicative form for the
combined effects of multiple sources. Lawson (2001) and Dunn et al.
(2001) extended purely distance-based models to include directional
effects. In our application, the data were too sparse to justify the
additional number of parameters that would be required to fit
directional effects; a directional model would require at least two
additional parameters for each source, one to identify the principal
direction and a second to capture the degree of concentration about
the principal direction. A more basic concern, not unique to our study,
is the use of distance from the source as a surrogate for exposure.
Physically based plume models attempt to address this but typically
rely on detailed modelling assumptions that cannot be validated
empirically. In our opinion, a better solution in principle is to seek to
identify and adjust for spatially varying explanatory variables that can
account for spatial variation in exposure that is not adequately
described by a relatively simple function of distance; in practice, this
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strategy is limited by the number of candidate explanatory variables
available. For data that are more abundant and/or more finely
resolved than we have in our application, other possibilities are to
model the variation in risk around a point source non-parametrically
(Rodrigues et al., 2010), or to use geographical information systems to
derive spatially continuous explanatory variables. An example of the
latter is Fanshawe et al. (2008), who used a map of the local density of
domestic chimneys as a surrogate for exposure to atmospheric
pollution derived from coal-burning on open fires.

5. Conclusions

Notwithstanding the limitations acknowledged in the discussion,
we have found evidence of association between the spatial distribu-
tion of prostate cancer mortality aggregated by census tracts and
possible exposure to pollutant substances from the metal industrial
facilities located within the study area, as expressed by the variation
in risk with distance from particular types of industrial location at
census tract level after adjusting for socio-demographic character-
istics at municipality level.
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Appendix A
Parameter estimation

Parameters were estimated by direct maximisation of the likelihood
function using the numerical optimization function “optim”, included in
the R software (www.r-project.org).

Standard error calculations

A common way to approximate the standard errors of maximum
likelihood parameters estimates is through the inverse of the Hessian
matrix. Most optimization algorithms, including “optim”, provide a
numerical approximation to the Hessian matrix, but we found that for
point source models of the kind used in this paper, whilst numerically
accurate values were returned for the maximum likelihood parameter
estimates the associated standard errors derived by inverting the
estimated Hessian could be unreliable. We therefore obtained
standard errors by combining the R function for direct maximisation
of the likelihood with replicated Monte Carlo simulations of the fitted
model. Table A1 presents results of an experiment in which we
simulated a dataset of observed cases from a model with four socio-
demographic covariates and two pollutant sources. The left-most
column gives the true values of the parameters. The next columns give
different standard errors; the first of these (Hessian) uses approximate
Hessian matrix, the second (Monte Carlo) uses the Monte Carlo
method as described above, whilst the third uses Monte Carlos
method but with true, rather than estimated, parameter values. The
Monte Carlo estimates are unbiased by design, and the 95% confidence
limits also shown in the table give an indication of the size of the
Monte Carlo error. The results therefore suggested that the Hessian-
based standard errors could be unreliable, as in some cases the
claimed standard errors lie outside the 95% confidence limits from the
simulations. These results were in qualitative agreement with those
from earlier studies (Diggle and Rowlingson, 1994; Diggle et al.,
1997).

Table A1
Given values, Hessian standard errors, Monte Carlo standard errors using estimated
parameter values and standard errors using true parameters.

Values  Hessian standard Monte Carlo standard ~ Standard errors using
errors errors using estimated true parameters
parameter values
p 0.019 0.245 0.216 (0.196-0.239) 0.160 (0.146-0.177)
01 0.111 0.263 0.254 (0.231-0.282) 0.172 (0.156-0.190)
0, 0.099 0.125 0.129 (0.117-0.143) 0.100 (0.091-0.110)
63 —0.020 0.101 0.089 (0.081-0.099) 0.066 (0.060-0.073)
6, —0.093 0.100 0.098 (0.089-0.108) 0.074 (0.067-0.082)
oy 0.100 0.192 0.270 (0.246-0.299) 0.238 (0.216-0.263)
o 0.100 0.180 0.208 (0.189-0.230) 0.179 (0.162-0.198)
B 0.200 0.123 0.174 (0.159-0.193) 0.232 (0.211-0.257)
B 0.400 1.149 0.395 (0.360-0.438) 0.340 (0.308-0.375)

Hypotheses testing. Approximate null distribution of likelihood ratio
statistic D

To test the hypotheses about the parameters we used the usual
generalized likelihood ratio test statistic;

D= 2(1(5) ()}

where Ly and L denote the maximised log-likelihoods under the null
and alternative hypotheses, respectively.

Previous studies have pointed out that the usual asymptotic
properties of the likelihood ratio test may not hold for the models
considered in this paper because the distance function is such that
when a=0, $ is indeterminate (Diggle and Rowlingson, 1994; Diggle
et al. 1997). To clarify this point in the context of our application,
we ran a simulation experiment generating data from the following
models:

1. Null model: y;=p
2. Distance model: p; = p []f(dy).
J

For the distance model we contemplated two scenarios, one
with three point sources and one with four. For each scenario we
ran 100 simulations and calculated the corresponding likelihood
ratio statistic D. We considered as candidate reference distributions
for the likelihood ratio test y2 and y3, where n is the number of
point sources in the distance model. For the first scenario, Fig. Al
shows three graphs: (a) a density graph of the empirical distribu-
tion of D and the two reference distributions; (b) a Q-Q plot of
sample D-values against ¥3; (c) a Q-Q plot of sample D-values
against y2 (c). In Fig. A1(a), the empirical density of the D-statistic
almost overlaps the density of y3; whereas, the shape of the 43
density is clearly different from the empirical density. In the QQ-plot
for y% almost all points are close to the main diagonal, whereas in
the second QQ-plot they lie clearly below the main diagonal. Finally,
results of formal Kolmogorov-Smirnov goodness-of-fit tests
were consistent with the graphical evidence, giving p-values
p=0.477 and p<0.001 against the reference distributions y2 and
X3, Tespectively.

Fig. A2 shows the corresponding graphs for the scenario with four
point sources. As in the previous case, the results of the tests
supported the use of the y? distribution, where now n=4, as the
reference distribution for the likelihood ratio test statistic. Kolmo-
gorov-Smirnov goodness-of-fit tests gave p-values p=0.871 and
p<0.001 against the reference distributions y2 and y3,, respectively.

The results of the simulation experiment suggest that the
standard y3, approximation to the null sampling distribution of
the generalized likelihood ratio statistic D does not hold, whereas
the y2 distribution gives a good approximation. In previous papers
(Diggle and Rowlingson, 1994; Diggle et al., 1997) y3, was used as
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Fig. A1. Comparison between the empirical distribution and the reference distributions
in a scenario with three point sources (a). Density graph of the empirical distribution
and the two reference distributions); (b) Q-Q plot of sample D-values against y3;
(c) Q-Q plot of sample D-values against y2.

the distribution of the generalized likelihood ratio statistic, This
non-standard behaviour of the likelihood ratio test can be attributed
to the indeterminacy of 3 under the null hypothesis =0, hence the
test can be considered to have one effective degree of freedom per
source, rather than two. Some theoretical results concerning the
failure of the standard asymptotic properties of the generalized
likelihood ratio test in non-regular problems are given in Cheng and
Traylor (1994).

(a)

D stat. Empirical distribution

T T T T
10 15 20 25

Density

o ]
(6]

(b)

QQPIot

[m]
T T T T
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chi4
(c) QQPlot
[a]

chig

Fig. A2. Comparison between the empirical distribution and the reference distributions
in a scenario with four point sources (a) density graph of the empirical distribution and
the two reference distributions); (b) Q-Q plot of sample D-values against y3; (c) Q-Q
plot of sample D-values against y3.

Residual analysis

Fig. A3 plots deviance residuals for our preferred model against the
distance to the nearest factory in each of the four industrial categories.
All four cases show an apparently random scatter, consistent with a
well-fitting model.
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