Non-bloat legumes alter pasture soil greenhouse gas fluxes, nutrient cycling rates, & microbial community structure

Jesse Reimer, Joel Ens, J. Diane Knight, Melissa Arcand & Bobbi Helgason

UNIVERSITY OF SASKATCHEWAN College of Agriculture and Bioresources DEPARTMENT OF SOIL SCIENCE AGBIO, USASK, CA

Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada

Introduction

- Pasture grazing systems act as both sources and sinks of greenhouse gases (GHGs), including methane (CH_4) and nitrous oxide (N_2O).
- Cattle producers use non-bloat legumes to increase cattle protein uptake, decrease enteric CH_4 emissions, and revitalize pasture productivity.
- Introducing non-bloat legumes to grass systems can shift soil microbial communities with unknown effects on nutrient cycling and GHG fluxes.

Seasonal Pasture Conditions Outweighed Legume Influences on Soil Microbes

Objective

 Determine how the introduction of two non-bloat legumes affects soil microbial community structure, nutrient cycling, and GHG fluxes in a grass pasture.

Veldt Cicer

Milkvetch

(CMV

Commor

Sainfoir

Common

Sainfoir

Figure 1: Non-metric multidimensional scaling (NMDS) plot of Bray-Curtis PLFA data constructed using R package Vegan ³. Ellipses are yearly 95% confidence intervals.

- Microbial community composition shifted from June (yellow) to September (blue) (Fig. 1).
- Legume microbial communities shifted from control communities mid-summer (Fig.1: red) and after precipitation (Fig. 1: 2017 red and blue).
- Increased soil nitrate (NO₃⁻) and lower dissolved organic carbon (DOC) under legume pastures gave rise to distinct communities and higher N₂O fluxes in 2017 (Fig. 2A).

Figure 2: Distance-based redundancy analysis (dbRDA) and PerMANOVA models of factors contributing to observed microbial community structure. Models constructed using R package Vegan ³. P = 0.001, n = 135 for each dbRDA and PerMANOVA model. Pie slices are proportional to variance explained by each factor.

- More variable precipitation in 2017 resulted in a larger influence of moisture and NO₃⁻ on microbial community structure (Fig. 2B).
- Lower moisture variability and minimal pasture plant productivity in 2018 resulted in a much larger influence of plant production on community structure (Fig. 2D).

Non-bloat legumes had a small but significant effect on microbial community structure.

 $^{2} = 0.36$

Climate: Annual Averages

Temp.	1.7 °C
Min. Temp.	-23.1 °C
Max. Temp.	24.8 °C
Precipitation	372 mm
2017:	272 mm
2018:	263 mm

https://en.climate-data.org/nort

america/canada/saskatchewan/lanioan-

2015: Grass pasture sod-seeded with non-bloat legumes into three replicate 2-hectare (5-acre) paddocks.

Veldt Cice

Milkvetch

(CMV)

Veldt Cicer

Milkvetch

(CMV)

Common

Sainfoir

- 2017: Grazed for 21 days*, sampled five times from June to September.
- 2018: Grazed for 49 days*, sampled five times from June to September.

* Grazing duration determined by pasture forage production.

at on. Figure 3: Structural equation model (SEM) of 2017 pasture effects on N₂O emissions. Constructed using R package lavaar ⁴. (n = 135; Satorra-Bentler χ^2 p = 0.233, RMSEA = 0.037, SRMR = 0.057). Note: dry conditions prevented SEM modelling in 2018.

1295

Cicer Milkvetch Decreases AMF Abundance, Increases N₂O Emissions

- Structural equation modelling (SEM) revealed forage legumes increase soil nitrate levels relative to the control (Fig. 3).
- Moisture had a strong positive influence on N₂O emissions, soil N levels, and microbial community structure.
- Ammonium production was lower in cicer milkvetch pastures, partially due to decreased soil organic N cycling by N-acetyl glucosaminidase.
- Cicer milkvetch lowered arbuscular mycorrhizal fungi (AMF) abundance.
- Higher AMF abundance was associated with lower N₂O emissions.

Cicer milkvetch pastures increased soil NO_3 content and decreased AMF abundance, increasing the magnitude of N_2O fluxes. The presence of AMF can decrease N_2O emissions through competition for soil N⁵.

Materials & Methods

(A) Midslope positions (n = 3 per paddock) were sampled in 2017 & 2018. (B) GHG fluxes were sampled from sealed chambers. (C) Three soil cores were sampled at 0-10 cm

(C) Three soil cores were sampled at 0-10 cm depth for (D) microbial phospholipid fatty acid (PLFA) composition and (E) enzyme activity^{1,2}.

Conclusions

- The small, significant effect of forage legumes on soil microbial community composition was outweighed by declining pasture plant productivity, variable moisture, and seasonal changes in pasture conditions.
- The potential for increased N₂O emissions in productive cicer milkvetch pastures must be weighed against the expected benefits of reduced enteric cattle CH₄ emissions.

1. Gillespie, A.W., E.G. Gregorich, B.L. Helgason, and D. Peak. 2015. Soil Instrumental Methods. In Encyclopedia of Analytical Chemistry, R. A. Meyers (Ed.). doi:10.1002/9780470027318.a0867m.pub2

2. Hargreaves, S.K. and K.S. Hofmockel. 2015. A modified incubation method reduces analytical variation of soil hydrolase assays. Eur. J. of Soil Biol. 67:1-4. 3. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, and

H. Wagner. 2019. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan 4. Rosseel, Yves. 2012. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48:1-36.

5. Storer, K., A. Coggan, P. Ineson, and A. Hodge. 2018. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N₂O hotspots. New Phytologist. 220:1285-

Contact Jesse Reimer Saskatoon, SK, CAN jesse.reimer@usask.ca 306-966-4299

Acknowledgements: Funding for this research is provided by the Canadian Agricultural Partnership's (CAP) Agricultural Greenhouse Gases Program (AGGP).