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ABSTRACT 

The activation of presynaptic adenosine A1 receptors (A1Rs) is known to cause 

profound synaptic depression during hypoxia/cerebral ischemic insults, but postsynaptic 

function of A1Rs are still unclear. The goal of the current study is to provide a more 

comprehensive view of adenosinergic signaling. Firstly, I established that A1Rs and 

GluA2-containing AMPARs formed stable protein complexes from hippocampal brain 

homogenates and cultured hippocampal neurons. In contrast, adenosine 2A receptors 

(A2ARs) did not co-precipitate or colocalize with GluA2-containing AMPARs. Secondly, 

by using different approaches I have confirmed that prolonged stimulations of A1Rs with 

the agonist CPA was found to cause adenosine-induced persistent synaptic depression 

(APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-

mediated endocytosis of GluA2 with the Tat-GluA2-3Y peptide. This was initially 

demonstrated by biotinylation assays and membrane fractionation, in which prolonged 

CPA incubation showed a significant depletion of both GluA2 and GluA1 surface 

expression from hippocampal brain slices and cultured hippocampal neurons. In contrast, 

Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2 and 

GluA1 internalization. Additionally, confocal imaging analysis confirmed that functional 

A1Rs, but not A2ARs, are required for clathrin-mediated endocytosis of AMPARs in 

hippocampal neurons. Pharmacological inhibitors and shRNA knockdown of p38 MAPK 

and JNK were found to prevent A1R-mediated internalization of GluA2 but not GluA1 

subunits. However, Tat-GluA2-3Y peptide or A1R antagonist DPCPX can prevent the 

hypoxia-mediated internalization of both GluA2 and GluA1. Finally, in the pial vessel 

disruption (PVD) cortical stroke model, reduced hippocampal GluA2, GluA1, and A1R 

surface expression and synaptic depression have been shown in hippocampal slices from 

a unilateral cortical lesioned brain compared to sham brain, which is consistent with our 

previous results of AMPAR downregulation and decreased probability of transmitter 

release. The PVD-lesioned brains also displayed increased hippocampal 

neurodegeneration compared to sham brains. Taken together, these results indicate a 

previously unknown mechanism that A1R-induced persistent synaptic depression 

involves clathrin-mediated GluA2 and GluA1 internalization in hypoxia/cerebral ischemia.  
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Both equilibrative nucleoside transporters (ENTs) and A1Rs are widely expressed 

in the hippocampus, and regulate extracellular adenosine level and induce synaptic 

depression, respectively, during cerebral ischemia. However, the cellular mechanisms 

that control the cell surface expression of ENTs and A1Rs in the brain remain poorly 

resolved. Since ENTs contain consensus sites for Casein Kinase 2 (CK2) phosphorylation, 

I tested the hypothesis that ENT and A1R interactions and CK2 inhibition are involved in 

A1R-dependent downregulation of ENT surface expression during hypoxia. 

Coimmunoprecipitation from rat hippocampal brain homogenates and confocal imaging 

microscopy of primary cultured hippocampal neurons revealed physical associations of 

ENTs with A1Rs, but not with A2ARs. Using whole lysates and membrane fractions from 

hippocampal brain slices and a phospho-specific antibody to immunoprecipitate the 

phosphoSerine254-ENT1 (pSer254-ENT1, a known CK2 target), I then determined that 

ENT1 was constitutively phosphorylated. Several CK2 inhibitors (TBB, DMAT, and DRB), 

but not the ENT1-selective inhibitor (NBTI) reduced pSer254-ENT1 level in whole 

hippocampal lysates. DRB also decreased, while CK2 activator spermine increased, the 

surface expression of pSer254-ENT1 in biotinylation assays of hippocampal brain slices. 

Moreover, biotinylation of cultured hippocampal neurons revealed that ENT1 and ENT2 

surface expression was downregulated by CK2 or ENT inhibitors and by A1R agonist 

CPA, but not in the presence of A1R antagonist DPCPX. Pretreatments of hippocampal 

slices with CK2 or ENT blockers also enhanced hypoxia-mediated downregulation of ENT 

and A1R surface expression. These results indicate that CK2-induced and A1R-linked 

ENT trafficking represents an important regulatory mechanism of hypoxic/ischemic 

hippocampal brain damage. 

The high prevalence of neurodegenerative disorders that accompany memory 

deficits occurs in the elderly, including stroke and Alzheimer’s disease, and it is also 

known that extracellular levels of adenosine are enhanced in aged brains. To determine 

whether the mechanisms we previously identified for A1R-mediated AMPAR 

internalization also contribute to dysfunction in synaptic plasticity in aged brains, I 

compared surface levels of AMPARs from hippocampal slices of young (1 month) and old 

(7-12 months) animals. I found that surface expression of AMPARs decreased in aged 

hippocampus. To study changes in synaptic plasticity, I then performed 
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electrophysiological studies to compare chemically-induced long term potentiation (cLTP) 

in the hippocampus of young and old rats. Consistent with the biochemical results, I 

demonstrated that aged hippocampal slices displayed impaired cLTP, which suggests 

that aging impaired synaptic plasticity by promoting decreased surface expression of 

AMPARs. Next, I evaluated the surface levels of AMPARs before and after cLTP in young 

and old hippocampus to determine whether basal clathrin-mediated endocytosis of 

AMPARs contributes to impairments in cLTP. Following the cLTP induction, brain slices 

were analyzed biochemically. Under basal conditions, I showed that young brains 

contained higher levels of surface-expressed AMPARs compared to older brains. To test 

the hypothesis that this difference in baseline AMPAR surface expression contributes to 

cLTP deficits and was likely due to increased rate of endocytosis associated with 

enhanced adenosine tone in aged brains, I demonstrated with the use of two blockers of 

endocytosis pathways (Tat-GluA2-3Y peptide and Dynasore) that cLTP could be similarly 

enhanced in the young and older brains. Therefore, these results indicate that increased 

adenosinergic signaling in aged brains leads to increased endocytosis of AMPARs and 

impaired synaptic plasticity. 

Together, these data suggest that interactions of AMPAR-A1R-equilibrative 

nucleoside transporter in the hippocampus regulate glutamatergic synaptic transmission, 

and enhanced A1R signaling increases both neurodegeneration in ischemic conditions 

and synaptic impairments in ischemic and aged brains. 
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CHAPTER 1 

1. Introduction 

Stroke is one of the major causes of death and long-term injuries worldwide 

(Macrez, Ali et al. 2011). According to the Statistics Canada, stroke is the third top cause 

of death in Canada. In 2011, about 315,000 people were suffering from stroke in Canada. 

Six percent of all deaths in Canada (over 14,000 Canadians) resulted from stroke in 2012. 

As stated by statistics of the Heart and Stroke Foundation of Canada, 80% of strokes are 

of the ischemic type which arises as a result of the interruption of blood flow to the brain. 

 The hippocampus located in the temporal lobes is the memory-forming center, 

which is highly sensitive to hypoxic-ischemic injuries in the central nervous system (CNS) 

(Yue, Mehmet et al. 1997). Hypoxic-ischemic injuries could lead to neuronal cell death by 

both apoptosis and necrosis (Yue, Mehmet et al. 1997; Yuan and Yankner 2000). The 

consequence of cell death in the brain could be increased release of neurotoxic 

intracellular molecules (e.g., ATP, divalent cations, and cytokines), increased intracellular 

calcium elevation, and accumulation of glutamate in the extracellular space (White, 

Sullivan et al. 2000; Hertz 2008). To improve the outcome after stroke, more than 1000 

pharmacologic neural protective molecules were identified and more than 250 clinical 

trials were implemented, however, so far none of them has completed phase III clinical 

trials (Young et al., 2007; Moskowitz et al., 2010; Albers et al., 2011; Macrez et al., 2011; 

Thauerer et al., 2012). As metabolites and precursors of nucleotides, nucleosides play an 

initial role in nucleic acid synthesis. The nucleoside adenosine plays a crucial role in the 

regulation of multiple physiological processes, including renal function and 

neurotransmission (Elwi, Damaraju et al. 2006). The adenosinergic signaling in stroke 

has been the subject of intense research over the past four decades, but the precise 

contribution of adenosine-related proteins (e.g., adenosine receptors, transporters, 

adenosine kinases, and adenosine deaminases) to synaptic transmission and neuronal 

death warrants further investigations. Therefore, remarkable progress in mechanisms of 

stroke is needed to advance the search for novel neuroprotective approaches in stroke. 
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1.1 Adenosine signaling  

Adenosine is well accepted to be a neuromodulator metabolite and neuroprotective. 

Various methods have been used to measure the concentration of adenosine in brain 

fluid, such as the cortical cup technique (Phillis 1989) or the microdialysis (Pazzagli, 

Pedata et al. 1993) technique reviewed by (Pedata, Corsi et al. 2001). By microdialysis 

experiment, adenosine concentration was measured in the nM range under normoxic 

conditions and in the μM range under ischemia (Pedata, Corsi et al. 2001). During in vitro 

ischemia experiments, adenosine concentration reached 30 μM, and at this level of 

adenosine, all subtypes of adenosine receptors would be expected to be stimulated 

(Pedata, Corsi et al. 2001). Adenosine is mainly derived from ATP and de novo synthesis 

of adenosine is low in brain (Camici, Micheli et al. 2009). Intracellular adenosine is mainly 

from degraded ATP by adenylate kinase to ADP and AMP, then, cytosolic 5’-nucleotidase 

further breaks down AMP to adenosine (Pedata, Corsi et al. 2001). Another source of 

adenosine is the degradation of S-adenosylhomocysteine (SAH) by SAH-hydrolase; 

however, it is reported this pathway is not a consistent source of adenosine (Pak, Haas 

et al. 1994; Latini 1995). One more source of adenosine is the intracellular conversion of 

cyclic AMP to AMP by phosphodiesterase, and then AMP is degraded to adenosine 

(Craig, Temple et al. 1994).  

The released ATP could be extracellularly converted to adenosine by 5’-

nucleotidases (Richardson, Brown et al. 1987; Terrian, Hernandez et al. 1989). 

Extracellular adenosine could also be derived from extracellular cyclic AMP which is 

degraded by ecto-phosphodiesterases (Rosenberg and Dichter 1989; Rosenberg and Li 

1995). During hypoxic/ischemic condition, adenosine comes from both intracellular (Lloyd, 

Lindstrom et al. 1993; Cunha, Vizi et al. 1996) and extracellular sources (Meghji, Tuttle 

et al. 1989). 

Adenosine concentrations under normoxic physiological condition, as measured 

by in vivo cortical cup technique, are in the range 30-50 nM in the cerebral cortex (Phillis 

1989). However, when measured by microdialysis fiber implantation, adenosine 

concentrations are estimated to be between 40-210 nM in the striatum (Ballarin, Fredholm 

et al. 1991; Pazzagli, Corsi et al. 1995), and 109 nM in the cortex (Pazzagli, Corsi et al. 
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1994), as well as 120-200 nM in hippocampus (Dunwiddie and Diao 1994). In contrast, 

under global ischemic conditions (Hagberg, Andersson et al. 1987; Dux, Fastbom et al. 

1990), adenosine concentrations were much higher between 24-40 μM by microdialysis 

technique.  

 

1.2 Adenosine receptors 

Four adenosine receptors have been identified as A1, A2A, A2B, and A3 receptor 

subtypes. All receptors are members of a family of G-protein coupled receptors, with A1 

and A3 interacting with Gi/Go proteins while A2A and A2B are coupled to Gs (Palmer and 

Stiles 1997). Functionally, adenosine A1 and A2A receptors have higher affinity for 

adenosine among all the subtypes, with A1 having a slightly higher affinity than A2A (von 

Lubitz 2001). A1Rs are abundant in the hippocampus, superior colliculus, cortex, and 

cerebellum (Fastbom, Pazos et al. 1987; Jarvis and Williams 1989). A1 receptors are 

abundantly distributed in both presynapses and postsynapses (Tetzlaff, Schubert et al. 

1987). Adenosine receptors are also known to interact with other receptors, including 

dopamine D2 receptor (Agnati, Ferre et al. 2003).  

A2ARs exist throughout the brain but the density is considerably lower compared 

to the density of A1Rs (Fredholm, Cunha et al. 2003). Because of availability of fairly 

selective pharmacological A1R agonists (e.g., CPA) and antagonists (e.g., DPCPX), 

A2AR agonists (e.g., CGS 21680) and antagonists (e.g., SCH 58261), and receptor 

knockout mice, the specific roles of A1Rs and A2ARs in brain function have been well 

documented. For example, A1Rs are generally believed to be neuroprotective and 

involved in synaptic depression, while A2ARs mainly mediate excitatory responses and 

contribute to neurotoxicity (Fredholm 1997; Dunwiddie and Masino 2001). The adenosine 

2B and adenosine 3 receptors, on the other hand, are less well characterized due to their 

general low abundance of expression in brain tissue. Adenosine 3 receptors are present 

throughout the whole brain with the lowest density compared to the other subtypes (Ji, 

Lubitz et al. 1994). 
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1.3 Function of adenosine receptors 

It is widely accepted that adenosine has a neuroprotective role when imbalance of 

energy use and delivery happens during ischemic or hypoxic conditions (Thauerer, Zur 

Nedden et al. 2012). Rather than adenosine directly transferring information to cells, 

adenosine acts via adenosine receptors to modulate the flow of information between cells 

(Cunha 2005). The functions of adenosine receptors include the regulation of transmitter 

release and nerve activity, by virtue of their functional or physical associations with other 

transmitter systems and calcium channels (e.g., the exocytotic machinery and N-type 

calcium channels in the presynaptic membranes) (Fredholm, Chen et al. 2005). A1Rs and 

A2ARs regulate the release of various neurotransmitters, such as glutamate and 

dopamine (Fuxe, Ferre et al. 2007; Cunha, Ferre et al. 2008). A1Rs inhibit presynaptic 

glutamate release (Proctor and Dunwiddie 1987; Thompson, Haas et al. 1992) and lead 

to neuronal hyperpolarization by activating postsynaptic potassium conductance (Greene 

and Haas 1991). In contrast, A2ARs facilitate the release of many neurotransmitters , 

such as glutamate and glycine in the brain (Cunha 2005). Depending on the adenosine 

receptor subtypes being activated and subcellular location of this activation (either pre- 

or post-synaptic), these adenosine receptors could bind adenosine to produce very 

distinct actions in the different regions of the brain (Cunha 2005). A1Rs inhibit nerve 

activity by a predominantly presynaptic action, while A2ARs mainly promote transmitter 

release (Muller 2001; Yu, Shen et al. 2008). Consequently, agonist of A1R and antagonist 

of A2ARs are widely believed to act as neuroprotective agents in the brain.  

Although A1R and A2AR have apposite functions, previous studies have shown 

interactions between them in hippocampal neurons (O'Kane and Stone 1998; Ciruela, 

Casado et al. 2006; Ciruela, Ferre et al. 2006). Adenosine receptors can also interact with 

other classes of receptors. For example, A2ARs have been shown to form heteromeric 

complexes with dopamine D2 receptors (D2Rs) (Al-Hasani, Foster et al. 2011) or 

metabotropic glutamate 5 receptors (mGluR5) (Rodrigues, Alfaro et al. 2004). These 

heteromeric associations between adenosine receptors and other receptors have been 

suggested to alter the affinities of adenosine receptors to endogenous adenosine or alter 

the surface trafficking of other receptors. It was reported that D2Rs have increased 

desensitization in absence of A2ARs in ventral tegmental area (Al-Hasani, Foster et al. 
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2011). This may be of physiological relevance depending on the brain locations these 

heteromeric associations are taking place. 

 

1.4 Adenosine receptor trafficking 

Agonist-induced adenosine receptor desensitization and trafficking could occur 

through different mechanisms, which can include arrestins, second messenger-

dependent kinase regulation, actions of different G proteins, and other non-clathrin-

dependent internalization pathways (Mundell and Kelly 2011). The trafficking of 

adenosine receptors is important for modifying the response of adenosine under 

physiological and pathological conditions (Jacobson and Gao 2006; Fredholm 2010). 

Therefore, before discussing the effects of adenosine receptor activation on other 

receptor trafficking, it is necessary to provide an introduction to trafficking of adenosine 

receptors. A1Rs internalize in cerebral ischemia (Daval, Von Lubitz et al. 1989; Aden, 

Lindstrom et al. 1994; Nagasawa, Araki et al. 1994). A1Rs internalize slower (within 

several hours) than A3 receptors (within minutes) (Palmer and Stiles 1997) and A2ARs 

desensitize much faster than A1Rs (Klaasse, Ijzerman et al. 2008), suggesting that 

agonist binding of different adenosine receptors leads to different rates of internalization 

and to different levels of contribution to regulation of neuronal function under normal or 

pathological conditions distinct of each other. 

Because adenosine receptors are G-protein-coupled receptors, the general 

mechanisms of G-protein-coupled receptor trafficking are firstly introduced. In general, 

receptor trafficking not only refers to the receptor internalization, but it also refers to the 

forward trafficking of receptors (i.e., insertion of receptors) to the plasma membrane, 

recycling and degradation of receptors. Specific to neurons, receptor trafficking could also 

include the movement of receptors from neuronal dendritic spines to shaft. The well-

addressed mechanism of adenosine receptor trafficking involves the arrestin-dependent 

and clathrin-mediated internalization pathway (Ferguson, Watterson et al. 2002; Reiter 

and Lefkowitz 2006). The arrestins are scaffolding proteins that could initiate alternative 

signaling pathways by coupling different proteins like mitogen-activated protein kinases 

(MAPK) to surface receptors (Song, Coffa et al. 2009). Other mechanisms of G-protein-
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coupled receptor trafficking involve enrichments of these receptors in domains, such as 

caveolae and cholesterol-enriched lipid rafts (Chini and Parenti 2004).  

The topic of adenosine receptor trafficking has been studied for two decades. The 

A1Rs could be phosphorylated on serine and threonine sites by activation of PKA or PKC 

(Ciruela, Saura et al. 1997). Arrestin has been shown to decrease plasma membrane 

levels of A1Rs, and arrestin knockdown abolished agonist-induced MAP kinase activation, 

suggesting important roles of the arrestin-family of scaffolding proteins in regulating A1R 

trafficking and coupling to downstream intracellular signaling cascades (Jajoo, Mukherjea 

et al. 2010). 

 

1.5 Adenosine receptor and stroke 

The neuroprotective role of adenosine via adenosine receptors has been 

suggested in neurodegenerative diseases, such as stroke, epilepsy, Parkinson's and 

Alzheimer's disease (Stone, Ceruti et al. 2009; Gomes, Kaster et al. 2011). Adenosine 

normally acts as a neuroprotective modulator by activating A1Rs and inhibiting 

neurotransmitter release, but it can also act as an excitatory agent by acting on A2ARs 

(Cunha 2005).  

During stroke, activation of A1R is relevant to the inhibition of glutamate release 

which results from A1R-mediated inhibition of presynaptic calcium currents (Fredholm 

and Dunwiddie 1988; Prince and Stevens 1992). The selective A1R agonist, CPA, also 

has huge inhibitory effects on glutamate release (Cascalheira and Sebastiao 1998), 

whereas stimulation of A2ARs by agonist CGS 21680 has excitatory effects (O'Regan, 

Simpson et al. 1992; Popoli, Betto et al. 1995). Agonists of A1R are neuroprotective, 

whereas antagonists of A1R enhance damage to neurons (De Mendonca, Sebastiao et 

al. 2000). However, paradoxically chronic A1R activation could initiate and even enhance 

brain damage in animal models of stroke (Jacobson, Von Lubitz et al. 1996). In contrast, 

inhibition of A2ARs decreases neuronal damage in neurodegenerative diseases (Phillis 

2000; Brambilla, Cottini et al. 2003). 
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1.6 AMPAR subunits and AMPAR compositions 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (also known as 

AMPA receptors or AMPARs) are a subclass of ionotropic glutamate receptors found in 

virtually all excitatory synapses, and are comprised of multimeric protein assemblies likely 

consisting of combinations of four subunits termed GluA1-4 or GluAA-D (Wisden and 

Seeburg 1993; Malenka 2003). All subunits include an extracellular domain, a 

cytoplasmic C-terminal tail, three transmembrane domains and a membrane re-entrant 

hairpin that forms the pore loop (Tichelaar, Safferling et al. 2004). The re-entrant hairpin 

loop contains the Q/R editing site. GluA1 and GluA4 have long C-terminal domains and 

GluA2 and GluA3 contain shorter C-terminal domains (Anggono and Huganir 2012). The 

C-termini of AMPAR subunits contain the regulatory sites for protein phosphorylation, as 

well as binding sites for interacting with numerous signaling proteins that are important 

for AMPAR trafficking and function (Anggono and Huganir 2012). In the mature 

hippocampus, two types of AMPARs appear to dominate: heteromers consisting of 

GluA1/2; or GluA2/3 (Wenthold, Petralia et al. 1996). Synaptic AMPARs are mainly 

represented by the heteromeric combinations of GluA1 and GluA2 (Lu, Shi et al. 2009). 

 

1.7 AMPAR assembly 

Assembly of AMPARs happens in the endoplasmic reticulum (ER) (Ayalon and 

Stern-Bach 2001). AMPAR subunits form as dimers, then dimer-of-dimers assemble as 

a tetramer (Tichelaar, Safferling et al. 2004). RNA editing determines AMPAR assembly 

at the step of tetramerization, particularly, in GluA2 (Seeburg 1996). In the RNA Q/R 

editing site in the hairpin re-entrant loop region, an arginine residue (R607) is replaced 

by the glutamine residue Q607 in GluA1, GluA3 and GluA4 (Greger, Khatri et al. 2003). 

Edited R subunits are mainly ER retained and unassembled, whereas unedited Q 

subunits mature, tetramerize and traffic to synapses (Greger, Khatri et al. 2003), where 

they form functional and calcium-permeable homomeric AMPARs. Unedited Q-subunits 

tetramerize and move to cell surface, whereas the edited R-subunits are still dimeric and 

ER-retained unless coupled with unedited Q-subunits (Greger, Khatri et al. 2002). Taken 



8 
 

together, the single amino acid in the hairpin loop can regulate the assembly, trafficking 

and function of AMPARs.  

 

1.8 Phosphorylation of AMPARs 

For regulation of AMPARs, the phosphorylation modulation is also important. 

AMPARs trafficking and memory formation requires CaMKII (Malinow, Schulman et al. 

1989). Phosphorylation of GluA1 by CaMKII at S831 (Roche, O'Brien et al. 1996; Barria, 

Derkach et al. 1997; Mammen, Kameyama et al. 1997), PKA at S845 (Roche, O'Brien et 

al. 1996), and PKC at S818 and S831 (Roche, O'Brien et al. 1996; Boehm, Kang et al. 

2006), all enhance AMPAR trafficking to synapses. Phosphorylation of GluA1 at S831 

could enhance the conductance of GluA1 homomers and GluA1/2 heteromers 

(Kristensen, Jenkins et al. 2011). CaMKII phosphorylates the AMPAR-interacting protein 

stargazin, which is an auxiliary AMPAR subunit and helps anchor AMPAR at synaptic 

sites (Jackson and Nicoll 2011). The PKC family is crucial for expression of LTP and 

memory formation (Colley, Sheu et al. 1990). Inhibition of PKC blocks LTP expression 

(Colley, Sheu et al. 1990), whereas activation of PKC rescues NMDA receptor blocked 

LTP (Kleschevnikov and Routtenberg 2001). Phosphorylation of GluA2 at S880 (Chung, 

Xia et al. 2000; Seidenman, Steinberg et al. 2003) and dephosphorylation of GluA1 at 

S845 and S831 (Kameyama, Lee et al. 1998; Lee, Barbarosie et al. 2000) decrease the 

surface expression of GluA1 which leads to synaptic weakening mimicking a long term 

depression (LTD)-like process.  

 

1.9 AMPAR-interacting proteins 

A wide range of AMPAR-interacting proteins is known to regulate AMPAR 

trafficking. A majority of these proteins binds to the carboxyl terminus of the GluA2/3 

AMPAR subunits, and they include the N-ethylmaleimide-sensitive factor (NSF) and the 

PDZ-domain-containing proteins GRIP1 (glutamate-receptor-interacting protein), 

GRIP2/ABP and PICK (protein that interacts with C kinase) (Braithwaite, Meyer et al. 

2000; Scannevin and Huganir 2000). C-termini of GluA1, 2, 3 bind to scaffolding proteins 

that contain a single or several PDZ domains (Kim and Sheng 2004). PDZ-containing 
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proteins have an 80-90 amino acid PDZ domain, which binds and stabilizes 

transmembrane proteins, including AMPARs (Kim and Sheng 2004). PDZ is an acronym 

of the first letter of three of the first proteins discovered to contain this domain, which are 

PSD-95, disc large tumor suppressor (Dlg1), and zona occludens-1 (zo-1) (Kim and 

Sheng 2004). Other examples of proteins that interact with AMPARs via direct interaction 

with PDZ domains include SAP97 (synaptic associated protein 97 kDa) and NARP 

(neuronal activity-regulated pentraxin). SAP97 binds to the last three distal amino acids 

(TGL) of the carboxyl terminus of GluA1 via a PDZ domain, while NARP binds to the 

extracellular amino terminus of GluA1, 2 and 3 (O'Brien 1999). PDZ-domain-containing 

proteins that bind to the carboxyl terminus of GluA2/3 regulate AMPAR transport, and 

include the scaffolding proteins GRIP1, a protein that contains seven PDZ domains, ABP 

and GRIP2, which are splice variants with PDZ domains, and the PKC-interacting protein 

PICK1, which has one PDZ domain (Carroll, Beattie et al. 2001). GluA1 binds to SAP97 

(Leonard, Davare et al. 1998). SAP97 is a member of the membrane-associated 

guanylate kinase (MAGUK) proteins (Montgomery, Zamorano et al. 2004). 

Phosphorylation of SAP97 by CaMKII regulates the synaptic trafficking of GluA1 

containing AMPARs (Mauceri, Cattabeni et al. 2004). 

N-ethylmaleimide-sensitive factor (NSF)  

GluA2 directly associates with NSF and this interaction is Ca2+-dependent (Hanley 

2007). NSF interacts with the intracellular tail of GluA2 and that disruption of this 

interaction causes a decrease in synaptic efficacy that was subsequently shown to be 

due to the loss of synaptic AMPARs (Osten 1998). NSF binding prevents interaction 

between GluA2 and AP2 (the endocytic adaptor protein), and also blocks GluA2/PICK1 

interaction to inhibit AMPAR internalization (Hanley, Khatri et al. 2002; Lee, Liu et al. 

2002). Additionally, normal synaptic expression of AMPARs might require the NSF-GluA2 

interaction (Luthi 1999). A Tat-peptide used in my studies targets the clathrin-mediated 

internalization of GluA2 subunits by preventing the binding of the AP2 endocytic protein 

(Ahmadian, Ju et al. 2004).  
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1.10 AMPAR trafficking 

The number of AMPAR on the surface at synapses is crucial and dependent on 

the rates of endocytosis, exocytosis, biosynthesis and degradation. Increased exocytosis 

and recycling appears in LTP, while enhanced endocytosis occurs in LTD (Shepherd and 

Huganir 2007; Kessels and Malinow 2009; Anggono and Huganir 2012). Activation of 

NMDA receptors caused clathrin-mediated endocytosis of AMPARs (Lu, Helton et al. 

2007). AMPARs traffic in and out of synapses through multiple pathways (Groc and 

Choquet 2006). AMPAR trafficking could also alter neuronal dendritic spine 

morphogenesis (Hanley 2008).  

By directly visualizing a fusion protein of GluA1-GFP, it has been shown that LTP 

caused the delivery of the GluA1-GFP homomers to the synaptic plasma membrane, as 

inferred from electrophysiological measurements showing that increased insertion of 

homomeric GluA1 receptors led to the expression of a more robust inward rectification of 

the current-voltage relationship (a well-known biophysical fingerprint of GluA2-deficient 

AMPARs), whereas the endogenous GluA2-containing AMPARs did not (Shi, Hayashi et 

al. 1999). Moreover, GluA1-GFP homomers were not delivered constitutively to synapses 

but required activity-dependent trafficking (Malenka and Nicoll 1999). Surprisingly, 

mutagenesis of the carboxy-terminal tail of GluA1 revealed that phosphorylation of serine 

831, a known CaMKII site, was not required for the regulated synaptic delivery of GluA1. 

However, the PDZ-binding domain at the carboxyl terminus of GluA1 was needed (Barria, 

Derkach et al. 1997). This result means that PDZ-domain-containing proteins that interact 

with GluA1 plays an important role in synaptic plasticity, such as SAP97 (Leonard, Davare 

et al. 1998). Interestingly, CaMKII or LTP is not necessary for GluA2-containing AMPARs 

being delivered to the synapse. Furthermore, the delivery of AMPARs to synapses during 

early postnatal development seems to require GluA4 subunits and to use an activity-

dependent mechanism distinct from that used during LTP (Zhu, Esteban et al. 2000). 

These studies indicate that the roles of specific AMPAR subunits in regulated endocytosis 

and activity-dependent exocytosis/delivery might differ, presumably because of the 

difference in their specific protein-protein interactions.  

Stargazin interacts with both AMPAR subunits and synaptic PDZ proteins, such as 

PSD-95, which seems to be necessary for the synaptic clustering of the AMPARs, 
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suggesting that this or other AMPAR-interacting proteins might be involved in the 

regulated or constitutive exocytosis of AMPARs (Chen 2000). Greater levels of GluA1 

and GluA2 in the synaptic membrane fractions have also been found in NMDA-

potentiated slices (Broutman and Baudry 2001). This elevation of synaptic AMPARs 

required the activity of CaMKII and the calcium-dependent protease calpain, which was 

blocked by brefeldin A, an inhibitor of protein transport from the ER to Golgi apparatus. 

This raises the possibility that AMPAR-containing vesicles are being secreted from the 

Golgi during regulated receptor insertion, suggesting that constitutively recycling 

receptors and actively inserted receptors are not, at least initially, in the same pool 

(Broutman and Baudry 2001). 

Electrophysiological, biochemical and immunocytochemical techniques are used 

to study the regulation of trafficking of AMPARs in cultured neurons following activation 

of synaptic NMDARs. An increase in synaptic AMPAR mediated currents has been 

demonstrated with this treatment that mimics an increase in activity-dependent process 

(Lu 2001). There is more evidence for the activity-dependent synaptic delivery of 

endogenous AMPARS comes from the findings that after the induction of LTP in vivo in 

the adult hippocampus, there is an increase in the amount of GluA1 and GluA2 in 

synaptoneurosomes (Heynen, Quinlan et al. 2000). 

A review of the functions and mechanisms of AMPAR endocytosis would not be 

complete without mentioning the converse process of AMPAR exocytosis. Constitutive 

AMPAR insertion has also been detected immunocytochemically in hippocampal neurons 

and biochemically in cortical neurons, and the estimated rate of reinsertion of internalized 

receptors is tightly coupled to the rate of endocytosis, resulting in a relatively constant 

level of surface AMPAR expression (Ehlers 2000). Inhibition of exocytosis results in a 

run-down of synaptic responses; however, blockade of clathrin-mediated endocytosis in 

hippocampal neurons results in a rapid increase in synaptic currents (Luscher 1999). 

Using biochemical analysis, AMPARs have also been shown to recycle back to the 

membrane surface after the triggering of regulated receptor endocytosis (Ehlers 2000). It 

is now widely known that PKA-, PKC-, and CaMKII-mediated phosphorylation of GluA1 

subunits could be important for AMPAR reinsertion (Ehlers 2000; Diering, Gustina et al. 

2014). 
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1.11 Regulation of AMPAR trafficking 

The relationship between synaptic strength and AMPAR trafficking is dependent 

on the composition of AMPAR subunits. Firstly, long-tailed (like GluA1) subunit-containing 

AMPARs moving to synapses cause synaptic strengthening. Secondly, activity-

dependent endocytosis of short-tailed or long tailed AMPARs from synapses leads to 

synaptic weakening, while short-tailed AMPAR constitutive migration to synapses cannot 

change synaptic strength (Kessels and Malinow 2009). AMPAR trafficking to synapses 

after stimuli has also been shown to involve subunit switching, with the GluA1/2 subunits 

being replaced by GluA2/4 subunits, and this subunit switching has been proposed as a 

mechanism to stabilize the strength of synapses (Kessels and Malinow 2009).  

Long-tailed AMPARs regulate the activity-driven synaptic incorporation of 

AMPARs (Harms, Tovar et al. 2005). In addition, heteromeric recombinant GluA1 and 

GluA2 are driven into synapses by LTP (Shi, Hayashi et al. 2001). Moreover, the AMPAR-

interacting proteins have been shown to be important for the regulation of AMPAR 

trafficking. 

The full-length GluA2 C-terminal tail (Shi, Hayashi et al. 2001) or a fragment of C-

terminal tail blocks LTD and decreases synaptic transmission. A Tat-GluA2-3Y peptide, 

which only contains nine amino acids of the GluA2 C-terminal tail, abolishes activation of 

NMDAR-induced endocytosis of AMPAR, without changing LTP (Ahmadian, Ju et al. 

2004). The Tat-GluA2-3Y peptide serves as an inhibitor of clathrin-mediated GluA2 

receptor endocytosis (Brebner, Wong et al. 2005; Xiong, Kojic et al. 2006), and I 

subsequently used this peptide in my studies to determine the role of A1Rs in synaptic 

depression and AMPAR internalization. 

Different methods have been used to study the internalization of AMPARs. 

Recombinant, tagged receptor with green fluorescent protein (GFP) and confocal 

microscopy have been used extensively (Passafaro, Piech et al. 2001; Sheng and Lee 

2001). In addition, ecliptic pHluorin-tagged GluA2 was used to visualize changes in 

AMPAR surface expression in real time (Ashby, De La Rue et al. 2004). 

AMPAR internalization pathways include the clathrin-mediated endocytosis protein 

machineries. Previous reports implicated the involvement of AMPAR endocytosis in 
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several forms of LTD suggested that similar intracellular signaling pathways mediate 

AMPAR function, transport and plasticity (Carroll, Beattie et al. 2001). Studies of AMPAR 

endocytosis following NMDAR activation led to the predominant hypothesis that triggering 

NMDAR-dependent LTD requires an NMDAR-dependent rise in postsynaptic calcium that 

preferentially activates a protein-phosphatase cascade that includes calcineurin (PP2B), 

a Ca2+ independent phosphatase, and protein phosphatase 1 (PP1) (Lisman 1989; 

Mulkey, Herron et al. 1993; O'Dell and Kandel 1994). Calcineurin was also found to be 

involved in promoting AMPAR endocytosis in response to application of insulin or AMPA, 

suggesting that this signaling pathway might be widely involved in the internalization of 

AMPARs (Beattie 2000; Lin 2000; Carroll, Beattie et al. 2001). However, how calcineurin 

exactly affects AMPAR endocytosis is unknown. Additionally, it is found that inhibition of 

PP1 blocks the internalization of AMPARs elicited by NMDA application (Ehlers 2000). 

As these studies used different methods, cells and models to detect internalized AMPARs, 

it is clear that the cellular mechanisms of AMPAR endocytosis may vary depending on 

the nature of triggering stimuli or cellular context. The triggering of plasticity of AMPARs 

has also been linked to activation of protein kinase C (PKC) rather than NMDAR-

dependent LTD in the hippocampus (Linden and Connor 1991; Hartell 1994). These 

studies showed evidence that PKC-mediated phosphorylation of GluA2 and the 

consequent disruption of GluA2 interactions with PDZ-domain-containing proteins led to 

the internalization of AMPARs during long-term depression at parallel-fibre–Purkinje-cell 

synapses (Matsuda, Mikawa et al. 1999; Xia, Chung et al. 2000). 

Thus the regulation of AMPAR endocytosis may differ depending on the location 

of neurons in the brain, perhaps because the subunit compositions of AMPARs differ, and 

consequently so would the receptor-associated proteins that might differentially regulate 

endocytosis (Carroll, Beattie et al. 2001). Two additional forms of AMPAR endocytosis 

have been identified that are indirectly involved in the expression of synaptic plasticity. It 

has been shown that the endocytosis of AMPARs could occur via a process involving 

dynamin and clathrin-coated pits, and that calcium-dependent activation of protein 

phosphatases leading to constitutive endocytosis of AMPARs has been observed 

electrophysiologically, immunocytochemically and biochemically (Luscher 1999; Ehlers 
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2000; Lin 2000). The rate of endocytosis process is rapid, resulting in an apparent 

turnover of 40-50% of surface receptors in tens of minutes (Ehlers 2000).  

By studies of the transport of mutant AMPARs in a heterologous expression 

system, constitutive and activation-independent endocytosis of AMPARs is further 

distinguished from regulated endocytosis (Carroll, Beattie et al. 2001). There is also 

evidence in HEK293 cells indicating that independent mechanisms regulate two forms of 

AMPAR endocytosis. Deletion of a membrane-proximal segment of the GluA2 carboxyl 

terminus disrupted constitutive endocytosis but not a form of regulated endocytosis 

triggered by insulin. In contrast, mutations of the last 15 amino acids of the carboxyl 

terminus, which includes the PDZ-binding domain, had the opposite effect (Lin 2000). 

Some of the key players in endocytosis of AMPARs are discussed above, such as the 

PDZ-domain containing proteins including GRIP, ABP and PICK. 

Endocytosis of AMPAR on the one hand and their insertion by exocytosis on the 

other hand, appear to be coupled, but the signaling cascades are not well known. For 

example, the molecular mechanisms which act on GluA2 at the level of early endosomes 

to allow for stimulus-dependent sorting to divergent pathways remains obscure, and 

neuron-specific proteins like Arc/Arg3.1 involved in endocytosis or NEEP21 involved in 

sorting of AMPARs in early endosomes, are promising candidates to biochemically link 

AMPAR to the general trafficking machinery (Hirling 2009). 

In conclusion, our current knowledge of AMPAR endocytosis is still incompletely 

understood, and in particular, the precise molecular mechanisms of adenosine-mediated 

AMPAR trafficking which involves receptor trafficking during receptor endocytosis and 

receptor exocytosis still needs further investigation. In my studies, I have used more 

advanced imaging and biochemical studies to glean more information about AMPAR 

trafficking during adenosine receptor activation. 

 

1.12 AMPAR and neuronal plasticity studies involving LTP/LTD 

In an adult human brain, there are over 100 billion neurons and each neuron 

interacts with other neurons via thousands of synapses; thus, identifying how the 

synapses work that cause the behavioural changes in animal models is a major aim of 
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neurobiological research (Kessels and Malinow 2009). In the 1940s, Donald Hebb 

proposed that the persistent stimulation could strengthen the neuronal communication 

among a group of interconnected neurons, which led to the widely held view “Neurons 

that fire together, wire together.” This is widely accepted as a means of encoding and 

storing memory (Henley and Wilkinson 2013). The first experimental proof of Hebbian 

plasticity was shown in rabbit hippocampal neurons; a long lasting stimulation of 

presynaptic cells increased postsynaptic responses (Bliss and Lomo 1973). This Hebbian 

postulate has inspired thousands of studies in learning and memory.  

In general, high-frequency stimulation (e.g., 100Hz, 1s) could potentiate synaptic 

plasticity, causing long-term potentiation (LTP), whereas lower-frequency stimulation 

(e.g., 1 Hz, 15 min) can depress synaptic activity, leading to long-term depression (LTD) 

(Henley and Wilkinson 2013). LTP and LTD are believed to be cellular substrates for 

learning and memory (Bliss and Collingridge 1993). 

Many factors are confirmed to regulate synaptic plasticity. The number and 

properties of postsynaptic receptors are crucial for synaptic plasticity (e.g., AMPAR 

contribution to LTP). LTP has two distinct phases: induction phase and maintenance 

phase. The induction phase of LTP is to initiate learning, which relies on post-translational 

modifications or rapid trafficking of AMPAR proteins (Abel and Lattal 2001). However, the 

maintenance phase of LTP needs de novo protein synthesis (Reymann and Frey 2007). 

NMDA receptors and AMPARs are widely studied for synaptic plasticity (Morris, 

Anderson et al. 1986; Dudek and Bear 1992). NMDA receptors are highly permeable to 

Ca2+ and blocked by Mg2+ (Nowak, Bregestovski et al. 1984). Different calcium dynamics 

and NMDA receptor activities lead to LTP or LTD. Stimulation of synaptic NMDA receptor 

with a co-agonist invokes LTP (Lu 2001). A train of electrical pulses with high stimulus 

frequency is applied to neurons to induce a rapid and substantial Ca2+ influx for initiating 

LTP (Ismailov, Kalikulov et al. 2004). In contrast, a low-frequency stimulation evokes 

lower Ca2+ influx that leads to LTD (Yang, Tang et al. 1999). These patterns of LTP and 

LTD have been suggested to be the physiological correlates of learning and memory 

processes (Larson and Lynch 1986).  

About three decades ago, it was proposed that LTP was due to an increased 

number of synaptic AMPARs and NMDARs (Lynch and Baudry 1984; Salter 2003; Liu, 
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Wong et al. 2004). However, previous studies have confirmed a prominent role of AMPAR 

trafficking in synaptic plasticity. GluA1-knockout mice were not able to generate LTP, 

suggesting GluA1 is crucial for LTP (Zamanillo, Sprengel et al. 1999). Several studies 

also showed that GluA2 are cycling in and out of the synapses (Ehlers 2000; Shi, Hayashi 

et al. 2001; Zhou, Xiao et al. 2001). Another report also indicated that an important residue, 

arginine substituted to glutamine (R586Q) in GluA2, can affect the surface expression of 

GluA2 in cultured neurons, suggesting that this arginine residue in the C-terminus is 

crucial for GluA2 trafficking. The AMPAR subunits with long C-terminal tails (GluA1 or 

GluA4) were driven by LTP or spontaneous activity into synapses, while GluA2/GluA2 

homomeric AMPARs maintain constant transmission (Malinow 2003). AMPAR trafficking 

has also been shown to be driven by experience-dependent plasticity (Takahashi, 

Svoboda et al. 2003). 

NMDAR-dependent LTP and LTD have been predominantly studied at synapses 

on pyramidal cells in the CA1 region of the hippocampus. These studies presented 

numerous experimental evidence for both pre- and postsynaptic modifications 

contributing to LTP and LTD after NMDAR stimulation (Kullmann and Siegelbaum 1995; 

Malenka and Nicoll 1999). Only functional NMDARs exist at synapses. The so-

called ’silent synapses’, under conditions of normal synaptic transmission, are so-called 

“silent”, since these synapses are unable to respond to synaptically released glutamate 

owing to the voltage-dependent block of NMDARs by Mg2+ or they lack functional 

AMPARs (Malenka and Nicoll 1997). It is widely accepted now that the activity-dependent 

insertion of AMPARs into silent synapses could be an important mechanism for the 

expression of LTP. In contrast, the loss of AMPARs from AMPAR- and NMDAR-

expressing synapses and the subsequent generation of silent synapses might be involved 

in the production of LTD (Carroll, Beattie et al. 2001). 

Endocytosis of AMPARs plays a critical role in LTD. Firstly, generation of LTD in 

cultured hippocampal neurons decreases the number of synaptic AMPARs (Carroll, Lissin 

et al. 1999). Secondly, injection of the NSF inhibitory peptide causes the loss of surface 

AMPARs and prevents the subsequent expression of LTD (Luthi 1999). Thirdly, loading 

the cell with reagents that inhibit dynamin-dependent endocytosis blocks hippocampal 

LTD (Luscher 1999). LTD at other synaptic connections also appears to involve 
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endocytosis of AMPARs, such as at parallel fiber-Purkinje cell synapses in the cerebellum 

(Wang and Linden 2000) and excitatory synapses on dopamine cells in the ventral 

tegmental area (Gutlerner, Penick et al. 2002). These and other studies discussed above 

suggest that that AMPAR trafficking may be a universal mechanism or may be somewhat 

different depending on the types of protein-protein interactions involved in anchoring 

AMPARs to cell surface in different brain regions. 

 

1.13 AMPARs and aging 

AMPARs are known to be reduced in aging brains and in neurodegenerative 

diseases, such as Alzheimer’s disease (Mishizen, Ikonomovic et al. 2001). Age-related 

loss of GluA2/3-containing AMPARs has been found in human brain (Ikonomovic, Nocera 

et al. 2000). In rat brain, GluA2 subunits have been found to decrease with the age of 

animals (Pellegrini-Giampietro, Bennett et al. 1992). Therefore, a higher stimulation is 

required to induce LTP (Barnes, Rao et al. 2000), partialy because of decreased AMPAR 

expression in aged brains, which is consistent with the observation of a recreased level 

of LTP detected in aged brains (Tombaugh, Rowe et al. 2002; Dieguez Jr and Barea-

Rodriguez 2004). Induction of LTD has been shown to be greatly enhanced in aged brain 

(Norris, Korol et al. 1996). Taken together, synaptic plasticity becomes deficient during 

aging. Defects in trafficking of AMPAR cause deficits in synaptic plasticity during aging 

(Henley and Wilkinson 2013), however, more studies are warranted to determine the 

precise molecular links between aging and deficits in synaptic plasticity. 

Fundamentally, synaptic abnormalities occur in age-related neurodegenerative 

disorders (Henley and Wilkinson 2013). Normal age-related cognitive decline is widely 

believed as an unavoidable consequence of aging (Henley and Wilkinson 2013). AMPAR 

dysfunction was found in multiple neurological diseases, such as Alzheimer’s disease 

(AD), stroke and Parkinson diseases (Mishizen, Ikonomovic et al. 2001; Smith 2013). For 

instance, in aged brains, amyloid beta (Aβ) induced AMPAR internalization (Hsieh, 

Boehm et al. 2006), and CaMKII appears to be involved in this process (Gu, Liu et al. 

2009). 
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More research is needed about the trafficking and behavior of AMPARs under normal 

and pathophysiological situations (Henley and Wilkinson 2013). Particularly, the 

molecular pathways of AMPAR trafficking and associated deficits in synaptic plasticity 

that accompany aging and ischemic strokes need to be further defined.  

 

1.14 Nucleoside transporters 

Transport of nucleoside is very important for nucleic acid synthesis, cytotoxicity, 

neurotransmission, drug transport and other processes in many kinds of cells, especially 

in neuron. Two main families of nucleoside transport have been well identified in 

mammalian cells: equilibrative nucleoside transporter (ENT, also known in humans as 

SLC29) and concentrative nucleoside transporter (CNT, also known in humans as 

SLC28). ENTs are the equilibrative, bi-directional facilitators; and CNTs are the 

concentrative, unidirectional Na+/nucleoside co-transporters (Elwi, Damaraju et al. 2006; 

Young, Yao et al. 2008). 

The human ENT family of integral membrane proteins is represented by four 

human protein isoforms: hENT1, hENT2, hENT3 and hENT4 (Baldwin, Yao et al. 2005). 

ENTs modulate cardiovascular activity and neurotransmission by regulating the 

concentration of adenosine available to cell surface receptors (Young, Yao et al. 2008). 

ENTs can facilitate the transport of both nucleosides and nucleobases through 

membranes. Inhibition of the function of these transporters has been suggested to 

increase the concentration of extracellular nucleosides, such as adenosine (Latini and 

Pedata 2001).  

 

1.15 Structure of equilibrative nucleoside transporters 

Knowledge of the structure of protein is very important to the understanding of the 

function of the protein, and provides the basis for targeting the regions known to be 

important for the regulation of the protein function. There are 11 transmembrane (TM) 

segments for hENT1, and the C-terminus is extracellular while the N-terminus is 

cytoplasmic (Sundaram, Yao et al. 2001). The hENT1 is N-glycosylated at a single site 

(hENT2 at two sites) in the large extracellular loop linking TM1 and 2, but glycosylation is 

not important for transport activity of hENT1 or hENT2 (Osato, Huang et al. 2003). The 
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TM1–6 region appears to be associated with the ability of ENT2 to transport 3´-

deoxynucleosides more efficiently (Yao, Ng et al. 2001), while the TM5-6 region has been 

recognized in the ability of this transporter to recognise nucleobases (Yao, Ng et al. 2002).  

Mutation technique is used for detecting the functional sites of the ENT sequence. 

For example, mutation of Gly179 in TM5 of hENT1 to Ala inhibits transport activity, and 

this residue has been recognized to play a direct role in NBMPR binding (SenGupta, Lum 

et al. 2002). However, the phosphorylation sites and their potential roles in the 

physiological regulation of ENT transport activity in neuronal tissue, is not yet very well 

characterized, and, therefore, I studied the potential role of one important protein kinase, 

termed casein kinase II (or CK2) in regulating ENT function as described in Chapter 3.  

 

 

 

Figure 1.1 Topographical model of hENT1. This model is based on the results of 

glycosylation scanning mutagenesis studies and other approaches detailed in (Sundaram, 
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Yao et al. 2001). Predicted membrane-spanning alpha helices are numbered and the site 

of N-glycosylation indicated. Coloured boxes indicate the regions implicated from 

chimaera studies in the recognition of nucleobase substrates (yellow) and coronary 

vasodilator drugs and NBMPR (yellow and green). Ser254 corresponds to the CK2 

consensus sequence for CK2 phosphorylation. Adapted from the reference (Baldwin, 

Beal et al. 2004).  

 

ENT1 

As a 456-amino acid protein, human ENT1 (hENT1) is 78% identical in sequence 

to the 457-amino acid-containing rat homologue (rENT1) and 79% identical to the 460-

amino acid mouse protein (mENT1.1) (Yao, Ng et al. 1997). ENT1 is ubiquitously well 

distributed at both mRNA and protein levels. The regulation of ENT1 (and ENT2) is 

discussed in more detail below (in section 1.16).  

 

ENT2 

As a 456-amino acid protein, human ENT2 (hENT2) is 46% identical in amino acid 

sequence to hENT1 and 88% identical to the 456-amino acid mouse (mENT2) and rat 

(rENT2) homologues (Yao, Ng et al. 1997). ENT2 mRNA is expressed in many tissues 

including brain, heart, placenta, thymus, pancreas, prostate and kidney, but is particularly 

abundant in skeletal muscle (Griffiths, Yao et al. 1997). Human and rat ENT2 (h/rENT2) 

can transport a broad range of purine and pyrimidine nucleosides (Ward, Sherali et al. 

2000). However, rENT2 cannot transport cytosine (Yao, Ng et al. 2002). Transport activity 

of h/rENT2 is lower than that of h/rENT1 and it could be inhibited by NBMPR, dipyridamole 

or dilazep (Crawford, Patel et al. 1998). As the surface expression of ENT2 increases, at 

physiological concentrations the efficiencies of nucleoside and nucleobase transport are 

similar for both ENT1 and ENT2 (Yao et al. 2002). As the best characterised members of 

the SLC29 family, both ENT1 and ENT2 are known to be facilitated diffusion transports 

systems (Griffiths, Yao et al. 1997). hENT2 might be included in an important pathway for 

cellular uptake of clinically important drugs, some of which are used in human 

immunodeficiency virus (HIV) therapy (Baldwin, Beal et al. 2004). 
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ENT3 

As a 475-amino acid protein, human ENT3 (hENT3) is 29% identical in sequence 

to hENT1 and 74% identical to its 475-amino acid mouse homologue mENT3 (Hyde, Cass 

et al. 2001). The structure of hENT3 is different from hENT1 and hENT2, possessing a 

very long (51 residues), hydrophilic N-terminal region preceding TM1 (Baldwin, Beal et al. 

2004). This special region is similar to those that mediate the sorting of other membrane 

proteins at the trans-Golgi network, endosomes and plasma membrane (Sandoval, 

Martinez-Arca et al. 2000). This difference demonstrated that these isoforms reside 

predominantly in an intracellular compartment, such as mitochondria, endoplasmic 

reticulum, or Golgi network, rather than at the cell surface (Baldwin, Beal et al. 2004), but 

more studies are needed to confirm this. hENT3 is widely expressed in human tissues 

but is particularly abundant in placenta, from which the cDNA of hENT3 was originally 

cloned (Hyde, Cass et al. 2001). hENT3 also has similar broad selective permeability for 

nucleosides and nucleobases, and has been shown to be functional in intracellular 

membranes (Young, Yao et al. 2008). Therefore, these differences might mean that the 

function of hENT3 is different from hENT1 and hENT2. 

 

ENT4 

As a 530-amino acid protein, human ENT4 (hENT4) is 86% identical in sequence 

to its 528-amino acid mouse homologue (mENT4) (Baldwin, Beal et al. 2004). hENT4 

protein has selectivity for adenosine. Both hENT3 and hENT4 are pH-sensitive, with 

highest activity under acidic conditions (Young, Yao et al. 2008). This also suggests that 

both ENT3 and ENT4 may mainly function as cytosolic nucleoside transporters, as 

opposed to ENT1 and ENT2 which are most likely localized to plasma membranes whose 

extracellular regions are exposed to more neutral pH. 

 

1.16 Regulation of equilibrative nucleoside transporters 

The information about the mechanism of regulation of ENTs is not clear. It is 

reported that the rapid activation of cell surface hENT1 in non-neuronal cultured cells and 

cell lines has been associated with the activation of PKC by phorbol ester treatment (Coe, 

Zhang et al. 2002). PKC might be involved in ENT regulation, but it is not yet clear whether 
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changes in the phosphorylation state of the transporter itself are involved (Coe, Zhang et 

al. 2002). Other protein kinases have been suggested to be involved in regulating ENTs, 

but whether this regulation is occurring in neuronal tissue has not yet been demonstrated. 

Inhibition of CK2 activity or deletion of Ser254 (CK2 consensus site) from mENT1, 

reduces the number of functional ENT1 proteins (Bone, Robillard et al. 2007). Therefore, 

I proposed to further study the regulation of ENTs by CK2, in order to find some molecular 

links between the control of adenosine tone with levels of adenosine receptors, ENTs, 

and AMPARs.  

The main function of ENTs is to transport nucleoside and nucleobase for salvage 

pathways for nucleotide synthesis. Because ENTs are also responsible for the cellular 

uptake of nucleoside analogues, many of which represent nucleobases for anti-cancer 

therapy, the transport function of ENTs is therefore now recognized as a viable way to 

introduce drug targets for certain diseases, including cancers (Young, Yao et al. 2008; 

Marechal, Mackey et al. 2009; Spratlin and Mackey 2010). 

The coronary vasodilator drugs, such as dilazep, dipyridamole, lidoflazine 

analogues and NBMPR, as well as STI-571 (a Bcr-Abl tyrosine kinase inhibitor used in 

chronic myelogenous leukaemia) have been reported to be moderately potent inhibitors 

of ENT1 and/or ENT2 (Huang, Wang et al. 2003). However, none of these drugs, with 

STI-571 as exception, had been tested for possible inhibition of protein kinases. It is 

possible that protein kinase CK2 inhibition by these drugs may affect transport activity or 

surface expression of ENTs, but this needs to be further investigated. Here, in Chapter 3, 

I address the potential effects of known CK2 inhibitors as well as known ENT inhibitors, 

such as dipyridamole and nitrobenzylthioinosine (NBTI), in regulating the phosphorylation 

levels of ENT1 (at Ser254) and surface expression levels of ENT1 and ENT2.  

As ENT inhibitors have the potential ability to raise the levels of extracellular 

adenosine concentrations, ENT inhibitors therefore have potential therapeutic effect in 

various pathologies, including cancers and stroke. The cardiovascular effect of adenosine 

could be enhanced and prolonged by coronary vasodilator draflazine (Dennis, 

Raatikainen et al. 1996). This drug effect has been attributed to ENT inhibition, which is 

expected to raise extracellular adenosine that underlies the beneficial effect of this drug 

in ischaemic diseases (Ferraro, Sardo et al. 2002). 
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Inhibition of the ENT1 by NBMPR leads to presynaptic A1 receptor-mediated 

inhibition of glutamatergic synaptic transmission (Ackley, Governo et al. 2003). In 

integrated brain preparations, the inhibition or blockade of equilibrative nucleoside 

transporters causes an increase rather than a decrease of extracellular adenosine (Latini 

and Pedata 2001). With the recognition from these papers that ENT proteins are 

important determinants of nucleoside transport, it is possible that preclinical studies of 

drugs that are known to be effective blockers of ENT transport function may reveal their 

therapeutic effectiveness in some neurodegenerative disorders, including ischemic 

strokes. However, before one can proceed to examining the potential benefits of ENT 

inhibition in preclinical animal testing, the mechanisms responsible for ENTs regulation, 

function, pharmacology and therapeutic potentials need further investigation. Here, my 

goal was to add insight into the regulation ENTs by pharmacologically inhibiting ENTs 

and CK2, and to determine whether this ENT inhibition results in some neuroprotective 

mechanisms that limit the subsequent damage to brain tissue during ischemic conditions.  

Both ENT1 and ENT2 include consensus sites for PKC, PKA, CK1 and CK2, which 

suggests that a complex regulation of ENTs by these enzymes likely regulate ENT1/ENT2 

in various physiological and pathophysiological conditions (Reyes et al.; Griffiths et al., 

1997b). Two splice variants of mouse ENT1 (mENT1) were identified (Kiss et al., 2000; 

Handa et al., 2001). The Ser-254 site of one variant of ENT1 is one of the accepted protein 

kinase CK2 phosphorylation consensus sites (Handa et al., 2001). It was found that CK2-

regulated phosphorylation of the ENTs mediated their localization on the plasma 

membrane and/or their trafficking (Stolk et al., 2005). Protein kinase CK2, formerly known 

as casein kinase II, a cyclic nucleotide-independent serine/threonine protein kinase, is 

ubiquitously distributed in eukaryotic organisms (Blanquet, 2000; Pinna, 2002; Litchfield, 

2003). The other casein kinase, called casein kinase 1 or type 1 enzyme (CK1), uses only 

ATP as a phosphate donor, modifies serine residues, and heparin or 2,3-

diphosphoglycerate does not alter its activity. In contrast, CK2 is able to use GTP or ATP 

as phosphate donors, modifies both serine and threonine residues, and can be inhibited 

by heparin and 2,3-diphosphoglycerate (Blanquet, 2000). 

CK2 is a holoenzyme that is generally composed of two catalytic subunits ( and/or 

’) and two regulatory subunits () which could associate to form many distinct 
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heterotetramers (Blanquet, 2000; Pinna, 2002; Litchfield, 2003). CK2 levels have been 

observed to be reduced in aged brains and in various neurodegenerative diseases, 

including Alzheimer’s disease and stroke (Blanquet, 2000). CK2 has also been suggested 

to play a role in neuroprotection during hypoxic insult to the brain (Blanquet, Mariani et al. 

2009; Kim, Jung et al. 2009; Lussier, Gu et al. 2014), making it difficult to define and 

specifically ascribe a role for CK2 in post-ischemic events. It was determined that there 

is a reduction in CK2 activity after oxygen glucose deprivation and middle cerebral artery 

occlusion, and that loss of CK2 activity triggers ROS production via NADPH oxidase and 

enhanced neuronal death during ischemic injury (Kim et al., 2009). Since CK2 is 

constitutively active and expressed ubiquitously in the brain, it is important to further 

dissect the role of CK2 in neuroprotection during cerebral ischemic insult. A major 

challenge in this regard is to identify the important cellular substrates of CK2 that may 

contribute to the ischemia-induced apoptotic pathways or to neuroprotection. Recently, 

the AMPAR subunit GluA1 has been shown to be phosphorylated by CK2 (Lussier, Gu et 

al. 2014) which increases the surface density of AMPARs. Whether this CK2-induced 

regulation of GluA1 is neuroprotective remains to be determined. From the above 

discussion on adenosine receptors, AMPARs, ENTs and CK2, it is tempting to speculate 

that adenosine tone elevation (which could result from ischemic/hypoxic insult or from 

ENT downregulation and decreased CK2 phosphorylation) and downregulation of A1Rs 

and AMPARs could be correlated with deficits in synaptic plasticity and increased 

neuronal death in vulnerable brain areas, such as the hippocampus. The following 

experimental objectives and methodologies are, therefore, designed to test the general 

hypothesis that increased adenosine signaling (e.g., in in vitro or in vivo stroke models) 

leads to increased downregulation of the neuroprotective, calcium-impermeable AMPAR 

subunits, which is facilitated by the physical and functional associations of AMPARs with 

adenosine receptors and ENTs and the activated downstream signaling pathways, 

including the MAPKs, protein phosphatases, and CK2. 
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1.17 Rationale, objectives and hypotheses  

Rationale: 

Ischemic stroke is one of the major causes of death. Although intensive research 

has been done in the past, little progress has been made in the development of effective 

clinical agents to prevent subsequent brain damage and death. Extracellular 

concentration of adenosine increases dramatically during ischemia (Hagberg, Andersson 

et al. 1987; Phillis, Walter et al. 1987; Dux, Fastbom et al. 1990; Matsumoto, Graf et al. 

1992; Latini and Pedata 2001). It is well accepted that A1Rs play an important role in 

neuroprotection during ischemia (Latini and Pedata 2001; Cunha 2005). In the post-

ischemic rat brain, the A1R binding activities decreased (Nagasawa, Araki et al. 1994). 

Activation of glutamate receptors, including AMPAR, causes neuronal damage after 

ischemic brain injury (Choi and Rothman 1990; Ying, Weishaupt et al. 1997; Iihara, Joo 

et al. 2001). Since both levels of adenosine and glutamate increase during ischemic 

condition, however, the impact of adenosine receptor stimulation on glutamate receptor 

and its roles in neurotoxicity and neural plasticity require further study. 

Extracellular adenosine level is controlled by ENTs. Not only are the adenosine 

receptors important for adenosine signaling, but adenosine transporters also play a 

crucial role in this signaling. However, the regulation of ENTs is not well studied in the 

brain. Therefore, I also aimed to study and explore the regulation of adenosine 

transporters in normal and ischemic brain by the protein kinase CK2, which has been 

suggested to target the ENT1 CK2 phosphorylation consensus site at Ser-254 (Kiss, 

Farah et al. 2000; Handa, Choi et al. 2001). CK2 regulation of ENTs in the brain has never 

been reported, and my studies will aim to provide a mechanistic link between CK2 activity 

and function of ENTs, AMPARs, and adenosine receptors in ischemic brain damage. 

Elevated extracellular adenosine level was found in aged rats compared to young 

rats (Sperlagh, Zsilla et al. 1997; Cunha, Almeida et al. 2001; Murillo-Rodriguez, Blanco-

Centurion et al. 2004). Cognitive deterioration, memory losses and LTP impairment were 

also discovered in aged rats (Barnes and McNaughton 1985; Shankar, Teyler et al. 1998; 

Rex, Kramar et al. 2005; Ritchie, Carriere et al. 2007). Therefore, whether the physical 

and functional interactions between adenosine receptors and AMPARs become altered 
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during aging (for example, hyper-adenosine signaling leads to decreased AMPARs in 

neuronal membranes) remains to be determined. It is also important to determine whether 

this potential impairment of AMPAR trafficking in aged brains directly leads to changes in 

synaptic plasticity (for example, impaired plasma membrane targeting of AMPARs leading 

to decreased surface AMPARs could underlie impaired LTP induction). 

 

Objectives:  

1. To determine whether A1R interact with AMPARs to modulate AMPAR trafficking 

and whether the interaction ultimately leads to A1R-induced persistent synaptic 

depression (APSD) and stroke damage.  

2. To study whether CK2 regulates ENTs and whether this regulation alters the levels 

or interactions of adenosine receptors and ENTs. 

3. To compare the physical and functional interaction between adenosine receptors 

and AMPARs in young and aged rats.  

 

Hypotheses: 

I predict that A1Rs physically and functionally interact with AMPARs to cause A1R-

induced persistent synaptic depression (APSD) caused by a prior prolonged stimulation 

of A1Rs with selective A1R ligands. Previously, our laboratory has reported that A1R-

mediated p38 MAPK and JNK activation is important for inhibitory effect of adenosine in 

rat hippocampus (Brust, Cayabyab et al. 2006; Brust, Cayabyab et al. 2007). Moreover, 

activation of p38 MAPK and JNK induced AMPAR endocytosis (Zhu, Qin et al. 2002; Zhu, 

Pak et al. 2005; Xiong, Kojic et al. 2006). I predict that adenosine receptor activation via 

A1Rs induces endocytosis of AMPARs through p38 MAPK-JNK pathway. I also predict 

that A1R-induced endocytosis of AMPARs could cause post-stroke brain damage. 

Because ENT1 contains CK2 phosphorylation consensus site at Serine-254. I expect CK2 

regulates the phosphorylation of ENT1. Elevated extracellular adenosine level has been 

discovered in aged rats (Rex, Kramar et al. 2005). Having shown recently that prolonged 

A1R stimulation and focal cortical ischemia results in downregulation of AMPARs in 
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hippocampus (Chen et al., 2014), I also predict that AMPAR surface expression will be 

decreased in aged rats compared to young rats. Finally, based on the above discussion 

and rationale, I predict impairments of LTP will be observed in aged rats due to adenosine 

receptor-induced endocytosis of AMPARs. These studies, first aimed at elucidating the 

normal function of adenosine signaling in normoxic environment or in younger animals, 

will ultimately provide additional insight into the mechanisms of higher adenosinergic 

signaling in aged brains or in ischemic conditions, which may reveal a new excitotoxic 

potential of adenosinergic signaling in aging brain or in neurodegenerative diseases, such 

as stroke. Previous studies described above have assigned a neuroprotective effect of 

adenosine, acting via A1Rs, in the brain. My results, however, show that adenosine and 

A1Rs may produce excitotoxic effects when this signaling is significantly prolonged. My 

studies do not provide definitive proof, but suggests that prolonged adenosine signaling 

may contribute to the well-known phenomenon of delayed neuronal cell death occurring 

after ischemic brain damage.  
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CHAPTER 2 

Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal 

cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long 

lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation 

of GluA2 and GluA1 subunits by p38 MAPK and JNK 

Zhicheng Chen1, Cherry Xiong1, Cassandra Pancyr1, Jocelyn Stockwell1, Wolfgang Walz2, 

and Francisco S. Cayabyab*,1 
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Abstract  

Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic 

depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less 

clear. We found that A1Rs and GluA2-containing AMPARs form stable protein complexes 

from hippocampal brain homogenates and cultured hippocampal neurons from Sprague-

Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not co-precipitate or 

colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the 

agonist CPA caused adenosine-induced persistent synaptic depression (APSD) in 

hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated 

endocytosis of GluA2 with the Tat-GluA2-3Y peptide. Using biotinylation and membrane 

fractionation assays, prolonged CPA incubation showed significant depletion of 

GluA2/GluA1 surface expression from hippocampal brain slices and cultured 

hippocampal neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented 

CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that 

functional A1Rs, but not A2ARs, are required for clathrin-mediated endocytosis of 

AMPARs in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of 

p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 

subunits. Tat-GluA2-3Y peptide or A1R antagonist DPCPX also prevented hypoxia-

mediated GluA2/GluA1 internalization. Finally, in pial vessel disruption cortical stroke 

model, a unilateral cortical lesion compared to sham surgery reduced hippocampal GluA2, 

GluA1, and A1R surface expression, and also caused synaptic depression in 

hippocampal slices that was consistent with AMPAR downregulation and decreased 

probability of transmitter release. Together, these results indicate a previously unknown 

mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated 

GluA2 and GluA1 internalization that leads to hippocampal neurodegeneration after 

hypoxia/cerebral ischemia. 
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2.1 Introduction  

Adenosine, a ubiquitous purine nucleoside, plays a putative role as a neuromodulator 

in both physiological and pathological conditions. Endogenous adenosine is known to be 

released from neurons and glial cells, and to date, four adenosine receptors have been 

identified: the A1, A2A, A2B, and A3 receptors (Michaelis, Johe et al. 1988; Dunwiddie 

and Masino 2001; Fredholm, AP et al. 2001). In cerebral ischemia, adenosine levels rise, 

rapidly inducing synaptic depression through adenosine A1 receptor (A1R) activation 

(Fowler 1990; Fowler, Gervitz et al. 2003; Gervitz, Davies et al. 2003), which inhibit 

presynaptic neurotransmitter release (Lupica, Proctor et al. 1992) by decreasing calcium 

influx into presynaptic nerve terminals (Dunwiddie and Masino 2001). Adenosine’s 

postsynaptic actions include inhibition of N-methyl D-aspartate receptor (NMDAR)-

mediated currents (de Mendonca, Sebastiao et al. 1995), inhibition of adenylate cyclase 

and stimulation of potassium conductances, all through A1R actions (Siggins and 

Schubert 1981; Segal 1982; Proctor and Dunwiddie 1983; Haas and Greene 1984). 

Microscopy evidence shows A1Rs located on somatodendritic hippocampal structures 

(Ochiishi, Chen et al. 1999), and shown to be highly localized to the active zone and 

postsynaptic density in hippocampal synapses (Rebola, Pinheiro et al. 2003), suggesting 

that actions of adenosine are not confined to presynaptic membranes. Some reports also 

suggest that postsynaptic adenosine receptors (e.g., A2AR and A3R) regulate 

glutamatergic receptor function and surface distribution (Dias, Ribeiro et al. 2010; Dennis, 

Jaafari et al. 2011; Dias, Ribeiro et al. 2012).  

Alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) 

are glutamate receptors that form functional tetramers of subunits GluA1-GluA4 

(Hollmann and Heinemann 1994; Wenthold, Petralia et al. 1996), and have been 

implicated in ischemic brain damage which reflects increased expression of GluA2-

deficient (Ca2+-permeable) AMPARs on postsynaptic membranes, causing increased 

permeability to Ca2+ (Hollmann, Hartley et al. 1991; Pellegrini-Giampietro, Pulsinelli et al. 

1994; Gorter, Petrozzino et al. 1997; Liu, Liao et al. 2006; Liu and Zukin 2007; Kumar and 

Mayer 2013). Despite this knowledge, it is still unclear whether postsynaptic A1Rs 

regulate AMPARs in stroke. 
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During acute administration of the A1R agonist N6-cyclopentyladenosine (CPA), we 

observed a profound adenosine-induced persistent synaptic depression (APSD) in 

hippocampal CA3-CA1 synapses and elevation of phosphorylated p38 MAPK (mitogen-

activated protein kinase) and JNK (c-Jun N-terminal kinase) in hippocampal membrane 

fractions (Brust, Cayabyab et al. 2006; Brust, Cayabyab et al. 2007). Notably, Rap1 and 

Rap2, GTPases dependent on p38 MAPK and JNK, respectively, mediate NMDAR-

dependent AMPAR removal during long-term depression (LTD) (Zhu, Qin et al. 2002; Zhu, 

Pak et al. 2005). LTD in mouse primary visual cortex was accompanied by activation of 

p38 MAPK and clathrin-mediated endocytosis of GluA2 AMPARs (Xiong, Kojic et al. 

2006).  

We therefore propose that A1R-mediated p38 MAPK and JNK activation plays a 

crucial role in regulating AMPAR trafficking during prolonged hypoxia or an in vivo focal 

cortical small vessel stroke model using type II pial vessel disruption (Wang and Walz 

2003; Hua and Walz 2006; Cayabyab, Gowribai et al. 2013). Our results reveal a 

previously unknown mechanism for APSD involving clathrin-mediated GluA2 

internalization via p38 MAPK and JNK signaling observed after hypoxic/ischemic insult. 

Our results also modify the original GluA2 hypothesis of excitotoxicity (Pellegrini-

Giampietro, Gorter et al. 1997) in that selective activation of A1Rs can mediate GluA2-

containing AMPAR internalization in vulnerable regions, including the hippocampus, 

representing an important mechanism of ischemic damage with therapeutic potential. 

 

2.2 Materials and Methods 

2.2.1 Hippocampal slice preparation and treatments 

Hippocampal slices from male Sprague-Dawley rats (P21-28 days) were 

anaesthetized with halothane and rapidly decapitated according to protocols approved by 

the University Committee of Animal Care and Supply at the University of Saskatchewan. 

The brains were extracted and immediately placed into ice-cold oxygenated dissection 

medium. Hippocampal slices (400μm thick) were cut using a vibrating tissue slicer 

(VT1200S, Leica, Nussloch, Germany) and maintained for 60-90 minutes in artificial 
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cerebrospinal fluid (ACSF) before performing electrophysiological recordings or 

biochemical analysis. Recipes for ACSF and dissection solutions and details of recording 

conditions were described previously (Brust, Cayabyab et al. 2006; Brust, Cayabyab et 

al. 2007). All experiments were conducted at room temperature. 

 

2.2.2 Pial Vessel Disruption (PVD) as a model of small-vessel stroke  

Class II size pial vessel disruption (PVD) has been shown to induce a focal cortical 

lesion that, within 3 weeks of surgery lesion, leads to lacunar infarction-like fluid-filled cyst 

that does not extend to the corpus callosum. This fluid-filled cavity is tightly surrounded 

by a barrier consisting of processes from reactive astrocytes – the hallmark of lacunar 

infarctions (Hua et al., 2006, 2008). The genesis of such a lacuna (cavitation) has been 

studied in more detail previously. It has been found that treatment with minocycline or the 

specific matrix metalloproteinase inhibitor batimastat, an experimental anti-cancer drug, 

prevents cavitation and leads to a lesion filled with reactive astrocytes and no barrier 

(Cayabyab et al., 2013). The procedure is described in detail in previous studies (for 

further details, see: (Wang and Walz 2003; Hua and Walz 2006; Hua and Walz 2006; 

Cayabyab, Gowribai et al. 2013)). Briefly, Sprague-Dawley rats under 2% isoflurane 

anesthesia and buprenorphine treatment for pain management received a craniotomy 

with 5-mm-diameter on the right and rostral side of the bregma adjacent to the coronal 

and sagittal sutures. After opening of the dura the class II pial vessels were disrupted with 

fine-tipped forceps. The piece of bone was placed back and the wound was closed with 

a clip. Sham animals received the same treatment with dura removal but no vessel 

disruption. This procedure including the recovery period of the animal was approved 

under permit 20020024 by the Animal Research Ethics Board of the University of 

Saskatchewan. 

To investigate the impact of a remote focal ischemic injury on hippocampal signaling 

we used this modified pial vessel disruption model. The modification consists of the 

disruption of the class II medium vessels only and not the class I large vessels. We used 

this in vivo animal stroke model because it has distinct advantages over other models. 
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For example, this PVD model is a small-vessel stroke model that produces permanent 

damage to class II size vessels (i.e., a non-reperfusion model), and the cortical lesion 

volumes can be reliably reproduced and have similarities to a lacunar infarction (Wang 

and Walz 2003; Hua and Walz 2006). In contrast, most focal or global stroke models 

involve transient occlusion of large vessels, such as the middle cerebral arteries or carotid 

arteries (Pellegrini-Giampietro, Zukin et al. 1992; Gorter, Petrozzino et al. 1997; McBean 

and Kelly 1998; Prosser-Loose, Verge et al. 2010; Tu, Xu et al. 2010) and the cerebral 

ischemic damage often encompasses large volumes of brain regions. Our PVD model 

results in an approximately 1mm3 cortical lesion volume and is a more subtle small vessel 

injury in the cerebral cortex (Wang and Walz 2003). Previous cortical devascularization 

studies have shown that focal cortical ischemia affects the hippocampus by altering 

hippocampal synaptic transmission (Ramos, Rubio et al. 2004) and increasing expression 

of both c-fos (Herrera and Robertson 1990) and nerve growth factor (Figueiredo, Pluss 

et al. 1995), and adenosine has been implicated in the increased expression of both of 

these regulatory factors in other brain regions (Rudolphi 1995; Svenningsson, Fourreau 

et al. 1999). Since stroke in humans (Laghi Pasini, Guideri et al. 2000) and transient 

middle cerebral artery occlusion in large vessel animal stroke models (Matsumoto, Graf 

et al. 1992) have been associated with transient surges in global brain adenosine levels, 

we hypothesized that brain adenosine elevation occurring in our non-reperfusion PVD 

stroke model could affect AMPAR trafficking. Interestingly, two days post PVD we found 

MMP-2 elevation on both the ipsilateral and contralateral side of the PVD cortical lesion 

(Cayabyab, Gowribai et al. 2013). Therefore, in the current study we performed 

morphological, biochemical and electrophysiological analyses of hippocampal tissue 

taken from both ipsilateral and contralateral sides of the lesion in sham- and PVD-treated 

animals. We analyzed the effects of PVD on neurodegeneration using Fluoro-Jade B 

staining and confocal imaging, on the changes in adenosine tone using fEPSP recordings, 

and on alterations in the surface levels of both GluA2 and GluA1 AMPARs and adenosine 

A1 and A2A receptors using biotinylation and western blot analyses as described below. 

Subsequent results are consistent with PVD inducing elevation of adenosine tone, 

downregulation of AMPARs and A1Rs, upregulation of A2ARs, and increased Fluoro-

Jade B staining in hippocampus. 
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2.2.3 Biochemical studies 

For biotinylation experiments, hippocampal slices or 7-day cultured hippocampal 

neurons were incubated with 1.2µM tetrodotoxin (TTX, Thermo-Fisher Scientific Inc., 

Rockford, IL) to prevent glutamate release induced by treatments with the A1R antagonist 

DPCPX, which could confound the direct effects of CPA on GluA2 and GluA1 AMPAR 

internalization. In addition to TTX, bicuculline (50µM, Thermo-Fisher), strychnine (1µM, 

Thermo-Fisher) and D-APV (50µM, Thermo-Fisher) were applied for 20-30 min, to block 

GABAA currents, glycine receptors, and N-methyl-D-aspartate (NMDA) receptors, 

respectively. After CPA treatments (500nM, 45min), slices or neurons were cooled to 4°C 

(20-30min) and washed with ice-cold ACSF before biotinylation. Hippocampal brain slices 

or neurons were incubated with 1mg/ml NHS-SS-Biotin (Pierce, Thermo-Fisher Scientific 

Inc., Rockford, IL) at 4°C for 45 min. Quenching with glycine buffer containing 192 mM 

glycine, 25mM Tris, pH 8.3 stopped the reaction. Slices were then transferred into lysis 

buffer containing protease inhibitors and 1% NP-40 detergent. Lysis buffer contained 

50mM Tris (pH8.0), 150mM NaCl, 1mM EDTA (Ethylenediaminetetraacetic acid), 1mM 

NaF; and the following protease inhibitors: 1mM PMSF (phenylmethylsulfonyl fluoride), 

10g/L aprotinin, 10g/mL pepstatin A, 10g/mL leupeptin, 2mM Na3VO4, 20mM sodium 

pyrophosphate, 3mM benzamidine hydrochloride, and 4mM glycerol 2-phosphate. After 

determining the protein concentrations using the Bradford Assay with the DC Protein 

assay dye (Bio-Rad, Mississauga, ON, Canada), equal amounts of protein lysates (200-

500µg) were diluted in lysis buffer and biotinylated proteins were incubated overnight with 

the streptavidin beads (Thermo-Scientific). The beads were then washed 4-6 times the 

next day with lysis buffer containing 0.1% NP-40. The proteins were eluted by adding 50µl 

of 2X Laemmli sample buffer (Bio-Rad) and boiling the samples at 95°C for 5min. The 

proteins were the separated by running the samples through 10% polyacrylamide gels 

and the resulting blots were probed with the appropriate primary and secondary 

antibodies. Enhanced chemiluminescence (ECL) reagent (Santa Cruz Biotechnology Inc., 

Dallas, TX) was used to visualize the labeled proteins. 
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Coimmunoprecipitation was performed to examine interactions between 

adenosine receptors and AMPARs by incubating 500µg of extract from hippocampal 

homogenates with mouse, goat or rabbit IgG (1h, 4°C). Then mouse, goat or rabbit IgG 

agarose beads (Sigma) were added to the homogenates for an additional 1h or overnight. 

After this pre-clearing stage, the agarose beads were removed by pulse spinning at 

6000rpm for 5s, and the supernatant was subsequently reacted with the appropriate 

immunoprecipitating antibody overnight at 4°C. The A1 receptor and other proteins were 

immunoprecipitated with a polyclonal goat anti-A1 receptor (5μg, Santa Cruz 

Biotechnology), a polyclonal rabbit anti-A1 receptor (5μg, Sigma), a mouse monoclonal 

GluA2 antibody (2μg, EMD Millipore, Billerica, MA), a rabbit anti-A2A receptor antibody 

(5μg, Sigma), or a rabbit anti-GluA1 antibody (5μg, Millipore). After overnight incubation 

of lysates with a polyclonal rabbit or monoclonal mouse antibody for the target listed 

above, the antigen was captured by incubation of immune complexes for 4h at 4°C with 

agarose beads conjugated to secondary antibody (rabbit, mouse or goat anti-IgG). 

Agarose beads were then collected by pulse spins, and washed four times with wash 

buffer (lysis buffer listed above containing 0.1% NP-40). Proteins from the agarose beads 

were detected by western blotting. The antibody dilutions were as follows: polyclonal 

rabbit anti-A1 receptor or anti-A2A receptor (1:1000, Sigma), rabbit anti-GluA1 (1:1000, 

Millipore), rabbit anti-GluA1 (pSer831) (1:1000, Millipore), rabbit anti-GluA1 (pSer845) 

(1:1000, Millipore), and mouse anti-GluA2 (1:1000, Millipore). To normalize the protein 

bands from the membrane fractions, we used a monoclonal mouse anti-GAPDH (1:2000, 

Millipore) to quantify signals of GluA2 and GluA1 bands. Whole hippocampal lysate blots 

or blots containing biotinylated proteins were re-probed with anti-β actin antibody (1:1000, 

Sigma). Labeled protein bands were visualized using ECL reagent (Santa Cruz).  

In some experiments, the membrane fractions from hippocampal slices were 

separated by centrifugation at 13,000g for 1h at 4°C by omitting the detergent (NP-40) 

from the solubilization buffer. The proteins from the particulate (membrane) fraction were 

resolved in normal solubilization buffer after removal of the cytosolic fraction. 

Hippocampal homogenates were diluted with Laemmli sample buffer, boiled for 5min and 

resolved in 10% polyacrylamide gel; then they were electrotransferred to polyvinylidene 

fluoride (PVDF) membranes (Millipore). The amount of protein loaded into the gels was 
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consistent across all experiments where 50μg were loaded for total lysates and 300-

500μg of total lysates were used for immunoprecipitation. After blocking with 5% nonfat 

milk in TBST for 1h or overnight, the membranes were incubated with primary antibody 

in 5% nonfat milk in TBST containing 0.025% sodium azide overnight at 4°C. The PVDF 

membranes were washed four times with TBST for 15min and then incubated with a 

mouse, goat, or rabbit horseradish peroxidase-conjugated secondary antibody against 

IgG (1:1000; Santa Cruz) in 5% nonfat milk. After three to four 15min washes with TBST, 

proteins were visualized using ECL (Santa Cruz). 

 

2.2.4 Hippocampal neuron culture, immunocytochemistry, and confocal imaging 

Rat hippocampal neurons were cultured as described by others (Kaech and Banker, 

2006) and used for immunocytochemistry 12-15 days after plating. In brief, low-density 

hippocampal neurons (5x104 cells/35mm culture dishes) from 17-18 day old embryonic 

rat brains were grown on polylysine-coated coverslips, which were suspended above a 

one-week-old astrocyte feeder layer. For immunocytochemistry, the hippocampal 

neurons were treated with pharmacologic agents TTX (1.2µM), bicuculline (50µM), 

strychnine (1µM) and D-APV (50µM) for 20-30 min, to block neural activity, GABAA 

currents, glycine receptors, and N-methyl-D-aspartate (NMDA) receptors, respectively, 

and then incubated for 1h with the A1R antagonist DPCPX (500nM, Sigma), the A2A 

receptor antagonist SCH 58261 (30nM), the inhibitor of GluA2 endocytosis Tat-GluA2-3Y 

peptide (2µM) or the scrambled Tat-GluA2-3Y peptide (2µM) before a final 45 min 

incubation with the A1R agonist CPA (500nM). The active Tat-GluA2-3Y peptide consists 

of the following amino acid sequence: YGRKKRRQRRR-869YKEGYNVYG877, where Tat 

is YGRKKRRQRRR (the cell penetrating amino acid peptide sequence contained within 

the protein transduction domain of HIV gene called Tat), and 869YKEGYNVYG877 

represents a GluA2 C-terminal amino acid sequence that interacts with the endocytic 

protein AP2 thus preventing GluA2 internalization (Ahmadian et al., 2004). The Tat-

GluA2-3Y peptide and its scrambled version (scrambled Tat-GluA2-3Y: 

YGRKKRRQRRR-VYKYGGYNE) were purchased from GL Biochem Ltd. (China). The 
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A2A receptor agonist CGS 21680 (10nM) was applied to investigate the relationship 

between A2A receptor and possible internalization of AMPARs. After fixation, neurons 

were blocked for 1h at RT with PBS containing 5% bovine serum albumin (BSA, Sigma). 

To assess the effects of A1R or A2AR stimulation on AMPAR surface expression, 

hippocampal neurons were washed three times with ice-cold phosphate buffered saline 

(PBS), fixed with 4% paraformaldehyde, and then blocked for 1h at RT with PBS 

containing 5% BSA. Surface proteins of neurons were labeled by overnight incubation (at 

4°C) with rabbit anti-GluA1 (extracellular epitope, Alomone Labs, Jerusalem, Israel) or 

mouse anti-GluA2 (extracellular epitope, Millipore) antibody diluted at 1:250 in blocking 

buffer followed by three brief washes (10min each) then incubated with Alexa Fluor 555-

conjugated goat anti-rabbit or Alexa Fluor 488-conjugated donkey anti-mouse secondary 

antibodies (Invitrogen, Carlsbad, CA) at 1:1000 for 1 h at RT. All the neurons were labeled 

with chicken anti-rat MAP2 antibody (1:2000, Abcam, Cambridge, UK) and Alexa Fluor 

633-conjugated anti-chicken secondary antibody at 1:1000 and Hoechst (Sigma) after 

permeabilization with 0.25% Triton X-100 and blocking with 5% BSA. Lastly, the 

coverslips were mounted on newly cleaned slides using Prolong Gold Antifade Reagent 

(Invitrogen) and observed with a LSM700 laser scanning confocal microscope (Carl Zeiss, 

Oberkochen, Germany). To demonstrate possible colocalization between GluA2 and 

GluA1 AMPARs and either A1Rs or A2ARs, hippocampal neurons were permeabilized 

with 0.25% Triton-X100 before subsequent incubation with primary and secondary 

antibodies (see Figure 2.3.2 legends for further details of primary and secondary antibody 

combinations used). Rabbit polyclonal A1R or A2AR antibodies (1:100, Sigma), goat anti-

A1R (1:100, Santa Cruz), and mouse anti-A2AR (1:100, Santa Cruz) were used. All 

neurons were also co-labeled with chicken anti-MAP2 (1:2000). 

The images were acquired using a Zeiss Plan-Apochromat 63X/1.4 oil objective lens 

and analyzed with the Zeiss Zen 2009 software (version 5.5 SPI). The 10µm dendritic 

lengths located 5µm away from the cell soma were included in the analysis of GluA2 and 

GluA1 surface expression, and identical acquisition parameters were used for a given set 

of labeled neurons without over- or under-saturation of the acquired signals. For analyses 

of AMPAR and adenosine receptor colocalization in dendrites, the image window of 
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~10μm dendritic length by ~2μm dendritic width at 0.06μm pixel resolution was used for 

the regions of interest comparisons for the A1R/GluA2, A1R/GluA1, A2AR/GluA2, and 

A2AR/GluA1 groups. Images were exported as 8 bit TIFF files, and the degree of 

colocalization between fluorescent probes was quantified by using the Intensity 

Correlation Analysis plug-in of ImageJ software (downloaded from NIH, version 1.44f), 

which reported the Pearson’s correlation coefficients. Negative Pearson’s correlation 

coefficients indicate the two signals do not colocalize, while values closer to 1 indicate 

strong colocalization between the two particles. The average signal intensities or 

Pearson’s correlation coefficients from two to four dendritic processes from a given 

neuron were determined, and the n-values reported in the summary bar charts refer to 

the number of cells analyzed from at least three different experiments. Different lab 

personnel were involved in preparing the immunocytochemical slides and performing 

confocal analyses to reduce bias. Data are presented as mean±SEM. Group results were 

analyzed by one-way analysis of variance (ANOVA) with Student-Neuman-Keuls post 

hoc test when comparing more than two treatment groups. P>0.05 was considered not 

significant (NS). For transfection experiments, hippocampal neurons were transfected 

with 1g of p38α MAPK shRNA, JNK1 shRNA or control plasmid A (Santa Cruz) and 2L 

Lipofectamine 2000 (Invitrogen). Two days post-transfection, hippocampal neurons were 

treated with 500nM CPA for 45min followed by immunocytochemistry as described above. 

 

2.2.5 Fluoro-Jade B staining 

Sprague-Dawley rat brains were prepared and sectioned as described previously 

(Cayabyab et al., 2013). In brief, anesthetized rats were intracardially perfused with 4% 

paraformaldehyde in PBS for 30 min. Following perfusion, brains were removed and post-

fixed in 4% paraformaldehyde in PBS overnight. Brains were then stored in 30% sucrose 

(w/v) in 0.1M PBS for additional three days. The brains were then frozen in liquid nitrogen 

in Tissue-Tek OCT mounting medium, and 30 µm coronal sections of hippocampus were 

cut with cryostat. Sections were subsequently collected on paraffin coated slides and 

allowed to air dry. Sections were immersed in 70% ethanol, washed three times with 
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ultrapure water (1 min each), and then soaked in 0.06% KMNO4 (15 min). After three 

1min- washes with ultrapure water, sections were subsequently stained with 0.001% 

Fluoro-Jade B (Chemicon International, Temecula, CA) for 20 min. Slides were 

subsequently washed three times in ultrapure water (1 min each) and allowed to dry 

overnight. Slides were then rinsed in Xylene and coverslips were mounted using Prolong 

Gold antifade reagen (Invitrogen). Digital images were obtained with Zeiss LSM 700 (Carl 

Zeiss) using a 20X objective for the hippocampal montages and 63 Oil immersion lens 

for the magnified regions of the hippocampal pyramidal body layers. Three sham and 

three PVD rat brains were used for Fluoro-Jade B staining. 

 

2.2.6 Electrophysiological studies 

Field excitatory postsynaptic potentials (fEPSPs) were evoked by orthodromic 

stimulation of the Schaffer collateral pathway using a bipolar tungsten-stimulating 

electrode. Glass micropipettes filled with ACSF (resistance 1-3MΩ) were used to measure 

CA1 fEPSPs in stratum radiatum. The fEPSP signals were amplified 1000 times with an 

AC amplifier, band-pass filtered at 0.1-100Hz, digitized at 10kHz using a Digidata 1320A 

interface board (Axon Instruments, Foster City, CA), and transferred to a computer for 

analysis. Data were analyzed using Clampfit 9.0 (Axon Instruments). Baseline synaptic 

responses were established by evoking fEPSPs every 30s (0.03 Hz) for at least 20min. 

Paired pulses separated by 50ms were also evoked every 30s to assess changes in 

presynaptic function in control, CPA-treated, sham or PVD hippocampal slices. The 

fEPSP slope was normalized to the mean of the 20 sweeps (10min) immediately 

preceding drug perfusion. The mean normalized fEPSP slope was plotted as a function 

of time with error bars representing the standard error of the mean (SEM). Sample traces 

are the average of 5 sweeps from a recording that was included in the plot of the mean 

normalized fEPSP slope. All bar graphs show the mean normalized percent inhibition 

from baseline ± SEM. Statistical significance was assessed using one-way analysis of 

variance with Student-Neuman-Keuls post hoc test. 
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2.2.7 Drug inhibitors 

N6-cyclopentyladenosine (CPA) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) 

were obtained from Sigma-Aldrich. Baclofen, 3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-

(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid 

(CGS 21680), okadaic acid, fostriecin, Dynasore, and 5-amino-7-(2-phenylethyl)-2-(2-

furyl)-pyrazolo(4,3-e)-1,2,4-triazolo(1,5-c)pyrimidine (SCH 58261) were obtained from 

Tocris Biosciences. SB203580, SB202474, JNK II inhibitor (also called SP600125), and 

JNK inhibitor II negative control (N1-methyl-1,9 pyrazoloanthrone) were obtained from 

Calbiochem (San Diego, CA). All drugs were dissolved in dimethyl sulfoxide (DMSO, 

Sigma) before being added to ACSF. The final concentration of DMSO was always < 

0.1%.  

 

2.2.8 Statistical analysis  

Densitometry was performed using Quantity 1 (Bio-Rad) and ImageJ (public 

domain). A single analysis of variance was performed to obtain the overall significance of 

the treatments followed by a post-hoc Student-Newman-Keuls. Significances for the 

multiple comparisons tests are indicated in the summary bar charts as follows: *P<0.05, 

**P<0.01, and ***P<0.001. Student’s paired t-test was also used when comparing two 

treatment groups. All statistical tests were performed with GraphPad Instat3 version 3.00 

for Windows 97 (GraphPad Software, San Diego, CA). 
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2.3 Results 

2.3.1 GluA2 and GluA1 AMPARs physically interact with A1Rs, but not with A2A receptors 

Physical interactions between different transmembrane G-protein-coupled 

receptors (GPCRs) and ionotropic glutamate receptors are known to exist (Salter 2003; 

Lee and Liu 2004). For example, D2 dopamine receptors exhibit an indirect biochemical 

interaction with GluA2-containing AMPARs, which causes downregulation of AMPAR 

surface expression (Zou, Li et al. 2005). Direct interactions between two or more GPCRs 

are also possible (Angers, Salahpour et al. 2002). For example, it has been shown that 

A1Rs may form heterodimers with A2ARs (Ciruela, Ferre et al. 2006). Thus, it is 

reasonable to propose a possible association of AMPARs with the GPCR A1Rs and 

A2ARs, which are the most abundant of the four known adenosine receptors in the brain 

(Dunwiddie and Masino 2001). We initially sought to characterize this interaction in 

hippocampal slices and cultured hippocampal neurons.  

We performed coimmunoprecipitation experiments to determine whether the 

adenosine A1R exists in the same signaling protein complex as GluA2 and GluA1 in the 

rat hippocampus. We found that both GluA2 and GluA1 formed stable complexes with 

A1Rs (Figure 2.3.1A-B, left panels), and the reverse immunoprecipitation confirmed the 

interaction of GluA2 and GluA1 in the A1R immunoprecipitates (Figure 2.3.1A-B, right 

panels). However, our coimmunoprecipitation studies did not reveal an association 

between adenosine A2A receptors with either GluA2 or GluA1 AMPARs (Figure 2.3.1C-

D). These results indicated that the inhibitory A1Rs, but not the excitatory A2A receptors, 

are specifically localized in the same protein complex as GluA2-containing AMPARs. 

These interactions could certainly contribute to the modulation of the AMPAR function 

and subcellular distribution.  
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Figure 2.3.1 

 

Figure 2.3.1 AMPARs physically interact specifically with A1Rs (A1Rs). (A) GluA2-

containing AMPAR immunoprecipitated complexes from rat hippocampus contained 

A1Rs, and A1R immunoprecipitated complex contained GluA2 subunits. (B) GluA1 

immunoprecipitate from rat hippocampal tissue also contained A1Rs, and the A1R 

immunoprecipitate likewise contained GluA1 subunits. (C) Coimmunoprecipitation of 

GluA2 did not include adenosine A2A receptors (A2ARs), and A2AR antibody did not 

immunopreciptitate GluA2-containing AMPARs. (D) GluA1 immunoprecipitate did not 

contain A2ARs, and A2AR immunoprecipitate did not contain GluA1 subunits. These 

forward and reverse coimmunoprecipitation studies are from at least three independent 

experiments, using hippocampal brain lysates from P18-28 day rats. The molecular 

weights of the specific bands on the blots were estimated from pre-stained protein 

standards, and are as follows: A1R (37 kDa), A2AR (45 kDa), GluR1 (106kDa), and 

GluR2 (102 kDa). 50 µg of protein was loaded into gels as positive control for western 
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blot and 500 µg of protein was as intial proteins for IP. Antibody sources and dilutions are 

indicated in the Materials and Methods.  

2.3.2 GluA2- and GluA1-containing AMPARs colocalize with A1Rs, but not with A2A 

receptors, in cultured hippocampal neurons 

To further confirm the potential interaction of A1Rs with GluA2 and GluA1 AMPARs, 

we used immunocytochemistry and confocal imaging to test whether A1Rs and GluA2-

containing AMPARs colocalized in cultured hippocampal neurons. Hippocampal neurons 

were cultured for 12 days, then fixed with 4% paraformaldehyde and permeabilized with 

detergent to label surface and intracellular localizations of proteins. Mouse anti-GluA2 or 

mouse anti-GluA1 was used with rabbit anti-A1R antibodies, or mouse anti-GluA1 and 

rabbit anti-A2AR antibodies, followed by incubation with appropriate fluorescent 

secondary antibodies for double staining of cultured neurons. Visualization of neuronal 

morphology was facilitated by subsequent immunolabeling with chicken anti-MAP2 

antibody and secondary antibody. Immunocytochemical identification of GluA2/GluA1 is 

shown in green, and A1R/A2AR labeling is in red. Merging the GluA2 or GluA1 AMPAR 

with the A1R images revealed overlapping regions of colocalization, which is shown as 

yellow pixels (Figure 2.3.2A-B). In contrast, merging GluA2 and GluA1 with A2ARs 

produced very few yellow pixels were visible, suggesting little colocalization of A2ARs 

with GluA2 or GluA1 AMPARs in hippocampus (Figure 2.3.2C-D). Quantification of 

overlapping A1Rs and GluA2 or A1Rs and GluA1 AMPARs revealed a significant 

colocalization of A1Rs with GluA2 and GluA1 AMPARs (Figure 2.3.2E). For example, the 

Pearson correlation coefficients for A1R/GluA2 colocalization were 0.81±0.02 (arb. units) 

(n=14) compared with 0.08±0.01 for A2AR/GluA2 colocalization (n=14, P<0.001). 

Together, the above biochemical and confocal imaging results indicated that A1Rs, but 

not A2ARs, specifically formed a physical complex with GluA2 and GluA1 AMPARs and 

are localized in similar dendritic and somatic compartments of hippocampal neurons.  
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Figure 2.3.2 
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Figure 2.3.2 Co-localization of GluA2 and GluA1 with A1R, but not with A2AR, in rat 

hippocampal neurons. After membrane permeabilization, hippocampal neurons were 

triple co-labeled with the following primary antibodies: 1) chicken anti-MAP2 (Abcam); 2) 

mouse anti-GluA2 or rabbit anti-GluA1 (both from Millipore); and 3) goat anti-A1R (Santa 

Cruz), mouse anti-A2AR (Santa Cruz), rabbit anti-A1R (Sigma), or rabbit anti-A2AR 

(Sigma). Secondary antibodies used were conjugated to Alexa 633 (for MAP2, magenta 

panels), Alexa 488 (for GluA2 or GluA1, green panels), and Alexa 555 (for A1R or A2AR, 

red panels). (A-B) Shows the immuno-labeling of MAP2 (magenta panels), GluA2 

(Millipore) (A) or GluA1 (Millipore) (B) (green panels), A1R (Sigma) (A) or A1R (Santa 

Cruz) (B) (red panels), GluA2 or GluA1 merged with A1R (fourth panels from left), and 

magnified views of the dendrites indicated by the respective rectangular regions (last 

panels). A1Rs colocalized with GluA2 (A) or GluA1 (B) around the somas and dendrites, 

as shown by the highly intense yellow pixels in the merged fourth and fifth panels. (C-D) 

Shows the immuno-labeling of MAP2 (magenta panels), GluA2 (Millipore) (C) or GluA1 

(Millipore) (D) (green panels), A2AR (Sigma) (C) or A2AR (Santa Cruz) (D) (red panels), 

GluA2 or GluA1 merged with A2AR (fourth panels from left), and magnified views of the 

dendrites indicated by the respective rectangular regions (last panels). A2AR did not 

colocalize with either GluA2 (C) or GluA1 (D) around the somas and dendrites, as shown 

by the absence of yellow pixels in the merged fourth and fifth panels. Large and small 

scale bars are 10m and 5m, respectively. (E) Colocalization of adenosine receptors 

with AMPARs was quantified by determining the Pearson correlation coefficients. 

Dendritic lengths (10m) taken 5m away from somas from different staining experiments 

were used for co-localization analysis. The values in bars represent the mean ± SEM, 

N=14 neurons each column (from 4 independent hippocampal neuronal cultures, 3-4 

representative neurons included per culture), ***p<0.001.  

 

2.3.3 Stimulation of adenosine A1 receptor triggers GluA2 and GluA1 AMPAR 

internalization via clathrin-mediated and dynamin-dependent endocytosis 

Next, we tested whether this specific physical association of A1Rs with GluA2 and 

GluA1 AMPARs can functionally modify AMPAR trafficking, which is important for 
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excitation of neurons (Bredt and Nicoll 2003; Malinow 2003). To determine whether 

selective activation of A1Rs could alter the trafficking of GluA2 and GluA1 AMPARs, we 

performed surface biotinylation of primary cultures of hippocampal neurons followed by 

western blotting to track changes in GluA2 and GluA1 surface levels. The results showed 

that stimulation of A1Rs with the A1R-selective agonist CPA (500nM, 45min) caused a 

significant decrease in GluA2 and GluA1 surface levels (Figure 2.3.3A-B).  

To determine whether this inhibitory effect requires the clathrin-mediated endocytosis 

pathway, we pre-incubated the neurons with Tat-GluA2-3Y peptide, which has been used 

by other labs to block the clathrin-mediated endocytosis of GluA2 (Ahmadian, Ju et al. 

2004; Brebner, Wong et al. 2005; Xiong, Kojic et al. 2006). Pre-incubation with Tat-GluA2-

3Y peptide prevented the A1R-induced decrease in GluA2 and GluA1 surface expression 

in cultured hippocampal neurons (Figure 2.3.3A-B, third column). The scrambled Tat-

GluA2-3Y peptide did not alter CPA-induced GluA2 and GluA1 surface levels. Similar 

results were obtained using membrane fractionation of hippocampal brain slices. That is, 

GluA2 levels in membrane fractions were as follows: Control (DMSO) 100%, CPA alone 

78.6±2.7% (P<0.01 compared to control), CPA + Tat-GluA2-3Y 93.5±3.1% (P>0.05), and 

CPA + Scrambled Tat-peptide 72.4±4.9% (P<0.01 compared to control). All signals were 

normalized to GAPDH, with N=5 independent experiments (P<0.0001, one-way ANOVA). 

Not surprisingly, we observed a similar pattern of changes in the GluA2 and GluA1 

surface distribution in hippocampal neuronal cultures after A1R stimulation (Figure 

2.3.3A-B), since both GluA2 and GluA1 are known to form heteromers, and GluA2 and 

GluA1 heteromeric AMPARs are the most widely expressed subunits in the hippocampus 

(Wenthold, Petralia et al. 1996; Sans, Vissel et al. 2003; Cull-Candy, Kelly et al. 2006). 

However, upon closer inspection, it is apparent that the levels of CPA-induced GluA1 

internalization were higher (~50%, Figure 2.3.3B bottom) compared to those for GluA2 

internalization (~30%, Figure 2.3.3A bottom). When PVDF membranes of biotinylated 

proteins and total lysates were re-probed with β-actin antibody, the β-actin was only found 

in total lysates and that cytosolic proteins were undetectable in blots containing 

biotinylated surface proteins. Thus, these results suggest that stimulation of A1R induces 

clathrin-mediated endocytosis of GluA2-containing AMPARs in hippocampal neuronal 

cultures.  
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Previous reports also suggested that AMPAR internalization could be mediated by 

dynamin-dependent endocytosis (Carroll, Beattie et al. 1999; Luscher, Xia et al. 1999; 

Man, Lin et al. 2000; Xiong, Kojic et al. 2006). Dynamin is critical for the vesicle formation 

during clathrin-mediated endocytosis (Henley, Cao et al. 1999). Since the use of the Tat-

GluA2-3Y peptide implicated the clathrin-mediated pathway for A1R-mediated AMPAR 

endocytosis, we then determined whether inhibition of dynamin function with Dynasore, 

a dynamin antagonist (Macia, Ehrlich et al. 2006; Newton, Kirchhausen et al. 2006), would 

also blunt the level of CPA-induced AMPAR endocytosis. Pre-incubation of hippocampal 

slices with Dynasore (100M) for 1h prior to CPA stimulation and subsequent biotinylation 

of surface-expressed proteins revealed that Dynasore did indeed prevent A1R-induced 

internalization of both GluA2 and GluA1, as summarized in bar charts in Figure 2.3.3C-

D. Together, the results above demonstrate that prolonged A1R stimulation led to a 

clathrin-mediated and dynamin-dependent internalization of GluA2 and GluA1 AMPARs 

in both hippocampal neurons and hippocampal brain slices. 
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Figure 2.3.3 
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Figure 2.3.3 Prolonged A1R stimulation caused clathrin-mediated AMPAR endocytosis. 

Surface expression of GluA2 decreased by A1R stimulation in cultured hippocampal 

neurons. (A) Cell-surface biotinylation of hippocampal neurons showed a significant 

decrease in GluA2 surface expression after CPA treatment (500nM, 45min) compared 

with DMSO (Control). This effect was abolished with Tat-GluA2-3Y (2M) peptide, which 

specifically blocks clathrin-mediated GluA2 endocytosis, but the scrambled Tat-GluA2-3Y 

peptide did not prevent the inhibitory effects of CPA. Histograms show the densitometric 

quantification of western blots for surface-expressed GluA2 AMPARs. (B) Biotinylation of 

cultured hippocampal neurons showed a significant decrease in GluA1 surface 

expression after prolonged CPA treatment. This effect was abolished by the presence of 

Tat-GluA2-3Y peptide, but not by scrambled Tat-GluA2-3Y peptide. Note the absence of 

beta actin bands in blots containing the biotinylated GluA2 or GluA1. Bar chart summaries 

represent biotinylated GluA2 or GluA1 signals normalized to their respective whole 

hippocampal neuronal lysate signals. Mean±SEM, N=4 from four independent 

experiments, and *denotes p<0.05. C-D. Activation of A1R-induced AMPAR endocytosis 

is dynamin-dependent. (C) Immunoblots are of streptavidin precipitates probed with 

mouse anti-GluA2 antibody. Dynasore (100μM), an inhibitor of dynamin GTPase, 

prevented the CPA-induced GluA2 endocytosis in hippocampal brain slices. GluA2 levels 

remained constant in whole hippocampal slice lysates. (D) GluA1 surface proteins 

detected with rabbit anti-GluA1 were also significantly reduced by prolonged CPA 

application. Dynasore prevented the CPA-induced decrease in GluA1 surface expression. 

Beta actin was absent in surface biotinylation blots, confirming little or no contamination 

of biotinylated AMPARs with cytosolic proteins. Biotinylated signals were normalized to 

GluA2 or GluA1 signals detected in whole hippocampal brain lysates. Mean ± SEM, N=3 

from three independent experiments using a specific GluA2 or GluA1 antibody. *denotes 

p<0.05 and **denotes p<0.01. 
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2.3.4 Prolonged A1R stimulation causes A1R-induced persistent synaptic depression 

(APSD) 

Previously, we reported that short-term application of the selective A1R agonist CPA 

(50nM, 10min) caused significant synaptic depression, however, a persistent synaptic 

depression of approximately 25% remained after 1h of withdrawal of the agonist and was 

accompanied by a recovery of paired pulse ratio back to baseline levels (Brust, Cayabyab 

et al. 2006; Brust, Cayabyab et al. 2007). In contrast, a 30min application of 500nM CPA 

produced an even greater APSD (~50-60%, Figure 2.3.4A). Based on our 

coimmunoprecipitation findings described above, we tested the hypothesis that the 

biochemical associations of GluA2 and GluA1 with A1Rs could facilitate the expression 

of persistent synaptic depression, which alterations of AMPAR levels or function. Using 

the Tat-GluA2-3Y peptide to inhibit GluA2 endocytosis, we found that the APSD levels 

are lower (~30% vs. 55-60%) when slices were pre-incubated with 2µM Tat-GluA2-3Y 

peptide compared with no peptide treatment or treatment with the scrambled Tat-GluA2-

3Y peptide (Figure 2.3.4A, bottom right panel), indicating that clathrin-mediated GluA2 

internalization mediates in part the induction of APSD. Interestingly, the Tat-GluA2-3Y 

peptide also inhibited the short-term synaptic depression during CPA application (~50% 

vs. ~70%, Figure 2.3.4A bottom left panel), possibly indicating that acute application of 

the A1R agonist rapidly activated signaling pathways that contributed to GluA2 and GluA1 

endocytosis. It is noteworthy that both p38 MAPK and JNK were shown to be maximally 

activated within the first 10min of CPA application (Brust, Cayabyab et al. 2006; Brust, 

Cayabyab et al. 2007), and both protein kinases have been implicated in glutamate 

receptor trafficking. The small but significant attenuation of fEPSPs by Tat-GluA2-3Y 

peptide during a 30min CPA application suggested that the molecular mechanisms of 

acute CPA-mediated synaptic depression may involve changes at both presynaptic sites 

(Brust, Cayabyab et al. 2007) as well as postsynaptic sites. Moreover, the Tat-GluA2-3Y 

peptide significantly attenuated APSD in control or scrambled peptide-incubated 

hippocampal slices, where synaptic depression decreased by only ~30% in Tat-GluA2-

3Y vs. 50-60% for control (no peptide) or scrambled Tat-GluA2-3Y groups (Figure 2.3.4A, 

bottom right panel). This indicated that the molecular mechanisms during APSD (i.e., after 

~1h CPA washout) also involve clathrin-mediated GluA2-internalization at a postsynaptic 
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locus. Consistent with this idea, the paired-pulse facilitation observed during CPA 

application returned to baseline levels during APSD despite the presence of significant 

and persistent synaptic depression during extended CPA washout period (Figure 2.3.4B). 

In addition, we determined that the APSD levels observed after ~1h washout of CPA 

was not likely the result of a persistent binding of CPA to A1Rs in hippocampal slices, 

since a subsequent 30min application of the A1R antagonist DPCPX (500nM) did not 

modify the levels of APSD. The normalized fEPSP slope values in this control (no peptide) 

group differed significantly (one-way ANOVA P<0.0001, n=7 animals) as follows: control 

(100±0%), 30min CPA (17±6.1%, P<0.001 vs. control), 1h CPA washout (48.4±9.4%, 

P<0.001 vs. control), and 30min DPCPX (57±5.6%, P<0.001 vs. control, P>0.05 vs. 1h 

CPA washout). These results further indicate that functional interactions between A1Rs 

and GluA2-containing AMPARs in postsynaptic sites facilitate the clathrin-mediated 

endocytosis of AMPARs and the induction of APSDs.  
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Figure 2.3.4 
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Figure 2.3.4 Prolonged stimulation of A1Rs caused A1R-induced persistent synaptic 

depression (APSD) in part via clathrin-mediated GluA2 internalization. (A) Top, 

representative fEPSP traces from hippocampal CA1 region in the absence of Tat-

peptides (Control), in scrambled Tat-GluA2-3Y peptide (2µM), and in Tat-GluA2-3Y 

peptide (2µM). The numbers associated with the fEPSP traces correspond to baseline 

control (1), 30 min after CPA application (2), and 55 min after CPA washout (3), and also 

apply to middle panel. The time course of CPA-induced synaptic depression is 

summarized in the middle panel, showing that Tat-GluA2-3Y peptide, but not its 

scrambled version, partially inhibited the CPA-induced APSD. Bottom panel, Control (no 

peptide) and scrambled Tat-GluA2-3Y produced similar levels of synaptic depression 

during CPA application (left panel) and after CPA washout (right panel), whereas the Tat-

GluA2-3Y peptide significantly attenuated these responses (*P<0.05, ***P<0.001 vs. 

Control (no peptide) or scrambled Tat-GluA2-3Y by Student-Neuman-Keuls post hoc test). 

(B) Paired-pulse stimulation shows that synaptic depression during CPA was 

accompanied by significant paired pulse facilitation (bottom panel, *P<0.05 vs. Control), 

but synaptic depression during APSD showed paired pulse ratios similar to baseline 

control levels. Numbers inside summary bar charts refer to the number of brain slices 

from different animals. Data are means±SEM. Vertical scale bars are 0.5mV, and 

horizontal scale bars are 5ms in A and 10ms in B. These results indicate a functional 

interaction between A1Rs and AMPARs, leading to clathrin-mediated internalization of 

GluA2-containing AMPARs and subsequent induction of APSDs 
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2.3.5 Confocal imaging analysis revealed A1R stimulation mediates clathrin-mediated 

internalization of GluA2 and GluA1 AMPARs in hippocampal neurons 

To confirm our biochemical findings that A1R stimulation decreases GluA2 and GluA1 

surface levels, we used confocal imaging and antibodies that recognized the extracellular 

epitopes of GluA2 and GluA1 proteins to quantify the surface expression of GluA2 and 

GluA1 AMPARs from primary cultured hippocampal neurons. As shown in Figure 2.3.5, 

stimulation of A1Rs with CPA produced a similar decrease in surface levels of GluA2 

(~25% decreased, Figure 2.3.5A-B) and GluA1 (~20% decreased, Figure 2.3.5C-D) 

expressed on dendritic surfaces located 5µm away from the cell somas. These CPA-

induced reductions in surface AMPARs were blocked by either Tat-GluA2-3Y peptide or 

the A1R antagonist DPCPX, but not by the scrambled Tat-GluA2-3Y peptide (Figure 

2.3.5B, D).  

These results indicate that functional A1Rs are required for stimulation of A1R-

induced GluA2 and GluA1 internalization. Moreover, since the concentration of CPA 

(500nM) used in this study may very well be causing significant occupation and 

subsequent activation of A2A receptors, we also determined whether the CPA effects 

involved functional A2ARs. However, pre-incubation of hippocampal neurons with the 

A2A receptor antagonist SCH 58261 did not prevent CPA-induced GluA2 and GluA1 

internalization, and the A2A receptor agonist stimulation with CGS 21680 did not mimic 

the inhibitory effect of the A1R agonist CPA on GluA2 and GluA1 surface expression 

(summarized in Figure 2.3.5B, D). The A2A receptor agonist significantly potentiated 

surface levels of GluA1 but not GluA2 (Figure 2.3.5D). Together, these findings suggest 

that GluA2 and GluA1 AMPARs selectively and functionally interact with A1Rs, but not 

with A2ARs, to promote clathrin-mediated endocytosis of GluA2-containing AMPARs. 
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Figure 2.3.5 
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Figure 2.3.5 AMPAR surface levels were decreased by activation of A1Rs with CPA. (A) 

Confocal imaging of surface GluA2 (green) in primary hippocampal neurons. GluA2 

receptors were first labeled without membrane permeabilization and subsequent 

immuno-labelling of MAP2 was performed after permeabilization with 0.25% Triton X-100. 

These images show that most dendritic processes when exposed to prolonged A1R 

agonist CPA (500nM), demonstrate reduced surface GluA2 whereas pre-incubation of 

hippocampal neurons with Tat-GluA2-3Y (2M) peptide prevented activation of A1R-

induced GluA2 internalization. (B) Summary bar chart showing that activation of A1R-

induced GluA2 internalization requires clathrin-mediated endocytosis (shown with Tat-

GluA2-3Y) and functional A1Rs (shown with DPCPX (100nM)). The A2A receptor 

antagonist, SCH 58261 (30nM), did not prevent activation of A1R-induced GluA2 

internalization, whereas the A2AR agonist CGS 21680 (10nM) did not mimic the effect of 

CPA. (C-D) Similar to GluA2, the surface GluA1 levels were decreased by activation of 

A1R (with CPA). (C) Representative confocal images show that CPA decreased surface 

levels of GluA1 (red), but not in the presence of Tat-GluA2-3Y peptide or DPCPX. (D) 

Summary bar chart showing that activation of A1Rs induced surface GluA1 internalization, 

which was prevented by Tat-GluA2-3Y peptide and DPCPX, but not by scrambled Tat-

GluA2-3Y peptide and SCH 58261. However, CGS 21680 significantly increased surface 

levels of GluA1. Average intensity values in bars represent the mean±SEM and n-values 

of the number of neurons used are indicated in the bar charts. Statistical significance 

assessed using one-way ANOVA, followed by post hoc Student Newman-Keuls test. 

*p<0.05, **p<0.01, ***p<0001, NS p>0.05.  
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2.3.6 GluA2-containing AMPARs are regulated by A1R-mediated activation of p38 MAPK, 

JNK and PP2A in hippocampal brain slices 

In previous studies, we showed that activation of A1Rs by CPA leads to increased 

activity of p38 MAPK and JNK, and that A1Rs and the p38 MAPK were found in the same 

protein complex (Brust, Cayabyab et al. 2006; Brust, Cayabyab et al. 2007). We 

hypothesized that p38 MAPK and JNK activation converged on signaling pathway(s) 

activated by A1Rs and cause internalization of GluA2-containing AMPARs. To determine 

whether A1R-p38 MAPK and A1R-JNK signaling pathways are involved in A1R-induced 

internalization of GluA2, rat hippocampal slices were pre-incubated with the p38 MAPK 

inhibitor SB203580 (20μM) alone or in combination with the JNK inhibitor II (5μM) for 1h 

before CPA applications. After separating the membrane from cytosolic fractions, 

immunoblotting was performed to quantify the levels of GluA2 in hippocampal membrane 

fractions. We found that the p38 MAPK inhibitor fully inhibited the CPA-induced 

attenuation of GluA2 levels in membrane fractions (Figure 2.3.6A). CPA treatment alone 

caused a ~48% decrease in membrane GluA2 levels. However, pre-incubation of 

hippocampal slices with both p38 MAPK and JNK inhibitors not only prevented the A1R-

induced decrease in GluA2 membrane levels, this drug combination also significantly 

increased the GluA2 membrane levels by 3-fold (Figure 2.3.6A, bottom panel).  

To confirm these results obtained from membrane fractions and to begin to address 

potential side effects of drug inhibitors, we also pre-incubated hippocampal slices with 

SB203580 (20μM, p38 MAPK inhibitor), SB202474 (20μM, Negative control of 

SB203580), JNK II inhibitor (5μM) or JNK II negative inhibitor (5μM) prior to CPA 

incubation (500nM, 45min). The surface proteins were isolated using biotinylation and 

quantified by western blotting. Incubation of the slices with either SB203580 or JNK II 

inhibitor prevented A1R-induced internalization of GluA2-containing AMPARs, whereas 

their respective inactive analogs were ineffective in blocking the GluA2 internalization 

(Figure 2.3.6B).  

Phosphorylation of AMPARs is important for trafficking of AMPARs (Shepherd and 

Huganir 2007). Activation of phosphorylated p38 MAPK by A1 receptor stimulation  
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Figure 2.3.6 
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Figure 2.3.6 A1R-mediated internalization of GluA2-containing AMPARs in hippocampal 

slices is differentially regulated by p38 MAPK, JNK, and PP2A. (A) Levels of GluA2 (top) 

and GAPDH (bottom) in the membrane fraction with the indicated treatments. The 

summary bar chart shows that activation of A1Rs by CPA (500nM, 45min) produced a 

48% decrease in GluA2 membrane expression. Pre-incubation with a p38 MAPK inhibitor 

(SB203580, 20μM) prior to CPA application (500nM, 45min) significantly reduced GluA2 

internalization. Pre-incubation with both p38 MAPK and JNK II (5μM) inhibitors produced 

GluA2 levels above N-values are as follows: for Control (n=8 independent blots), CPA 

(n=8), SB203580 (n=5), and SB203580 + JNK inhibitor II (n=7). (B) In surface biotinylation 

studies, p38 MAPK inhibitor SB203580 (20μM) but not the inactive analog SB202474 

(20μM) and JNK II inhibitor (5μM), but not its inactive analog JNK II negative control (5μM) 

individually prevented CPA-mediated GluA2 internalization. Hippocampal slices were 

pre-incubated with SB203580, SB202474 (20μM), JNK II inhibitor and JNK II negative 

inhibitor (5μM) for 1h prior to CPA treatment (500nM,45 min). (C) Surface biotinylation 

study of hippocampal slices pre-incubated for 1h prior to CPA treatment (500nM, 45min) 

in DMSO (control), or one of the PP2A inhibitors Okadaic Acid (20nM), or Fostriecin 

(20nM). Surface levels of GluA2 after CPA treatment were significantly reduced, as 

shown before, and this surface reduction was prevented by treatment with PP2A inhibitor 

treatment. Intensity values in summary bar chart represent the mean±SEM from n=4 

independent experiments; *p<0.05, **p<0.01, ***p<0.001. 
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induced translocation of PP2A (protein phosphatase 2A) to the cell membrane (Brust, 

Cayabyab et al. 2006; Brust, Cayabyab et al. 2007). Therefore, modulation of AMPARs 

in the brain by phosphorylation may play a role in APSD. To determine whether PP2A is 

involved in A1R-induced internalization of GluA2, rat hippocampal slices were pre-

incubated with the PP2A inhibitor Fostriecin (20nM) or Okadaic acid (20nM) for 1h before 

CPA applications (500nM, 45min). Both PP2A inhibitors prevented the internalization of 

GluA2-containing AMPARs induced by CPA (Figure 2.3.6C), suggesting PP2A is involved 

in A1R-induced GluA2 AMPARs internalization. Together, these data indicate that p38 

MAPK, JNK and PP2A are involved in clathrin-mediated endocytosis of GluA2 AMPARs.  

 

2.3.7 GluA1-containing AMPARs are regulated by A1R-mediated activation of PP2A, but 

not p38 MAPK and JNK in hippocampal brain slices 

To determine whether p38 MAPK, JNK and PP2A are involved in A1R-induced GluA1 

internalization, rat hippocampal slices were pre-incubated with the p38 MAPK inhibitor 

SB203580 (20μM) alone or in combination with the JNK inhibitor II (5μM) for 1h before 

CPA application (500nM, 45min). After separating the membrane from cytosolic fractions, 

immunoblotting was performed to quantify the levels of GluA1 in hippocampal membrane 

fractions. Pre-incubation of p38 MAPK and JNK inhibitors did not inhibit the CPA-induced 

attenuation of GluA1 levels in membrane fractions (Figure 2.3.7A, summarized in bottom 

panel). 

Biotinylation experiments were also performed to confirm the results obtained from 

membrane fractions. We pre-incubated hippocampal slices with SB203580 (20μM), 

SB202474 (20μM), JNK II inhibitor (5μM) or JNK II negative inhibitor (5μM) prior to CPA 

incubation (500nM, 45min). Incubation of the slices with either SB203580 or JNK II 

inhibitor did not prevented the A1R-induced internalization of GluA1 AMPARs. Their 

respective inactive analogs were also ineffective in blocking the GluA1 internalization 

(Figure 2.3.7B). Similar to the results obtained from hippocampal membrane fractions  

 



61 
 

Figure 2.3.7 
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Figure 2.3.7 A1R-mediated internalization of GluA1-containing AMPARs in hippocampal 

slices is not regulated by p38 MAPK or JNK, but is regulated by PP2A, and robust A1R 

activation reduced GluA1-Ser845 phosphorylation. (A) Levels of GluA1 (top) and GAPDH 

(bottom) in the membrane fraction of hippocampal slice lysates with pre-incubation in 

DMSO (control), SB203580 (20μM), or SB203580 and JNK II inhibitor (5μM) together 

followed by CPA treatment (500nM, 45min). Both p38 MAPK inhibitor SB203580 alone 

and SB203580 plus JNK II inhibitor did not prevent A1R-induced GluA1 internalization. 

(B) Surface biotinylation of hippocampal slices showing that A1R-mediated GluA1 

internalization did not depend on the activity of p38 MAPK and JNK. Compared to GluA2, 

Drug treatments with SB203580 (20μM), but not the inactive analog SB202474 (20μM), 

or JNK II inhibitor (5μM), or the inactive analogs of SB203580 (SB202474, 20μM) or JNK 

II inhibitor (JNK II neg. inhibitor, 5μM), did not prevent A1R-induced internalization of 

GluA1. (C) Pre-incubation of hippocampal slices in the PP2A inhibitors Okadaic Acid 

(20nM) or Fostriecin (20nM) for 1h followed by CPA treatment (500nM, 45min) prevented 

A1R-induced internalization of GluA1. (D) Whole lysates of hippocampal slices treated 

with CPA (50nM or 500nM, 45min) or the GABAB receptor antagonist Baclofen (10μM, 

45min) and probed for the C-terminal phosphorylation site GluA1-pSer845. The antibody 

used was specific for phosphorylated Ser845 (pSer845) of GluA1. CPA treatment of 

500nM caused a robust decrease in pSer845, whereas Baclofen and 50nM CPA did not. 

All values in summary bar charts are means±SEM, with * p<0.05, **p<0.01; ***p<0.001.  
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(Figure 2.3.7A), A1R-mediated GluA1 internalization was also unaltered by active or 

inactive analogs of p38 MAPK and JNK inhibitors (Figure 2.3.7B).  

To determine whether PP2A is involved in the A1R-induced GluA1 internalization, 

hippocampal slices were pre-incubated with the PP2A inhibitors Fostriecin (20nM) or 

Okadaic Acid (20nM) for 1h before CPA applications. The PP2A inhibitors prevented the 

internalization of GluA1 induced by CPA alone (Figure 2.3.7C), suggesting PP2A is 

involved in A1R-induced GluA1 internalization. Because CPA induces PP2A translocation 

to hippocampal membrane fraction (Brust, Cayabyab et al. 2006), and PP2A can 

dephosphorylate GluA1 at Serine845 (Ser845) (Snyder, Allen et al. 2000), we predicted 

that CPA application decreases the phosphorylation of GluA1 at Serine 845. The resultant 

blots showed that incubation of CPA (500nM), but not the low CPA concentration (50nM) 

or Baclofen (10µM), which is an agonist for the GABAB receptors (Mezler, Muller et al. 

2001), Resultant blots showed decreased phosphorylation of GluA1 at Ser845 (Figure 

2.3.7D). The results suggest that dephosphorylation levels of GluA1 at Ser845 specifically 

are induced by the activation of A1R but not activation of GABAB. The results also show 

that the activation of A1Rs by 500nM CPA, but not 50nM CPA, induced robust reductions 

of GluA1-pSer845. Together, these data indicate that PP2A, but not p38 MAPK and JNK, 

is involved in clathrin-mediated endocytosis of GluA1 AMPARs, and that the 

internalization of GluA1 is correlated with a reduction of phosphorylated GluA1 at Ser845. 

 

2.3.8 Selective inhibition of p38 MAPK and JNK by shRNA transfections prevented A1R-

mediated GluA2 internalization in cultured hippocampal neurons 

To further address the dependence of GluA2-containing AMPAR internalization on 

A1R-mediated p38 MAPK and JNK activation, we used confocal imaging of cultured 

hippocampal neurons and compared the effects of pharmacological inhibitors and genetic 

knockdown of p38 MAPK and JNK. Cultured hippocampal neurons were pretreated with 

the p38 MAPK inhibitor SB203580, SB202474 (inactive p38 MAPK inhibitor), JNK II 

inhibitor or JNK II negative inhibitor (concentrations same as above) and then stimulated 

with 500nM CPA for 45min. As shown in Figure 2.3.8A, surface levels of GluA2 were 
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significantly decreased by CPA, but not in the presence of SB203580 or JNK II inhibitor. 

Indeed, the JNK II inhibitor not only blunted CPA-induced GluA2 internalization, it also 

potentiated GluA2 surface levels (Figure 2.3.8A, right panel). In contrast, the respective 

negative control compounds SB202474 (for p38 MAPK) or the JNK II negative inhibitor 

(for JNK) did not prevent CPA-induced GluA2 internalization.  

We also tested the effects of p38 MAPK and JNK inhibitors on A1R-mediated GluA1 

internalization, and found that these pharmacological inhibitors (SB203580 and JNK II 

inhibitor) did not significantly alter the levels of surface-expressed GluA1, using an 

antibody directed against an extracellular epitope in non-permeabilized condition. The 

GluA1 intensity values (arbitrary units) obtained using a similar analysis performed for 

GluA2 were as follows: Control GluA1 (691.5±55.4, n=36), CPA (310.6±24.9, n=15, 

P<0.001 vs. control), SB203580 + CPA (433.1±63.4, n=16, P<0.05 vs. control), 

SB202474 + CPA (287.6±44.0, n=22, P<0.001 vs. control), JNK II inhibitor + CPA 

(503.9±39.5, n=33, P<0.01 vs. control), and JNK II negative control + CPA (468.1±29.6, 

n=41, P<001 vs. control). These imaging results are in agreement with our biochemical 

studies (Figure 2.3.6 and 2.3.7), indicating that GluA2 and GluA1 internalizations are 

differentially regulated by A1R-mediated p38 MAPK and JNK activation. 

In our previous report (Brust, Cayabyab et al. 2007), we found that both SB203580 

and JNK II inhibitor (also called SP600125) inhibited A1R-mediated phospho-JNK2/3 

elevation, raising the possibility that these drugs may have narrow specificity for p38 

MAPK and JNK or that JNK activation is dependent on p38 MAPK activation. We 

therefore compared the effects of pharmacological inhibitors of p38 MAPK and JNK on 

CPA-mediated GluA2 internalization with those effects using genetic knockdown of p38 

MAPK and JNK. We transfected hippocampal neurons with p38α MAPK shRNA, JNK1 

shRNA or the control shRNA Plasmid A separately. Using western blotting, we confirmed 

that two days after transfection the expression level of p38 MAPK was decreased by 45% 

and the level of JNK1 was decreased by 46% compared to control 
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Figure 2.3.8 
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Figure 2.3.8 A1R-mediated decrease in GluA2 surface levels in primary hippocampal 

neurons was prevented by pharmacological inhibitors and genetic knockdown of p38 

MAPK and JNK. (A) Intensity levels of surface-expressed GluA2 were determined by 

confocal imaging and analyzing 10µm dendritic lengths located 5µm away from cell 

somas. Results showed A1R-induced GluA2 endocytosis was inhibited by p38 MAPK 

inhibitor SB203580 (20μM), but not by inactive analog SB202474, and JNK II inhibitor 

(5μM), but not by its inactive analog JNK II negative control. The compounds SB203580, 

SB202474, JNK II inhibitor and JNK II negative inhibitor were applied to hippocampal 

neurons for 1h prior to CPA treatment (500nM, 45 min). Surface GluA2 (green) was 

detected by using an antibody directed against the extracellular epitope of GluA2 in non-

permeabilized conditions, then subsequently permeabilized and stained with chicken anti-

MAP2 antibody (red). The p38 MAPK and JNK inhibitors did not significantly affect CPA-

mediated GluA1 internalization (see text in Results for values) (B) Using a shRNA 

knockdown strategy, the shRNAs p38α MAPK and JNK1 prevented A1R-induced GluA2 

internalization. Cultured neurons transfected with the control plasmid A (GFP-fluorescent), 

p38α MAPK, or JNK1 shRNA were treated with DMSO or CPA (500nM, 45min) and 

subsequently labeled with GluA2 and MAP2 as in (A) CPA-induced GluA2 internalization 

was prevented by transfections of p38α MAPK and JNK1 shRNA plasmids. Average 

GluA2 intensity values in summary bar charts represent the mean±SEM from 3 

transfections, with the number of neurons indicated inside brackets, and where *p<0.05, 

**P<0.01, ***P<0.001 vs. control. Statistical significance was assessed using one-way 

ANOVA, followed by post hoc Student Newman-Keuls test. Calibration is 2µm, and 

applies to panels in A and B. 
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shRNA transfections (data not shown). Confocal imaging analysis revealed that two days 

after transfection of hippocampal neurons with control Plasmid A, p38 MAPK shRNA or 

JNK shRNA and subsequent A1R stimulation with CPA (500nM for 45min), the A1R-

induced GluA2 internalization was completely abrogated by the p38α MAPK or JNK1 

shRNAs (Figure 2.3.8B). A modest but significant increase in GluA2 surface levels was 

also observed in neurons transfected with JNK1 shRNA (Figure 2.3.8B, right panel). 

Together, these results indicate that stimulation of A1R-induced GluA2 internalization is 

dependent on p38 MAPK and JNK activities. 

 

2.3.9 The A2AR is not involved in GluA2 trafficking, but is involved in GluA1 trafficking 

As per the coimmunoprecipitation and colocalization results shown in Figures 2.3.1 

and 2.3.2, A2ARs are not physically associated with GluA1 and GluA2 AMPARs. 

However, this does not preclude a functional interaction between A2ARs and AMPARs. 

Indeed, it has been shown that selective agonist activation of A2ARs increased the GluA1 

level in hippocampus (Dias, Ribeiro et al. 2010). To determine whether the stimulation of 

the A2ARs alter GluA2 surface expression, we incubated hippocampal slices with the 

A2AR agonist CGS 21680 (10nM), or the A2AR antagonist SCH 58261 (30nM) for 1h. 

The results showed that CGS 21680 (Figure 2.3.9A) and SCH 58261 (Figure 2.3.9B) did 

not alter the surface level of GluA2, suggesting the stimulation of A2ARs does not change 

the surface level of GluA2. To test whether the stimulation of A2ARs alter the surface 

expression of GluA1, we also quantified the GluA1 surface levels with treatment of CGS 

21680 or SCH 58261 in hippocampal slices. The results showed that CGS 21680 (Figure 

2.3.9A), but not SCH 58261 (Figure 2.3.9B), increased the surface level of GluA1, 

indicating that the stimulation of A2ARs increase the surface level of GluA1. 

To determine whether A1R stimulation and A2AR stimulation alter surface expression 

of either adenosine receptor, we pre-incubated hippocampal slices with CGS 21680 

(10nM) alone or CGS 21680 (10nM) for 1h prior to CPA incubation (500nM, 45 min). 

Incubation of the slices with CGS 21680 (Figure 2.3.9C) or SCH 58261 (Figure 2.3.9D) 

did not prevent the CPA-induced internalization of A1R. However, SCH 58261  
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Figure 2.3.9 
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Figure 2.3.9 The A2AR does not affect A1R-induced GluA2 internalization, but does affect 

A1R-induced GluA1 internalization. (A) Surface biotinylation of hippocampal slices that 

were pre-incubated with DMSO (control) or CGS 21680 (10nM), an A2AR agonist, for 1h 

followed by CPA treatment (500nM, 45min). Blots (left) were probed for GluA2 and GluA1 

levels and summary bar charts (right) show that CGS 21680 did not affect either GluA2 

surface expression with CGS 21680 alone or in CGS 21680 with CPA treatment (left bar 

chart). Conversely, CGS 21680 prevented CPA-induced GluA1 internalization, and CGS 

21680 by itself significantly increased GluA1 surface levels without CPA treatment (right 

bar chart). (B) Biotinylation of hippocampal slices pre-incubated in SCH 58261 (30nM), 

an A2AR antagonist followed by CPA treatment (500nM, 45min). Summary bar charts 

show that SCH 58261 did not significantly affect CPA’s effect on the surface levels of 

GluA2 and GluA1. (C) Hippocampal biotinylation using the same protocol as in (A) labeled 

for A1R and A2AR. Summary char chart for A1R (left chart) shows that CPA and CGS 

21680 with CPA-induced a reduction in surface A1Rs, and were not affected by CGS 

21680 by itself. The A2AR surface levels (right chart) were not affected by CPA treatment 

alone, but were reduced with CGS 21680 treatments. (D) Using the same drug treatments 

as in (B), biotinylation shows A1R and A2AR expression levels with CPA, SCH 58261, or 

CPA and SCH 58261 together. Summary bar chart for A1R (left chart) shows that CPA 

alone and CPA with SCH 58261 induced reduced surface levels of A1R, but SCH 58261 

alone did not affect A1R levels. A2AR surface levels (right chart) show that CPA and SCH 

58261 together as well as SCH58261 by itself caused an increase in A2AR surface levels, 

but CPA alone did not affect surface levels. All values are means±SEM, with **p<0.01; 

***p<0.001.  
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alone or in combination with CPA increased A2AR surface levels (Figure 2.3.9D), 

suggesting that endogenous adenosine tone was sufficient to cause A2AR 

desensitization in the hippocampal slices. To address the relationship of stimulation and 

internalization between A1Rs and A2ARs, we incubated the hippocampal slices with the 

agonists and antagonists of A1Rs and A2ARs. The results show that CPA application 

alone decreased the surface level of A1Rs, but not A2ARs (Figure 2.3.9C), suggesting 

CPA specifically stimulates A1Rs. Application of CGS 21680 decreased the surface level 

of A2ARs, but not A1Rs (Figure 2.3.9C). Pre-incubation of CGS 21680 prior CPA 

treatment did not prevent CPA-induced A1R internalization, but still caused A2AR 

internalization (Figure 2.3.9C), suggesting CGS 21680 specifically activates A2ARs. SCH 

58261 treatment increased the surface level of A2ARs, but not A1Rs (Figure 2.3.9D) 

suggesting that SCH 58261 specifically binds A2ARs. Pre-incubation of SCH 58261 prior 

to CPA did not prevent CPA-induced A1R internalization, suggesting that stimulation of 

A2ARs is not involved in the CPA-induced A1R internalization. Pre-incubation of SCH 

58261 prior to CPA treatment still increased the surface level of A2ARs (Figure 2.3.9D), 

suggesting A1R stimulation is not involved in SCH 58261-induced increase in surface 

level of A2ARs. In summary, the A2AR is not involved in A1R-induced internalization of 

AMPARs, but A2AR stimulation affects the surface level of GluA1, but not GluA2. In 

addition, stimulation of A1Rs and A2ARs independently alter their surface expression 

levels.  

 

2.3.10 Hypoxia mediates GluA2 and GluA1 internalization via clathrin-mediated 

endocytosis 

It is widely accepted that hypoxia increases the extracellular levels of adenosine (Van 

Wylen, Park et al. 1986; Phillis, Walter et al. 1987; Fowler 1993; Dale, Pearson et al. 

2000). Due to high concentrations of adenosine in hypoxia, A1Rs are expected to be 

activated to mediate hypoxia-induced synaptic depression (Fowler 1989). We also 

previously reported that a 5min hypoxic insult caused significant synaptic depression in 

CA1 region of hippocampus, and this was shown to be dependent on A1R-mediated 
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activation of p38 MAPK and JNK (Brust, Cayabyab et al. 2006; Brust, Cayabyab et al. 

2007). Earlier studies by Sebastiao and colleagues provided the first report of an 

incomplete recovery of synaptic transmission after slightly more prolonged hypoxic insult 

to hippocampal slices (Lucchi, Latini et al. 1996). In the present study, we performed 

surface biotinylation and membrane fractionation studies using hippocampal brain slices 

after a 20min hypoxic insult to test whether prolonged hypoxic insult induces clathrin-

mediated internalization of GluA2- and GluA1-containing AMPARs through A1R 

activation. Hippocampal slices were pre-incubated with Tat-GluA2-3Y or scrambled Tat-

peptide for 1h before applying hypoxic stimulation for 20min. After hypoxia, the membrane 

fractions or the biotinylated proteins were isolated and analyzed by western blotting. As 

shown in Figure 2.3.10, the hypoxic insult mimicked the effect of selective A1R stimulation 

with CPA (see Figure 2.3.3), by significantly decreased GluA2 and GluA1 levels in 

hippocampal membrane fractions (Figure 2.3.10A-B) and in surface biotinylated samples 

(Figure 2.3.10C-D).  

However, the Tat-GluA2-3Y peptide, but not the scrambled Tat-peptide, was also 

effective in blocking hypoxia-mediated GluA2 and GluA1 internalization, as shown in 

hippocampal membrane fractions (Figure 2.3.10A-B) and in biotinylated hippocampal 

tissue (Figure 2.3.10C-D). To confirm that the hypoxia-induced reduction in GluA2 and 

GluA1 surface expression was caused by A1R stimulation, pre-incubation of hippocampal 

slices with the A1R antagonist DPCPX blocked these changes in GluA2 and GluA1 

surface levels (Figure 2.3.10C-D, summary bar chart). These results indicate a previously 

unknown mechanism involving excess elevation of adenosine during hypoxia that leads 

to clathrin-mediated AMPAR internalization and hypoxia-mediated synaptic depression. 
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Figure 2.3.10 
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Figure 2.3.10 Hypoxia-induced internalization of both GluA2 and GluA1 requires clathrin-

mediated endocytosis and functional A1Rs in rat hippocampus. (A). Hippocampal slices 

were pre-incubated with Tat-GluA2-3Y (2M) or scrambled Tat-GluA2-3Y (2M) peptides 

for 1h before applying hypoxic insult (ACSF solution saturated with 95% N2/5% CO2). 

After a 20min hypoxic stimulation, hippocampal membrane fractions were isolated and 

GluA2 levels were subsequently determined by western blotting. GluA2 signals in 

membrane fractions were normalized to GAPDH values. During hypoxia, membrane 

expression of GluA2 was significantly decreased, and Tat-GluA2-3Y peptide, but not its 

scrambled version, prevented this GluA2 downregulation. (B). Similar to GluA2, the Tat-

GluA2-3Y peptide prevented the decrease in GluA1 expression in hippocampal 

membrane fractions. Values in A-B are mean±SEM for GluA2 and GluA1 from six 

independent experiments, with *P<0.05, **P<0.01, and ***P<0.001 vs. control. (C-D) Rat 

hippocampal slices pre-incubated with DPCPX (500nM) or Tat-GluA2-3Y peptide (2M) 

were exposed to a 20min hypoxic insult, and surface proteins were subsequently 

biotinylated and analyzed by western blotting. Hypoxia-induced decrease in surface 

GluA2 (C) and GluA1 (D) was prevented by DPCPX and Tat-GluA2-3Y peptide. In 

contrast, GluA2 and GluA1 levels in whole hippocampal lysates were not altered (second 

row of blots in panels C-D), and beta actin was only detected in whole lysate blots (fourth 

row), but not in the biotinylated blots (third row). Values in C-D are mean±SEM from three 

independent experiments, with *P<0.05 and ***P<0.001. 

 

 

 

 

 

 

 



74 
 

2.3.11 Focal cortical ischemia in an in vivo PVD small-vessel stroke model alters 

hippocampal surface expression of AMPARs and adenosine receptors, contributes to 

tonic synaptic depression, and increases neurodegeneration in the hippocampus 

Many focal cerebral ischemia models involve occlusion of large cerebral blood 

vessels such as the middle cerebral artery, which results in damage to the striatum and 

cortex to varying degrees depending on the duration of vessel occlusion (Traystman 

2003). During hypoxia, transient global ischemia or focal cerebral ischemia, it is well 

accepted that there is an increase in the extracellular levels of adenosine (Van Wylen, 

Park et al. 1986; Rudolphi, Schubert et al. 1992; Valtysson, Persson et al. 1998; Dale, 

Pearson et al. 2000; Chu, Xiong et al. 2013). Brain damage in global and focal ischemia 

models occurs within selectively vulnerable areas such as the hippocampal CA1 region, 

neocortex, and striatum (Kirino 1982; Smith, Bendek et al. 1984; McBean and Kelly 1998; 

Traystman 2003; Prosser-Loose, Verge et al. 2010). Global ischemia has been shown to 

selectively reduce the expression of GluA2-containing AMPARs in the CA1 region in rats 

and gerbils (Pellegrini-Giampietro, Zukin et al. 1992; Pollard, Heron et al. 1993; Gorter, 

Petrozzino et al. 1997; Pellegrini-Giampietro, Gorter et al. 1997). In this study, we have 

used a modified pial vessel disruption (PVD) protocol, which mimics mild, small-vessel 

strokes. This involves disruption of class II size pial vessels, and has been shown to 

produce a consistent cone-shaped cortical lesion damage that does not extend to the 

corpus callosum (Wang and Walz 2003; Hua and Walz 2006; Cayabyab, Gowribai et al. 

2013). Since this represents a permanent non-reperfusion injury model, we hypothesized 

that adenosine surges will be sufficiently prolonged to cause GluA2 and GluA1 

downregulation and induce damage in brain regions distant from the site of injury, such 

as the hippocampus.  

As shown in Figure 2.3.11A-B, GluA2 and GluA1 surface expression in the ipsilateral 

side of the hippocampus were reduced 2 days after performing the PVD lesion surgeries. 

Surprisingly, these levels were also downregulated in the contralateral side of the 

hippocampus. Consistent with our results showing that surface levels of GluA2 and GluA1 

are reduced by the A1R agonist CPA, and both AMPAR subunits coimmunoprecipitated 

with A1Rs, we found that A1R surface expression was reduced both in ipsilateral and 
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contralateral sides of the lesion (Figure 2.3.11C). This result agrees with previous findings 

(Coelho, Rebola et al. 2006) showing that hypoxia-mediated increase in extracellular 

adenosine downregulates A1Rs. In contrast, A2AR surface expression increased in the 

ipsilateral and contralateral side of the cortical lesion damage. Since it is widely accepted 

that adenosine is tonically elevated during cerebral ischemia, we tested the hypothesis 

that adenosine surges in the brain after focal disruption of cortical pial vessels (no 

reperfusion) may be sufficient to affect vulnerable brain regions, such as the hippocampus, 

and influence the induction of synaptic depression. Therefore, we evaluated the effects 

of PVD vs. sham surgeries on synaptic transmission two days post surgeries. The fEPSP 

recordings from hippocampal slices were obtained from the ipsilateral side of PVD 

surgery lesion or sham surgery. Consistent with a downregulation of A1Rs after PVD, we 

observed less synaptic potentiation and paired-pulse depression when the A1R 

antagonist DPCPX was applied to the PVD slices compared to sham brains (Figure 

2.3.12A-B). These data indicate that persistent synaptic depression in PVD hippocampal 

slices reflects changes in both presynaptic (decreased probability of transmitter release) 

and postsynaptic (altered levels of AMPARs and adenosine receptors) loci. These results 

also indicate that a focal cortical ischemia can potentially affect vulnerable areas of the 

brain distant from the site of injury. 

Finally, to quantify neurodegenerative processes in the hippocampus in PVD vs. 

sham, post-stroke (48h) hippocampal slices were obtained to perform Fluoro-Jade B 

staining. Confocal imaging results of Fluoro-Jade B staining show that more 

neurodegeneration was observed in the hippocampus in PVD brain slices compared to 

sham animals (Figure 2.3.12C). This suggests that the disruption of class II size pial 

vessels in PVD cause the impairment of hippocampal neurons. 
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Figure 2.3.11 
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Figure 2.3.11 A focal cortical cerebral ischemia model with pial vessel disruption (PVD) 

injury affects expression of AMPARs and adenosine receptors in hippocampus. Two days 

after PVD or sham surgeries, hippocampal slices were prepared for biotinylation and 

subsequent immunoblotting, and some slices were used for electrophysiology (see Fig. 

12). The resulting focal cortical lesions decreased surface expression of GluA2 (A), GluA1 

(B), and A1R (C) but increased A2AR expression (D) in PVD at both ipsilateral and 

contralateral sides of the hippocampus compared to sham-operated animals. Values in 

summary bar charts represent mean±SEM (N=4 animals each), with *P<0.05, **P<0.01, 

and ***P<0.001. 
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Figure 2.3.12 
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Figure 2.3.12 PVD model of focal cortical cerebral ischemia leads to increased synaptic 

depression in hippocampus. (A) Hippocampal slices from sham-operated or PVD-

lesioned brains were exposed to 500nM DPCPX for 30min to assess the level of synaptic 

depression (reflecting adenosine tone). DPCPX induced greater synaptic transmission in 

sham vs. PVD hippocampal slices. (B) Responses to paired pulses (50ms apart) revealed 

greater paired-pulse depression in sham vs. PVD hippocampal slices. Values in A-B are 

means±SEM from 4 independent experiments (4 animals each), with *P<0.05 and 

**P<0.01 unpaired Student’s t-test. Calibration: 0.5mV, 5ms in A, and 10ms in B. The 

numbers “1” and “2” associated with figure traces and time course charts correspond to 

fEPSPs at baseline and fEPSP in DPCPX, respectively. C. Confocal images of Fluoro-

Jade B staining of Sham hippocampus (Ci) and PVD hippocampus (Cii). Images are from 

the ipsilateral side of sham surgery or PVD lesion, and are representative of slices from 

four different animal experiments. Scale bars in low and high magnification images are 

500µm and 100µm. Boxed regions near CA1, CA2 and CA3 pyramidal body layers in low 

magnification 

 

2.4. Discussion 

In the hippocampus, adenosine has been implicated in neuroprotection through the 

A1Rs (Rudolphi, Schubert et al. 1992; Wardas 2002) and neuronal damage through the 

A2ARs (Rudolphi, Schubert et al. 1992; Cunha 2005) in neuronal insult conditions such 

as ischemia/hypoxia. However, the signal transduction pathways involved in these 

contrasting actions are not yet well understood. Acknowledging the contributions of 

glutamate and adenosine to synaptic depression in cerebral ischemia, we investigated 

the potential roles of AMPA glutamate receptors in A1R-mediated persistent synaptic 

depression, which we have termed APSD. Using biochemical, electrophysiological and 

confocal imaging techniques in combination with a Tat-peptide interference and shRNA 

genetic knockdown strategies, we discovered a novel functional and biochemical 

interaction between A1Rs and AMPARs that ultimately contribute to APSD in the 

hippocampus. Our results indicate that hippocampal APSD is mediated by clathrin-

mediated, dynamin-dependent internalization of GluA2- and GluA1-containing AMPARs 
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after prolonged A1R stimulation. To further explore the molecular mechanisms of APSD 

induction and A1R-mediated AMPAR internalization, pharmacological inhibition or 

genetic knockdown of p38 MAPK and JNK was used. We show reduced p38 MAPK 

and/or JNK activity prevented GluA2, but not GluA1, AMPAR downregulation. This study 

suggests an important regulatory pathway with potential therapeutic targets to mitigate 

adenosine-induced hypoxic/ischemic damage to the brain. 

The p38 MAPK and JNK have diverse biological functions, including regulation of 

gene expression, synaptic plasticity and cell survival (Cargnello and Roux 2011; Denise 

Martin, De Nicola et al. 2012), and are also implicated in internalization of epidermal 

growth factor receptor and AMPARs (Xiong, Kojic et al. 2006; Boudreau, Reimers et al. 

2007; Lambert, Ameels et al. 2008; Lambert, Frankart et al. 2010). Since A1Rs and 

hypoxia lead to the activation of p38 MAPK and JNK in the brain (Brust, Cayabyab et al. 

2006; Brust, Cayabyab et al. 2007; Sanchez, Tripathy et al. 2012), we hypothesized that 

A1R-induced AMPAR endocytosis is dependent on p38 MAPK and JNK. Activation of 

p38 MAPK by the protein synthesis inhibitor anisomycin has been shown to induce 

clathrin-mediated internalization of GluA2 AMPARs (Xiong, Kojic et al. 2006), which is in 

accordance with our finding that A1R activation or hypoxic/ischemic insult leads to 

clathrin-mediated GluA2 internalization dependent on p38 MAPK and JNK activation. 

However, our results showed that pharmacological inhibition or shRNA knockdown of p38 

MAPK and JNK prevented GluA2, but not GluA1 internalization, indicating that p38 MAPK 

and JNK could selectively target GluA2. In contrast, p38 MAPK, JNK, and extracellular 

signal-regulated kinase (ERK) phosphorylation was shown to be inversely proportional to 

the surface expression of GluA1 in the nucleus accumbens after cocaine challenge 

(Boudreau, Reimers et al. 2007). 

Because AMPARs form functional hetero- or homo-oligomeric receptors, the subunit 

composition of each receptor is important in the regulation of the receptors (Optiz, 

Grooms et al. 2000). The C-terminus of each of the four AMPAR subunits are major 

regulatory sites for a variety of signaling proteins, including various phosphorylation sites 

for major serine/threonine kinases such as protein kinase A (PKA), protein kinase C 

(PKC), and calcium/calmodulin-dependent kinase II (CaMKII) (Greengard, Jen et al. 1991; 
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Blackstone, Murphy et al. 1994; Tan, Wenthold et al. 1994; Wang, Dudek et al. 1994; 

Barria, Derkach et al. 1997; Barria, Muller et al. 1997; Mammen, Kameyama et al. 1997). 

AMPAR subunit phosphorylation, GluA1 in particular, potentiates channel activation by 

increasing single channel conductance, channel open frequency, and mean open time 

(Greengard, Jen et al. 1991; Blackstone, Murphy et al. 1994; Derkach, Barria et al. 1999; 

Banke, Bowie et al. 2000; Oh and Derkach 2005). Two major phosphorylation sites of 

GluA1, Ser831 and Ser845, targets of PKC/CAMKII or PKA, respectively, have been 

implicated in GluA1 surface expression and synaptic translocation, which are important 

in synaptic plasticity (Esteban, Shi et al. 2003; He, Lee et al. 2011). These 

phosphorylation sites are dynamically regulated by phosphorylation and 

dephosphorylation events, where dephosphorylation has been shown to involve protein 

phosphatase 1 (PP1) and calcineurin (PP2B), which promote GluA1 internalization and 

long term depression (Kameyama, Lee et al. 1998; Lee, Kameyama et al. 1998; Ehlers 

2000; Lee, Barbarosie et al. 2000; Lee, Takamiya et al. 2003).  

Since A1R stimulation leads to protein phosphatase 2A (PP2A) activation and 

translocation to membrane fractions (Brust, Cayabyab et al. 2006), we hypothesized that 

PP2A inhibition would prevent GluA1 internalization. We show that treatment of 

hippocampal slices with the PP2A inhibitors Okadaic Acid and Fostriecin prevented CPA-

induced GluA1 and GluA2 internalization after CPA treatment. This is in accordance with 

other studies that show GluA1 phosphorylation states are integral in the regulation of 

GluA1 surface expression and function (Lee, Kameyama et al. 1998; Lee, Takamiya et 

al. 2003). We tested the hypothesis that CPA induces a reduction of phosphorylated 

Ser845 (pSer845) on the C-terminus of GluA1 and we show that high concentrations of 

CPA, the A1R agonist, induce a reduction in pSer845.  

We initially sought to establish a functional and biochemical coupling between 

AMPARs and A1Rs in hippocampus, and found that GluA2 and GluA1 are physically 

associated with A1Rs but not with A2ARs. Since the C-terminus of AMPAR subunits 

contain binding sites for a complex array of signaling and binding proteins, it is possible 

that a direct or indirect protein-protein interaction exists between AMPARs and A1Rs. For 

example, the D2 dopamine receptors exhibit an indirect interaction with GluA2-containing 
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AMPARs, via direct interaction of the GluA2 C-terminus with N-ethylmaleimide-sensitive 

factor (NSF) to stabilize AMPAR surface expression (Henley, Nishimune et al. 1997; 

Nishimune, Isaac et al. 1998; Osten, Srivastava et al. 1998; Song, Kamboj et al. 1998; 

Zou, Li et al. 2005). In contrast to NSF, the scaffolding protein SAP-97 (Leonard, Davare 

et al. 1998; Sans, Racca et al. 2001) and the cytoskeletal proteins 4.1G/4.1N (Shen, Liang 

et al. 2000; Lin, Makino et al. 2009) directly interact with the GluA1 C-terminus to promote 

surface expression of GluA1-containing AMPARs. In addition, the endocytic adaptor 

protein 2 (AP2) (Lee, Liu et al. 2002), glutamate receptor interacting protein (GRIP) (Dong, 

O'Brien et al. 1997), and protein interacting with C kinase-1 (PICK1) (Staudinger, Zhou et 

al. 1995; Xia, Zhang et al. 1999) have all been shown to bind to the C-terminus of GluA2 

and GluA3. However, it remains to be determined whether these interacting proteins are 

present in the same macromolecular protein complex as A1Rs and AMPARs to potentially 

regulate AMPAR internalization, synaptic depression and neurotoxicity following A1R 

stimulation by CPA or by excessive levels of adenosine during cerebral ischemia.  

The cellular mechanisms underlying A1R-mediated changes in synaptic plasticity and 

neurotoxicity are still unclear. Our current findings indicate a dynamic physio-pathological 

adaptation of glutamatergic synapses to insults triggering a massive elevation of cerebral 

adenosine tone. We determined that prolonged A1R stimulation with CPA or in PVD focal 

cortical stroke model led to substantial APSD that did not recover following treatments 

with the A1R antagonist DPCPX. Although fEPSP recovery was observed in the presence 

of Tat-GluA2-3Y peptide, APSD was not abolished in Tat-GluA2-3Y-pretreated 

hippocampal slices. Nevertheless, these data indicate that GluA2-containing AMPARs 

are required for restoration of synaptic activity following prolonged exposure to adenosine 

during PVD cortical stroke. We found in earlier studies (Brust, Cayabyab et al. 2006; Brust, 

Cayabyab et al. 2007) that CPA applied for shorter duration (10 min) and at 10-fold lower 

concentration (40-50nM) produced lower levels of APSDs (~25% compared to 50-60% 

APSDs in present study using 500nM CPA for 30min). We also observed that 50nM CPA 

did not significantly alter levels of GluA1 phosphorylation at Ser845 (Figure 2.3.7D), 

indicating that more prolonged A1R stimulation may be required for robust changes in 

surface AMPARs, such as during cerebral ischemic insults that trigger a massive surge 

of extracellular adenosine. This prolonged A1R stimulation led to clathrin-mediated 
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internalization of GluA2-containing AMPARs. The resultant decrease in both GluA2-

containing AMPARs and A1Rs as well as the more pronounced APSDs, may contribute 

to the increased susceptibility of hippocampal CA1 pyramidal neurons to ischemic 

damage following PVD. Interestingly, we found that p38MAPK and JNK inhibitors 

selectively reduced GluA2 AMPAR internalization, while PP2A inhibitors caused similar 

reductions in clathrin-mediated endocytosis of GluA2 and GluA1 AMPARs. Our results 

also showed that the neuroprotective and inhibitory adenosine A1 receptor surface 

expression decreased, while the surface levels of the neurotoxic and excitatory adenosine 

A2A receptors increased during PVD. These results indicate that APSD could mediate 

neuronal damage in subsequent periods following PVD cortical stroke, although it 

appears to afford neuronal protection during acute neuronal insult, such as acute hypoxia. 

However, future studies are required to establish the role of APSD in adenosine-induced 

neurodegeneration. 

It is also possible that chronic and acute A1R activation could exert a different 

influence on synaptic plasticity. For example, chronic exposure to CPA enhanced learning 

in mice (Von Lubitz, Paul et al. 1993), whereas acute administration of CPA impaired 

learning capacity (Normile and Barraco 1991). In middle-aged rats (7-10 months old), 

long term potentiation (LTP) was impaired (Rex, Kramar et al. 2005), which was 

consistent with higher adenosine tone that likely enhanced disinhibition of synaptic 

transmission in aged rats (Sebastiao, Cunha et al. 2000). In line with these behavioral 

findings, acute administration of an A1R antagonist enhanced, while endogenous 

adenosine reduced LTP, LTD and depotentiation (de Mendonca and Ribeiro 1994; de 

Mendonca, Almeida et al. 1997; de Mendonca and Ribeiro 2000). LTP was also inhibited 

by the adenosine uptake blocker nitrobenzylthioinosine, presumably by increasing 

extracellular adenosine (de Mendonca and Ribeiro 1994). Cunha and colleagues have 

also reported previously that the A2ARs play a prominent role over A1Rs in regulating 

hippocampal LTP triggered by electrical stimulation in adult and aged rodents (Costenla, 

Cunha et al. 2010; Costenla, Diogenes et al. 2011). This requires an A2AR-regulated and 

NMDAR-mediated enhancement of LTP (Rebola, Lujan et al. 2008). In addition, Dias and 

colleagues (Dias, Rombo et al. 2013) recently reported that oxygen glucose deprivation 

unmasks a novel form of long term potentiation mediated by increased expression of 
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GluA2-lacking AMPARs and requiring the stimulation of A2ARs, which is opposite to the 

role of A1Rs in APSD during PVD and hypoxia (present study). Our findings obtained 

from juvenile rats indicate a novel form of long lasting synaptic depression, known as 

APSD, which is triggered by prolonged A1R stimulation, involving activation of p38 MAPK, 

JNK and PP2A, and clathrin-mediated endocytosis of GluA2-containing AMPARs. We 

propose that p38 MAPK and JNK inhibitors would be potent inhibitors of the A1R-

mediated excitotoxic potential, by decreasing GluA2 internalization and promoting the 

neuroprotective GluA2-containing AMPARs on neuronal membranes. Therefore, both 

A2ARs and A1Rs contribute to adenosine neuromodulation of glutamatergic synapses by 

increasing GluA2-deficient AMPARs and inducing LTP (for A2ARs, see (Dias, Rombo et 

al. 2013)) and increasing GluA2 and GluA1 endocytosis to produce APSD (for A1Rs, 

present study). Since previous reports suggested that A2ARs are increased while A1Rs 

are decreased in middle aged rats (Cunha, Constantino et al. 1995; Sebastiao, Cunha et 

al. 2000; Rebola, Sebastiao et al. 2003), it remains to be established whether this novel 

form of long lasting synaptic depression is maintained in middle aged animals. 

Our present study supports the hypothesis that prolonged A1R activation during 

hypoxia or focal cortical ischemia causes clathrin-mediated GluA2 and GluA1 AMPAR 

endocytosis and persistent synaptic depression, which could contribute significantly to 

increased neuronal death. The novel signaling complex formed by A1Rs, GluA2-

containing AMPARs, and MAPKs (p38 MAPK and JNK) represents an important 

mechanism of ischemic damage that may provide effective therapeutic targets in cerebral 

ischemia. 
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CHAPTER 3 

Casein Kinase 2 Regulates Equilibrative Nucleoside Transporter and Adenosine A1 

Receptor in Rat Hippocampus 

Zhicheng Chen, Jocelyn Stockwell, Nicole L. Longmuir, and Francisco S. Cayabyab  
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Abstract  

Equilibrative nucleoside transporters (ENTs) and adenosine A1 receptors (A1Rs) 

are widely expressed in the hippocampus, acting to regulate extracellular adenosine 

levels and induce synaptic depression, respectively, during cerebral ischemia. However, 

the cellular mechanisms that control the cell surface expression of ENTs and A1Rs in the 

brain remain poorly resolved. Since ENTs contain consensus sites for casein kinase 2 

(CK2) phosphorylation, we hypothesized that ENT and A1R interactions and CK2 

inhibition are involved in A1R-dependent downregulation of ENT surface expression 

during hypoxia. Coimmunoprecipitation from Sprague-Dawley rat hippocampal brain 

homogenates and confocal imaging microscopy of primary cultured hippocampal neurons 

revealed physical associations of ENTs with A1Rs, but not with A2A receptors. Using 

whole lysates and membrane fractions from hippocampal brain slices and a phospho-

specific antibody to immunoprecipitate the phospho-Serine254-ENT1 (pSer254-ENT1, a 

known CK2 target), we determined that ENT1 was constitutively phosphorylated. Several 

CK2 inhibitors (TBB, DMAT, and DRB) but not the ENT1-selective inhibitor NBTI reduced 

pSer254-ENT1 levels in whole lysates. DRB also decreased, while CK2 activator 

spermine increased, the surface expression of pSer254-ENT1 in biotinylation assays of 

hippocampal brain slices. Moreover, biotinylation of cultured hippocampal neurons 

revealed that ENT1 and ENT2 surface expression was downregulated by CK2 and ENT 

inhibitors and by the A1R agonist CPA, but not in the presence of the A1R antagonist 

DPCPX. Pretreatments of hippocampal slices with CK2 or ENT inhibitors also enhanced 

hypoxia-mediated ENT and A1R surface expression downregulation. CK2 inhibitors 

reduced neurodegeneration caused by hypoxic insult in hippocampal slices, suggesting 

CK2 inhibitors are neuroprotective. These results indicate that CK2-induced and A1R-

linked ENT trafficking represents an important regulatory mechanism of hypoxic/ischemic 

hippocampal brain damage. 
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3.1 Introduction  

During cerebral ischemia or stroke, the level of extracellular adenosine is elevated, 

with two possible sources: adenosine release from ischemic brain cells and derived from 

extracellular ATP metabolism (Dunwiddie and Masino 2001; Benarroch 2008). 

Extracellular adenosine acts as a neuromodulator by inhibiting excitatory synaptic 

transmission through the activation of adenosine A1 receptors (A1Rs), and may also act 

as an endogenous neuroprotectant by reducing glutamate excitotoxicity (Dunwiddie and 

Masino 2001). It has been reported that selective A1R stimulations or brief hypoxia 

induces profound synaptic depression in the hippocampus that is partially mediated by 

p38 MAPK and JNK activation (Brust, Cayabyab et al. 2006; Brust, Cayabyab et al. 2007). 

The inhibitory effect of A1R stimulation on synaptic transmission was mediated primarily 

by a presynaptic mechanism, since A1R agonists increased paired-pulse facilitation. 

However, after prolonged washout of the A1R agonist, a persistent synaptic depression 

remained even after paired pulse facilitation has recovered back to baseline (Brust, 

Cayabyab et al. 2007). This indicated that the actions of adenosine are not all presynaptic, 

but a postsynaptic action is also included. Consistent with this suggestion, the A1Rs have 

been found to be distributed on the surface of somatodendritic structures in the 

hippocampus as shown by immunofluorescence and electron microscopy studies 

(Ochiishi, Chen et al. 1999), and biochemical data also demonstrated a highly localized 

distribution of A1Rs in the active zone and postsynaptic density in hippocampal synapses 

(Rebola, Pinheiro et al. 2003). However the regulatory mechanisms controlling adenosine 

tone and the postsynaptic actions of A1R stimulation in an ischemic environment require 

further investigation.  

Facilitated diffusion of adenosine across cellular membranes via nucleoside 

transporters is a mechanism by which intracellular and extracellular concentrations of 

adenosine are controlled (Dunwiddie and Masino 2001). Two families of nucleoside 

transporters have been identified in mammalian cells: Na+-dependent concentrative 

nucleoside transporters (CNTs) and Na+-independent equilibrative nucleoside 

transporters (ENTs) (Baldwin, Beal et al. 2004; Kong, Engel et al. 2004). Six subtypes of 

CNTs (CNT1-6) and four subtypes of ENTs (ENT1-4) have been further identified. The 

present study focuses on the two best-characterized equilibrative nucleoside transporters, 
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ENT1 and ENT2, which are ubiquitously expressed throughout the body. These isoforms 

are highly expressed in pyramidal neurons of the hippocampus, an area of the brain that 

is highly susceptible to ischemic damage (Anderson, Xiong et al. 1999).  

Nucleoside transporters mediate adenosine transport across cell membranes and 

are therefore major regulators of intracellular and extracellular adenosine levels. However, 

little is known about how ENTs are regulated in the hippocampus. It has been shown that 

nucleoside transporters are subject to regulations by intracellular signaling pathways, and 

both activators and inhibitors of protein kinase C (PKC), protein kinase A (PKA) and CK2 

have been shown to alter the transport function and membrane expression of ENTs in a 

variety of cell types (Coe, Zhang et al. 2002; Stolk, Cooper et al. 2005), but whether these 

signaling molecules regulate ENT function in the brain remains unclear. Both ENT1 and 

ENT2 have 11 transmembrane domains and a large intracellular loop between 

transmembrane domains 6 and 7, which contains protein kinase CK2 phosphorylation 

consensus sites, suggesting that these transporters are potentially regulated by CK2. Rat 

ENT1 contains CK2 phosphorylation consensus sites at Thr-248 and Ser-254, while rat 

ENT2 contains one CK2 phosphorylation site at Thr-236 (Kiss, Farah et al. 2000; Handa, 

Choi et al. 2001). In addition, two splice variants of mouse ENT1 have been identified that 

differ in their amino acid sequence such that the shorter variant lacks one of the accepted 

CK2 phosphorylation consensus sites (Ser-254). Hence, the shorter variant has a 

reduced transport activity relative to the other variant with both consensus sites (Kiss, 

Farah et al. 2000; Handa, Choi et al. 2001). However, it is not yet established whether 

the activities of CK2 and/or A1Rs can regulate the subcellular localization of ENTs in the 

hippocampus. 

The present study was undertaken to determine whether phosphorylation of ENTs 

by CK2 is a major determinant of ENT surface expression in rat hippocampal neurons 

and brain slices. The results show that activations of CK2 increased while inhibition of 

CK2 decreased the phosphorylation and surface expression of ENTs in cultured 

hippocampal neurons and hippocampal brain slices, and levels of co-precipitated A1Rs 

and ENTs were reduced in the presence of CK2 inhibitors. In addition, direct inhibitions 

of ENTs or direct A1R stimulations led to an A1R-mediated reduction in ENT surface 



89 
 

expression, which was consistent with the direct coupling of ENTs and A1Rs. Finally, 

hypoxia caused significant downregulation of ENT and A1R surface expression, and this 

downregulation effect was further enhanced by preincubation of hippocampal brain slices 

with CK2 or ENT blockers. CK2 inhibitors can rescue hypoxia-induced neurodegeneration, 

suggesting CK2 inhibitors are neuroprotective in the rat hippocampus. Together, these 

results indicate that functional and biochemical interactions between ENTs and A1Rs and 

their surface densities depend on CK2 activity, which represents an important mechanism 

for targeting CK2 activity and A1R-ENT signaling complex in hypoxic/ischemic brain 

damage.  

 

3.2 Materials and Methods  

Ethics statement 

All animals were treated according to guidelines of the Canadian Council for 

Animal Care (CCAC) under the supervision of the University of Saskatchewan Committee 

on Animal Care and Supply (UCACS) under animal protocol approval number 20070090. 

3.2.1 Hippocampal slice preparations and treatments 

Young male Sprague-Dawley rats at postnatal day 18-30 (P18-30) (Charles River, 

Canada) were anesthetized with halothane and decapitated according to protocols 

approved by the UCACS. Brains were quickly extracted and placed in ice-cold 

oxygenated dissection medium containing the following (in mM): 87 NaCl, 25 NaHCO3, 

25 glucose, 75 sucrose, 2.5 KCl, 1.25 NaH2PO4, 7.0 MgCl2, and 0.5 CaCl2. Hippocampal 

slices (400m thick) were cut using a vibrating tissue slicer (Leica VT1200S) and 

maintained for 1h at room temperature (RT) in artificial cerebrospinal fluid (ACSF) 

containing the following (in mM): 126 NaCl, 2.5 KCl, 2.0 MgCl2, 1.25 NaH2PO4, 26 

NaHCO3, 10 glucose, 2.0 CaCl2, and aerated with 95% O2/5% CO2. Hippocampal slices 

were then incubated in ACSF solution at RT (22-24C) with the various drug treatments: 

dipyridamole, DPY (10M); S-(4-Nitrobenzyl)-6-thioinosine, NBTI (100 nM); 

dimethylaminotetrabromobenzimidazole, DMAT (5 M); tetrabromobenzotriazole, TBB 
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(10 M); spermine tetrahydrochloride (300 M, Tocris) or 

dichlororibofuranosylbenzimidazole, DRB (100 M) for 1.5h. Brain slices were incubated 

for another 20min in normoxic ACSF or hypoxic ACSF (i.e., ACSF bubbled for 15min with 

95% N2/5% CO2) as previously described (Brust, Cayabyab et al. 2006; Brust, Cayabyab 

et al. 2007). DMSO was used as a vehicle control. All chemicals were obtained from 

Sigma-Aldrich (except when mentioned otherwise) and diluted in DMSO before being 

added to ACSF. The final concentration of DMSO was always <0.1% of the final solution. 

3.2.2 Hippocampal lysate preparation, biotinylation assay, and western blotting 

Following the treatments described above, hippocampal slices were lysed and 

separated into membrane and cytosolic fractions, which were later analyzed by 

quantitative western blotting technique as previously described (Brust, Cayabyab et al. 

2006; Brust, Cayabyab et al. 2007). In brief, the hippocampal tissue slices were lysed in 

a solubilization buffer (30min) that contained 50mM Tris (pH8.0), 150mM NaCl, 1mM 

EDTA, 1mM NaF; protease inhibitors: 1mM PMSF, 10g/L aprotinin, 10g/mL pepstatin 

A, 10g/mL leupeptin, 2mM Na3VO4, 20mM sodium pyrophosphate, 3mM benzamidine 

hydrochloride, 4mM glycerol 2-phosphate. The tissue homogenates were then 

centrifuged at 1,000xg (5min at 4C) to remove cellular debris. Membrane and cytosolic 

fractions were separated by centrifugation at 13,000xg for 1h at 4C by omitting the 

detergent from the solubilization buffer. Proteins from the particulate (membrane) fraction 

were resolved in normal solubilization buffer (as above plus detergent, 1% NP-40) after 

removal of cytosolic extract (supernatant). Whole lysates from hippocampal slices were 

prepared using solubilization buffer containing 1% NP-40 and protease inhibitors 

(Cayabyab, Gowribai et al. 2013). Protein concentrations were determined using Bradford 

assays with the Bio-Rad dye.  

For biotinylation experiments, hippocampal slices or 7 day old cultured hippocampal 

neurons (see below) were incubated with 1.2µM tetrodotoxin in ACSF whenever DPCPX 

was used to prevent DPCPX-mediated glutamate release, which could confound the 

direct effects of drug inhibitors on ENT and A1R surface localization. After treatments, 

hippocampal slices or neurons were then cooled to 4°C (20-30min), and then washed 
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with ice-cold ACSF before biotinylation. Slices or neurons were then incubated with 1 

mg/ml NHS-SS-Biotin (Pierce) at 4°C for 45 min. Rinsing the tissue with quenching buffer 

stopped the reaction. Slices were then transferred into lysis buffer containing protease 

inhibitors and 1% NP-40 detergent (as above). After determining the protein 

concentrations using the Bradford Assay with the DC Protein assay dye (Bio-Rad), equal 

amounts of protein lysates (200-500µg) were diluted in lysis buffer, and biotinylated 

proteins were incubated overnight with streptavidin beads. The beads were then washed 

4-6 times the next day with lysis buffer containing 0.1% NP-40. The proteins were eluted 

by adding 50µl of 1X Laemmli sample buffer and boiling the samples at 95°C for 10min. 

Similarly, hippocampal lysates from brain slice homogenates and membrane and 

cytosolic fractions were diluted with 1X Laemmli sample buffer and boiled for 10min. The 

samples were run on 10% SDS-PAGE gels, and the resulting blots were probed with the 

appropriate primary and secondary antibodies. The primary antibody dilutions are as 

follows: polyclonal rabbit anti-ENT1 (1:1000; Millipore), polyclonal rabbit anti-ENT2 

(1:1000; Abcam), rabbit anti-phospho-Serine 254-ENT1 (1:1000, Abgent), mouse anti-

phospho-Serine antibody (1:1000, Santa Cruz Biotechnology), polyclonal rabbit anti-A1R 

(1:1000; Sigma), polyclonal rabbit anti-A2AR (1:1000, Sigma), monoclonal mouse anti-

GAPDH (1:2000; Millipore). Following four washes (15min each) with TBST, the 

membranes were incubated with rabbit, mouse or goat horseradish peroxidase-

conjugated secondary antibody against IgG (1:000; Santa Cruz, 1:3000 for GAPDH) in 5% 

non-fat milk (1h, room temperature). The membranes were then washed 4 times (15min) 

with TBST, and proteins were visualized using enhanced chemiluminescent reagent 

(Santa Cruz). Surface labeled proteins (i.e., biotinylated) were normalized to their 

respective proteins present in whole lysates, since the levels of ENT1, ENT2 and A1R in 

hippocampal whole lysates remained constant independent of the type of treatments. For 

membrane and cytosolic fractions, protein signals were quantified by normalizing all 

bands with the GAPDH protein band signals. 

3.2.3 Immunoprecipitation  

To examine interactions of ENT1 and ENT2 with A1R or A2AR, immunoprecipitation 

was performed by first incubating 500g extract from hippocampal homogenates with the 
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antibody corresponding to the protein being immunoprecipitated (overnight; 4°C). The 

antibodies used were: 2-4g rabbit anti-ENT1 (Millipore), 2-4g rabbit anti-ENT2 (Abcam), 

4g rabbit anti-A1R (Sigma), and 4g rabbit anti-A2AR (Sigma). Negative controls 

included omitting the immunoprecipitating antibodies and replacing with 0.2g rabbit IgG 

(Sigma). After overnight incubation with primary antibodies, then either anti-mouse IgG 

(whole molecule) agarose (Sigma), anti-rabbit IgG (whole molecule) agarose (Sigma), or 

protein A/G agarose (Santa Cruz) beads were added to the homogenates for either an 

additional 3h (at room temperature) or overnight (4°C) to collect the immunoprecipitates. 

Agarose beads were then collected by pulse spins, and washed four times with wash 

buffer (solubilization buffer containing 0.1% NP-40). Proteins from the agarose beads 

were eluted with 65µl of 1x Laemmli sample buffer (Bio-Rad), boiled for 10min, and 

resolved in polyacrylamide gels. Proteins were then electrotransferred to polyvinylidene 

fluoride (PVDF) membranes (Millipore) and proteins were visualized using enhanced 

chemiluminescence.  

To determine whether CK2 phosphorylates ENT1 proteins at serine residues, we first 

performed immunoprecipitation of phospho-serine proteins using 2g of mouse 

monoclonal IgM anti-phospho-serine antibody (Millipore) with 300g lysates from 

hippocampal membrane fractions prepared from control slices or slices pre-treated with 

the CK2 inhibitor TBB (20M for 1.5h). The resulting blots were probed with anti-ENT1 

antibody (Millipore), which showed that ENT1 proteins were reduced in phosphor-Serine 

by immunoprecipitation (see Figure3.3.3). Conversely, ENT1 was also 

immunoprecipitated using 2g of rabbit polyclonal ENT1 antibody (Millipore) from 

hippocampal membrane lysates, and the presence of phospho-serines in these ENT1 

immunoprecipitates was also showed with the anti-phospho-serine antibody (data not 

shown). We then confirmed using hippocampal whole cell lysates whether the CK2 

inhibitor TBB reduced ENT1 phosphorylation at the ser-254-ENT1 site, a known CK2 

target (Kiss, Farah et al. 2000; Handa, Choi et al. 2001; Bone, Robillard et al. 2007). We 

immunoprecipitated phospho-Ser254-ENT1 using 2g of the rabbit polyclonal anti-

phospho-Ser254-ENT1 antibody (Abgent), and probed the resulting blots with anti-ENT1 

(Millipore). Reverse immunoprecipitation was also performed to confirm that the ENT1 
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immunoprecipitates (2g of anti-ENT1 antibody from Millipore) contained the phospho-

Ser254-ENT1 (Abgent) in immunoblots. Normal rabbit IgG or mouse IgG (0.4µg, Santa 

Cruz Biotechnology) was used as a negative control for the immunoprecipitating 

antibodies. After overnight incubation, the immune complexes were captured with protein 

A/G PLUS-agarose (Santa Cruz Biotechnology) for 4h at 4ºC. Agarose beads were then 

collected by pulse spins, and washed four times with wash buffer (solubilization buffer 

containing 0.1% NP-40). Immunoprecipitated proteins from the agarose beads were 

eluted and detected by western blotting as described above. 

3.2.4 Hippocampal neuron culture, immunocytochemistry, and image acquisition and 

analysis 

Rat hippocampal neurons were cultured as described by others (Kaech and Banker, 

2006) and immunocytochemistry was performed 10-14 days after plating. In brief, low-

density hippocampal neurons (5x104 cells/35 mm culture dishes) from 17-18 day old 

embryonic rat brains are grown on polylysine-coated coverslips, which are suspended 

above a one week old astrocyte feeder layer. The hippocampal neuron/astrocyte cultures 

were kept in Neurobasal medium (Invitrogen) supplemented with 2% B27 serum-free 

supplement (Invitrogen), 1% GlutaMAX-I supplement (Invitrogen), containing 1% 

penicillin-streptomycin (100 U/mL) (Invitrogen). Cultures were maintained at 37°C in a 

humidified atmosphere of 5% CO2 and 95% air. Every 2–3 days half of the medium was 

replaced with fresh medium. For immunocytochemistry, the hippocampal neurons were 

treated with pharmacologic agents tetrodotoxin (TTX, 0.5µM), bicuculline (50µM), 

strychnine (1µM) and D-APV (50µM) for 20-30min, to block neural activity, GABAA, 

glycine, and N-methyl-D-aspartate (NMDA) receptors, respectively. 

To assess the possible colocalization of A1Rs and ENTs, hippocampal neurons were 

washed three times with phosphate buffered saline (PBS), fixed with 2% 

paraformaldehyde, washed three times with PBS, permeabilized for10 min with 0.25% 

Triton X-100 in PBS, and then blocked for 1h at RT with PBS containing 5% bovine serum 

albumin (BSA, Sigma). The neurons were triple labeled by overnight incubation (at 4°C) 

with the following antibodies and dilutions: rabbit anti-ENT1 (1:200, Abcam) or rabbit anti-
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ENT2 (1:200, Abcam); goat anti-A1R (1:200, Santa Cruz) or mouse anti-A2AR (1:200, 

Santa Cruz); and chicken anti-MAP2 (1:2000, Abcam). Antibodies were diluted at 1:200 

in blocking buffer followed by brief washes (three times; 10min each) and incubation for 

1h at room temperature with the appropriate secondary antibodies, including Alexa Fluor 

555-conjugated goat anti-rabbit, Alexa Fluor 488-conjugated donkey anti-mouse or anti-

goat secondary antibodies (Invitrogen), and Alexa Fluor 633-conjugated anti-chicken 

secondary antibody (all at 1:1000). All neuronal nuclei were labeled with Hoechst (Sigma). 

Finally, the coverslips were mounted on newly cleaned slides using Prolong Gold Antifade 

Reagent (Invitrogen).  

As previously described (Cayabyab, Gowribai et al. 2013), confocal images were 

acquired with the Zeiss Zen 2009 software (version 5.5 SPI) of the Zeiss LSM 700 laser 

scanning confocal microscope (Carl Zeiss) equipped with a 405nm, 488nm, 555nm and 

639nm solid state laser lines. For all the quantitative colocalization analyses, we used a 

Zeiss Plan-Apochromat 63X/1.6 oil objective lens and identical acquisition parameters 

(laser intensities, detector sensitivity, digital offset, and microscope pinhole set to 1 Airy 

unit) for a given set of labeled neurons without over- or under-saturation of the acquired 

signals. Each fluorophore was imaged individually using the multi-track channels to 

prevent dye bleed. Images were exported as 8 bit TIFF files, and the degree of 

colocalization between fluorescent probes was quantified using the Intensity Correlation 

Analysis plug-in in ImageJ (software download from NIH, version 1.44f), which calculated 

both the Pearson’s correlation coefficients and Mander’s coefficients. We report the 

Pearson’s coefficients in this study since the ratio of fluorescent signals in the two 

channels were different from unity. Negative Pearson’s coefficients indicate the two 

signals do not colocalize, while values closer to 1 indicate strong colocalization between 

the two particles. Colocalization analysis was obtained from three 3 different hippocampal 

neuronal cultures.  

3.3.5 Propidium iodide staining  

The methods used to stain hippocampal slices with propidium iodide (PI) were 

adopted from a paper by Pugliese et al. (2009). Following equilibration of hippocampal 
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slices for 1h after slicing, the following drug treatments were added: the CK2 inhibitors 

DMAT and TBB, and the CK2 activator spermine. Slices that were treated with spermine 

were also treated with D-APV to prevent aberrant NMDAR activation prior to spermine for 

1h. Hippocampal slices were then subjected to a 20min hypoxic insult by replacing 

oxygenated ACSF with hypoxic ACSF that was bubbled with 95% N2 / 5% CO2 prior to 

and continuously throughout the hypoxic insult. After 20min hypoxia, ACSF was replaced 

with normoxic ACSF and the slices were incubated at room temperature for 3h. During 

the final 1h incubation period, 5 μg/ml propidium iodide (Sigma-Aldrich) was added to the 

ACSF. Following the incubation period, slices were rinsed thoroughly in ACSF and then 

fixed in 4% paraformaldehyde at 4°C overnight. In the following day, slices were washed 

3 x 15min in 1X PBS and then mounted on glass microscope slides (VWR) and sealed 

using Prolong Gold Antifade Reagent (Invitrogen). Upon the addition of PI, all subsequent 

procedures were done in the dark to prevent photobleaching.  

Hippocampal slices were imaged using a Zeiss LSM700 laser scanning confocal 

microscope (Carl Zeiss, Germany) using green light (543nm) to induce PI fluorescence. 

The entire hippocampus was imaged in pieces using a 10x objective lens, and images of 

CA1 pyramidal neurons were captured using the Zeiss Plan-Apochromat 63x/1.6 oil 

objective lens (Carl Zeiss). CA1 images were acquired as Z-stack images of 200μm depth 

into the hippocampal slice to the outer top of the slice, with each Z-stack image taken at 

2μm (total 100μm). Two Z-stack images were taken along the CA1 region in each slice.  

Data were collected using Zeiss Zen 2009 v. 5.5 software (Carl Zeiss) and 

analyzed using ImageJ (NIH, public domain). Z-stack images closest to the outer top and 

bottom of the hippocampal slices were not analyzed, as the neuronal damage in those 

areas was artificially enhanced by the slicing procedure. The inner-most 20μm segments 

(~100μm down) were combined as maximum intensity projections and intensities were 

compared between treatment groups. Densitometry analysis was performed on CA1 Z-

stack maximum intensity projection images, and densitometry values were normalized to 

time control slices that were treated along with each experiment. Data was graphed as a 

percentage of the time control value and analyzed for significance against this control 
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value (100%). Full hippocampal images were assembled as montages of the entire 

hippocampal slice using Adobe Photoshop CS6 (Adobe Systems, Mountain View, CA). 

3.2.6 Statistical analysis 

All statistical tests were performed with GraphPad Instat3 version 3.00 for Windows 97 

(GraphPad Software, San Diego, CA). Protein densitometry values and Pearson 

correlation coefficients were compared and statistical significance (P< 0.05) was 

assessed using one-way analysis of variance (ANOVA) with Student-Newman-Keuls post 

hoc test. Student’s paired t-test was also used, as appropriate, with P<0.05 considered 

significant. 
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3.3 Results 

3.3.1 ENTs functionally interact with A1Rs, but not with A2ARs 

Since ENTs, A1Rs and A2ARs are expressed in the hippocampus, we first tried to 

determine whether these proteins are localized in the same signaling protein complex to 

be able to respond rapidly to changes in extracellular adenosine tone, such as an 

elevation during hypoxic/ischemic insults. Immunoprecipitation with ENT1 or ENT2 

antibodies using brain homogenates from hippocampal brain slices and subsequent 

immunoblotting with rabbit polyclonal anti-A1R or anti-A2AR antibodies revealed the 

presence of A1Rs in both ENT1 and ENT2 immunoprecipitates (Figure 3.3.1A, top two 

panels), while A2ARs were absent. These A1R protein bands were not present when the 

immunoprecipitating antibody was omitted (Figure 3.3.1A, lane 1). In addition, we found 

that A1R (but not A2AR) immunoprecipitates contained ENT1 and ENT2 (both ~50 and 

~60 kDa bands) in reverse coimmunoprecipitation from hippocampal brain lysates (Figure 

3.3.1A, bottom two panels). These data suggested that ENTs and A1Rs physically 

interact with each other in the rat hippocampus, but future studies are required to further 

characterize the nature of interactions between ENTs and A1Rs.  Since hypoxia or 

ischemia are known to elevate extracellular adenosine levels and consequently stimulate 

adenosine receptors (Fowler 1993; Fowler, Gervitz et al. 2003; Gervitz, Davies et al. 

2003), and having found a novel interaction between A1Rs and ENTs, we next studied 

whether A1R stimulation affects the surface localization of ENTs in primary cultures of 

hippocampal neurons. After prolonged incubations of hippocampal neurons with the 

selective A1R agonist (CPA, 500nM for 45min), subsequent biotinylation assays were 

performed to label cell surface proteins. As shown in Figure 3.3.1B, CPA decreased the 

biotinylated (surface) levels of ENT1 compared to DMSO control, and the A1R antagonist 

DPCPX prevented the CPA-induced downregulation of ENT1 surface expression 

(summarized in Figure 3.3.1B, bottom). In contrast, the ENT1 levels in whole hippocampal 

cell lysates were not significantly altered (Figure 3.3.1B, bottom blots). These data 

indicated that A1Rs are not only functionally coupled, but also biochemically linked with 

ENTs in hippocampal neurons.  
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Figure 3.3.1 
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Figure 3.3.1 ENT1 and ENT2 selectively form a physical complex with A1Rs in 

hippocampal brain slices and A1R activation or inhibition affects ENT1 surface expression 

in cultured hippocampal neurons. (A) Using hippocampal whole lysates, 

immunoprecipitation with a rabbit polyclonal ENT1 antibody (lane 2) or rabbit polyclonal 

ENT2 antibody (lane 3) revealed co-precipitation with A1Rs (first blot) but not with A2ARs 

(second blot). Negative control (lane 1) indicates omission of the immunoprecipitating 

antibodies, and rabbit IgGs were used instead. The A1R protein band corresponds to ~37 

kDa, and the A2AR band signal is near the predicted size of 45 kDa. Immunoprecipitation 

with a rabbit polyclonal A2AR antibody (lane 2) or with rabbit polyclonal A1R antibody 

(lane 3) revealed co-precipitation of ENT1 (third blot) and ENT2 (fourth blot). ENT1 and 

ENT2 double bands were detected near 50 kDa and 60 kDa. Above immunoprecipitation 

studies are from three independent experiments, using hippocampal brain lysates from 

P18-28 day-old male rats. (B) Primary hippocampal neurons were incubated with neural 

activity inhibitors (see Materials and Methods) before applying DPCPX (500nM) and CPA 

(500nM) treatments. After these treatments (45min), hippocampal neurons were 

subjected to biotinylation followed by western blotting to assess the surface expression 

of ENT1. Surface (biotinylated) ENT1 was detected with rabbit anti-ENT1 (Millipore), and 

surface protein signals were normalized to whole cell lysate signals. Values in bar charts 

are means±SEM, n=3, **P<0.01, ***P<0.001 vs. DMSO control. 
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3.3.2 ENTs colocalize with A1Rs, rather than with A2ARs 

In addition to coimmunoprecipitation, we performed immunocytochemistry and 

confocal imaging analyses to determine the subcellular localization of the potential 

interactions between A1Rs and ENTs in hippocampal neurons. As shown in Figure 

3.3.2A-B, A1Rs were found in somatodendritic compartments, which confirm previous 

results from immunofluorescence, electron microscopy, and biochemistry techniques 

(Ochiishi, Chen et al. 1999; Rebola, Pinheiro et al. 2003). Our results show that A1Rs 

colocalize in the somas and dendrites with both ENT1 and ENT2 (Figure 3.3.2A-B). In 

contrast, the A2ARs did not colocalize with either ENT1 or ENT2 (Figure 3.3.2C-D), which 

is consistent with our previous results indicating a lack of coimmunoprecipitation between 

A2ARs and ENTs. Determination of the Pearson correlation coefficients also confirmed 

that A1Rs, but not A2ARs, showed similar quantitative levels of interaction with ENT1 and 

ENT2, as summarized in Figure 3.3.2E. Thus, ENT1 and ENT2 appear to interact 

selectively with A1Rs. Future studies will be needed to determine whether these 

interactions are direct or indirect, and to determine the major binding domains for this 

interaction. 

 

3.3.3 Inhibitors of CK2 decreased, activator of CK2 increased, phosphoSer254 ENT1 in 

rat hippocampal brain slices 

ENT1 and ENT2 contain cytoplasmic serine and threonine residues that are potential 

candidates for CK2 phosphorylation with the consensus sequences S/TXXE/D, with 

serine preferred over threonine (see Table 3.1). Using the anti-pSer254 ENT1 antibody 

in our immunoblot analyses, we then sought to determine the effects of various classes 

of CK2 inhibitors on ENT1 expression in membrane fractions. As shown in Figure 3.3.3A 

(top blot), the 50 kDa and 60 kDa ENT1 bands were shown to be constitutively 

phosphorylated at Ser254 in control (DMSO) treatment, but CK2 inhibitors (DMAT, TBB, 

and DRB) significantly reduced pSer254 ENT1 levels in membrane fractions (GAPDH 

was used to normalize these ENT1 signals). The concentration of DRB used in the current 

study (100M) has been shown to inhibit CK2 activities in rat acute hippocampal slices 
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(Lieberman and Mody 1999). We also used TBB at a concentration of 10M; when tested 

against a panel of 33 other protein kinases, only CK2 was drastically inhibited (Sarno, 

Reddy et al. 2001). DMAT was used at a concentration of 5M in our study, a 

concentration at which DMAT is highly selective for CK2 (Pagano, Meggio et al. 2004). 

These findings suggest that CK2 inhibition contributes to decreased phosphorylation of 

membrane-localized ENT1 in hippocampal brain tissue.  

We also performed cell surface biotinylation assays in hippocampal brain slices, and 

quantified the levels of biotinylated ENT1 proteins phosphorylated at Ser254 using the 

pSer254 ENT1 antibody, A1R or A2AR antibody. As shown in Figure 3.3.3B, biotinylation 

assays revealed that the CK2 inhibitor - DRB produced a similar level of downregulation 

of pSer254 ENT1 (~50% reduced) compared to those obtained in membrane fractionation 

(Figure 3.3.3A). In contrast, the CK2 activator spermine (Hathaway and Traugh 1984) 

caused a significant upregulation of pSer254 ENT1 (Figure 3.3.3B). Since spermine and 

other polyamines are known to increase the function of NMDA receptors by binding to an 

extracellular region of the receptor (Ran, Miura et al. 2003), we incubated hippocampal 

slices with the NMDA receptor antagonist D-APV for 30min before applying spermine in 

order to rule out the possible confounding effect of NMDA receptor-mediated upregulation 

by spermine. However, spermine + D-APV-treated hippocampal slices showed similar 

levels of pSer254 ENT1 upregulation as in slices treated with spermine alone. Similarly, 

DRB reduced A1R surface expression but spermine increased the surface level of A1R. 

In contrast, DRB increased the A2AR surface levels but spermine decreased the surface 

levels of A2AR. Together, these data suggest a constitutive phosphorylation of ENT1 at 

the CK2 phosphorylation site Ser254, which can be reduced by CK2 inhibitors and 

enhanced by endogenous or exogenous polyamines. CK2 inhibition decreased the 

surface levels of pSer 254 ENT1 and A1R but increased the A2AR surface levels. In 

contrast, CK2 activation increased the surface levels of pSer 254 ENT1 and A1R but 

decreased the A2AR surface levels. 
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Figure 3.3.2 
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Figure 3.3.2 ENT1 and ENT2 colocalized with A1Rs in cultured hippocampal neurons. 

Confocal imaging microscopy reveals colocalization of ENT1 (A, staining with rabbit anti-

ENT1 antibody) and ENT2 (B, staining with rabbit anti-ENT2 antibody) with adenosine A1 

receptor (A1R, staining with goat anti-A1R antibody) in somas and dendrites of 

hippocampal neurons (colocalization indicated by yellow pixels in the merged channels 

or in inset panels). In contrast, the adenosine A2A receptor (A2AR, staining with mouse 

anti-A2AR antibody) did not colocalize with ENT1 (C) or ENT2 (D), as shown by the 

absence of yellow pixels in the merged and inset panels. MAP2 labeling with chicken anti-

MAP2 antibody in A-C confirmed hippocampal neuron morphologies. Scale bars in A are 

5µm (column 1) or 2µm (fifth column, inset panel), and apply to C-D. (E) Quantification of 

colocalization between ENTs and A1Rs by Pearson correlation coefficients revealed 

significant colocalization between A1Rs and ENT1/ENT2 (>0.8 arbitrary value), but not 

between A2ARs and ENT1/ENT2 (<0.1 arbitrary value). Values in E are means±SEM, 

N=14 each bar, ***P<0.001. 

 

Protein 
Accession 

Number 
Sequence 

Candidate 

CK2 site 

NetPhosK 

Score 

Rat 

ENT1 

NP_113872 TKLD T-248 0.54 

SEGE S-254 0.67 

Rat 

ENT2 
NP_113926 TKAE T-235 0.52 

 

Table 3.1 Protein kinase CK2 phosphorylation consensus sequences in rat ENT1. 

Underlined amino acids correspond to serine (S) or threonine (T) residues that are 

phosphorylated by protein kinase CK2 (canonical sequence S/TXXD/E). Data was 

obtained from NetPhosK and NCBI GenPept.  
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Figure 3.3.3
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Figure 3.3.3 Inhibitors of CK2 decreased, activator of CK2 increased, phosphoSer254 

ENT1 in rat hippocampal brain slices. (A) Hippocampal slices were pre-treated with the 

CK2 inhibitors DMAT (5μM), TBB (10μM), and DRB (100μM) for 1h before isolating 

membrane fractions. Immunoblots were probed with the phospho-specific antibody anti-

pSer254 ENT1 antibody (Abgent) raised in rabbit. Protein bands were normalized to 

GAPDH using the same hippocampal membrane fractions. Summary bar charts show 

that both 50 kDa and 60 kDa pSer254 ENT1 signals in hippocampal membrane fractions 

were decreased by all CK2 inhibitors. (B) Hippocampal brain slices were pre-incubated 

with D-APV (50μM) for 30min before adding the CK2 agonist spermine (300μM). After 1h 

treatment with DRB or spermine, hippocampal slices were biotinylated (see Materials and 

Methods for details) and whole lysates were prepared. Biotinylated samples (top blot) and 

whole lysates (bottom blot) were immunoblotted with anti-pSer254 ENT1 antibody, anti-

A2AR antibody or anti-A1R antibody. Surface protein levels were normalized to total 

protein levels, showing the changes in the protein levels in the different treatments. 

Summary bar charts show reduction in pSer254 ENT1 and A1R surface levels with CK2 

inhibition, but upregulation in the presence of CK2 activation. In contrast, A2AR surface 

levels increased with CK2 inhibition, but decreased in the presence of CK2 activation. 

Average values in A and B are means±SEM, N=3 independent experiments, *P<0.05, 

**P<0.01, and ***P<0.001. (Acknowledgments: I thank Nicole L. Longmuir for contributing 

to the initial membrane fractionation biochemical studies that provided the basis for the 

membrane fraction data shown in Figure 3.3.3A.) 
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3.3.4 CK2 inhibition, but not ENT1 inhibition, decreased overall levels of pSer254 ENT1 

and A1Rs in whole hippocampal brain homogenates 

To confirm whether the downregulation of pSer254 ENT1 levels by CK2 inhibitors 

occurred specifically in membrane fractions or plasma membrane-associated (i.e., 

biotinylated) proteins, we studied the pSer254 ENT1 levels by using whole hippocampal 

brain slice homogenates and immunoprecipitation with the anti-pSer254 ENT1 antibody 

and probing the resulting western blots with rabbit polyclonal anti-ENT1 antibody 

(Millipore). We also determined whether the ENT1-selective inhibitor NBTI mimicked the 

effects of CK2 inhibition. As shown in Figure 3.3.4A (top blot, summarized in bar charts 

below), the levels of ENT1 containing the 50 kDa and 60 kDa pSer254 ENT1 

immunoprecipitates were significantly decreased in the presence of the CK2 inhibitors 

(DMAT, TBB, and DRB) but were not altered in the presence of the ENT1 inhibitor NBTI. 

However, the total ENT1 levels in the whole lysate immunoblots remained constant 

throughout the different CK2 and ENT inhibitor treatments (Figure 3.3.4A, bottom blot), 

indicating that the decreased pSer254 ENT1 levels observed in the presence of CK2 

inhibitors was not the result of protein degradation. Since we found that ENT1 (and ENT2) 

coimmunoprecipitated and colocalized with A1Rs (above), we determined whether the 

pSer254 ENT1 immunoprecipitates also contained A1Rs. After reprobing the blots in 

Figure 3.3.4A with the rabbit polyclonal A1R antibody (Sigma), the immunoblots also 

showed significant downregulation of A1Rs by CK2 inhibitors but not by ENT1 inhibitors 

(Figure 3.3.4B, top blot, summarized in bar chart below). As with by ENT1 in whole lysate 

immunoblots, the A1R levels in whole lysates were unchanged, suggesting the 

downregulation of A1Rs by CK2 inhibitors was not associated with significant protein 

degradation (Figure 3.3.4B, bottom blot). These results indicate that CK2 inhibition, but 

not ENT1 inhibition, contributes to decreased phosphorylation of ENT1 at Ser254, and 

that this CK2 phosphorylation site is an important determinant of ENT1 and A1R cell 

surface trafficking in hippocampal brain tissue. 
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Figure 3.3.4 
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Figure 3.3.4 CK2, but not ENT1, inhibition decreased ENT1 phosphorylation in 

hippocampal brain slices. (A) Whole cell lysates prepared from hippocampal brain slices 

were used to immunoprecipitate ENT1 with anti-pSer254 ENT1 antibody (top blot). The 

resulting blot and the whole lysate blot (bottom blot) were immunoblotted with anti-ENT1 

antibody. Summary bar charts show significant reduction in ENT1 phosphorylation in CK2 

inhibitors DMAT (5μM), TBB (10μM), and DRB (100μM), but not in ENT1 inhibitor NBTI 

(100nM). (B) The same blots in A were re-probed with rabbit anti-A1R antibody, and 

summary bar chart shows CK2 inhibitors, but not ENT1 inhibitor, significantly reduced 

levels of A1Rs in pSer254 ENT1 immunoprecipitates. Average values are means±SEM, 

N=3 independent experiments, *P<0.05 and **P<0.01. 

 

 

 

 

 

 

 

 

 

 

 



109 
 

3.3.5 Both CK2 and ENT1 inhibition decreased ENT1 and ENT2 surface expression in 

primary cultured rat hippocampal neurons 

To determine whether the changes in ENT1 phosphorylation levels described 

above are occurring specifically in hippocampal neurons, and whether the surface 

expression of ENT1 and ENT2 are depend on CK2 activity or functional ENTs, we used 

primary cultures of hippocampal neurons and biotinylation assays to assess the relative 

surface densities of ENT1 and ENT2 in the absence or presence of both CK2 and ENT1 

inhibitors. As shown in immunoblots in Figure 3.3.5A (top panel), the CK2 inhibitors TBB, 

DMAT, and DRB, and ENT1 inhibitor (NBTI) significantly decreased the surface 

expression of the 50 kDa and 60 kDa ENT1 bands in cultured hippocampal neurons (see 

summary bar charts in Figure 3.3.5A, bottom). However, pre-incubation with the A1R 

antagonist DPCPX prevented downregulation of ENT1 surface expression by CK2 and 

ENT1 inhibitors (Figure 3.3.5A, top panel, lanes 6-7; summary bar charts in Figure 3.3.5A, 

bottom). When blots containing biotinylated proteins were reprobed with an anti-beta actin 

antibody, no beta actin signal was observed in these blots, indicating that the biotinylated 

proteins were uncontaminated with cytosolic proteins (Figure 3.3.5A, third panel), 

however, beta actin was detected in blots containing the whole cell lysates (Figure 3.3.5A, 

fourth panel). More importantly, the whole cell lysate immunoblots showed a constant 

level of ENT1 across all treatments (Figure 3.3.5A, second panel), suggesting that the 

downregulation of ENT1 surface expression by CK2 and ENT1 inhibitors was not caused 

by increased protein degradation. Similar to ENT1, ENT2 surface expression was also 

reduced by approximately 50% from CK2 and ENT1 inhibitors (Figure 3.3.5B, top blot), 

and DPCPX prevented these inhibitory effects (summary bar charts in Figure 3.3.5B, 

bottom). Together, these results indicate that inhibitions of CK2 and ENT1 functions in 

hippocampal neurons promotes decreased surface expression of ENT1 and ENT2, which 

requires functional adenosine A1Rs. 
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Figure 3.3.5 
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Figure 3.3.5 Both CK2 and ENT1 inhibition decreased ENT1 surface expression in 

primary cultures of hippocampal neurons. (A) Surface labeling of proteins was performed 

using biotinylation assays and whole lysates from cultured hippocampal neurons. Top 

panel. Biotinylated proteins (top blot) show significant downregulation of ENT1 surface 

expression (anti-ENT1 from Millipore) in presence of both CK2 and ENT1 inhibitors, an 

effect prevented by pretreatment with A1R antagonist DPCPX (100nM). No significant 

protein degradation (second blot) or contamination with cytosolic proteins such as beta 

actin (third blot) accompanied this effect. Beta actin signals were present in whole lysate 

blots (fourth blot). Bottom panel. Summary bar charts showing significant downregulation 

of surface-expressed ENT1 in presence of CK2 and ENT1 inhibitors, and DPCPX 

prevented these effects. (B) Similar experiments were performed as in A, except blots 

were probed with anti-ENT2 antibody. Summary bar charts are also showing significant 

downregulation of ENT2 surface expression by CK2 and ENT1 inhibitors, but not when 

hippocampal neurons were pre-treated with DPCPX. Average values for experiments 

shown in A and B are means±SEM, N=3 independent experiments, *P<0.05 and **P<0.01. 
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3.3.6 CK2 and ENT inhibition enhances hypoxia-mediated downregulation of ENT and 

A1R surface expression 

Since hypoxia and ischemia are known to cause increased adenosine tone and 

increased A1R activation (Dunwiddie and Masino, 2001; Fowler, 1993; Frenguelli et al., 

2003), along with the results presented above we hypothesized that CK2 and ENT 

inhibition leads to pronounced downregulation of ENTs and adenosine receptors during 

hypoxia. Using surface biotinylation assays and hippocampal brain tissue subjected to a 

20min hypoxic insult, we confirmed that CK2 and ENT inhibitors enhanced hypoxia-

mediated reductions in the abundance of surface-expressed ENT1, ENT2, A1Rs, as well 

as hypoxia-mediated increase in the amount of surface-expressed A2ARs. As shown in 

Figure 3.3.6A, hypoxia reduced the surface expression of A1Rs by ~20% compared to 

normoxia, but increased the surface expression of A2ARs by ~50%. The CK2 inhibitor 

DRB, the ENT1-selective inhibitor NBTI and the ENT1/ENT2 inhibitor DPY all potentiated 

the hypoxia-mediated decrease in A1R surface expression (Figure 3.3.6A, summary bar 

chart), producing ~40-60% reduction in A1R levels during hypoxia. Similarly, the surface 

expression of ENT1 (both 50kDa and 60 kDa bands) was decreased by hypoxia, and this 

reduction was potentiated by CK2 and ENT inhibitors (by ~70-80% vs. 30% in hypoxia 

alone; see Figure 3.3.6B, summary bar chart for ENT1). Similar to the influence on ENT1 

and A1Rs, the CK2 and ENT inhibitors also potentiated the downregulation of ENT2 

surface expression during hypoxia (Figure 3.3.6B, see summary bar chart for ENT2). 

Additionally, both ENT1 and CK2 inhibitors decreased the surface levels of A2ARs 

(Figure 3.3.6B, see summary bar chart for A2ARs). 

  In contrast to the attenuation of surface expression, the levels of A1R, A2AR, ENT1, 

and ENT2 remained constant in whole hippocampal lysates (Figure 3.3.6), suggesting 

that protein degradation did not significantly contribute to these changes in surface 

expression during a 20min hypoxic insult with or without CK2 and ENT inhibitors. Taken 

together, the results indicate that A1Rs, A2ARs, and ENTs are functionally linked via 

extracellular adenosine levels and by intracellular CK2 activities. 
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Figure 3.3.6 
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Figure 3.3.6 CK2 and ENT inhibitors induced downregulation of A1R, A2AR, ENT1, and 

ENT2 surface expression in hippocampal brain slices after hypoxic stimulation. 

Hippocampal brain slices were pre-treated with DMSO (control), ENT inhibitors NBTI 

(100nM) and DPY (10μM), or CK2 inhibitor DRB (100μM) for 1h before a 20 min hypoxic 

insult. After hypoxia, brain slices were immediately subjected to biotinylation to assess 

the relative abundance of A1R, A2AR, ENT1, and ENT2 on the surface of hippocampal 

tissue. (A) The CK2 inhibitor DRB, ENT1 inhibitor NBTI, and ENT1/ENT2 inhibitor DPY 

enhanced hypoxia-mediated downregulation of A1R surface expression. The inhibitors 

also decreased the hypoxia-mediated increase of A2AR surface expression that was seen 

in control. The inhibitors enhanced the hypoxia-mediated downregulation of ENT1 and 

caused a further enhancement of hypoxia-mediated reduction of ENT2 surface 

expression. (B) Densitometry values for the whole lysate blots were used to normalize all 

surface (biotinylated) values. Whole lysate signals did not differ between treatments. 

Values in summary bar charts are means±SEM from N=4 independent experiments, 

*p<0.05, **P<0.01, and ***p<0.001). 
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3.3.7 CK2 inhibition provided neuroprotection to hippocampal slices after 20min hypoxia 

The role of CK2 as a potential neuroprotective protein has been explored (Kim, Jung 

et al. 2009), but the direct effect of CK2 inhibition or activation in neuroprotection or 

neurodegeneration in hypoxia or ischemia has not been well established. To test the effect 

of CK2 in hypoxia-induced neurodegeneration, hippocampal slices were pre-treated with 

DMAT or TBB, which are both CK2 inhibitors, or with spermine, which is a CK2 activator, 

or, due to the ability for spermine to also activate NMDA receptors by direct interaction, 

we also treated slices with spermine + D-APV, an NMDAR inhibitor. Following a 20min 

hypoxic insult, slices were reintroduced to normoxic conditions and incubated for 3h prior 

to fixation. In the final hour of incubation, propidium iodide (PI) was added to label dead 

cells for neurodegeneration. The results showed that hypoxia alone induced significant 

neurodegeneration (Figure 3.3.7B), whereas slices treated with DMAT and TBB showed 

significantly less neurodegeneration than hypoxia alone (Figure 3.3.7C-D) Time control 

slices showed significantly less neurodegeneration than hypoxia control (DMSO), and 

densitometry analysis was performed with densitometry values normalized to time control 

(100%). DMAT and TBB treatment prior to hypoxia were shown to be neuroprotective, 

while spermine did not prevent hypoxia-induced neurodegeneration (Figure 3.3.7E). 

Spermine with the NMDAR inhibitor D-APV was also neuroprotective, indicating that CK2 

activation may contribute to neurodegeneration through increasing NMDAR activity. 

These data suggest that inhibition of CK2 activity, or reduced CK2 activation, affords 

neuroprotection to hippocampal neurons.  
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Figure 3.3.7 
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Figure 3.3.7 CK2 inhibitor treatment reduced neurodegeneration caused by a 20min 

hypoxic insult in hippocampal slices. (A) Representative propidium iodide staining images 

of time control hippocampal slices, which were not subjected to any drug treatments or 

hypoxic conditions. There is very little neurodegeneration seen in these slices, and all 

treated slices were normalized to the time control values (100%). (B) Slices treated with 

DMSO with hypoxia showed significant neurodegeneration approximately 450% of time 

control values. (C) Slices treated with DMAT showed significantly less neurodegeneration 

compared to DMSO. (D) Representative slice treated with the CK2 inhibitor TBB. (E) 

Representative images showing increased neurodegeneration in hippocampal slices 

treated with spermine alone. (F) Representative hippocampal slice showing treatment 

with spermine and D-APV. (G) Representative propidium iodide staining in CA1 region. 

(H) Summary bar graph showing values of average intensity normalized to time control 

values (100%). Average values are shown as mean ± SEM with arbitrary units, n=4 

independent experiments, 5 rats per experiment. Significance values * P<0.05 and *** 

P<0.001. (Acknowledgments: I thank Jocelyn Stockwell who performed the staining and 

acquired the confocal microscopy imaging shown in Figure 3.3.7) 

 

3.4 Discussion  

The equilibrative nucleoside transporters ENT1 and ENT2 are expressed ubiquitously 

in mammalian cells, and are distributed throughout the human central nervous system, 

including the hippocampus (Jennings 2001). Little is known about the regulation of these 

transporters, but protein kinase modifiers, such as inhibitors of PKC, have been shown to 

modulate the activity of these transporters in a variety of non-neuronal cell types (Coe, 

Zhang et al. 2002; Kong, Engel et al. 2004). ENT1 and ENT2 have a large intracellular 

loop joining the transmembrane domains 6 and 7, where putative CK2 phosphorylation 

consensus sequences are located (see Table 3.1) (Stolk, Cooper et al. 2005). These 

phosphorylation sites suggest that the ENT activity and/or its membrane expression can 

be susceptible to modulation by CK2. In the present study, we found that CK2 inhibitors 

(TBB, DMAT and DRB) decreased, while the CK2 activator spermine increased, 

phosphorylation of ENT1 proteins at Ser254 in rat hippocampal tissue. Moreover, CK2 

inhibition significantly downregulated the ENT surface expression in rat hippocampal 
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slices and primary cultured hippocampal neurons. In contrast, direct ENT1 inhibition with 

NBTI did not alter the levels of pSer254 ENT1, but did cause a significant A1R-dependent 

downregulation of ENT1 surface expression. Furthermore, both CK2 and ENT inhibitors 

enhanced hypoxia-mediated downregulation of ENTs and A1Rs and reduced hypoxia-

induced synaptic depression. Together with biochemical and confocal imaging evidence 

supporting a physical interaction between ENTs and A1Rs, these results indicate that 

CK2-mediated phosphorylation of ENTs contributes to the regulation of extracellular 

adenosine levels and to the surface trafficking of ENTs and A1Rs. This represents a 

potentially important mechanism that plays a role in hypoxic/ischemic neuronal damage. 

In other studies, inhibition of the CK2 activity in human U2-OS cells via transfection 

with a catalytically inactive CK2 subunit increased ENT1 function and expression (Bone, 

Robillard et al. 2007), which is opposite to what we found in the present study using 

different CK2 inhibitors. However, it is possible that the modification of the CK2 activity 

can alter ENT expression and function in a cell- or tissue-specific manner as well as in 

different experimental preparations. Our data suggest that ENT1 and ENT2 expression 

in hippocampal membrane is constitutively regulated by the CK2 activity. These findings 

are in agreement with those found by Bone et al., whereby TBB-treated cells reduced the 

number of functional ENT1 proteins at the level of the plasma membrane, a response that 

was mimicked by deletion of Ser-254 from mENT1 (Bone, Robillard et al. 2007). Although 

it is not recognized in rat or human tissue, a splice variant of ENT1 has been identified in 

murine tissue (Kiss, Farah et al. 2000; Handa, Choi et al. 2001). The shorter splice variant 

(mENT1a), which lacks two amino acids (Lys255 and Gly256) and has an arginine in 

place of a serine at position 254, has greater expression in brain tissue than the larger 

variant (mENT1b) (Bone, Robillard et al. 2007). It was also shown that the number of 

mENT1b transporters operating at the level of the plasma membrane are downregulated 

by the CK2 inhibition, while mENT1a is not (Bone, Robillard et al. 2007). In our present 

study, we found that the 60 kDa ENT1 isoform was more prevalent than the 50 kDa ENT1 

isoform in whole cell lysates from rat hippocampal brain tissue and hippocampal neurons. 

It is possible that the 50 kDa ENT1 proteins, which are expressed at lower levels, may 

reflect the presence of a yet to be identified rat ENT1 splice variant with lower 

susceptibility to regulation by CK2 phosphorylation. However, this seems unlikely since 
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both 50 kDa and 60 kDa ENT1 bands were shown to be equally susceptible to CK2 

inhibitors and both ENT1 bands can be immunoprecipitated with the pSer254 ENT1 

antibody. Alternatively, as previously suggested by other studies (Crawford, Patel et al. 

1998; Coe, Zhang et al. 2002; Reyes, Naydenova et al. 2010), differential glycosylation 

of ENT1 can account for the different sizes observed for ENT1. Nevertheless, our results 

indicate that both 50 and 60 kDa ENT1 proteins are constitutively phosphorylated at Ser-

254, a known target for CK2 (Kiss, Farah et al. 2000; Handa, Choi et al. 2001), and that 

CK2 phosphorylation regulates increased surface trafficking of both ENT1 and ENT2 in 

hippocampal neurons and hippocampal brain slices. 

Since ENTs are known to regulate extracellular levels of adenosine during hypoxia and 

ischemia (Dunwiddie and Masino 2001; Frenguelli, Wigmore et al. 2007; Chu, Xiong et 

al. 2013), the possibility of a protein signaling complex involving ENTs and adenosine 

receptors would certainly allow the rapid transduction of extracellular adenosine 

elevations via A1R or A2AR activation. Using coimmunoprecipitation and confocal 

imaging studies, we determined that ENTs are physically associated with A1Rs but not 

with A2ARs, and selective A1R stimulation downregulates ENT1 surface expression. 

Moreover, we observed a similar pattern of downregulation in A1R and ENT surface 

expression when hippocampal brain slices were pretreated with ENT or CK2 inhibitors 

before hypoxic stimulations. These data indicate that the ENT-A1R protein-protein 

interactions can provide an important link between adenosine transport and intracellular 

signaling pathways activated by A1Rs that can contribute to the downregulation of ENT 

and A1R surface expression. However, future studies are needed to further characterize 

the nature of A1R and ENT interactions (i.e., either direct or indirect), and to identify the 

CK2-regulated signaling pathways involved in ENT and A1R downregulation.  

CK2 is known to be widely expressed in the hippocampus (Willingham 1997; Blanquet 

1998; Blanquet 2000), but whether CK2-mediated regulation of ENT surface expression 

help protect hippocampal neurons against ischemic cell degeneration remains unclear. 

Several studies have shown that CK2 activity was decreased in vulnerable brain regions, 

including the hippocampal CA1 region and the striatum, and it aggravated brain damage 

and cell death after ischemic injury (Hu and Wieloch 1993; Kim, Jung et al. 2009). In 
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contrast, CK2 activity increased in brain regions that are resistant to ischemic damage 

(Hu and Wieloch 1993). Moreover, the activators of CK2, spermine and spermidine, were 

shown to protect neural cells against ischemic damage (Gilad and Gilad 1991). Other 

studies using ENT blockers or CK2 inhibitors (Dunwiddie and Diao 1994; Lieberman and 

Mody 1999; Pearson, Nuritova et al. 2001; Ackley, Governo et al. 2003; Frenguelli, 

Wigmore et al. 2007) have demonstrated an inhibition of hippocampal synaptic 

transmission, but whether this has the potential to promote neuroprotection during 

ischemic brain damage is not established. However, adenosine transport inhibitors have 

been reported to be neuroprotective (Noji, Karasawa et al. 2004), likely resulting from 

their ability to dramatically increase adenosine tone during cerebral ischemia. In the 

present study, we observed that hypoxia decreased the surface expression of ENT1, 

ENT2 and A1R in rat hippocampus; this inhibitory effect was further enhanced by 

preincubation of hippocampal slices with CK2 or ENT inhibitors. This downregulation in 

ENT surface expression can contribute to the well documented reports of extracellular 

adenosine elevation during hypoxia/ischemia and subsequent A1R-mediated synaptic 

depression (Dunwiddie and Masino 2001; Frenguelli, Wigmore et al. 2007; Zhang, Xiong 

et al. 2011). Consistent with our observations, other studies of human umbilical vein 

endothelium exposed to a hypoxic environment showed a reduction in hENT1 function, 

ENT1 protein and mRNA levels, but an increase in extracellular adenosine concentration 

(Casanello, Torres et al. 2005). Moreover, an intriguing observation is that increasing 

hENT1 expression in mice led to increased ischemic brain damage that was prevented 

by caffeine (A1R and A2AR antagonist) administration (Soylu, Zhang et al. 2012; Chu, 

Xiong et al. 2013). However, future studies are needed to establish whether CK2 inhibition 

and subsequent downregulation of A1Rs and ENTs in hippocampus results in 

neuroprotection or increased neuronal damage after hypoxia/cerebral ischemia.  

ENTs are the main adenosine transporters and control adenosine levels in the brain 

(Dunwiddie and Masino 2001). It was reported that extracellular adenosine levels were 

increased in the striatum of ENT1−/− knockout mice (Kim, Karpyak et al. 2011; Nam, Lee 

et al. 2011). Inhibition of ENT1 also increased extracellular adenosine levels (Nagy, 

Diamond et al. 1990). In addition, inhibition of adenosine uptake by the ENT inhibitors 

NBTI and DPY increased adenosine levels in the olfactory bulb (Sanderson and 



121 
 

Scholfield 1986). The selective A1R antagonist, DPCPX prevented the A1R-induced 

synaptic inhibition, allowing an increase in synaptic transmission (Ciruela, Casado et al. 

2006). Since the A1R has a higher binding affinity to adenosine (Kd ~70nM) than A2AR 

(Kd ~150 nM) (Dunwiddie and Masino 2001), increased adenosine levels by ENT 

inhibition may predominantly affect A1R-mediated synaptic depression, but this 

enhanced adenosine tone could also activate A2ARs which mediate excitatory actions 

that could lead to neurodegeneration. Here, we showed that CK2 inhibition dramatically 

reduced neuronal death after hypoxia-reperfusion injury, and the converse was true with 

CK2 activation which enhanced neuronal death even in presence of NMDAR antagonist 

D-APV. Our present results would suggest that CK2 inhibition, which leads to 

downregulation of ENTs and A1Rs, promotes less neuronal death with subsequent 

hypoxic/ischemic insult. This is consistent with the finding by Soylu and colleagues (Soylu, 

Zhang et al. 2012). Our findings showed that acute CK2 inhibition decreased ENT and 

A1R surface expression, suggesting that the reduced availability of surface levels of ENTs 

and A1Rs is important for subsequent response to hypoxic/ischemic insults to the brain.  

In conclusion, our study provides novel evidence that ENTs are physically coupled with 

A1Rs, and this coupling facilitates the CK2-mediated cell surface trafficking of ENT1, 

ENT2 and A1R in the rat hippocampus. We also showed that during hypoxia the CK2 and 

ENT inhibitors caused a more marked downregulation of ENT1, ENT2 and A1R surface 

localization in hippocampal tissue. These data suggests that the inhibition of CK2 and 

ENT functions results in the accumulation of extracellular adenosine that subsequently 

acts on postsynaptic A1Rs to cause further downregulation of ENT and A1Rs. These 

CK2-mediated changes in ENT and A1R surface expression represent an important 

mechanism for cerebral ischemic damage, but future studies are needed to determine 

whether activations of CK2 and consequently increased surface trafficking of ENTs are 

important for neuroprotection. 
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CHAPTER 4 

Adenosine A1 receptor-mediated endocytosis of AMPARs contributes to impairments in 

long-term potentiation (LTP) in the middle-aged rat hippocampus 

Zhicheng Chen and Francisco S. Cayabyab 
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Abstract 

There is a high prevalence of neurological disorders in the elderly, such as stroke, 

Alzheimer’s disease, and Parkinson’s disease, and these neurodegenerative diseases 

are often associated with cognitive deficits. In addition, the aged brains of humans and 

animals have been shown to have enhanced extracellular levels of adenosine. Previously 

in Chapter 2, I reported that activation of the adenosine A1 receptors (A1Rs) induces 

internalization of AMPARs in rat hippocampus. In the present study, I used biochemical 

and electrophysiological techniques to test the hypothesis that in rat hippocampus the 

expected enhancement of adenosinergic signaling in aged brains produces a reduction 

in the surface levels of AMPARs which could lead to attenuation of synaptic plasticity. I 

found that the surface levels of AMPARs decreased in the aged hippocampus. Using a 

well-established protocol to test for changes in synaptic plasticity, I recorded fEPSPs and 

compared chemically-induced long-term potentiation (cLTP) in the hippocampus of young 

and old rats. I found that middle aged brains (7-12 months old) compared to juvenile 

brains (1 month old) showed significant impairments in cLTP, suggesting that aging 

impaired synaptic plasticity. The surface levels of AMPARs were evaluated before and 

after cLTP in young and middle aged hippocampus. The results showed that cLTP 

significantly increased the surface levels of AMPARs (both GluA1 and GluA2 subunits) in 

young hippocampal slices, whereas only a modest increase of surface AMPARs was 

observed after cLTP in older hippocampus. As AMPAR trafficking could go through the 

clathrin-mediated endocytosis pathway, I then determined that blocking this pathway with 

Tat-GluA2-3Y peptide or Dynasore similarly enhanced the cLTP-induced increases in 

AMPAR surface expression. I also found that A1Rs were decreased while A2ARs were 

increased in older brains. These results indicate that increased adenosinergic signaling 

in aged brains leads to changes in adenosine receptor density, which contributes to 

increased clathrin-mediated endocytosis of AMPARs and impaired synaptic plasticity. 
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4.1 Introduction 

Previously, we reported (Chen et al., 2014, see also Chapter 2) that prolonged 

A1R stimulation leads to clathrin-mediated endocytosis of GluA2 and GluA1 AMPARs, 

which we suggested contributes to the adenosine-induced persistent synaptic depression 

(APSD) and neurodegeneration in juvenile (17-30 days old) hippocampal brain slices. 

Here, we studied the potential contribution of adenosine-induced downregulation of these 

AMPARs to changes in synaptic plasticity in middle-aged rats. Elevated extracellular 

adenosine levels were reported in hippocampal slices from 24-month-old (old) as well as 

12-month-old (middle-aged) rats (Sperlagh, Zsilla et al. 1997; Murillo-Rodriguez, Blanco-

Centurion et al. 2004). It has been suggested that this increase in extracellular adenosine 

levels in aged rats is related to increased activity of 5’-nucleotidases, which break down 

ATP to adenosine (Zimmermann 1996; Cunha, Almeida et al. 2001; Murillo-Rodriguez, 

Blanco-Centurion et al. 2004). Adenosine is an endogenous neuromodulator which 

functions by inhibiting the release of transmitters such as glutamate, and interacting with 

other transmitter systems (Fredholm, Chen et al. 2005).  

Aging is associated with cognitive deterioration (Ritchie, Carriere et al. 2007). 

Memory losses were found in aged rats (about 24 months old) (Granger, Deadwyler et al. 

1996). LTP impairment was also described in aged rats (Barnes 1979; Barnes and 

McNaughton 1985; Deupree, Turner et al. 1991; Shankar, Teyler et al. 1998). In addition, 

the memory decline and LTP impairment were found in middle-aged rats (about 12 

months old) (Barnes 1979; Barnes and McNaughton 1985; Deupree, Bradley et al. 1993; 

Granger, Deadwyler et al. 1996; Oler and Markus 1998; Ward, Oler et al. 1999; Meneses, 

Manuel-Apolinar et al. 2004). To our knowledge, there are only a few studies that reported 

the mechanism of LTP impairment in middle-aged rats (Rex, Kramar et al. 2005). It is 

widely accepted that adenosine plays an important role in synaptic plasticity in the 

hippocampus (Ribeiro 1995; Costenla, De MendonÃ§a et al. 1999; Lu, Zhou et al. 2010). 

Here, I investigated the role of adenosine signaling in regulating LTP induction and 

maintenance in young and middle-aged rat hippocampus. The evaluation of electrical 

synapses and dendritic spines following LTP induced via tetanic stimulation, presents the 

difficulty that not all synapses examined are necessarily activated. It has also been 

reported that LTP induced by high frequency stimulation can be reduced or depotentiated 
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by endogenous adenosine signaling in young and aging brains (de Mendonca and Ribeiro 

1994; de Mendonca, Almeida et al. 1997; de Mendonca and Ribeiro 2000). To overcome 

this limitation, and to ensure that a very large proportion of the synapses and spines 

examined have been potentiated, I used chemical induction of LTP (cLTP) in acute 

hippocampal slices of adult rat by the addition of 50 μM forskolin and 0.1 μM rolipram in 

ACSF followed by 1h recoding of fEPSP in normal ACSF(see Method 4.2). This method 

of LTP induction using forskolin and rolipram was previously described by several 

laboratories (Otmakhov, Khibnik et al. 2004; Oh, Derkach et al. 2006; Kim, Futai et al. 

2007; Schapitz, Behrend et al. 2010). 

Since we have recently reported (Chen et al., 2014) that stimulation of A1Rs 

induced internalization of AMPARs, I hypothesized that enhanced adenosinergic 

signaling in aged brains may underlie deficits in LTP. AMPARs are tetramers composed 

of the receptor subunits GluA1-4, which together form a pore complex (Hollmann and 

Heinemann 1994). This complex is known to play a critical role in LTP, as shown by 

experiments with GluA1-/- mice that fail to show induction of LTP (Zamanillo, Sprengel et 

al. 1999). Similarly, previous reports indicate that aged rats have impaired LTP formation, 

supporting the importance of AMPARs in memory formation (Shankar, Teyler et al. 1998; 

Rex, Kramar et al. 2005). In addition, activation of adenosine receptors modulates 

synaptic plasticity (LTP) differently in young, middle-aged and aged rats (Costenla, 

Diogenes et al. 2011). LTP magnitude is more affected by inhibition of A1R in young rats 

than in aged rats (Costenla, Diogenes et al. 2011). A decreased efficiency of A1R to 

regulate synaptic transmission was also seen in aged rats (Sebastiao, Cunha et al. 2000). 

However, whether these changes in levels of LTP induction are related to altered levels 

of AMPARs and adenosine receptors has not yet been fully elucidated. 

The function of A1R and A2AR during aging has previously been investigated 

(Cunha 2005; Rodrigues, Canas et al. 2008). A reduction in DPCPX binding ability to A1R 

was shown in the hippocampus of old versus young rats (Sperlagh, Zsilla et al. 1997). 

The level of A1R decreased in 12-month-old rats compared to 2-month-old rats. These 

results are consistent with the finding that reduced expression of A1R in the plasma 

membrane have also been confirmed in aged rats (Cunha, Dolores Constantino et al. 

2001). High adenosine levels apparently induced desensitization and downregulation of 
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A1R in older brains (Leon, Albasanz et al. 2005), a finding that was confirmed by a later 

study (Sebastiao, Cunha et al. 2000). Therefore, we predicted that elevated adenosine 

levels during aging could alter not only the surface levels of adenosine receptors but also 

AMPARs. 

Recently, we found a novel physical interaction between A1Rs and AMPARs which 

represents an important mechanism that influences the surface localization of adenosine 

receptors and AMPARs (Chen et al., 2014, see also Chapter 2). Since previous studies 

suggest that adenosine tone increases in aged brains (Cunha, Constantino et al. 1995; 

Rebola, Sebastiao et al. 2003), I therefore investigated the possibility that elevated 

adenosine in older hippocampus would promote a reduction in AMPAR surface 

expression, which could lead to significant impairment in LTP in aged brains. Therefore, 

the purpose of this study was to assess age-related changes in surface-expressed 

AMPARs and the impact of these changes on chemical LTP induction. Since the level of 

physical and functional association of adenosine receptors and AMPARs is not yet known 

in aged rats, I also investigated the possible altered association of adenosine receptors 

and AMPARs in middle-aged rats, and determined whether this alteration includes 

clathrin-mediated endocytosis of AMPARs and underlies impairments in synaptic 

plasticity as measured with the cLTP protocol. 

 

4.2 Detailed Methods 

4.2.1 Hippocampal slice preparation and treatments 

1, 3, 6-7 and 10-12 month-old male Sprague-Dawley rats were anaesthetized with 

halothane and rapidly decapitated according to protocols approved by the University 

Committee of Animal Care and Supply at the University of Saskatchewan. Brains were 

extracted and placed into disection medium. Hippocampal slices (400 μm thick) were cut 

with a slicer (VT1000S, Leica, Nussloch, Germany) and maintained for 60-90 minutes in 

artificial CSF (ACSF) solutions (recipes for ACSF and dissection medium recording 

conditions were described previously (Chen et al., 2014; Brust et al., 2007; Brust et al., 

2006) before performing biochemical experiments or electrophysiological recordings.  

.  
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4.2.2 Electrophysiology 

To obtain LTP, field excitatory postsynaptic potentials (fEPSPs) were evoked by 

application of the forskolin (50 μM)/rolipram (0.1 μM) protocol, as previously described 

(Kim et al., 2007; Oh et al., 2006; Otmakhov et al., 2004; Schapitz et al., 2010). To assess 

cLTP, a 20 min recording of fEPSPs was obtained to ensure presence of stable baseline, 

prior to the 10 min recordings of fEPSPs in the presence of 50 μM of Forskolin and 0.1 

μM of Rolipram (no MgCl2). This was followed by a 1 hour recording of fEPSPs in normal 

ACSF (with normal Ca2+ and Mg2+ concentrations, see recipe in Chen et al., 2014; Brust 

et al., 2007; Brust et al., 2006). fEPSP signals were amplified 1000 times with an AC 

amplifier, band-pass filtered at 0.1-100 Hz, digitized at 10 kHz using a Digidata 1320A 

interface board (Axon Instruments, Foster City, CA), and transferred to a computer for 

analysis. Data were analyzed using Clampfit 10.2 (Axon Instruments). Baseline synaptic 

responses were established by evoking fEPSPs every 30 s for at least 20 min. The fEPSP 

slope was normalized to the mean of the 5 sweeps (2.5 min) immediately preceding drug 

perfusion. The mean normalized fEPSP slope was plotted as a function of time with error 

bars representing the standard error of the mean (SEM). Sample traces are the average 

of 5 sweeps from a recording that was included in the plot of the mean normalized fEPSP 

slope. All bar graphs show the mean normalized percent potentiation from baseline ± 

SEM. Statistical significance was assessed using one-way analysis of variance with 

Student-Neuman-Keuls post hoc test. 

4.2.3 Biochemistry 

Hippocampal slices were treated with normal Ringer-solution (1 mM MgCl2, 125 

mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 33 mM (D)-glucose, 25 mM HEPES, pH 7.3) prior 

to cLTP (10 min in Ringer-solution (Mg2+-free) supplemented with 50 μM forskolin and 0.1 

μM rolipram (TOCRIS)). The solvent DMSO (Sigma, 1:1000) was used as a control. After 

washout for one hour in normal Ringer-solution, a biotinylation assay was performed as 

described below. After treatments, slices were cooled to 4 °C (20-30 min), and then 

washed with ice-cold ACSF before biotinylation. Slices were then incubated with 1 mg/ml 

NHS-SS-Biotin (Pierce) at 4 °C. The reaction was stopped by addition of a glycine buffer 
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(192 mM glycine, 25 mM Tris pH 8.3). Slices were then homogenized into lysis buffer that 

contained 50mmol/L Tris (pH8.0), 150 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L NaF; 

protease inhibitors: 1 mmol/L PMSF, 10 µg/mL aprotinin, 10 µg/mL pepstatin A, 10 µg/mL 

leupeptin, 2 mmol/L Na3VO4, 20 mmol/L sodium pyrophosphate, 3 mmol/L benzamidine 

hydrochloride, and 4 mmol/L glycerol 2-phosphate. After determining the protein 

concentrations using DC Protein assay dye (Bio-Rad), equal amounts of protein lysates 

(200-500 µg) were diluted in lysis buffer, and biotinylated proteins were incubated 

overnight with the streptavidin beads. The beads were subsequently washed 4-6 times 

the next day with lysis buffer. The biotinylated proteins are eluted by adding 50 µl of 2X 

Laemmli sample buffer and boiling the samples at 95°C for 5min. The samples were run 

on 10% gels and then electro-transferred to polyvinylidene fluoride membrane (PVDF, 

Millipore). The blots were probed with the appropriate primary and secondary antibodies. 

Enhanced chemiluminescent reagent (Santa Cruz Inc.) was used to visualize the labelled 

proteins.  

In some experiments, the membrane and cytosolic fractions from hippocampal 

slices were separated by centrifugation at 13,000 g for 1 hour at 4°C and omitting the 

detergent (NP-40) from the solubilization buffer. The proteins from the membrane fraction 

were then resolved in normal solubilization containing NP40 (see protocol in Brust et al., 

2007; Brust et al., 2006).  

 

4.2.4 Drugs 

The active Tat-GluA2-3Y peptide consists of the following amino acid sequence: 

YGRKKRRQRRRYKEGYNVYG, where Tat is YGRKKRRQRRR (the cell penetrating 

amino acid peptide sequence contained within the protein transduction domain of HIV 

gene called Tat), and YKEGYNVYG represents a GluA2 C-terminal amino acid sequence 

that interacts with the endocytic protein AP2 thus preventing GluA2 internalization 

(Ahmadian et al., 2004). The Tat-GluA2-3Y peptide and its scrambled version (scrambled 

Tat-GluA2-3Y: YGRKKRRQRRR-VYKYGGYNE) were purchased from GL Biochem Ltd. 

Forskolin and rolipram were obtained from Tocris. The dynamin inhibitor Dynasore was 

also purchased from Tocris. The drugs were dissolved in DMSO before being added to 

ACSF. The final concentration of DMSO was always < 0.01%. 
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4.2.5 Analysis 

To normalize the protein bands from the membrane fractions, we used an anti-

beta actin antibody (10,000; Sigma) or a monoclonal mouse anti-GAPDH antibody 

(1:2000; Millipore) to quantify the signal of GluA2/1 bands. Labelled protein bands were 

visualized using ECL. Densitometry analysis was performed using ImageJ software. 

Densitometry was performed using Quantity 1 (Bio-Rad) and ImageJ (public domain) 

computer programs. A single analysis of variance was performed to obtain the overall 

significance of the treatments followed by a post-hoc Student Newman-Keuls test to 

determine significance between specific treatments. 
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4.3 Results 

4.3.1 Decreased associations of A1Rs and AMPARs in middle-aged rat hippocampus 

Previously, we showed an association of adenosine receptors (specifically A1Rs) 

and AMPARs in hippocampus of young (<30 days old) rats. We next investigated whether 

a different level of association between A1Rs and AMPARs was displayed in the 

hippocampus of middle-aged rats. Using coimmunoprecipitation experiments, I showed 

that both GluA2 and GluA1 subunits were found in the A1R immunoprecipitates from 

young and middle-aged hippocampal homogenates. In Figure 4.3.1, the association of 

GluA2 with A1R was significantly decreased in middle-aged rats compared to that in 

young rats. Similarly, the level of co-precipitation of GluA1 and A1R was also lower in 

middle-aged rats compared to that in young rats. This decreased level of 

coimmunoprecipitation between A1Rs and AMPARs might reflect changes in the overall 

expression of either proteins, and this is addressed further below (see Figure 4.3.4). 

These results indicate age-dependent modification of the association between A1Rs and 

AMPARs. 

4.3.2 Aging-related decrease in biotinylated surface AMPARs and A1Rs 

Aging is associated with biochemical, anatomical and physiological changes in the 

central nervous system (Rosenzweig and Barnes 2003). Glutamate is the principal 

mediator of excitatory synaptic transmission in the hippocampus. Based on our recent 

report (see Chen et al., 2014), we hypothesized that activation of functional A1Rs 

expressed on cell surface would also induce a decrease in AMPAR surface expression 

levels in older hippocampal brain slices. To investigate this possibility, the present study 

assessed whether there were age-related changes in AMPAR expression in hippocampal 

membrane fractions in young versus middle-aged rats. When homogenized hippocampal 

slices were centrifuged to separate the membrane fractions, both GluA1 and GluA2 

expression levels decreased in the membrane fractions of old rats as shown in Figure 

4.3.2. Analysis of membrane fractions revealed significant differences in GluA1 and 

GluA2 immunoreactivities in older rat brains, starting at 3 months of age. Compared to 1 

month-old rats, GluA1 immunoreactivity was 37.96 ±12.90 % in 3 month-old rats, 43.26 
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±14.74% in 6-7 month-old rats, and 19.32 ± 3.40% in 10-12 month-old rats. The levels of 

GluA2 in membrane fractions were similarly reduced to levels comparable to those seen 

in GluA1. In the hippocampus, GluA2 immunoreactivity was 41.83±1.89% in 3 month-old 

rats, 35.19±4.28% in 6-7 month-old rats, and 23.52±5.58% in 10-12 month-old rats. All of 

these values were compared against 1 month-old rats. These results suggest that 

expression levels of GluA1 and GluA2 in membrane fractions were reduced in older 

hippocampus, as early as at 3 months of age. The majority of these proteins from 

membrane fractions are presumably derived from plasma membranes, but a more direct 

assessment of changes in the localization patterns of proteins located in the plasma 

membrane is addressed below using biotinylation assays (see Figure 4.3.2B). Taken 

together, there is a significant aging-related decrease in membrane fractions of levels of 

AMPAR GluA1 and GluA2 subunits, which is consistent with the presence of increased 

adenosine tone in aged rats and the heteromeric association of GluA2 and GluA1 

subunits. 

To confirm whether age-related reduction exists in surface expression of 

hippocampal AMPARs as suggested from my membrane fractionation results, I then 

performed biotinylation experiments for more direct assessment of surface expression of 

AMPARs and adenosine receptors. Hippocampal brain slices of both one month and one 

year old rats were incubated with NHS-SS-Biotin, and then washed and lysed with 

detergent-containing (1% NP40) lysis buffer. Biotinylated proteins were isolated with 

streptavidin beads. Western blots were performed to evaluate the effects of aging on the 

relative protein levels of AMPARs in the hippocampus. Consistent with my membrane 

fractionation results, the biotinylation results also revealed a significant decrease in GluA1 

and GluA2 AMPAR subunits in middle-aged rats (12 months old) compared to 1 month-

old rats, as shown in Figure 4.3.2B. Furthermore, to determine whether surface levels of 

adenosine receptors also differed between young and middle-aged rats, biotinylated 

surface levels of A1R and A2AR were tested. The results showed a significant decrease 

in A1R but an increase in A2AR in the middle-aged rat hippocampus. Thus, the results of 

this experiment show an age-related decrease in biotinylated surface levels of A1R, 

GluA1 and GluA2, but increase in A2AR in middle-aged rats.  
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Figure 4.3.1 

 

Figure 4.3.1 Immunoprecipitation results showed less interaction between A1Rs and 

AMPARs in 12 months old hippocampus compared to 1 month old hippocampus. A. Anti-

A1R antibody was used to perform immunoprecipitation. I found less co-precipitation of 

GluA2 with A1R (A, lane 3) in 12 months old hippocampus compared to that in 1 month 

old hippocampus (A, lane 2). Total lysates were from 1 month old rat hippocampus (A, 

lane 4). B. In anti-A1R immunoprecipitated protein complex, I also found less GluA1 co-

precipitating with A1R (B, lane 3) in 12 months old hippocampus compared to that found 

in 1 month old hippocampus B, lane 2). Total lysates were from 1 month old rat 

hippocampus (B, lane 4). Data represent means ±SEMs. Statistical significance 

comparing young and older brains was assessed by paired t-test (***P<0.001).  
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Figure 4.3.2
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Figure 4.3.2 AMPAR levels decreased during aging in the plasma membrane of rat 

hippocampus. (A). Representative western blots show levels of GluA1 (106kDa), GluA2 

(102 kDa) and GAPDH (37kDa) immunoreactivity in plasma membrane fraction from 1, 3, 

6-7, and 10-12 months old rats. Graphs show the levels of GluA1, GluA2 and GAPDH 

immunoreactivity assessed by densitometry analysis of western blot ECL films. 

Membrane levels of GluA1 or GluA2 were normalized to the respective levels of GAPDH 

immunoreactivity. (B). Biotinylation results showed that biotinylated surface levels of 

GluA1, GluA2, and A1R decreased, while surface levels of A2AR increased. Values are 

means±SEMs. Statistical significance of values compared with control (1 month old) was 

assessed by one-way ANOVA. (**P<0.01, ***P<0.001). 
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4.3.3 Aging impaired cLTP induction and maintenance 

Numerous early studies (Barnes, Rao et al. 1992; Bergado and Almaguer 2002; 

Dieguez Jr and Barea-Rodriguez 2004) have already suggested that aged brains of 

rodents show deficiencies in LTP, and previous studies also suggested that the cellular 

mechanism underlying the deficits in synaptic plasticity in old brains could involve 

adenosine signaling (Rex, Kramar et al. 2005). However, the precise cellular mechanisms 

in adenosine-induced synaptic impairment in aged brains are largely unidentified. To 

induce cLTP in rat hippocampus, forskolin and rolipram were applied for 10 min in Mg2+-

free ACSF solution both in young and old hippocampal slices. A comparison between 

young (1 month-old) and middle-aged (12 month-old) rat hippocampal slices revealed a 

significant difference in their fEPSP responses to cLTP in the CA1 region. Figure 4.3.3A 

shows trace recordings of averaged fEPSPs obtained from a young rat (left) and a middle-

aged rat (right) before (1) and after (2) cLTP. cLTP produced a larger increase in the 

fEPSP slope in young compared to middle-aged rats at the end of the 10 min cLTP drug 

cocktail, suggesting that LTP induction is attenuated in middle-aged hippocampal slices. 

After the 10 min cLTP protocol, a one-hour fEPSP recording was performed to determine 

whether the maintenance of LTP was also affected in the middle-aged brains. As shown 

in Figure 4.3.3B-C, when fEPSPs were compared before (see region of fEPSP traces 

denoted by “1”) and after cLTP (see region of fEPSP traces denoted by “2”), the young 

rats showed a cLTP of 253.83±27.69% with n=16 whereas the middle-aged rats showed 

a cLTP of only 180.00 ± 15.86% with n=17. Taken together, these results suggest that 

aging impairs chemical LTP induction and maintenance. 
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Figure 4.3.3 
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Figure 4.3.3 cLTP was impaired in old rats. A. The recordings of representative 

experiments are shown; each recording is the average of five consecutive responses 

obtained before cLTP and 60 min after cLTP induction in both young and old 

hippocampus. B. Averaged time course changes of fEPSP slope induced by cLTP in 

young (1 month old) and middle-aged (12 months) hippocampus. C. The effect of 10 min 

forskolin and rolipram on cLTP value in young and old hippocampus. All values are 

means±SEMs. Statistical significance of values compared with control (1 month old) was 

assessed by one-way ANOVA. (**P<0.01, ***P<0.001).  

 

4.3.4 Effect of cLTP on surface levels of AMPARs in young and middle-aged rats 

Next, I investigated whether biotinylated surface levels of AMPARs are altered 

after cLTP with forskolin/rolipram treatments in young and middle-aged rats. The results 

showed that the surface levels of GluA2 and GluA1 increased with forskolin/rolipram 

treatment in both young rats and middle-aged rats (Figure 4.3.4). However, the total levels 

(from whole lysates, which include both surface and cytosolic proteins) of both GluA2 and 

GluA1 subunits did not appear to be different, not only between young and middle-aged 

hippocampal lysates but also in absence or presence of the cLTP treatments. When the 

cLTP levels of GluA1 or GluA2 in both young and middle-aged brains were normalized to 

their respective DMSO controls, there was no difference in the relative levels of cLTP-

induced potentiation of GluA2 or GluA1 subunits (Figure 4.3.4A-B, bottom summary bar 

charts). This latter result suggests that the insertion trafficking of AMPARs during and 

after cLTP may not be significantly altered in middle-aged hippocampus compared to that 

in young hippocampus. Therefore, I then tested the hypothesis (see next) that the 

increased adenosine tone observed in aged brains may produce greater internalization 

of AMPARs by enhancing the activities of the clathrin-mediated endocytic protein 

machinery.  
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Figure 4.3.4 

A.                                                                     B. 

 

 

 

 

 

 



139 
 

Figure 4.3.4 cLTP similarly increased AMPAR surface levels in hippocampal slices of old 

(12 months) and young (1 month) rats. A. 10 min treatment with forskolin and rolipram 

increased the biotinylated (surface) GluA1. Top. Biotinylated surface proteins from young 

and old hippocampus were precipitated by Streptavidin-agarose and immunoblotted by 

anti-GluA1 antibody. Bottom. Total lysate from young and old hippocampal slices were 

immunoblotted for GluA1. No changes were shown in the total (whole) GluA1 protein 

amount, while the surface GluA1 was more significantly increased after cLTP in young 

compared to old brains. B. Representative blots for GluA2 before and after cLTP. cLTP 

also increased surface expression of GluA2 in young brains and modestly increased 

surface GluA2 in old brains. Similar to GluA1, the total GluA2 expression level did not 

change in young and old hippocampal slices. The ratio of surface GluA1 or GluA2 to total 

GluA1 or GluA2 was graphed from three individual experiments. Data represent 

means±SEMs. Statistical significance of values compared with control (1 month old) was 

assessed by one-way ANOVA with post hoc test (**P<0.01, ***P<0.001). Summarized 

data were graphed from three individual experiments.  
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4.3.5 Endocytosis of AMPARs contributes to deficits in cLTP 

We have recently shown that stimulation of A1Rs induced clathrin-mediated 

endocytosis of AMPARs (Chen et al., 2014, see also Chapter 2). Trafficking of AMPARs 

is crucial for LTP (Anggono and Huganir 2012), and AMPAR trafficking in postsynaptic 

membranes may be one of the most important mechanisms of LTP (Malinow and Malenka 

2002). In addition, AMPARs have been previously shown to undergo clathrin-dependent 

endocytosis (Man, Lin et al. 2000), and the immediate early gene called arg3.1/arc (ARC) 

has also been shown to bind to the endocytic protein members endophilins 2 and 3 and 

dynamin 2 and causes activity-dependent internalization of AMPARs (Chowdhury, 

Shepherd et al. 2006; Nicoll, Tomita et al. 2006; Shepherd, Rumbaugh et al. 2006; 

Tzingounis and Nicoll 2006). Here, I tested the hypothesis that cLTP deficits may involve 

increased activity of endocytosis protein machinery. I examined the relationship between 

trafficking of AMPARs and cLTP levels in young and middle-aged brains. Specifically, I 

focused on determining whether blocking clathrin-mediated and dynamin-dependent 

endocytosis of AMPARs before cLTP could alter the biotinylated surface expression 

levels of AMPARs after treatments with forskolin and rolipram in young and middle-aged 

rat hippocampus. I pre-incubated hippocampal slices with Tat-GluA2-3Y peptide (2 µM), 

scrambled Tat-GluA2-3Y peptide (2 µM) or Dynasore (100 µM) before cLTP. The results 

show that AMPAR surface expression levels increased after 10 min of cLTP (Figure 4.3.5; 

see also Figure 4.3.4). Blocking GluA2 endocytosis with Tat-GluA2-3Y peptide 

dramatically enhanced the surface expression of both GluA2 and GluA1 subunits after 

cLTP in both young and middle-age brains. Similarly, blocking GluA2 endocytosis with 

Dynasore also enhanced GluA2 and GluA1 surface expression in both age groups. 

Conversely, pre-incubation of scrambled Tat-GluA2-3Y peptide did not alter the surface 

expression levels of GluA2 or GluA1 induced by cLTP. Together with the results above, 

these results suggest that clathrin-mediated endocytosis of AMPARs is enhanced in 

middle-aged brains, which likely contributes to the impairments in cLTP induction and 

maintenance in hippocampal brain slices.  
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Figure 4.3.5 
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Figure 4.3.5 Dynasore and Tat-GluA2-3Y peptide enhanced the increase of GluA1 and 

GluA2 surface expression induced by cLTP in both young and old hippocampal slices. A. 

Top. Representative blots show biotinylated surface proteins and total proteins from 

hippocampal slices (young and old) treated with DMSO, forskolin and rolipram (cLTP), 

Tat-GluA2-3Y peptide + cLTP, scrambled Tat-GluA2-3Y peptide + cLTP, and Dynasore 

+ cLTP. Blots were immunoblotted with anti-GluA2 or anti-GluA1 antibody. cLTP 

increased surface expression of GluA2 or GluA1 in both young and old hippocampal 

slices, but did not affect total GluA2 or GluA1 protein levels. These cLTP effects were 

further enhanced by one hour pre-incubation with Tat-GluA2-3Y peptide (2 µM) or 

Dynasore (100 µM) (to inhibit endocytosis of GluA2 and GluA1), but not with scrambled 

Tat-GluA2-3Y peptide. B. top. Summary chart of surface levels of GluA2 (B top, left panel) 

and GluA1 (B top, right panel) in 1 month rat hippocampus. B bottom, same as B top, 

GluA2 and GluA1 immunoreaction in middle-aged hippocampus with or without clathrin-

mediated endocytosis are shown. Statistical significance of values compared with control 

(DMSO control in one month old hippocampal slices) was assessed by one-way ANOVA. 

(*P<0.05, **P<0.01, ***P<0.001).  
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4.4 Discussion 

The main finding of the present study is that there is a decreased association of 

A1Rs and AMPARs in the hippocampus of middle-aged rats compared to young rats, this 

is accompanied by decreased cLTP in middle-aged rats, which is consistent with previous 

studies (Barnes and McNaughton 1985; Ward, Oler et al. 1999). However, we also 

reported that surface levels of A1Rs and AMPARs are significantly reduced, while the 

A2AR surface levels are dramatically enhanced, in the hippocampus of middle-aged rats 

compared to young rats. This suggests that changes in adenosine tone and adenosine 

receptors in older brains may alter the expression of AMPARs and induce adaptations in 

glutamatergic synaptic transmission. Previous evidence suggests that AMPAR trafficking 

is critical for synaptic plasticity (Man, Lin et al. 2000; Liu and Zukin 2007). Defects in 

trafficking of AMPARs cause deficiencies in synaptic plasticity during aging (Henley and 

Wilkinson 2013). Here, my results suggest that the trafficking and the overall surface 

expression of AMPARs before cLTP reflect different levels of adenosinergic signaling in 

the hippocampal slices of young and old animals. The observation that A1Rs are 

dramatically reduced while A2ARs are increased on the surface membranes of older 

brains may be a direct consequence of the increased adenosine tone which likely 

contributes to increased desensitization of A1Rs. We have recently observed a similar 

reduction of A1Rs after A1R stimulation with agonist CPA or after 48 hours of the pial 

vessel disruption (PVD) focal cortical stroke injury model (Chen, Xiong et al. 2014). We 

have also observed an increase in A2AR surface expression in this PVD model. Currently, 

the cellular mechanisms for this A2AR upregulation in the PVD model as well as in middle-

aged brains (present study) are undefined. Interestingly, the levels of the protein kinase 

CK2 that are subsequently presented in Chapter 5 appears to be reduced in cerebral 

ischemia, and this pattern is also documented in aging brains (see review by (Blanquet 

2000)). Since a previous study (Rebholz, Nishi et al. 2009) also reported that CK2 is 

critical for A2AR desensitization, it is possible that the increased A2AR surface 

expression in middle-aged hippocampus reflects a reduction in the levels or activities of 

CK2. Therefore, an increase in A2AR signaling and a decrease in A1R signaling could 

regulate AMPAR-mediated glutamatergic synaptic plasticity in older brains.  
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Furthermore, I observed that cLTP increased the surface expression of AMPARs 

to similar levels in the hippocampus of young and middle-aged rats, suggesting that 

surface insertion trafficking pathways are not likely different between younger and older 

brains. However, further studies are needed to confirm whether the phosphorylation of 

AMPARs (at Ser845 and Ser831 for GluR1 or at Ser880 for GluA2) is an important 

mechanism involved in AMPAR surface insertion during aging. 

 In contrast, I found that the fEPSPs were significantly lower after cLTP treatments 

of middle-aged hippocampal slices compared to young ones, which might suggest that 

the endogenous levels of activity of clathrin-mediated protein machineries may be 

elevated in older brains; however, this possibility also requires further investigations. I 

also found that pretreatments of hippocampal slices with endocytosis inhibitors in young 

and old brains caused further enhancements in the surface expression of GluA2 and 

GluA1, which suggests that inhibiting the endocytic pathways may be sufficient to 

minimize the effects of endogenous adenosine tone in both young and older brains. 

Moreover, these results also suggest that aging decreased the surface levels of AMPARs 

which leads to impaired synaptic plasticity. 

It is well known that extracellular concentrations of adenosine increase in aging 

rats (Sperlagh, Zsilla et al. 1997). As our results indicate (Chen, Xiong et al. 2014) (also 

see Chapter 2), activation of A1Rs decreases surface expression of AMPARs. Therefore, 

we predicted that more functional A1Rs in older hippocampus would be detected and 

induce a reduction in surface AMPAR expression. As demonstrated in figure 4.3.2, 

AMPAR levels decreased in both membrane fractions and biotinylated surface expression, 

which provided support to our hypothesis that increased adenosinergic signaling would 

downregulate AMPARs. However, the A1Rs are also downregulated in aging brains, 

suggesting that increased adenosinergic signaling is expected to affect not only 

glutamatergic synaptic transmission but also adenosine receptor trafficking. 

Similar results have been found by other groups in terms of age-related decreases 

in AMPAR expression in aging brains (Sonntag, Bennett et al. 2000). Impairments in LTP 

occur during aging and this impairment is likely attributable to defects in AMPAR 

trafficking (Henley and Wilkinson). Other reports have also demonstrated a reduction in 

the expression and density of A1 in cortical and hippocampal regions in older rat brains 
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(Pagonopoulou and Angelatou 1992; Cunha, Constantino et al. 1995; Cheng, Liu et al. 

2000). Previously, we showed there was a physical interaction between A1Rs and 

AMPARs (Chen, Xiong et al. 2014). Here, we showed a decrease in the surface 

expression of A1Rs and AMPARs in older hippocampus, which may indicate that the 

decreased protein complex of A1Rs and AMPARs at the surface of hippocampal neuronal 

membranes of older hippocampus may explain the deficits in cLTP. 

In senescence-accelerated prone mouse strains and resistant strains, age-related 

loss of A1Rs and age-related increase in A2ARs were detected (Castillo, Albasanz et al. 

2009). Modulation of postsynaptic AMPARs in the brain by phosphorylation may play a 

role in the expression of synaptic plasticity at central excitatory synapses. cLTP 

stimulation resulted in significant increases in phospho-Ser-845, suggesting there was an 

increase in surface GluA1 with cLTP stimulation regardless of basal stimulation (Oh, 

Derkach et al. 2006). Antagonists of A2AR prevented aging dependent memory deficits 

(Prediger, Batista et al. 2005; Costa, Botton et al. 2008). It was reported that the density 

of A1R-DPCPX binding sites was downregulated in aged rats but CGS 21680 binding 

ability of A2AR increased (Cunha, Constantino et al. 1995; Canas, Porciuncula et al. 

2009), which are consistent with our biochemical results. 

Although adenosine signaling has been studied for decades, much more work is 

required to develop a more complete understanding of this phenomenon. This study 

extends our understanding of the interaction between A1Rs and AMPARs and the 

functional consequences of this interaction on the cellular distribution of AMPARs in aged 

rats. The findings from this study add further insight into the molecular and cellular 

mechanisms of AMPAR trafficking that underlie the defects in synaptic plasticity during 

aging. Further studies are needed to elucidate the importance of activity-dependent 

alterations in the surface expression of AMPARs and adenosine receptors that 

accompany impairments in synaptic plasticity that are associated with aging-related 

neurological disorders. 
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CHAPTER 5 

General Discussion  

5.1 A summary of the main findings 

The goal of this dissertation was to elucidate novel mechanisms of adenosinergic 

signaling pathways, which could be exploited for developing neuroprotective therapies in 

stroke. More specifically, I found a novel interaction between AMPARs and adenosine 

receptors, as well as interaction between adenosine receptors and nucleoside 

transporters called ENTs, and characterized these interactions using different but 

complementary techniques, including expression levels in membrane fractions, 

biotinylated surface levels of receptors, coimmunoprecipitation and co-localization of 

receptors, phosphorylation level of receptors, and surface immune-staining density of 

receptors on cultured hippocampal neurons. I have also demonstrated the regulation of 

adenosine receptors and nucleoside transporters by CK2. Using an animal model of small 

vessel stroke (i.e., the focal cortical ischemia evoked by pial vessel disruption) and 

comparing these to sham animals, I have also examined the alterations in the surface 

levels of AMPARs, adenosine receptors and ENTs in hippocampus of pial vessel 

disruption cortical stroke model. Finally, I explored the consequences of increased 

adenosinegic signaling by further investigating the interactions between AMPARs and 

adenosine receptors during aging. My results are summarized in the schematic diagram 

shown in Figure 5.1. 

 

 The connection between Chapter 2 and Chapter 3 is that adenosine receptors and 

transporters are both important for adenosine signaling and for regulating levels of 

neurodegeneration. In Chapter 2, I found a novel interaction between adenosine 

receptors (in particular, A1Rs) and AMPARs, which leads to activation of intracellular 

protein kinases (e.g., p38 MAPK and JNK) and phosphatases (e.g., PP2A) which 

contribute to a long-lasting synaptic inhibition we have called adenosine-induced 

persistent synaptic depression (or APSD). My data obtained from an in vivo focal cortical 

ischemia model also supports the model that these intracellular signaling  
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Figure 5.1 

 

 

Figure 5.1 Schematic representation of the molecular mechanism of prolonged A1R 

induced AMPAR endocytosis. Stimulation of A1R induced endocytosis of GluA2 

containing AMPARs through p38 MAPK, JNK and PP2A. However, activation of A1R-

induced GluA1 AMPAR endocytosis was mediated by PP2A activation, but not by p38 

MAPK and JNK activation. GluA2-containing AMPARs are calcium impermeable. To 

prevent the A1R-induced AMPAR endocytosis, both YG peptide (Tat GluA2-3Y peptide, 

YGRKKRRQRRRYKEGYNVYG), which inhibits GluA2-containing AMPAR endocytosis, 

and YD peptide (amino acid sequence of YD is not described here due to patent 

application in progress), which prevents PP2A activation, prevented A1R-induced 

endocytosis of AMPARs.  
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pathways contribute to the clathrin-mediated internalization of GluA2-containing AMPARs, 

which suggests that loss of these GluA2 AMPAR subunits ultimately leads to increased 

neurodegeneration. However, more studies are required to establish a direct link between 

increased adenosine signaling and stroke-induced neurodegeneration. For example, the 

contributions of both presynaptic and postsynaptic mechanisms to adenosine-induced 

synaptic depression and neurodegeneration need further investigation using more direct 

electrophysiological analyses, for example, with direct recordings of excitatory 

postsynaptic currents (EPSCs) from postsynaptic membranes or from direct 

measurements of miniature excitatory postsynaptic currents (mEPSCs) to determine 

directly whether APSDs are a direct consequence of a presynaptic or postsynaptic 

mechanism or both. One of the reasons we studied adenosine signaling is that 

extracellular adenosine levels are enhanced during hypoxia and stroke (Van Wylen, Park 

et al. 1986; Phillis, Walter et al. 1987; Dale, Pearson et al. 2000). Adenosine transporters 

are important in controlling extracellular adenosine levels during hypoxia and stroke 

(Chakrabarti and Freedman 2008; Soylu, Zhang et al. 2012; Cui, Bai et al. 2013). 

However, the regulation of adenosine transporters is not well studied. Since ENTs contain 

consensus sites for casein kinase 2 (CK2) phosphorylation (canonical sequence 

S/TXXD/E) (Stolk, Cooper et al. 2005), we hypothesized that CK2 regulates the 

phosphorylation level of ENTs. In Chapter 3, we have shown that the inhibitors of CK2 

decreased the phosphorylation of ENT1 at Serine 254, a well-known consensus site for 

CK2 phosphorylation (Bone, Robillard et al. 2007). The inhibition of CK2 also decreased 

the surface levels of ENTs. Since both surface and phosphorylated levels of ENTs were 

decreased in the presence of CK2 inhibitors, this suggested that the overall levels of 

functional ENTs were attenuated, which would be expected to increase adenosine tone. 

Indeed, we found using electrophysiological analysis that adenosine tone increased in 

the presence of CK2 inhibitors (unpublished observations). Whether this apparent rise in 

adenosine tone (unpublished data from Chen, Stockwell and Cayabyab) from prior 

inhibition of ENT surface expression would produce neuroprotection, has never been 

previously reported. A previous report (Zhang, Xiong et al. 2011; Soylu, Zhang et al. 2012), 

however, showed that overexpression of ENT1 led to a decreased protective function and 

instead produced increased infarct volumes in an endothelin model of stroke injury. 



149 
 

Consistent with this previous report from Parkinson and colleagues, we demonstrated 

that preincubation of rat hippocampal slices with CK2 inhibitors decreased ENT1 and 

ENT2 surface levels which was accompanied by decreased neuronal death in our 

hypoxic/reperfusion injury model (Chapter 3). However, whether decreased ENT1 or 

ENT2 surface expression is truly neuroprotective is not clearly established by our studies. 

There are ENT1 knockout mice that are available, which could be used to further elucidate 

the role of ENT1 in neuroprotection (Choi, Cascini et al. 2004). Nevertheless, our in vitro 

data from hypoxic/reperfusion injury model did indicate, however, that the reduction in 

ENT1 and ENT2 surface expression in the presence of CK2 inhibitors was accompanied 

by decreased neuronal cell death (see Chapter 3 and Figure 5.2). Whether an 

experimental intervention that limits the function of ENTs in animal models of stroke, such 

as the pial vessel disruption used in my studies, can be demonstrated to produce 

neuroprotection as we have shown in our in vitro experiments (Chapter 3), remains to be 

determined. It is difficult to confirm our in vitro results using the CK2 pharmacological 

inhibitors with in vivo animal stroke models, since those reagents may have limited blood-

brain barrier permeability. Future studies using CK2 knockout animals or Tat-peptide 

interference strategies are therefore required to further define the role of CK2 inhibition in 

vivo in downregulating ENT surface expression, and whether this represents a possible 

neuroprotective target in animal stroke models. 

The connection between Chapters 2 and 4 is that the extracellular adenosine 

levels appear to be increased in pathological conditions such as stroke, as well as during 

aging. We observed that the activation of adenosine A1Rs was able to induce AMPAR 

endocytosis under both ischemic (PVD model) and hypoxic conditions. We wanted to 

know whether A1Rs can induce AMPAR endocytosis during aging. Therefore, we 

compared the surface levels of AMPARs and also determined whether deficits in LTP 

levels in aged brains (12 months) compared to young brains (one month) can be 

correlated with increased adenosinergic signaling which mediates increased clathrin-

mediated AMPAR endocytosis. We found that the levels of both AMPARs and LTP were 

lower in aged rats compared to those of young rats. AMPAR endocytosis in both young 

and aged rats occurred through clathrin-mediated endocytosis pathway, and this 

endocytic pathway appeared to be intact in both younger and older rat brains. I also found 



150 
 

that AMPAR interaction with A1Rs was preserved in aged rat brains, as was shown by 

my coimmunoprecipitation studies. However, it will be important to determine in future 

studies whether excessive adenosine level was absolutely critical to the downregulation 

of AMPAR surface expression, which leads to impairments in LTP induction and 

maintenance. It is also essential to identify the adenosine-related proteins that could 

contribute to this elevation in adenosine tone in aged brains. For example, some possible 

candidates could include decreased adenosine kinase levels or activities, increased ecto-

5’-nucleotidase (or CD73) levels, increased ecto-phosphodiesterases, and decreased 

ENT levels or activities, to name a few (see Figure 5.4). Future studies are also required 

whether components of clathrin-mediated endocytosis pathway, including dynamin, 

endophilin, and protein phosphatase, are upregulated during aging to mediate some of 

the LTP attenuation. Taken together, my results from Chapters 2 and 4 indicate that 

adenosine induced AMPAR endocytosis is a novel mechanism for attenuating LTP in 

aged rats. This is significant since cognitive decline is often reported in aging-related 

neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, and stroke 

(Wilson, Leurgans et al. 2011; Lindenberger 2014).  

As shown in Figure 5.1, stimulation of A1R activates the p38 MAPK and JNK, and 

results in translocation of PP2A to plasma membrane fractions (Brust, Cayabyab et al. 

2006; Brust, Cayabyab et al. 2007). Pharmacological inhibitors of p38 MAPK, JNK and 

PP2A all prevented A1R-induced endocytosis of GluA2-containing AMPARs. Numerous 

mechanisms are known to be involved in the decreased levels of surface-expressed 

AMPARs, specifically those containing the GluA2 subunits. These mechanisms may 

include the involvement of the immediate early gene called arg3.1/arc (ARC) (Chowdhury, 

Shepherd et al. 2006; Shepherd, Rumbaugh et al. 2006; Tzingounis and Nicoll 2006) 

which has been shown to associate with the endocytic proteins endophilins 2 and 3 and 

dynamin 2 to regulate AMPAR trafficking. Since ARC is transcribed and targeted to 

dendrites during periods of information processing and storage (Chowdhury, Shepherd 

et al. 2006), similar to periods during LTP or LTD induction, and our current results 

showed that prolonged A1R stimulation leads to clathrin-mediated internalization of 

GluA2-containing AMPARs, together these previous results and our current findings point 

to a possible involvement of ARC in A1R-mediated endocytosis of AMPARs. However, 
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more work is needed to show a link between AMPAR downregulation and a possible 

increase in ARC levels during prolonged A1R stimulation or during in vivo focal cortical 

ischemia. Another mechanism that may contribute to decreased GluA2 surface 

expression is increased Ser880 phosphorylation (Chung, Xia et al. 2000; Seidenman, 

Steinberg et al. 2003; Hu, Huang et al. 2007). Previous studies (Thomas, Lin et al. 2008; 

Ahn and Choe 2010) have also reported that increased JNK activation leads to increased 

Ser880 phosphorylation, which subsequently produced increased internalization of GluA2 

subunits. It has been suggested that inhibition of JNK (by inhibiting or preventing the 

binding of JNK-interacting protein-1 to JNK) should lead to decreased Ser880-GluA2 

phosphorylation, which should produce decreased GluA2 internalization. Whether 

Ser880-GluA2 is hyper-phosphorylated after prolonged A1R stimulation remains to be 

determined, but could potentially provide an alternative mechanism to explain A1R 

mediated GluA2 receptor endocytosis. Yet another potential mechanism that could be 

involved in downregulating GluA2 surface expression after excessive A1R stimulation is 

the possible decrease in interaction between NSF and GluA2 subunits. This mechanism, 

if shown to be involved in A1R-mediated AMPAR downregulation, may suggest that 

excessive A1R signaling causes a decrease in the stability of AMPARs on neuronal 

membranes. However, further studies are needed to test this hypothesis. Also to continue 

to investigate possible mechanisms of AMPAR endocytosis, we have designed a YD 

peptide, which prevents PP2A activation, to inhibit A1R induced AMPAR endocytosis (see 

Figure 5.1, unpublished data). We have already demonstrated using another peptide, i.e., 

the Tat-GluA2-3Y peptide, the usefulness of Tat-peptide interference strategy in 

preventing GluA2 AMPAR endocytosis (Chapter 2), so therefore the Tat-YD peptide 

shows great potential in preventing A1R-mediated synaptic depression, clathrin-mediated 

GluA2 AMPAR endocytosis, and neurodegeneration. Our preliminary data showed both 

peptides could prevent hypoxia/reperfusion-induced neuronal cell death in hippocampal 

brain slices (Zhi, Chen, Stockwell, and Cayabyab, unpublished), as shown by propidium 

iodide staining previously shown in rat hippocampus (Noraberg, Kristensen et al. 1999; 

Pugliese, Traini et al. 2009), indicating that these two peptides are neuroprotective, at 

least under in vitro conditions. Future studies will also be needed to confirm whether these 
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peptides have neuroprotective capabilities in our in vivo focal cortical stroke model using 

our PVD stroke model.  

In Chapter 2, I found that A1Rs and GluA2-containing AMPARs formed stable 

protein complexes in both the hippocampus and cultured hippocampal neurons. In 

contrast, adenosine A2ARs did not co-precipitate or colocalize with GluA2-containing 

AMPARs. In addition, my findings also revealed that not only A1Rs and AMPARs are both 

physically coupled but they are also functionally associated. Prolonged stimulation of 

A1Rs with the agonist CPA can cause adenosine-induced persistent synaptic depression 

(termed APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting 

clathrin-mediated endocytosis of GluA2 with the Tat-GluA2-3Y peptide. Moreover, 

prolonged CPA incubation showed a significant depletion of GluA2 and GluA1 surface 

expression from hippocampal brain slices and cultured hippocampal neurons, indicating 

adenosine receptors and AMPARs functionally associate. Tat-GluA2-3Y peptide or 

dynamin inhibitor Dynasore prevented the internalization of CPA-induced GluA2 and 

GluA1 internalization, suggesting internalization of AMPARs is through clathrin-mediated 

endocytosis pathway. Furthermore, a confocal imaging analysis confirmed that functional 

A1Rs rather than A2ARs are required for clathrin-mediated endocytosis of AMPARs in 

cultured hippocampal neurons. It was also reported that pharmacological inhibitors or 

shRNA knockdown of p38 MAPK and JNK prevented the A1R-mediated internalization of 

GluA2 but not GluA1 subunits. This suggests both p38 MAPK and JNK are involved in 

the activation of A1R-induced internalization of GluA2, but neither is involved in the 

internalization of GluA1. Tat-GluA2-3Y peptide or A1R antagonist DPCPX also prevented 

the hypoxia-mediated internalization of GluA2 and GluA1. Finally, in the pial vessel 

disruption focal cortical stroke model, reduced hippocampal GluA2, GluA1, and A1R 

surface expression and synaptic depression were seen in hippocampal slices from 

unilateral cortical lesioned brains compared to sham brains. These in vivo results are in 

agreement with our in vitro findings that excessive adenosinergic signaling results in 

AMPAR downregulation and decreased probability of transmitter release. Together, our 

results indicate a previously unknown mechanism for A1R-induced persistent synaptic 

depression involving clathrin-mediated GluA2 and GluA1 internalization in 

hypoxia/cerebral ischemia.  
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So far, we only explored the influence of adenosine signaling on AMPARs, but the 

specific roles of persistent adenosine A1R signaling in regulating NMDAR during and after 

ischemia have not been investigated previously by others. It was reported that NMDAR 

subtypes play different roles from AMPARs in ischemic neuronal death. For example, the 

inhibition of GluN2A-containing NMDARs triggered neuron death (Chen, Lu et al. 2008). 

In contrast, the inhibition of the GluN2B-containing NMDAR was neuroprotective after 

transient global ischemia in animal models (Chen, Lu et al. 2008). The roles of NMDARs 

during stroke were recently reviewed (Lai, Zhang et al. 2014). Moreover, NMDARs can 

be activated by adenosine receptors, in particular by A2ARs, which suggests that 

adenosine receptor-induced internalization of AMPARs may result indirectly from the 

modulation of NMDA receptor activity (Rebola, Lujan et al. 2008). Since our 

electrophysiology recordings were performed in the absence of NMDAR blockers, we 

could not rule out the possibility of NMDARs contributing to A1R-mediated APSDs. 

However, in our confocal analysis, we showed in hippocampal neuron cultures that 

prolonged CPA incubation with presence of TTX and NMDAR antagonist D-APV, still 

induced AMPAR endocytosis. The physical interaction between A1Rs and 

GluN2A/GluN2B was undetectable by our coimmunoprecipitation studies (Chen and 

Cayabyab, unpublished observations). However, more work needs to be done to confirm 

this result in future, and particularly whether a functional interaction between A1Rs and 

NMDARs contributes to AMPAR trafficking. 

In order to understand the pathophysiology of stroke and to explore potential 

treatments, several animal stroke models have been developed (Xiong, Mahmood et al. 

2013). In this study, we applied a modified model of pial vessel class II disruption (PVD 

model). Instead of the middle cerebral artery occlusion (MCAO), we used this modified 

model in our study. The reasons can be discussed from different aspects. In the MCAO 

animal stroke model (Nagasawa and Kogure 1989), the lesion severity can be 

manipulated by relying on the duration of the occlusion. Necrosis and apoptosis were 

both found in this model. Necrosis predominantly occurs in the infarct core in the cortex 

or striatum while apoptosis mainly happens in the penumbra, the area surrounding the 

infarct (Lipton 1999). In the penumbra, both neuroinflammatory and neurodegenerative 

processes can take place (Carmichael 2005). However, the method of suture insertion 
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carries a high risk of subarachnoid hemorrhage (Murphy and Corbett 2009). In addition, 

it involves invasive surgical procedures and the reproducibility is low (Murphy and Corbett 

2009). Therefore, MCAO is not an ideal model for my study. In the human brain, most 

strokes occur in large arteries (>0.1 mm diameter), while one third of human strokes are 

the results of small-vessel ischemia (Greenberg 2006; Kitamura, Nakagawa et al. 2006). 

It is generally acknowledged that small-vessel strokes lead to lacunar infarctions. To 

mimic small volume stroke in the rat brain, another local stroke model has been developed 

– the modified pial class II vessel disruption (PVD) model which induces small-vessel 

stroke by disrupting class II vessels. This prevents hemorrhage and causes a cone-

shaped lesion exclusively located in the cerebral cortex. This method also prevents larger 

variations in lesion sizes. In addition, this model is highly reproducible with a high survival 

rate (Hua and Walz 2006; Hua and Walz 2006; Cayabyab, Gowribai et al. 2013). Hence, 

we chose PVD stroke model for our study. 

In Chapter 3, I have shown that both equilibrative nucleoside transporters and 

A1Rs are widely expressed in the hippocampus, and they regulate the extracellular 

adenosine level and induce synaptic depression during and after a cerebral ischemia, 

respectively. Since ENTs contain consensus sites for CK2 phosphorylation, I tested 

several CK2 inhibitors (TBB, DMAT, and DRB) to determine whether these inhibitors 

could reduce pSer254-ENT1 levels in whole lysates. My results confirmed that CK2 

blockers not only decreased pSer254-ENT1 levels but also decreased both A1Rs and 

ENTs. To confirm these results further, I showed that the CK2 activator spermine when 

applied to acute brain slices did increase the surface expression of pSer254-ENT1 and 

A1Rs in biotinylation assays of hippocampal brain slices. Moreover, biotinylation of 

cultured hippocampal neurons revealed that both ENT1 and ENT2 surface expression 

were downregulated by CK2 inhibitors or direct ENT inhibitors, as well as by A1R agonist 

CPA, but not in the presence of A1R antagonist DPCPX. 
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Figure 5.2 

 

Figure 5.2 Inhibition of CK2 and ENT causes endocytosis of ENTs in rat hippocampus. 

Application of pharmacologicall inhibitors of CK2, such as DMAT, TBB or DRB, leads to 

endocytosis of ENTs. CK2 inhibitors also decreased the phosphorylation of ENT1 at 

Serine 254. ENT inhibitors DPY or NBTI results in endocytosis of ENTs but not attenuate 

the phosphorylation of ENT1. This reduction in ENT1 surface expression in the presence 

of either CK2 or ENT inhibitors was blocked by A1R antagonist DPCPX. In addition, a 

novel physical interaction between A1Rs and ENTs was observed by 

coimmunoprecipitation and colocalization in rat hippocampal slices and cultured 

hippocamal neurons (Chapter 3). 
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These results suggest that A1R and ENT1 are not only biochemically coupled but 

are also functionally associated. Although I have not yet demonstrated whether ENTs and 

A1Rs are co-internalized and trafficked to the same protein degradation pathways or to 

similar recycling vesicular pools, the similar patterns of decreased surface expression of 

ENTs and A1Rs after selective A1R stimulation and the colocalization of these proteins 

at or near the plasma membranes and intracellular membranes would suggest that some 

ENTs and A1Rs do traffic to the same subcellular localization after A1R signaling. 

Moreover, pretreatments of hippocampal slices with CK2 or ENT blockers also enhanced 

hypoxia-mediated downregulation of both ENT and A1R surface expression, further 

indicating that both proteins undergo similar trafficking in the presence of enhanced 

adenosinergic signaling in hypoxia. Therefore, these results strengthen our model that 

CK2-induced and A1R-linked ENT trafficking represents an important regulatory 

mechanism of hypoxic/ischemic hippocampal brain damage. My results showing that 

increased CK2 activity (with spermine treatments) leads to increased surface expression 

of A1Rs and ENTs, which accompanied the increased neuronal death after 

hypoxia/reperfusion injury, supports the role for increased CK2 activity in 

neurodegeneration. This is in sharp contrast to other previous reports (Hu and Wieloch 

1993; Blanquet 2000; Kim, Jung et al. 2009) suggesting that CK2 levels and activity 

promote neuroprotection in cerebral ischemia. However, my own unpublished results 

suggest that CK2 levels are decreased in our PVD stroke model, and this decrease in 

CK2 levels was accompanied by decreased A1R and ENT surface expression (Chapter 

3). It is clear that future studies are required to further clarify the roles of CK2 in 

neurodegeneration occurring in the different time periods following an ischemic damage. 

One possibility is that during the early phase (i.e., within minutes) of ischemic stroke, the 

CK2 activity is further increased which leads to increased phosphorylation and increased 

surface trafficking of the calcium-permeable GluA1 AMPAR subunits, as has been shown 

in cultured neurons (Lussier, Gu et al. 2014). Whether this CK2 regulation of GluA1 

subunits contributes to the initial cascades of events that lead to increased 

neurodegeneration, remains to be determined. In contrast, the decreased levels of CK2 

that I have observed two days after PVD stroke injury (Figure 5.3) was accompanied by 

decreased GluA1 (and GluA2) AMPAR subunits (Chapter 2). However, further studies  
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Figure 5.3 

 

Figure 5.3 CK2α and pENT1 at Ser254 decreased in rat PVD model. After 48 hours of 

PVD stroke injury, total lysates of hippocampus were collected in Sham and PVD animals. 

The levels of CK2α and pENT1 at Ser254 were detected by western blotting. Both levels 

of CK2α and pENT1 at Ser254 decreased in the PVD model compared to Sham.  (For 

description of our unilateral focal cortical PVD-induced stroke injury model, please refer 

to Chapter 2.)  
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are needed to determine whether the CK2 consensus site in GluA1 subunits shows 

decreased levels of phosphorylation after two days of PVD stroke injury. It is also 

important to determine whether this mechanism involving decreased CK2 levels during 

this advanced phase of ischemic damage contributes to neuroprotection of hippocampal 

neurons or represents a mechanism that attempts to reverse the effects of the acute CK2 

activation in the early phase of hippocampal stroke damage. Moreover, future studies are 

also needed to address whether CK2 activation leads to activation p38 MAPK, JNK and 

PP2A, which leads to A1R-mediated synaptic depression and increased 

neurodegeneration (see summary in Figure 5.5B). 

The potential sources of the extracellular adenosine in neurons and glial cells are 

the result of the activities of several adenosine-related proteins as shown in Figure 5.4. 

Briefly, the important proteins involved in adenosine generation include the following: 1) 

endo- and ecto-5'-nucleotidases that breaks down ATP to adenosine, 2) intracellular 

adenosine transport out of cells by adenosine transporters (ENT1 or es, and ENT2 or ei), 

3) breakdown of cAMP to adenosine by cytosolic and ecto-phosphodiesterases, 4) 

inhibition of adenosine kinases (AK) leading to increased cytosolic adenosine, and 5) 

inhibition of intracellular adenosine deaminase, which also increases cytosolic adenosine. 

The extracellular concentration of adenosine is altered in response to environmental 

changes in the brain, such as during stroke or sleep. Due to the rapid metabolism of 

adenosine, it is difficult to detect the extracellular levels of adenosine, but there are some 

commercially available enzyme-based adenosine biosensors that indirectly measure 

adenosine levels in brain slices so that adenosine release can be correlated with synaptic 

depression in real time (Dale and Frenguelli 2009). However, I showed that the inhibition 

of CK2 can decrease the surface levels of ENTs and A1Rs. By this mechanism, I propose 

that CK2 normally promotes the surface expression of ENTs and A1Rs, thus optimizing 

the extracellular baseline levels of adenosine for optimal synaptic transmission. As 

previously reported, over-expression of ENT1 increased the volume of ischemic damage 

in the endothelin model of stroke (Soylu, Zhang et al. 2012). Here, we observed that the 

inhibition of CK2 decreased the phosphorylation and surface levels of ENT1. Taken 

together, these data suggests that the inhibition of CK2 leads to some form of an 

“ischemic preconditioning” in the brain which enhances the  
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Figure 5.4 
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Figure 5.4 Pathways of adenosine production, metabolism and transport and effects of 

adenosine elevation on ENT-A1R-AMPAR signaling complex. Pharmacological inhibitors 

of specific enzymes are indicated. In ischemic brain cells, the elevation of extracellular 

adenosine is derived from various sources, including downregulation of ENT function, 

upregulation of ecto-5’-nucleotidase, decreased functions of cytosolic adenosine kinases 

and deaminases. Abbreviations are as follows: ADA, adenosine deaminase; AK, 

adenosine kinase; AOPCP, α,β‐methylene ADP; DCF, deoxycoformycin; EHNA, erythro‐

9‐(2‐hydroxy‐3‐nonyl)adenosine; es, equilibrative‐sensitive nucleoside transporters; ei, 

equilibrative‐insensitive nucleoside transporters; 5‐IT, 5‐iodotubercidin; NBMPR, 

nitrobenzylthioinosine; PDE, cAMP phosphodiesterase; SAH, S‐adenosyl homocysteine. 

Modified from Latini and Pedata (Latini and Pedata 2001). 
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adenosine neuroprotective effects in subsequent ischemic insults, which was also 

confirmed by our in vitro hypoxia/reperfusion injury model and confocal images. 

 

In Chapter 4, as AMPARs are known to play a crucial role in hippocampal synaptic 

plasticity and my data from Chapter 2 showed that elevation of adenosine levels in 

ischemic brains or prolonged, selective stimulation of A1Rs led to hippocampal synaptic 

depression, I therefore compared the levels of expression of AMPARs and adenosine 

receptors in membrane fractions and biotinylated (plasma membrane) fractions in the 

hippocampus of young and aged rats. In membrane fractions, we found that both GluA2 

and GluA1-containing AMPARs were significantly reduced in 3, 6-7, and 10-12 month old 

rats compared to those in 1 month old rats. This was further confirmed with biotinylation 

assays that GluA2 and GluA1 surface expression was also significantly reduced in aged 

(10-12 month old rats) hippocampal tissue compared to younger (1 month old rats) tissue. 

Previously in Chapter 2, I found that A1R stimulation leads to profound synaptic 

depression. In addition, my data also support the involvement of GluA2 and GluA1 

AMPAR endocytosis in aging process. Here, using biotinylation assays, I found that 

GluA2 and GluA1 surface levels were both significantly enhanced to similar levels in 

younger and aged hippocampal slices by chemical LTP. In contrast, recordings of fEPSPs 

in the CA1 region of the hippocampus showed higher levels of chemical LTP in younger 

versus aged hippocampal tissue. In addition, we found that Dynasore (endocytosis 

inhibitor) and Tat-GluA2-3Y peptide (inhibits clathrin-mediated endocytosis of GluA2), but 

not a scrambled Tat-peptide, caused significant enhancements of surface expressed 

GluA2 and GluA1 to similar levels after chemical induction of LTP in both young and aged 

brains. Since our biotinylation data do not distinguish between synaptic and extrasynaptic 

AMPARs that are being elevated during chemical LTP or with treatments with Tat-GluA2-

3Y or Dynasore, our electrophysiological data do suggest, however, that there may be 

much higher levels of synaptic insertion of AMPARs during chemical LTP occurring in the 

young vs. aged hippocampal brains. Alternatively, our electrophysiological data may also 

suggest that the rate of AMPAR endocytosis may be increased in aged brains compared 

to younger brains, possibly owing to the increased adenosinergic signaling occurring in 

aged brains. Future studies into the activities and expression levels of the protein 



162 
 

machineries involved in clathrin-mediated endocytosis, including the role of ARC binding 

to dynamin 2 and endophilins 2 and 3 (Chowdhury, Shepherd et al. 2006), as well as 

studies into the expression levels and activities of MAPKs and protein phosphatases 

involved in clathrin-mediated endocytosis, may reveal differential expression levels of 

these components of endocytic machinery in young vs. older brains. Therefore, I propose 

that these potential changes that accompany increased adenosinergic signaling in aged 

brains may be important mechanisms that lead to increased endocytosis of AMPARs and 

impaired synaptic plasticity. 

 

Since adenosine and adenosine receptors can regulate the release of excitatory 

transmitters (e.g. glutamate, acetylcholine, ATP) and alter the compositions and potential 

synaptic localizations of their respective receptors, the novel adenosinergic signaling 

mechanisms that I helped to unravel may have broader implications to several aging-

related neurodegenerative diseases. Two decades ago, it was reported that a loss of A1R 

was observed in post-mortem tissue, including the hippocampus, from Alzheimer’s 

disease patients (Kalaria, Sromek et al. 1990; Ulas, Brunner et al. 1993). This is followed 

by another interesting discovery of the role of adenosine signaling in Alzheimer’s disease. 

In this study, A1R and β-amyloid colocalized in the post-mortem neocortical and 

hippocampal tissue from Alzheimer’s disease patients (Angulo, Casado et al. 2003), 

suggesting adenosine receptors can be a valuable treatment target for Alzheimer’s 

disease. The β-amyloid fragments have also been shown to bind to receptors to cause 

p38 MAPK activation (Munoz, Ralay Ranaivo et al. 2007; Munoz, Ramsay et al. 2010), 

and β-amyloid has also been shown to bind to AMPARs and promote their internalization 

(Zhao, Santini et al. 2010). Moreover, numerous G-protein coupled receptors, including 

the A2ARs, have been suggested to regulate the β-secretase (i.e., BACE1) expression 

and increase β-amyloid toxicity (Thathiah and De Strooper 2011). Therefore, based on 

my findings described in Chapters 2-4 and the strong links between adenosine signaling 

and β-amyloid toxicity described above, it is tempting to speculate that the new and 

revised mechanisms of the neurodegenerative signaling pathways that contribute to 

Alzheimer’s disease  
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Figure 5.5 

A 

 

B 
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Figure 5.5 Proposed model for interaction between AMPAR-A1R-ENT protein complex: 

implication for stroke treatment. Activation of A1R leads to endocytosis of GluA2-

containing AMPARs, which results in increased neurodegeneration. In contrast, 

stimulation of A1Rs could arise from increased adenosine tone, which results from 

decreased ENT surface expression following treatments with CK2 inhibitors. The 

accompanying decrease in A1R surface expression suggests that there would be 

decreased A1R-mediated adenosinergic signaling, which subsequently leads to 

decreased MAPK and PP2A activation. This proposed pathway could confer an “ischemic 

preconditioning” of hippocampal tissue, so that a subsequent ischemic injury would 

produce less neurodegeneration (B). Potential targets for neuroprotection using Tat-

peptide interference strategies are indicated in B, where Tat-YG and Tat-YD prevents 

GluA2 endocytosis and PP2A activation, respectively.  
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pathogenesis may include A1R-induced AMPAR endocytosis (particularly of the GluA2 

subunits) and increased β-amyloid-induced AMPAR endocytosis. It has been 

demonstrated that adenosine A2A receptor antagonist can prevent β-amyloid peptide-

induced neuronal loss, indicating an existing relationship between adenosine signaling 

and Alzheimer’s disease (Scatena, Martorana et al. 2007). However, further studies are 

needed to reveal the potential roles of both A2AR- and A1R-mediated signaling in the 

processing of amyloid precursor proteins and the β-amyloid toxic fragments generated by 

this proposed signaling in Alzheimer’s disease brains. 

Together, I have shown that a novel protein complex composed of AMPARs, A1Rs, 

and ENTs could facilitate the endocytosis trafficking of AMPARs, A1Rs and ENTs, which 

could be physiologically important in mediating neuronal responses to hippocampal 

ischemic damage. Also, the signaling mechanisms involved in AMPAR endocytosis, 

synaptic depression and neurodegeneration could very well be applied to other aging-

related neurological diseases, where extracellular elevation of adenosine have been 

suggested, including Alzheimer’s disease, Parkinson’s disease and stroke.  

 

5.2 Limitations 

Adenosine receptors and AMPARs were confirmed to exist in the same protein 

complex. However, whether these two proteins interact directly or indirectly cannot be 

determined due to the limitation of the techniques I used, which included 

coimmunoprecipitation and colocalization. To resolve this problem, molecular biological 

techniques are needed to generate the potential domain-domain interactions in the two 

proteins. To do this, the entire sequences and parts of receptors are cloned and the 

resultant proteins should be expressed and purified to perform a “pull-down assay”. It may 

be possible to tag one protein with a marker (e.g., by fusing a c-myc tag) and the other 

protein with a different type of marker (e.g., by fusing with a glutathione S-transferase or 

GST). Bioluminescence resonance energy transfer/fluorescence resonance energy 

transfer (BRET/FRET) or luciferase bioluminescence assays, which are robust and well 

established techniques, can be used for assessing direct protein-protein interactions in 

neurons. 
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Moreover, the binding abilities of adenosine receptors and the transport function 

of ENTs were not directly addressed in the present study. Due to the limitation of 

equipment, I only tested the surface levels of AMPA receptor, adenosine receptors and 

ENTs. However, it is known that the internalization of A1Rs causes the desensitization of 

A1R-mediated synaptic depression during hypoxia (Coelho, Rebola et al. 2006). Since 

the activation of A1Rs altered the surface level of ENTs and AMPARs, it is important to 

examine whether the prolonged activation of A1Rs leads to decreased rates of adenosine 

transport via ENTs or to increased calcium permeability of the resultant AMPARs, which 

are expected to be GluA2-deficient, and hence more calcium permeable. To directly 

measure the changes in adenosine transport rates, hippocampal synaptosomal 

membranes could be prepared after performing the required treatments (e.g., with CPA, 

CK2 inhibitors, ENT blockers, or vehicle controls) and loaded with 3H-adenosine for 

scintillation counting, and the amount of radioactivity could reflect adenosine efflux from 

synaptosomes. To directly assess calcium influx through AMPARs, hippocampal neurons 

could be loaded with a calcium-sensitive dye or be transfected with a DNA plasmid that 

codes for the neuronal calcium sensor protein VILIP-1 (Braunewell, Brackmann et al. 

2001), and then calcium signals will be imaged from neurons using live cell imaging with 

a confocal imaging microscope. The limitations in our studies could also be addressed in 

future by using genetically modified animals, for example, using ENT1 over-expressing 

animals (from FE Parkinson’s lab, University of Manitoba), ENT1 knockout animals (from 

DS Choi’s lab, Mayo Medical School), and A1R or A2AR knockout animals (from JF 

Chen’s lab, Boston University).  

The physical association between adenosine receptors and AMPARs does not 

even seem mandatory for the physiological/functional interaction to occur. No physical 

interaction was found either between A2ARs and AMPARs or between A2ARs and ENTs. 

Yet, the intracellular signaling pathways activated by A1Rs or A2ARs could be sufficient 

to produce changes in the trafficking or subcellular localizations of AMPARs. As shown 

in Chapter 2, the preincubation of A2AR agonist, CGS 21680, significantly increased the 

surface levels of GluA1 in cultured neurons. Moreover, Cunha’s group has reported that 

A2AR played a predominant role in enhancing LTP (Rebola, Lujan et al. 2008; Costenla, 

Diogenes et al. 2011). Also, as we speculated above, CK2 may become activated after 
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A1R stimulation in the early phase of stroke damage, and later the CK2 levels could be 

downregulated during the later phase of stroke injury. A previous report has also 

described the negative regulation of A2ARs by CK2 (Rebholz, Nishi et al. 2009), and this 

was suggested in our studies, in that decreased CK2 levels would be expected to promote 

increased A2AR surface expression due to decreased A2AR desensitization from having 

reduced levels of CK2. Therefore, it is also possible that a signaling crosstalk (via CK2 

activity/levels) exists between A1R and A2AR signaling, which could contribute to 

neurodegeneration in ischemic damage. Therefore, further investigations of the functional 

interactions between A2ARs/A1Rs and AMPARs are needed, which could provide further 

insight into the excitotoxic potential of adenosinergic signaling in stroke or other aging-

related neurological diseases.  

Another limitation is that DPCPX and Tat-GluA2-3Y peptide were not used in the 

PVD model. Given the ethical difficulty in deciding the right timing and dose needed to 

apply DPCPX or Tat-GluA2-3Y peptide to human stroke patients, preclinical animal 

experimental testing of these reagents is warranted. These additional studies will 

determine whether DPCPX or Tat-GluA2-3Y (both known to cross the blood-brain barrier) 

can prevent the PVD-induced decrease in the surface levels of GluA2 as well as the ex 

vivo electrophysiological changes (i.e., enhanced APSDs). Since AMPARs are essential 

for normal neuron functions, the clinical relevance of preventing AMPAR internalization, 

such as with the use of DPCPX or Tat-GluA2-3Y peptides during or after stroke attack, 

should be given more attention in future studies.  

 

5.3 Future studies 

As I mentioned above, due to limitations of coimmunoprecipitation and 

colocalization in this study, I could not determine whether adenosine receptors and 

AMPARs interact directly. Full-length or partial fragments of purified A1Rs and AMPARs 

are needed to perform pull-down experiment to test whether they directly associate.  

Since the calcium permeability of AMPARs is important for neuronal excitation, 

calcium imaging can be applied to test calcium permeability of AMPAR after the activation 

of adenosine A1 receptor. 

http://en.wikipedia.org/wiki/Excitatory_postsynaptic_potential
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It is known that AMPAR trafficking is crucial for neuronal functions, including LTP 

and LTD. Therefore, aberrant trafficking of AMPARs induced by excessive activation of 

A1Rs can cause dysfunction of neurons leading to neuronal damage and death. 

Consequently, whether the prolong activation of A1Rs can induce neuronal apoptosis or 

neuronal death needs further studies.  

The scaffolding and endocytic protein-family of β-arrestins facilitates G-protein-

coupled receptor (GPCR)-stimulated MAP kinase activation and internalization (Luttrell 

and Lefkowitz 2002). Arrestin regulates A1R by decreasing the plasma membrane level 

of A1R (Jajoo, Mukherjea et al. 2010). Therefore, arrestin may play a role in A1R-induced 

endocytosis of AMPARs. Future studies are needed to test whether the arrestin-family is 

also involved in the endocytosis and recycling of A1Rs to neuronal plasma membranes. 

As we reported above, prolonged activation of A1Rs induces increased AMPAR 

endocytosis, and this could be one important mechanism underlying post-stroke injury. 

Therefore, interruption of the putative interactions between A1Rs and AMPARs could be 

neuroprotective to the post-stroke brain. To develop such a therapy, further studies are 

needed for defining the regions of interactions between A1Rs and AMPARs. Such 

interactions should include determining whether they directly interact, as well as by 

determining where the domain-domain interactions are occurring in these two receptors. 

Drugs, e.g. peptides, can be subsequently designed to interrupt the interaction in order 

to minimize post-stroke neuronal damage. Lastly, further experimentation is required to 

confirm whether an increase in extracellular adenosine concentrations after CK2 inhibition 

can alter synaptic transmission and neuronal health. Preliminary studies, as described 

earlier, do indicate that CK2 inhibition does lead to increased adenosine tone, which has 

been inferred from electrophysiological recordings showing increased synaptic 

depression. 

  

5.4 Conclusions 

The goal of the current study is to provide a comprehensive view of adenosinergic 

signaling. I established that A1Rs and GluA2-containing AMPARs formed structurally 

stable protein complexes in hippocampus. Novel functional association between A1R and 
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AMPARs was also determined. Additionally, prolonged stimulation of A1Rs with the 

agonist CPA was found to cause APSD in hippocampal brain slices, and APSD levels 

were blunted by inhibiting clathrin-mediated endocytosis of GluA2 with the Tat-GluA2-3Y 

peptide. On the other hand, prolonged CPA incubation showed a significant depletion of 

GluA2 and GluA1 surface expression from hippocampal brain slices and cultured 

hippocampal neurons. We also found that activation of A1R-induced internalization is 

through clathrin-mediated endocytosis pathway. In addition, A1R-mediated internalization 

of GluA2, but not GluA1 subunits, is p38 MAPK- and JNK- dependent. Lastly, we showed 

that a focal cortical ischemia in an in vivo small-vessel stroke model altered hippocampal 

surface expression of AMPARs and adenosine receptors that contributes to tonic synaptic 

depression, indicating A1R-mediated internalization of AMPARs is a mechanism that 

mediates post-ischemic neuronal damage.  

My study also provides novel evidence that ENTs are structurally coupled with 

A1Rs, and this coupling is involved in the CK2-mediated cell surface trafficking of ENT1 

and ENT2 in the rat hippocampus. Our data also showed that during hypoxia the CK2 

inhibitors caused a more dramatic inhibition of surface localization of ENT1 and A1Rs, 

implying that these changes can potentially exacerbate ischemia-induced neuronal 

damage. Therefore, my studies suggest that these CK2-mediated changes in ENT and 

A1R surface expression represent an important mechanism for cerebral ischemic 

damage, but future studies are needed to determine whether activation of CK2 and 

consequently increased surface trafficking of ENTs, are important for neuroprotection. 

After studying adenosinergic signaling under pathological hypoxic/ischemic 

condition, adenosinergic signaling in aging brains was also investigated, given the high 

prevalence of aging-related disorders in the elderly, such as stroke and other memory 

deficits. We studied surface levels of GluA1- and GluA2-containing AMPARs in aged 

animals and found that both AMPAR subunits were decreased during aging. Neuron 

excitatory level is also reduced during aging as recordings of fEPSPs in the CA1 region 

of the hippocampus showed lower levels of chemical LTP in aged versus young 

hippocampal tissue. Moreover, I found that Dynasore (endocytosis inhibitor) and Tat-

GluA2-3Y peptide (inhibits clathrin-mediated endocytosis of GluA2), but not a scrambled 

Tat-peptide, enhanced the surface expression of GluA2 and GluA1 after chemical 
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induction of LTP in both young and aged brains. Therefore, these results indicate that 

increased adenosinergic signaling in aged brains leads to increased endocytosis of 

AMPARs and impaired synaptic plasticity. 

Taken together, these data suggest that multi-protein complexes composed of 

AMPARs, A1Rs, and ENTs in the hippocampus are crucial for regulating the functions of 

adenosine under ischemic condition. Endocytosis of AMPARs induced by A1Rs can 

cause neuronal damage. Therefore, preventing the A1R-induced endocytosis of AMPARs 

is a novel approach to minimize the neuronal damage caused by stroke. Since CK2 also 

regulates adenosine receptors and transporters, CK2 inhibitors may be very effective in 

attenuating neuronal damage caused by a subsequent hypoxic insult. In conclusion, 

results from my studies have unraveled novel mechanisms of adenosinergic signaling, 

which could promote excitotoxicity in ischemic brain damage. These novel mechanisms 

provide a rich opportunity for designing alternative and novel neuroprotective therapies 

to combat the well-known phenomenon of delayed neuronal cell death that occurs days 

and even weeks after the initial ischemic stroke injury. This will ultimately benefit the over 

fifty-thousand Canadians who suffer a stroke every year, as well as the aging population 

which presents with increased incidence of aging-related neurological diseases, including 

stroke.  
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