

Sensitivity of *Fusarium graminearum* to tebuconazole, metconazole, and prothioconazole fungicides

Integrated Disease Management (IDM)

- Information about the disease
- Field scouting
- Resistant varieties
- Cultural controls
 - field management practices (tillage, crop rotation/ crop selection)
- Foliar fungicides

Foliar fungicides

2020

For the c

Group 11 Qol (Strobilurins)

Azoxystrobin Pvraclostrobin Picoxystrobin

Trifloxystrobin

Group 1 MBC (Benzimidazole)

Thiabendazole

Group 4 (Phenylamides)

Metalaxyl

Group 7 SDHIs

Boscalid

Fluxapyroxad Fluopyram **MEDIUM TO HIGH RISK = 3**

HIGH RISK = 6

MEDIUM RISK = 3

LOW TO MEDIUM RISK = 1

Sedaxane

Group 2 (Dicarboxamides)

Group 3 DMIs (Triazoles)

Prothioconazole Propiconazole Metconazole

Tebuconazole

Group 9 AP (Anilino Pyrimidines)

Pyrimethanil Cyprodinil

Group 40 CAA (Carboxylic Acid Amines)

Dimethomorph

Group 12 (Phenylpyrroles)

Fludioxonil

M3 (Dithiocarbamate)

Mancozeb Thiram

Maneb

M1/2 (Inorganics)

Copper Sulphur

UNKNOWN Microbial membrane disruptors

*This is not an exhaustive list, but captures the majority of active ingredients that are relevant for Western Canada

Trade names

Bravo 500

Caramba

Echo 720

Hornet 432F

Miravis Ace

Palliser

Proline 480SC

Prosaro 250EC/Prosaro XTR prothioconazole + tebu

Twinline

Active ingre chlorothalonil

metconazole

chlorothalonil

tebuconazole

pydiflumetofen + propic

tebuconazole

prothioconazole

pyraclostrobin + metcor

Fungicide insensitivity (resistance)

- Fungus becomes insensitive (resistant) to the fungicide,
 i.e. the fungicide does not control the disease anymore.
- Resistance monitoring is crucial to understanding what changes the population may be undergoing.

Risk factors:

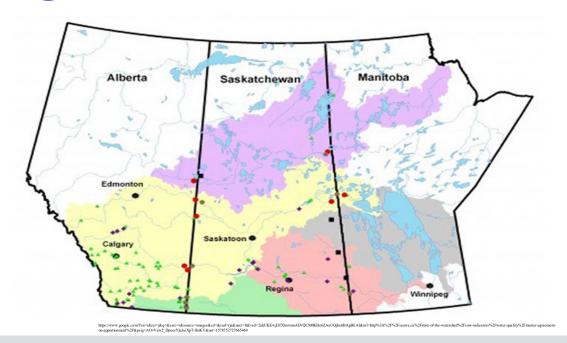
- Single-site mode of action
- Pathogen risk
 - Monocyclic vs polycyclic (disease cycles per year)?
 - High spore production?
 - Soil vs. air dispersed?
 - Infects all growth stages of the crop?
 - Does the pathogen have a sexual stage?
 - Do they overwinter?
- Frequent application of the fungicide

GERMANY (Klix 2007) - Sensitivity of *F. graminearum* to epoxiconazole, tebuconazole, metconazole, and prothioconazole

Epoxiconazole failed to inhibit spore germination even at high concentrations

CHINA (Yin 2009) - Reduced sensitivity of *F. graminearum and F. asiaticum* to benzimidazole [MBC] and tebuconazole [DMI]

 Nine isolates out of 159 were highly insensitive to the MBC, and three to the DMI


AMERICA (Spolti 2014) - Reduced sensitivity of *F. graminearum* isolates to triazole (tebuconazole) fungicides

One isolate out of 50

Is there a fungicide resistance problem?

Is there any *Fusarium graminearum* isolates with fungicide resistance in Western Canada

How did we start?

Survey (2014 - 2017)

Morphological Identification

Molecular Identification

Fusarium graminearum

Isolates (Total = 253)

Province

Number of isolates

Saskatchewan (143) ⁵⁵ (2014) + 10 (2015) + 30 (2016) + 32 (NRRL) +16 (DAOM)

Manitoba (76) 49 (Dr. M. A. Henriquez) + 23 (NRRL) + 4 (DAOM)

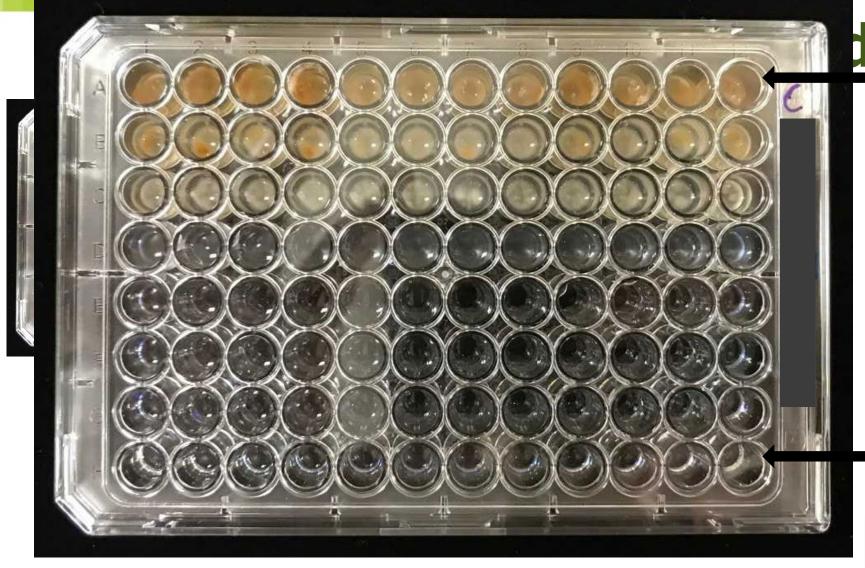
Alberta (34)

26 (NRRL) + 8 (DAOM)

NRRL culture collection – USDA/ARS Culture Collection (NRRL, Peoria, IL); DAOM- Canadian Collection of Fungal Cultures (DAOM), Ottawa, Ontario, Canada.

Fungicides

- Triazoles (technical grade -100% Active ingredient)
 - tebuconazole
 - metconazole
 - prothioconazole
- Concentrations of fungicides
 - Seven (0.03, 0.1, 0.3, 1, 3, 10, 30 mg/L)
 - Control



• 30 mg/L

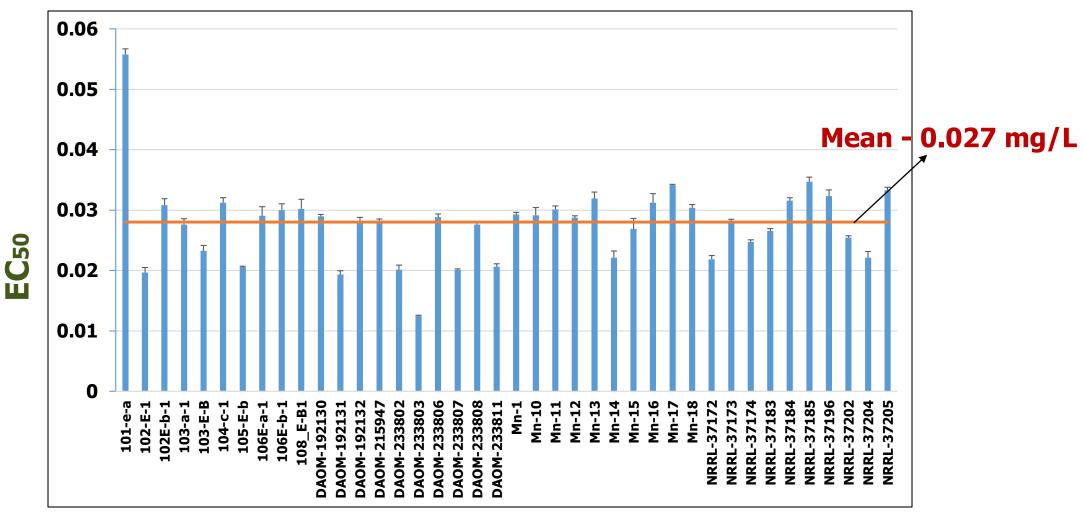
Microtiter plate method

Incubated in dark for **3 days at ~22°C** on a standard rotary shaker (**150 rpm**)

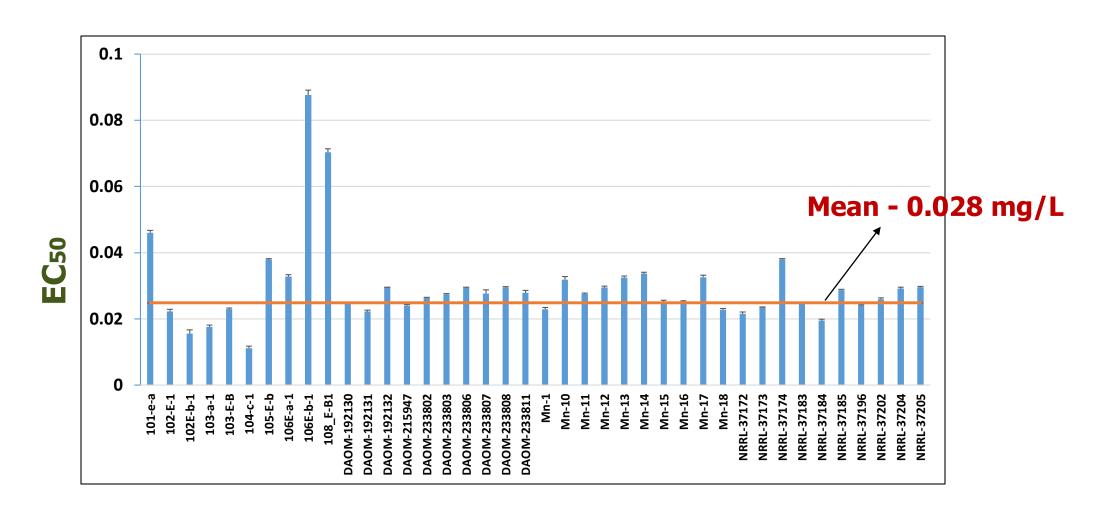
Fungal growth was measured by optical density at 620 nm

Spectrophotometer

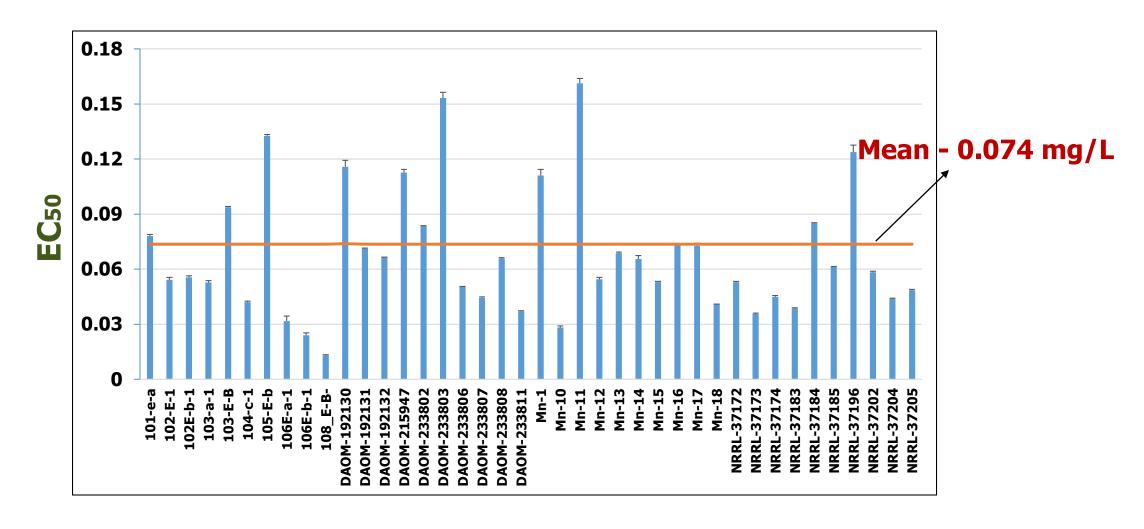
Assessment parameters


EC50 - the dose that **reduces the growth** or other parameter (of mycelium or spores) to a value of **50%** of that of growth in the absence of fungicide.

Cross-resistance - insensitivity to one product may result in insensitivity to other related products even though the 'other' product was not used.



EC50-prothioconazole



EC50-metconazole

Conclusion

- We tested sensitivity of three triazoles fungicides recommended for suppression of FHB.
- No insensitive isolate was found.
- F. graminearum isolates associated with FHB in Western Canada are sensitive to triazoles at various levels.

- Use clean seed and seed treatment
- Rotate crops/ select disease resistant varieties
- Scout for disease and apply based on risk of disease
- Rotate fungicide within groups/ different groups
- DO NOT apply more than the maximum number of applications listed on the label
- Don't overuse the same group in the same season
- Fungicide use should be based on IPM program that includes scouting and cultural control practices

Acknowledgements

Academic & Research Supervisor

Dr. Randy Kutcher

National Research Council (NRC)

Dr. Pierre Fobert and Dr. Ehsan Sari

Agriculture and Agri-Food Canada (Morden)

Dr. Maria Antonia Henriquez

Saskatchewan Crop Insurance Corporation

Ms Amy Brown

Cereal and Flax Pathology Field lab

Mr. Mortuza Reza

Agriculture Development Fund
Saskatchewan
Ministry of
Agriculture

