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ABSTRACT 

Grape harvesters are mechanized machines designed to remove grapes from vine trees, 

process them in a cleaning system, and then store them in onboard bins. These bins are later 

unloaded into a transport wagon and taken to a vinification facility. Cleaning systems can 

sometimes fail to completely remove the foreign materials (i.e. leaves, petioles, stems, etc.), 

which may compromise the vinification process. For this reason, the project focused on the 

cleaning system by minimizing the presence of foreign materials while maintaining an adequate 

harvesting throughput.  

 

The project main objective was to optimize the cleaning system in grape harvesters by 

using the Discrete-Element Method (DEM). Individual DEM simulations were validated and 

used to develop a main crop flow simulation for the optimization of the cleaning system. This 

optimization included reducing the presence of foreign materials (petioles and leaves) while 

increasing the crop throughput for the specific grape variety of Cabernet Sauvignon. The 

physical characteristics and properties of the biological materials (grapes, petioles, leaves) were 

measured during the 2014 grape harvesting season at three different locations (Aigues-Mortes, 

Saint-Gervais, and Pauillac) in France. Time constraints limited the number of measured 

properties at the locations. The results from each location were compared using an ANOVA and 

a Tukey HSD post-hoc test. Given the natural variability of the biological materials, the three 

populations were found to be significantly different in most cases.  The physical characteristics 

and properties from the Aigues-Mortes and Pauillac locations were used for the validation 

process. This was done because these locations had the most complete data sets. During the 

summer of 2015, a second testing phase took place to validate both the DEM leaf deflection and 
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cleaning system models.  The additional experiments consisted of testing the leaf samples in 

controlled deflections and testing the efficiency of the cleaning system. These experiments used 

Cabernet Sauvignon leaves shipped from the Vineland Research and Innovation Centre (VRIC) 

in Ontario.  

 

The individual simulations included the inclined plane, rebound surface, leaf deflection, 

and grape trajectory tests on an inclined conveyor. The inclined plane and rebound simulations 

were adjusted until the results were within 5% of the experimental test results. The leaf 

deflection simulations used optimized crop material properties until the simulated leaf behavior 

matched the actual leaf. Some discrepancies in the DEM simulated leaf shape were identified 

due to the limitations of the particle creation method. The grape trajectory test results coincided 

with the DEM simulations at greater conveyor speeds. A moderate difference between the 

simulations and the experimental tests was present at lower conveyor speeds. A possible cause 

for this difference may have been the effect of gravity and belt friction on the generation and 

acceleration of the grapes on the conveyor. A main crop flow simulation that included a 

conveyor and aspirator was developed using the previously validated simulations. Nine conveyor 

configurations, which included three belt angles from horizontal (10°, 15°, and 20°) and three 

speeds (350 rev/min (1.4 m/s), 420 rev/min (1.7 m/s), and 500 rev/min (2.0 m/s)), were tested to 

optimize the cleaning system performance. Based on the DEM simulations, the 420 rev/min-20° 

configuration was recommended as the optimal crop conveyor setting. This particular 

configuration minimized product damage and had an increased aspiration success rate of 9.6% 

compared to the conventional conveyor settings (420 rev/min-15°). 
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1.0 INTRODUCTION 

 Grape Harvesters 1.1.

The mechanization of agriculture continues to be a priority in order to minimize extensive 

manual labour, increase the scale of operations, and improve the quality of the product. Grape 

harvesting is not an exception as it requires a substantial work force (picking by hand) and time 

period to complete. Grape harvesting capacity and quality were identified as areas of interest for 

further study in this project.   

 

"Functionally, grape harvesting is a machine operation in which the fruit is shaken from the 

vines and caught as it falls; conveyors transport the collected fruit from the catching surfaces to 

the air-blast cleaners and then into the field transport and storage bins" (Srivastava et al, 2006). 

Researchers started experimenting with harvester prototypes in the early 1950s (Studer, 2000). 

Numerous configurations were tested in order to find the most suitable design to accommodate 

the different trellis installations to hold the vines. As a result, grape harvesters became 

commercially available in California by the end of the 1960s (Johnson, 1977). 

 

As mechanized grape harvesters were being introduced in Europe and North America, a part 

of the viticulture community remained reluctant towards this new technology in terms of the 

economic feasibility and performance. In the early 1970’s, grape harvesters were only affordable 

for vineyards that were larger than 90 hectares (220 acres) when compared to harvesting by hand 

(Johnson, 1977). Given the increasing labour rates, the purchase of a harvester became more 

justified with time. In addition, these emerging harvesters were approximately five times faster 

than a typical harvesting crew at the time (Johnson, 1977). Nonetheless, the performance of the 
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machine was still questioned with respect to the quality of product being delivered for wine 

production. It was found that harvesters were prone to expelling juice from grapes. By exposing 

pressed juice to the ambient environment, oxidation and fermentation of the product could occur, 

consequently causing defects in wine quality (Pezzi, 2008). Also, the detachment of the grape 

clusters from the vine would often introduce foreign material (leaves, petioles, vine shoots, etc.) 

into the cleaning system of the harvesters. The material other than grapes (MOG) would transfer 

unwanted aromas to the expelled juice, thus affecting the wine flavours (Wildenradt, 1974). 

Some current solutions without modifying the grape harvesters include correctly setting the 

machine and adapting better vineyards practices during the growth and harvesting seasons 

(Morris, 1983). More specifically, the speed and frequency of the shaking system at which the 

harvester operates requires optimized adjustments to minimize juicing and MOG accumulation 

(Catania, 2009). To further reduce the presence of MOG, vineyards were required to extensively 

modify their vine growing practices: trellis design, pruning, and trimming operations 

(Christensen et al., 1973). Despite the attempts to improve the quality of the harvested product, 

these issues are recurrent and will need to be addressed in the next generation of harvesters as 

shown in Figure 1.1.  

 
Figure 1.1. Grape harvester in Cabernet Sauvignon parcels near Bordeaux, France region. 
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 Discrete-Element Method 1.2.

Cundall and Strack (1979) defined the Discrete-Element Method (DEM) as a numerical 

model that describes the mechanical behaviour of discs and spheres assemblies. The DEM is 

used to understand and predict particulate and fluid flows for a multitude of applications. The 

DEM was initially developed by Cundall in 1971 to simulate the behavior of rock mechanics and 

eventually soil mechanics with Strack in 1979 (ICG, 1999a). The DEM executes a continuous 

loop between the force-displacement law and Newton’s second law of motion (Figure 1.2). This 

iterative loop essentially calculates contact forces and updates the motions of particles at a set 

time interval. A variety of contact models specific for particular applications can be applied 

within the DEM coding. Certain physical properties and parameters need to be defined in order 

to replicate the actual behavior of the particle material. In most cases, a validation process is 

required to adjust the DEM simulation in order to increase the accuracy. This encompasses 

calibrating the simulation behavior with actual tests; certain adjustments may be required until 

both behaviours coincide. A detailed explanation of the theory behind the DEM can be found in 

the 3.0 Literature Review section. 

 

 

 

 

 

 

 

Figure 1.2. DEM continuous loop for every time step (Boerner, 2011). 
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Since the initial development of the DEM, simulations are now capable of replicating 

processes in 3-dimensions with both spherical and non-spherical particles (also known as 

clusters). Advancements in computational capabilities has caused for a rapid progression in 

DEM modeling. Numerous DEM software packages are available and can be configured for 

specific applications; some packages may be more suited than others for certain applications. A 

collection of different coupling interfaces are also available with these DEM packages, which 

can extend the capabilities of the simulations (i.e. Finite-Element Analysis (FEA), Multi-Body 

Dynamics (MBD), Computational Fluid Dynamics (CFD), etc.). Industrial fields that use DEM 

modeling can include: agriculture, construction, mining, natural resource extraction, 

pharmaceuticals, bio-medical, geology, thermodynamics, manufacturing, military, etc. The 

specific DEM software package used in this project is EDEM® Version 2.7 (DEM Solutions
®
, 

Edinburgh, UK). 

 

 Problem Statement 1.3.

Crop flow behavior in grape harvesters has been identified as an area of interest for further 

research. Such interests include the ability to accurately predict the behavior of biological 

materials in grape harvesters in order to improve the performance of current designs. In high-

yielding environments, grape harvesters have increasing difficulties minimizing foreign materials 

in the final product while trying to increase crop product throughput.  
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  Organization of the Thesis 1.4.

The main and specific objectives of the project are outlined in section 2.0 OBJECTIVES. 

General information pertaining to grape harvesters and their components are described in section 

3.0 LITERATURE REVIEW. Information on the development and theories of DEM are also 

discussed in the 3.0 LITERATURE REVIEW section. The methods and equipment used to 

measure the physical properties of the biological materials are included in the 4.0 MATERIALS 

AND METHODS section. The simulation parameters and validation steps are also described for 

the individual and main crop flow simulations in the section 4.0 MATERIALS AND 

METHODS. The results for the physical property tests and the simulations are outlined and 

discussed in detail in the 5.0 RESULTS AND DISCUSSION section. A summary of the project 

and concluding remarks are included in the section 6.0 SUMMARY AND CONCLUSIONS. A 

list of recommendations based on the project challenges and results is also outlined in the 7.0 

RECOMMENDATIONS section.     
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2.0 OBJECTIVES 

 Main Objective 2.1.

The primary objective of this project was to develop a main crop flow simulation that 

optimized the cleaning system of grape harvesters using the Discrete-Element Method (DEM). 

This was done in terms of crop throughput and product quality for the Cabernet Sauvignon (Vitis 

vinifera) grape variety. Results from field tests were used to validate the simulations of virtual 

test benches, which were then applied to develop the main crop flow simulation.     

 

2.1.1. Specific Objectives 

The initial field tests evaluated the physical characteristics and properties of the biological 

materials at three locations in France. These results were analyzed and used to create a complete 

property database for the simulation inputs. The optimization of the cleaning system included the 

following objectives: 

 

1. To develop and validate individual crop flow simulations (inclined plane, rebound 

surface, leaf deflections, and crop conveyor trajectory) that replicate the physical 

characteristics and properties of the biological materials (grapes, leaves, and petioles).  

 

2. To develop and validate a main crop flow simulation for the cleaning process, which is 

comprised of a conveyor and aspirator. The simulation should combine the simulated 

parameters of the biological materials previously determined in specific objective 1. 

a. To determine the effects of three cleaning conveyor angles (10°, 15°, and 20°) and 

three belt rotational speeds (350 rev/min (1.4 m/s), 420 rev/min (1.7 m/s), and 500 
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rev/min (2.0 m/s)) on the minimization of leaves present after the cleaning 

process.

b. To maximize the product quality by increasing the leaf aspiration success rate by 

at least 10% when compared to the conventional conveyor settings for the same 

crop throughput. 
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3.0 LITERATURE REVIEW 

This section provides general background information on viticulture practices, the general 

functionality of grape harvesters, and the evolution of cleaning technology. The Discrete-

Element Method (DEM) is also described with information related to the initial development, 

theories, models, and current applications.       

 

 Terroir Influences on Grape Cultivation 3.1.

Viticulture is a specialized form of horticulture that is limited to a single annual crop, which 

requires specific growing conditions. By their very nature, grape quality and wine characteristics 

are dependent of several terroir factors such as climate, grape variety, soil type, and cultural 

practices (Van Leeuwen et al., 2004). Only select regions possess the climatic conditions 

required for growing and maturing grapes. A minimal growing season of approximately 180 days 

is needed for grapes to grow and mature sufficiently for wine making (Mullins et al., 1992). 

Figure 3.1 displays the world wine producing regions, which are situated between 10⁰C and 

20⁰C isotherms with respect to the ideal latitude locations (30⁰N-50⁰N and 30⁰S-50⁰S) (Sallis et 

al., 2009). Typically, throughout the year the mean temperature extremes should remain within 

18.9⁰C and -1.1⁰C (Prescott, 1965; Jones, 2006). Temperature ranges after the growing season 

are equally important as they can affect the grapevine health and future production.  
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Figure 3.1. Wine producing regions of the world with temperature isotherms (Sallis et al., 2009) 

(courtesy of ThirtyFifty. http://www.thirtyfifty.co.uk/spotlight-climate-change.asp). 

 

 

The manner in which the soil interacts with the other terroir factors influences the distinctive 

characteristics of the wine. The mineralogy of the soil dictates the classification and physical 

properties as it interacts with moisture and the grapevine. As such, the vine and fruit 

development are influenced by the minerals and the water retention ability of the soil (Van 

Leeuwen et al., 2004). For instance, the natural level of nitrogen supplied to the vines is 

dependent of the specific soil type, which directly influences the vine vigour (Van Leeuwen et 

al., 2000). With respect to precipitation, the soil should maintain a relatively low water retention 

level (Van Leeuwen et al., 2004). In fact, a water deficient soil will allow for a rapid grape 

growth, thus keeping the grapes small in size and high in sugar content (Van Leeuwen et al., 

2004). For that reason, poor soils will produce better wine despite the ability of deep and rich 

soils to yield healthy and productive vines (Van Leeuwen et al., 2006). As research continues to 
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determine the exact correlation between soil and vine growing, certain soil practices could be 

employed to increase crop yield and quality. 

 

Viticulture regions will select grape varieties based on the regional climate (Jones, 2006). The 

sensitivity of grapes results in the inability of certain varieties to thrive in multiple regions due to 

small yet significant climatic differences. Factors such as temperature, precipitation, light, and 

crop heat units (CHU) can influence the location of different grape varieties (Urhausen et al., 

2011). The time required to fully ripen grapes is a principle determining factor in selecting the 

region. Varieties that include Pinot Noir, Chardonnay, and Gewürztraminer prefer cool climates 

in higher altitudes as they tend to ripen earlier during the season (Van Leeuwen et al., 2006). 

Contrarily, regions with warmer climates and lower altitudes are more suitable for late-ripening 

varieties like Cabernet Sauvignon (Van Leeuwen et al., 2006). The combination of the grape 

variety and the terroir factors ultimately characterizes the flavours of the wine. 

 

 Grape Harvesters 3.2.

3.2.1. Historical Context 

Like in most agricultural practices, the era of mechanization was preceded by intensive 

manual labour. Grape harvesting was not an exception as it was done by hand with large groups 

of peoples. In some circumstances, it is still currently being done by hand. For instance, the 

region of Champagne in France stipulates that mechanical harvesters cannot be used under any 

circumstances; harvesting standards have remained the same since the seventeenth century 

(CIVC, 2012). Although most wine producing regions allow for grape harvesters, select 

vineyards and wineries pride themselves by manually harvesting. These vineyards believe 
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manual harvesting may offer prestige, marketing advantages, or even a superior wine. Initial 

prototyping showed that by correctly setting a grape harvester, the fruit quality was comparable 

to a hand-harvested fruit; the tests also showed that vine damage was more apparent with the 

harvesters (Olmo, 1961; Morris, 2000).  

 

A gathering and loading machine as depicted in Figure 3.2 could be considered as one of the 

initial stages of mechanized grape harvesting. This machine straddles the vines and has a 

horizontal conveyor perpendicular to the rows. People would then be positioned along the width 

of the conveyor in each row where they would manually pick the grape clusters. Progressively as 

the machine advanced, the clusters were placed on the conveyor and transported to a central 

storage tank. Although this machine still required a substantial workforce, the effort required to 

transport the harvested crop was greatly diminished. Other iterations of this machine emerged 

prior to the fully mechanized harvesters.     

 
Figure 3.2. Gathering and loading machine for grape harvesting (with permission of Vagny and 

Agulhon, 1984). 
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Researchers started experimenting with harvester prototypes in the early 1950s (Studer, 

2000). Numerous configurations were tested in order to find the most suitable design to 

accommodate the different vine trellis installations. As a result, grape harvesters (Figure 3.3) 

became commercially available by the end of the 1960s (Johnson, 1977). The trellis system, row 

spacing, and pruning methods were eventually adapted to accommodate the general 

configuration of the available harvesters (Gaviglio and Vinsonneau, 2007).  

 

 
Figure 3.3. Early Chisholm-Ryder Co. grape harvester with flat paddles (Studer, 1969). 
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3.2.2. Overall Configuration and Functionality  

Grape harvesting includes the processes of separating the grapes from the vine, conveying 

them to a cleaning system, and then placing them into storage bins (Srivastava et al., 2006).  

Since their initial appearance in the 1950’s, grape harvesters remain functionally similar. The 

differences in harvesters can be attributed to the manufacturers who have developed unique 

strategies and technologies in their machines. Like other agricultural equipment (i.e. harvesters, 

sprayers, and swathers), grape harvesters are available for purchase in both a pull-type and self-

propelled unit.  

 

Pull-type models (Figure 3.4) are designed to trail offset with respect to the pulling tractor in 

order to fit between the vine rows. Power is supplied hydraulically via the tractor integrated 

system or by the power take-off (PTO) coupling. The pull-types are generally less expensive and 

require less powertrain maintenance. The setbacks for these units were the speed of operation 

and limitation in storage capacity, which required more frequent emptying. Some manufacturers 

included a dynamically unloading conveyor instead of storage bins. This allows the grapes to be 

unloaded into a tractor-trailer unit in an adjacent row while harvesting. The general cleaning 

configuration resembles that of a self-propelled unit.  

 
Figure 3.4. Pull-type grape harvester while harvesting in vines (courtesy of Pellenc Group. 

http://www.pellenc.com/agriculture/). 
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Self-propelled models (Figure 3.5) directly straddle individual rows as the grapes are 

harvested; some harvesters can straddle two rows at a time. Similarly to the pull-type models, the 

self-propelled harvesters can be equipped with dynamically unloading conveyors. A fully 

integrated hydraulic or electrical system is coupled to an engine, which supplies the power. A 

hydrostatic drive system is commonly used as it is the easiest way to supply power to the 

independent wheels. This type of harvester is generally more manoeuvrable (laterally and 

vertically with extendable actuators) and versatile because it can be configured to operate on 

steep hills and rough terrain. The high location of the cabin also facilitates general operations 

because a greater view is obtained. 

 
Figure 3.5. Self-propelled grape harvester while harvesting in vines (courtesy of CNH Industrial. 

http://agriculture1.newholland.com/eu/fr-fr). 

 

 

All grape harvesters are equipped with a harvesting head, which is comprised of three 

systems: shaking, conveying, and cleaning (Figure 3.6). Since most harvesters straddle 

individual vines while harvesting, two symmetrical conveying and cleaning systems on each side 

of the vine are required.  Each system requires an elaborate and complex design in order to 

provide an undamaged crop product at a rapid harvesting rate.  
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Figure 3.6. General grape harvester component diagram - New Holland SB 64 (courtesy of CNH 

Industrial. http://agriculture1.newholland.com/eu/fr-fr). 

 

 

The shaking system (Figure 3.7) is used to detach the grape clusters from the vines on to the 

conveyor system that ultimately leads them to a cleaning system. Generally, two shaker 

assemblies face each other and are comprised of individual shaking members. These members 

can take several different shapes depending on the manufacturer objectives and design. As such, 

an oscillation of each assembly creates the shaking movement of the shaker members; the 

frequency and amplitude of the oscillation can be varied based on the operator preferences. This 

system is internally located within the grape harvester where each assembly is on opposing sides 

of the vine. The distance separating the two shaking assemblies can be adjusted in order to 

accommodate a wider vine canopy.  

 

Cleaning System 

Conveying System 

Shaking System 
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The circular conveying system (Figure 3.8) follows a direct path from underneath the shaking 

system to the cleaning system (Figure 3.9). The conveyors are usually made up of small buckets 

linked to a chain that follows the conveying path. The individual buckets are shaped in a manner 

which allows them to surround the vine stumps. This reduces product and expelled juice losses 

that may result from the shaking process. The conveying speed of the buckets is proportioned to 

the ground speed of the harvester to prevent vine damage. 

 
Figure 3.7. Shaking system with horizontal shaker members (courtesy of CNH Industrial. 

http://agriculture1.newholland.com/eu/fr-fr). 

 

 

 
Figure 3.8. Conveying cleaning system equipped with conveying buckets (courtesy of CNH 

Industrial. http://agriculture1.newholland.com/eu/fr-fr). 
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Figure 3.9. Cleaning system equipped with aspirator, mesh conveyor, and de-stemmer (courtesy 

of CNH Industrial. http://agriculture1.newholland.com/eu/fr-fr). 

 

 

As the harvester moves forward, all three systems synchronously operate until the storage 

bins are filled to total capacity. Judging the harvesting yield and storage space becomes crucial in 

order to prevent reaching full capacity in the middle of a row. Ideally, the harvester would have 

the storage bins filled once out of a row in order to avoid the presence of a tractor running in 

between the adjacent rows. At this point, the operator would position the machine where the bins 

would lie perpendicularly to the transport trailer. The bins could then be emptied by actuating a 

hydraulic cylinder, which causes the bins to pivot as depicted in Figure 3.10. 

 
Figure 3.10. Grape harvester emptying storage bins (courtesy of CNH Industrial. 

http://agriculture1.newholland.com/eu/fr-fr). 
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3.2.3. Grape Harvesting Cleaning Technology  

Mechanical grape harvesters have been commercially available since the end of the 1960’s 

(Johnson, 1977). From the very beginning, grape harvester manufacturers have been striving to 

perfect their products by continually improving their designs. One of the main objectives has 

been to maximize the quality of the harvested product by minimizing foreign material and 

juicing. The presence of MOG can transfer undesirable aromas to the wine (Wildenradt, 1974).  

Additionally, the exposed juice to the ambient environment can result in premature oxidization 

and fermentation, which can compromise the quality of the wine (Pezzi, 2008). For this reason, 

competing companies on the market have taken complex approaches in their respective designs 

to mitigate these recurrent issues. Despite this, most cleaning system designs include a variation 

of a conveying system, de-stemmer, aspirator, sorter, and storage bin. The order and 

configuration of these elements are entirely dependent of the specific designs.  

 

3.2.3.1. Air/Product Separation  

In agricultural handling processes, air is often used for transporting or separating foreign 

material from the desired material (Mohsenin, 1984). Grape harvesters have employed this 

technique given the separation efficiency while harvesting. Generally, the unseparated product 

stream is subjected to an airflow by means of a blower or aspirator (vacuum flow) depending on 

the cleaning configuration. Some harvesters are equipped with several stages of aspirators and 

blowers; all three components of the harvester head may be equipped: shaking, conveying, and 

cleaning.  
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The aspirators and blowers are usually a centrifugal type given the high pressure and low air 

flow required for expelling foreign material. This type prevents damage to the driving 

mechanism, which is located externally and axially to the impeller. In some cases, a shredding 

attachment is coupled to the impeller in order to reduce blade damage and prevent excessively 

large pieces of crop material from being expelled. The fan exhaust is positioned in a manner that 

directs the undesired crop material away from the harvester. The exhaust typically ejects the 

material on either side or at the rear of the machine. The fan speed for each unit must be variable 

in order to suit the particular grape variety and harvesting conditions (i.e. moisture content, 

juicing, crop density, etc.). When juicing is more prominent, grape juice can be expelled along 

with the MOG so the fan speed must be carefully adjusted by the operator. 

 

3.2.3.2. Sorting and Separating  

The sorting and separating stages of the cleaning system are integrated with the fans to 

maximize the removal of MOG. Some harvesters use a mesh conveyor (Figure 3.11) with holes 

large enough to allow the grapes to pass through to the next cleaning stage. Ideally, the foreign 

material would remain on this conveyor momentarily until evacuated by an aspirator. The mesh 

conveyor usually transitions the intact grape clusters to the grape de-stemmer. In some cases, a 

sorting table (U.S. Patent No. 2012/0131894, 2012) is included in the cleaning system; this can 

be the following stage after the mesh conveyor (Figure 3.12).  The table is comprised of 

numerous rollers placed in-line on the same level. Typically, the single level is made of two 

series of rollers. The first series evenly spreads the crop material and the second allows the 

grapes to fall through to the storage bin while the foreign material is ejected over the side. The 
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first series has the rollers closer together to keep the material on top whereas the second series 

has small gaps between the rollers to allow grapes through.  

 

 
Figure 3.11. Mesh conveyor (courtesy of Gregoire Group. http://www.gregoire.fr/fr-fr/). 

 

 

 

 
Figure 3.12. Sorting table with sorting rollers (courtesy of Pellenc Group. 

http://www.pellenc.com/agriculture/). 

 

 

 

 

2
nd

 Series of Rollers 1
st
 Series of Rollers 

Mesh Conveyor 



 

21 

 

3.2.3.3. Grape De-Stemming  

Grape separation from the stems (de-stemming) is imperative in wine creation as the 

remaining stems can cause unwanted flavour characteristics in a wine (Coetzee, 2013). This 

process requires a specialized apparatus that can either be directly integrated within a grape 

harvester or within a separate machine that processes the grape clusters after harvesting. It is 

important to note that in some instances, grape clusters are purposely kept intact as the stems can 

complement the wine aromas during the fermentation process; this is especially the case for the 

Pinot Noir and Syrah grape varieties (Goode, 2014). The stems can also provide a greater 

porosity during the pressing process, which can facilitate draining. 

 

Most grape de-stemmers have a spinning cylindrical rotor configuration (Figure 3.13). The 

rotor is made up of a cylindrical core with numerous rubber tines, which surround the entire 

circumference. The spacing of the fingers is sufficiently wide to allow the passage of grapes once 

separated from the stem. Grape clusters can either be loaded axially or perpendicularly to the 

rotor, which depends entirely on the grape de-stemmer configuration. The rotor is generally 

enclosed within a container (rectangular or cylindrical) to prevent material from being projected 

in all directions. The bottom or tangential sides of the container is perforated to let the grapes 

pass. Ideally, the stems would be ejected tangentially or laterally (based on the configuration) 

following the separation of grapes.  
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Figure 3.13. Rotary de-stemmer equipped with several rotors and meshed conveyor (courtesy of 

SOCMA. http://www.socma.info/fr/egreneur-plan). 

 

 

Due to patent infringement constraints of other apparatuses (E.U. Patent No. 1002467, 1999), 

some companies have been forced to develop an entirely different way of de-stemming grapes. A 

linear de-stemming device (U.S. Patent No. 2009/0056297, 2009) was the result of this new 

development (Figure 3.14). The device is located over a perforated conveyor which propels the 

grape cluster into the de-stemmer.  Similar to a shaking system, the linear separator uses 

oscillating shaker members to de-stem the clusters of grapes. Two sets of shaker assemblies are 

located one after another, which provides a sustained separation process.  In addition, a raking 

device utilizes a belt and push arms to force the product between the shaker members. The 

grapes are progressively passed through the meshed conveyor until the stems are fully separated 

and ejected.  
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Figure 3.14. Linear de-stemmer with shaker members, raking belt, and mesh conveyor (courtesy 

of Pellenc Group. http://www.pellenc.com/agriculture/). 
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3.2.4. Current Technology: Combined Cleaning Systems 

Grape harvesters can have a combination of different apparatuses within the cleaning systems. 

The contents of a system can depend on several factors such as: vine row spacing, grape variety, 

crop yield, harvesting speed, cost, and even client preference. This following section highlights 

several manufacturers and some of the current cleaning systems available in harvesters.     

 

3.2.4.1. Combined Linear Separator and Sorting Table Cleaning System (used by Pellenc 

Group, Pertuis, France):  

 This cleaning process encompasses three main cleaning instruments (Figure 3.15): 

aspirator, linear separator (U.S. Patent No. 2009/0056297, 2009), and sorting table (E.U. Patent 

No. 2030498, 2009), (U.S. Patent No. 2012/0131894, 2012), (E.U. Patent No. 2188067, 2008). 

The entire cleaning system is stacked over the storage bins in order to capture any juice that may 

be expelled from the grapes. A vertical conveying system supplies the linear separator mesh 

conveyor with the collected product from the vine. This effectively removes the individual 

grapes from the stems and allows them to pass through to the sorting table at the end of the mesh 

conveyor. The sorting table has two series of rollers that are positioned underneath the linear 

separator and above the storage bin. The first series evenly distributes the product axially and the 

second series allows the individual grapes to pass through to the bin. The debris (leaves, petioles, 

vine shoots) continues on top of the rollers and exits on the sides of the harvester.  
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Figure 3.15. Picking head equipped with shaking system, conveying system, and cleaning 

(courtesy of Pellenc Group. http://www.pellenc.com/agriculture/). 

 

 

3.2.4.2. Combined Mesh Conveyor and Rotary De-Stemmer Cleaning System (used by 

Gregoire Group, Treviglio, Italy) 

 This system uses a mesh conveyor, grape de-stemmer, sorting rollers, and 

aspirator. All these systems are superimposed over the storage bin (Figure 3.16). This allows the 

passive collection of any juice that may have inadvertently become separated from the grapes. 

The mesh conveyor is equipped with a small screw auger in order to evenly spread the incoming 

product from the initial bucket conveyor. After this step, the product is metered into the rotary 

grape de-stemmer to remove the stems from the clusters of grapes. The rotor has a solid core 

with sets of tines that completely surround it tangentially. As it rotates, the product enters 

radially where the stems are later ejected axially. The individual grapes continue downwards to 

the sorting rollers. The rollers are helically ribbed, which enables them to effectively spread the 

product and convey the foreign material on top of the roller as the individual grapes fall through 

to the bin. During this process, the aspirator induces a negative pressure (suction) over the 

rollers, which captures the lighter undesirable material. The heavier foreign material that is not 
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aspirated continues to be conveyed on top of the rollers until it is ejected by a screw auger at the 

rear of the harvester.  

 

 
Figure 3.16. Sorting system equipped with mesh conveyor, ejection screw, de-stemmer, and 

sorting rollers (courtesy of Gregoire Group. http://www.gregoire.fr/fr-fr/). 

 

 

3.2.4.3. Serpentine Mesh Conveyor Cleaning System (used by Oxbo Int. Corp., Byron, 

USA)   

This system is a multistage cleaning process that incorporates a three-fan system, grape de-

stemmer, mesh conveyor, and ejection screw (Figure 3.17). The initial bucket conveyor moves 

the product from the shakers to the cleaning drop zone. At this transition point, the crop material 

is subjected to the fan system, which removes the lighter particles such as leaves. After this, the 

material enters the rotary de-stemmer radially and ejects the stems axially. From there, the crop 

material continues on the mesh conveyor; the grapes are able to pass through while other 

particles (i.e. petioles) are kept on the conveyor. These grapes will either fall into a storage bin or 

on an over-the-row conveyor that unloads them into a separate transport unit (tractor unit with 
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cart). Meanwhile, the particles that remain on the mesh conveyor will be brought to the ejection 

screw and eliminated over the sides of the harvesters.      

 

 
Figure 3.17. Serpentine cleaning system with fan system, de-stemmer, conveyors, and ejection 

screw (courtesy of Oxbo Int. Corp. http://www.oxbocorp.com/Products/Vineyard/Grape-

Harvesters.aspx). 

 

 

3.2.4.4. Lateral Conveyor Cleaning System (used by CNH Industrial, Coëx, France) 

 The conveying system is positioned directly over the storage bin and includes a 

lateral conveyor (Figure 3.18) (E.U. Patent No. 0893049, 1997), aspirator (U.S. Patent No. 

2010/0132326, 2010), mesh conveyor (E.U. Patent No. 1336333, 2002), and de-stemmer (E.U. 

Patent No. 1002467, 1999), (E.U. Patent No. 1002467, 1999). Once the crop material is shaken 

off the vine, it is brought to the cleaning system (Figure 3.19) using a bucket conveyor. Each 

bucket empties the crop material on a lateral conveyor, which propels the particles in a 

continuous trajectory onto a mesh conveyor. An aspirator is located directly over the transition 

area between these two conveyors. By redirecting the material in a suspended trajectory, it 

becomes easier for the aspirator to eliminate lighter foreign material. At this point, the already 

individual grapes can pass through the mesh conveyor to the storage bin. The grape clusters that 
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are still intact are conveyed into a rotary de-stemmer. The separated stems are evacuated radially 

from the de-stemmer behind the harvester. Throughout the cleaning process, the juice that is 

expelled from the grapes falls through the cleaning devices directly to the storage bins.  

 

 
Figure 3.18. Lateral conveyor for cleaning system with conveying buckets (courtesy of CNH 

Industrial. http://agriculture1.newholland.com/eu/fr-fr). 

 

 

 
Figure 3.19. Cleaning system equipped with lateral, aspirator, mesh conveyor, de-stemmer, and 

storage bin (courtesy of CNH Industrial. http://agriculture1.newholland.com/eu/fr-fr). 
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3.2.4.5. Combined Air Screen and Sorting Rollers Cleaning System (used by CNH 

Industrial, Coëx, France) 

This cleaning system is an add-on option to the conventional lateral conveyor cleaning 

system. It is comprised of two cleaning processes: pre-sorter (E.U. Patent No. 2348808, 2009) 

and separator (U.S. Patent No. 2014/0221060, 2014). The pre-sorter (Figure 3.20), which uses 

two series of rollers, replaces the mesh conveyor. The first helical series ensure an even spread of 

the individual grapes and the clusters. The second series of rollers are helically ribbed with 

spacing that allows the individual grapes to pass through to the separator. The clusters of grapes 

continue on top of the rollers to the de-stemmer. The separator has a series of rollers (Figure 

3.21) and a perforated air screen (Figure 3.22). As the individual grapes enter the separator, the 

rollers evenly spread the grapes before going over the screen. The perforated screen is angled 

downwards and has forced air (supplied by independent centrifugal fan) that creates an air 

cushion. As the grapes pass over, they fall into the storage bin whereas the foreign materials 

(petiole, leaves, twigs, damaged grapes, etc.) are ejected off the sides of the harvester. 

 

 
Figure 3.20. Pre-sorter cleaning system with two additional of rollers leading into the de-

stemmer (courtesy of CNH Industrial. http://agriculture1.newholland.com/eu/fr-fr). 
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Figure 3.21. Roller separator cleaning system conveying crop material to air screen (courtesy of 

CNH Industrial. http://agriculture1.newholland.com/eu/fr-fr). 

 

 

 

 

 

 
Figure 3.22. Air screen cleaning system removing foreign materials while allowing grapes to 

pass to storage bin (courtesy of CNH Industrial. http://agriculture1.newholland.com/eu/fr-fr). 

 

 

 

 

 

 

 

Spreading 

Rollers 

De-Stemmer 

Spreadin

g Rollers 

Perforated 

Air Screen 

Storage Bin 



 

31 

 

 Discrete-Element Method  3.3.

3.3.1. Development of DEM 

Since the initial development of DEM by Cundall and Strack in 1979, industrial applications 

of the DEM have been expanded to numerous sectors (i.e. geological, mineralogical, 

pharmaceutical, agricultural, etc.). These sectors are looking to predict material behaviour 

without having to conduct physical experiments. This minimizes time and cost associated with 

prototyping.         

 

Table 3.1 shows the development of the DEM modeling scale in simulation software. Initial 

simulations were limited to 2-dimensions (2D) with very simple geometrical contacts. The 

development in computer hardware has allowed for a rapid progression in the DEM modeling 

scale, which can now support millions of particles in both 2D and 3-dimensions (3D) (Munjiza et 

al., 2008). The number of particles used in modelling is entirely dependent of the available 

computational power. Therefore, the computational efficiency is subject to the modeling 

parameters (i.e. time step, domain, contact force models, bond models, etc.).  

 

Table 3.1. Evolution of DEM modeling scale (Cleary, 2009) 

Year Number of Particles 

1995 1,000 Circular Particles (2D) 

2001 250,000 Spheres (3D) 

2005 1 Million Non-Spherical Particles (3D) 

2007 15 Million Non-Spherical Particles (3D) 
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3.3.2. General Theory 

DEM utilizes the force-displacement law (eqs. 3.1 and 3.2) and Newton’s second law of 

motion (eqs. 3.3 and 3.4); the force displacement law detects the contact forces based on the 

displacements and Newton’s law accounts for the forces acting on a particle and assigns it a 

corresponding motion (Cundall and Strack, 1979). Every time step begins by updating the 

contacts based on particle and geometry positions; the force-displacement and motion laws are 

applied after this step (ICG, 1999a). The force-displacement law is applied first to update the 

contact forces. Subsequently, Newton’s second law is applied to each particle in order to update 

the respective velocities and positions based on the previously updated contact forces.       

 

During collision between particle 1 and particle 2: 

 ∆𝐹𝑛 = 𝑘𝑛(∆𝑛) = 𝑘𝑛 [(�̇�𝑃1 − �̇�𝑃2) (
𝑥𝑃2 − 𝑥𝑃1

𝐷
)] ∆𝑡 

(3.1) 

 

 ∆𝐹𝑠 = 𝑘𝑠(∆𝑠) = 𝑘𝑠[(�̇�𝑃1 − �̇�𝑃2)𝑡 − (�̇�𝑃1𝑅𝑃1 − �̇�𝑃2𝑅𝑃2)]∆𝑡 
(3.2) 

 

 

where, 

ΔFn = Increment in normal force (N) 

ΔFs = Increment in shear force (N) 

kn = Normal stiffness (N/m) 

ks = Shear stiffness (N/m) 

Δn = Normal displacement increment/overlap (m) 

Δs = Tangential displacement increment/overlap (m) 

xP1 = Centre position of particle 1 (m) 

xP2 = Centre position of particle 2 (m) 

ẋP1 = Linear velocity of particle 1 (m/s) 

ẋP2 = Linear velocity of particle 2 (m/s) 

D = Distance between centres of particles (m) 

𝜃𝑃1
̇  = Angular velocity of particle 1 (rad/s) 

𝜃𝑃2
̇  = Angular velocity of particle 2 (rad/s) 
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RP1 = Radius of particle 1 (m) 

RP2 = Radius of particle 2 (m) 

t = Time (s) 

Δt = Time increment (s) 

 

In the force-displacement equations, the relative contact displacement in the normal (∆n) and 

tangential (∆s) directions can be defined as overlap (ICG, 1999a). Overlapping occurs since the 

particles are characterized as rigid. The overlaps are used to account for particle deformation 

with respect to other particles and geometries; the overlap magnitude is proportional to the 

contact forces (Cundall and Strack, 1979). Although overlapping is used to replicate particle 

deformation, the overlap magnitude with respect to the particle size is relatively small.  

 

 𝐹𝑛 = 𝑚𝑛�̈�𝑛 
(3.3) 

 

 

 𝑀𝑛 = 𝐼𝑛�̈�𝑛 
(3.4) 

 

 

(see nomenclature below) 

 

Velocity equation 3.5 and equation 3.6 are derived from Newton’s second law of motion (eqs. 

3.3 and 3.4 respectively). An additional derivation of these equations produces the particle 

position (eq. 3.7) and rotation (eq. 3.8) equations. The DEM cycle uses these velocity equations 

in the force-displacement equations (eqs. 3.1 and 3.2) while updating the position and rotations 

of the particles (eqs. 3.7 and 3.8); this cycle is repeated for each new time increment (Cundall 

and Strack, 1979).  
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During time interval tN-1/2 to tN+1/2 

 �̇�𝑁+1/2 = �̇�𝑁−1/2 + [
𝐹

𝑚
]

𝑁
∆𝑡 

 (3.5) 

 

 

 �̇�𝑁+1/2 = �̇�𝑁−1/2 + [
𝑀

𝐼
]

𝑁
∆𝑡 

 (3.6) 

 

 

 𝑥𝑁+1 = 𝑥𝑁 + �̇�𝑁+1/2∆𝑡 
 (3.7) 

 

 

 𝜃𝑁+1 = 𝜃𝑁 + �̇�𝑁+1/2∆𝑡 
 (3.8) 

 

 

where, 

Fn = Normal or shear force (N) 

Mn = Moment (N·m) 

mn = Mass (kg) 

ẍn = Linear acceleration (m/s
2
) 

ẋ = Linear velocity (m/s) 

x = Particle position (m) 

𝜃�̈�= Angular acceleration (rad/s
2
) 

𝜃�̇�= Angular velocity (rad/s) 

𝜃𝑛 = Particle rotation (rad) 

Δt = Time increment (s) 

In = Moment of inertia (kg·m
2
) 
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3.3.2.1. DEM Time Steps 

Time Steps are the time intervals where the interaction calculations (motion, force, contact, 

etc.) of the particles take place. The selected time steps are typically short enough that during a 

single time step, disturbances may only be transferred from a particle to the immediate 

neighbours; both velocities and accelerations are assumed to be constant for a single time step 

(Cundall and Strack, 1979). Cundall and Stack describe the key feature of DEM as the resultant 

forces of a given particle being solely caused by the interactions with other contacting particles, 

which in turn enable the determination of a non-linear interaction of numerous particles without 

the need for large memory capabilities or an iterative procedure (1979).      

 

A lower time step is often required to accurately account for higher forces with particles 

(DEM Solutions
®
, 2015). These shorter time steps make the simulation even more 

computationally expensive; this becomes the compromise since a longer time step could result in 

less accurate interactions. For instance, fast-moving particles could potentially skip over several 

others before a contact would finally occur between them.  

 

The selected time step can be displayed in seconds and as a percentage of the Rayleigh time 

step (eq. 3.9); the Rayleigh time refers to the time required for a shear wave to propagate through 

a solid particle (DEM Solutions
®
, 2015). As the number of potential contacts between particles 

increases, a smaller percentage of the Rayleigh time step is optimal for a sufficient accuracy in 

the simulation. A 20% time step is recommended if the total number of contacts per particle is 4 

or more; 40% can be suitable for a lower number of contacts (DEM Solutions
®
, 2015).      
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𝑇𝑅 =

𝜋𝑅 (
𝜌
𝐺)

1
2⁄

(0.1631𝑣 + 0.8766)
 

(3.9) 

 

 

where, 

TR = Rayleigh time step (s) 

R = Particle radius (m) 

ρ = Particle density (kg/m
3
) 

G = Shear modulus (Pa) 

v = Poisson’s ratio (dimensionless)  

 

 

3.3.2.2. Physical Properties  

The first column of Table 3.2 outlines the required inputs in the DEM software for both the 

geometry and particle materials (Boerner, 2011).  The interaction properties between the 

biological materials themselves and the geometry materials are also displayed. Every possible 

interaction needs to be defined in order to perform the simulation calculations. The second 

column of Table 3.2 shows the calculated values based on the entered properties, particles, and 

geometries (Boerner, 2011). The selected contact models will dictate the calculation method by 

using the appropriate equations and iterative loops; these values may differ from one contact 

model to another. Additional material properties may be required depending on the selected 

contact model (i.e. yield strength, cohesion energy, particle velocity, etc.). Model validation may 

be required in order to obtain realistic and accurate results.  
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Table 3.2. DEM simulation input properties and output values for particles and geometries 

(Boerner, 2011).  

Required Material Properties Calculated Values from Simulation 

 General 

o Density (kg/m
3
) 

o Shear modulus (Pa) 

o Poisson’s ratio (dimensionless) 

o Particle diameter (m) 

 Interaction 

o Coefficient of restitution 

(dimensionless) 

o Coefficient of static friction 

(dimensionless) 

o Coefficient of rolling friction 

(dimensionless) 

 

 

 

 Position 

o x, y, z coordinates (m) 

 Temporal dependence 

o Velocity (Vx, Vy, Vz) (m/s) 

o Angular velocity (rad/s) 

o Mass (kg) 

o Volume (m
3
) 

 Force/Energy 

o Total energy (J) 

o Potential energy (J) 

o Kinetic energy (J) 

o Rotational energy (J) 

o Total force (N) 

o Compression force (N) 

o Momentum (N·s) 

 Inter-Particle 

o Collision frequency (Hz) 

o Force in bonds (N) 
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3.3.3. Contact Models  

Contact models are used to represent the contact force behaviour between two objects 

(particle-particle or particle-geometry) due to the displacements in the normal and tangential 

directions. When the relative motion of two particles generates a force between them, the 

particles are considered to be in contact (ICG, 1999c). Contacts are not limited to particles that 

are in physical contact; bonded particles can have small spaces between them while still being 

considered in contact (ICG, 1999c). The selected contact model dictates the behavior of particles 

when contacts occur with geometries and other particles. The following contact models are 

available with the currently used EDEM
®
 software (version 2.7). 

   

 

3.3.3.1. Hertz-Mindlin (no slip) 

The Hertz-Mindlin contact model is a non-linear contact approximation for particles, which 

models the impacts as interconnecting spring and dash pots in series (Boerner, 2011). The model 

uses normal (eq. 3.10) and tangential (shear) (eq. 3.11) force components that are based on the 

Hertzian contact theory (1882) and on the Mindlin-Deresiewicz (1952) work respectively. 

Cundall and Strack (1979) used the Coulomb friction law with the tangential force within this 

contact model. Both the normal and tangential forces are used in the force displacement-law 

cycle, which occurs at every time step.  

 

 𝐹𝑁 =
4

3
𝐸𝑒𝑞√𝑅𝑒𝑞∆𝑛3/2 

(3.10) 

 

 

 𝐹𝑠 = −𝑘𝑠∆𝑠 
(3.11) 
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where, 

 𝐸𝑒𝑞 =
𝐸𝑃1𝐸𝑃2

[𝐸𝑃1(1 − 𝑣𝑃2
2 )] + [𝐸𝑃2(1 − 𝑣𝑃1

2 )]
 (3.12) 

 

 

 𝑅𝑒𝑞 =
𝑅𝑃1𝑅𝑃2

𝑅𝑃1 + 𝑅𝑃2
 

(3.13) 

 

 

 𝑘𝑁 = 2𝐸𝑒𝑞√𝑅𝑒𝑞∆𝑛 
(3.14) 

 

 𝑘𝑠 = 8𝐺𝑒𝑞√𝑅𝑒𝑞∆𝑛 
(3.15) 

 

 

 
𝐺𝑒𝑞 =

𝐺𝑃1𝐺𝑃2

[𝐺𝑃1(2 − 𝑣𝑃2)] + [𝐺𝑃2(2 − 𝑣𝑃1)]
 

 

(3.16) 

 

(see nomenclature below) 

 

DEM solutions
®
 has included the Tsuji et al. (1992) damping components for both the normal 

(eq. 3.17) and tangential (eq. 3.18) forces, which incorporate the coefficient of restitution (2014). 

These forces also account for the material stiffness, mass, and relative velocity with respect to 

the normal and tangential directions. Including the damping forces within the model recreates the 

effects of energy dissipation during particle impacts. 

 

 𝐹𝑁𝐷 = −2√
5

6
𝛽√𝑘𝑁𝑚𝑒𝑞𝑣𝑁𝑟𝑒𝑙 (3.17) 

 

 𝐹𝑆𝐷 = −2√
5

6
𝛽√𝑘𝑠 ∙ 𝑚𝑒𝑞 ∙ 𝑣𝑇𝑟𝑒𝑙 (3.18) 

 

 

(see nomenclature below) 
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where, 

 𝑚𝑒𝑞 =
𝑚𝑃1𝑚𝑃2

𝑚𝑃1+𝑚𝑃2
 

(3.19) 

 

 𝛽 =
ln 𝑒

√(ln 𝑒)2𝜋2
 (3.20) 

 

 

DEM Solutions
®
 accounts for the rolling friction by using the Sakaguchi et al. (1993) contact 

independent directional constant torque model (2014). Equation 3.21 calculates the rolling 

friction torque and applies it to contacting surfaces (DEM Solutions
®
, 2014); the calculated value 

is applied in the velocity (eq. 3.6) and position (eq. 3.8) equations.  

 

 𝜏 = −𝜇𝑟𝐹𝑁𝑅𝜔 
(3.21) 

 

 

where,  

FN = Normal force (N) 

FS = Tangential (shear) force (N) 

FND = Normal damping force (N) 

FSD = Tangential (shear) damping force (N) 

EP1 = Modulus of elasticity of particle 1 (Pa) 

EP2 = Modulus of elasticity of particle 2 (Pa) 

vP1 = Poisson’s ratio of particle 1 (dimensionless) 

vP2 = Poisson’s ratio of particle 2 (dimensionless) 

RP1 = Radius of particle 1 (m) 

RP2 = Radius of particle 2 (m) 

kn = Normal stiffness (N/m) 

ks = Shear stiffness (N/m) 

Δn = Normal displacement/overlap increment (m) 

Δs = Tangential displacement/overlap increment (m) 

GP1 = Shear modulus of particle 1 (Pa) 

GP2 = Shear modulus of particle 2 (Pa) 

vNrel = Relative normal velocity (m/s) 

vTrel = Relative tangential velocity (m/s) 
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mP1 = Mass of particle 1 (kg) 

mP2 = Mass of particle 2 (kg) 

e = Coefficient of restitution (dimensionless) 

τ = Rolling friction torque (N·m) 

μr = Coefficient of static friction (dimensionless) 

R = Distance between contact point and centre of mass (m) 

ω = Angular velocity vector at contact point (dimensionless) 

 

The Hertz-Mindlin model is also used in conjunction with the relative wear model for the 

particle-geometry interaction. The relative wear model records areas of geometries that are 

subjected to high impacts (normal) and abrasive (tangential) wear by the particles (DEM 

Solutions
®
, 2015). The particle velocity and forces acting on the geometries are accounted within 

the model (DEM Solutions
®
, 2015). The analyst tool is able to extract cumulative wear on 

specific geometries, which allows the user to identify any potential wear points. The geometry 

designs can be refined by using this particle contact model. Despite this, the relative wear model 

is limited by the inability to predict the material removal rate (DEM Solutions
®

, 2014).       

 

 

3.3.3.2. Hertz-Mindlin (no slip) with RVD Rolling Friction  

Hertz-Mindlin contact model that uses Relative Velocity Dependent (RVD) rolling friction in 

an alternate implementation of rolling friction based on velocity and deformation at the contacts 

(DEM Solutions
®
, 2015). Contrarily to the conventional Hertz-Mindlin rolling friction, the 

relative angular velocity unit vector (ωrel) of two contacting particles is used instead in the 

applied torque calculation (eq. 3.22). This model can also be configured to include the relative 

wear model.  

 𝜏 = −𝜇𝑟𝐹𝑁𝑅𝜔𝑟𝑒𝑙 
(3.22) 
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where,  

τ = Rolling friction torque (N·m) 

μr = Coefficient of static friction (dimensionless) 

FN = Normal force (N) 

R = Distance between contact point and centre of mass (m) 

ωrel = Relative angular velocity (dimensionless) 

 

 

 

 

3.3.3.3. Hertz-Mindlin with Archard Wear 

Same functionality as the default Hertz Mindlin model, but offers more features for wear 

analysis on geometry and includes the relative wear model. This function is capable of 

measuring the removed material from specific geometries caused by sliding and abrasive wear 

from excessive particle contact, which is based on a calibrated constant from material testing 

(DEM Solutions
®
, 2015). The removed volume of material is determined by using the Archard 

equation (1953) (eq. 3.23). DEM solution uses the calculated volume from the equation to 

predict the wear of the geometry (2014).  

 𝑄 =
𝐾𝐹𝑁𝑑𝑡

𝐻
 

(3.23) 

 

 

where, 

Q = Removed material volume (m
3
) 

K = Wear constant (dimensionless)  

FN = Normal force (N) 

dt = Travelled distance (m) 

H = Hardness of softest surface (Pa) 
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3.3.3.4. Hertz-Mindlin with Heat Conduction 

Model that uses the Hertz-Mindlin contact model and the update temperature function model 

from the particle body force to calculate the heat flux between contacting particles and external 

heat sources (DEM Solutions
®
, 2015). The model accounts for the diffusion of the heat flux 

through particle overlap and the user-defined particle thermal conductivity (DEM Solutions
®
, 

2015). This model is particularly useful in simulating the convective heat transfer in higher-

numbered particle applications. Equation 3.24 is a linear model used to simulate the heat flux 

transfer between two contacting particles (Chaudhuri et al., 2006). DEM Solutions
®
 also uses the 

update temperature model (eq. 3.26) after calculating all the heat fluxes; the temperature gradient 

between the particles and the environment adjusts the temperatures of the individual particles 

(2014).  

 𝑄 = ℎ𝑐∆𝑇 
(3.24) 

 

 ℎ𝑐 =
4𝑘𝑃1𝑘𝑃2

𝑘𝑃1 + 𝑘𝑃2
[
3𝐹𝑁𝑟𝑒𝑞

4𝐸𝑒𝑞
]

1/3

 
(3.25) 

 

 𝑚𝐶𝑝∆𝑇 = ∑ 𝑄ℎ𝑒𝑎𝑡 
(3.26) 

 

 

 

where, 

Q = Heat flux between particle 1 and 2 (W) 

Qheat = Specific heat capacity (J) 

hc = Heat transfer coefficient (W/K) 

ΔT = Temperature gradient between particle 1 and 2 (K) 

kP1 = Thermal conductivity of particle 1 (W/m·K) 

kP2 = Thermal conductivity of particle 2 (W/m·K) 

FN = Normal force (N) 

m = Mass of particle material (kg) 

Cp = Specific heat capacity (J/kg·K) 
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3.3.3.5. Hertz-Mindlin with Bonding 

The model applies the Hertz-Mindlin contact model while allowing particles to bond with one 

another (cannot bond to geometries); the relative wear model can also be used with this contact 

model. The bond between two particles is created with a virtual cylinder, which overlaps the two 

spheres and acts as cementing glue. The bonded disk radius (RB) refers to the virtual cylinder 

radius. The bond uses the following parameters for the bond formation, which are customizable 

by the user: normal stiffness, shear stiffness, critical normal stress, critical shear stress, and 

bonded disk radius (DEM Solutions
®
, 2015). The normal and shear stiffness characterize the 

particle assembly rigidity. The Cundall and Potyondy (2004) equations, which describe the 

elastic force (eqs. 3.27 and 3.28) and moment (eqs. 3.29 and 3.30) increments, are updated at 

each time step. The force and moment equations are used to verify the critical normal and shear 

stress conditions (eqs. 3.33 and 3.34 respectively). The critical normal and shear stress refers to 

the maximum normal and shear stress that the bond can withstand before failure (DEM 

Solutions
®
, 2015).     

 ∆𝐹𝑁 = −𝑣𝑁𝑘𝑁𝐴∆𝑛 
(3.27) 

 

 ∆𝐹𝑆 = −𝑣𝑇𝑘𝑆𝐴∆𝑠∆𝑡 
(3.28) 

 

   

 ∆𝑀𝑁 = −𝜔𝑁𝑘𝑆𝐽∆𝑡 (3.29) 

 

 ∆𝑀𝑆 = −𝜔𝑇𝑘𝑁

𝐽

2
∆𝑡 

(3.30) 

 

 

(see nomenclature below) 
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where, 

 
𝐴 = 𝜋𝑅𝐵

2  
 

(3.31) 

 

 
𝐽 =

1

2
𝜋𝑅𝐵

4  

 

(3.32) 

 

 

 𝜎𝑚𝑎𝑥 <
−𝐹𝑁

𝐴
+

2𝑀𝑆

𝐽
𝑅𝐵 

(3.33) 

 

 𝜏𝑚𝑎𝑥 <
−𝐹𝑆

𝐴
+

𝑀𝑁

𝐽
𝑅𝐵 

(3.34) 

 

 

where, 

ΔFN = Normal force increment (N) 

ΔFS = Tangential (shear) force increment (N) 

ΔMN = Normal moment increment (N·m) 

ΔMS = Tangential (shear) moment increment (N·m) 

vN = Normal velocity (m/s) 

vT = Tangential velocity (m/s) 

ωN = Normal angular velocity (rad/s) 

ωT = Tangential angular velocity (rad/s) 

kn = Normal stiffness (N/m) 

ks = Shear stiffness (N/m) 

Δn = Normal displacement/overlap increment (m) 

Δs = Tangential displacement/overlap increment (m) 

Δt = Time step increment (s) 

σmax = Critical normal stress (Pa) 

τmax = Critical shear stress (Pa)  

RB = Bonded disk radius (m) 

 

The parallel-bond model and the contact-bond model are two types of models that can be used 

with the DEM simulation software. The contact-bond model acts only at the contact point 

between particles, whereas the parallel-bond model acts over the virtual cylinder cross section 

(ICG, 1999b). Both the forces and moments can be transferred through the parallel-bond, while 
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only the forces are transferred with a contact-bond; some DEM software packages can support 

both bond models at the same time (ICG, 1999b). Although the EDEM
®
 Hertz-Mindlin contact 

model could be considered a parallel bond, the torque feedback is only implemented when the 

critical shear stress is exceeded and the bond brakes. The torque feedback does not allow a 

moment transfer through the bond as would a typical parallel bond. 

 

 It is important to note that the bonds will only form at the specified bond time and will only 

be broken if the maximum bond strength is surpassed. Higher bond strengths may require a 

lower than normal time step to accurately capture the forces between particles (DEM Solutions
®
, 

2015).       

 

 

3.3.3.6. Hertz-Mindlin with JKR Cohesion  

The Hertz-Mindlin Johnson-Kendall-Roberts (JKR) cohesion contact model is capable of 

replicating the cohesion between particles and adhesion to geometry. This model was initially 

intended to simulate the Van der Waals interaction forces involved in the fine dry powder flows 

(DEM Solutions
®
, 2015). Currently, this model is used to account for the cohesion effects of 

moisture in large bulk flows (DEM Solutions
®
, 2015). The cohesion or adhesion effect for 

particles is user-defined by specifying the surface energy for a particular interaction (particle-

particle or particle-geometry).  

 

The separation of two contacting bodies requires mechanical work to be expended to create a 

new surface and overcome the adhesive forces (Johnson et al., 1971). The free surface energy is 
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also defined by Johnson et al. (1971) as "the required energy to create a unit area of a new 

surface". Hertz original equation (eq. 3.35) for the contact radius did not take into account the 

surface energy effect. Johnson et al. (1971) developed another equation (eq. 3.36) based on 

Hertz’s original equation, which accounted for the surface energy effect. This equation can be 

derived into equation 3.37, which yields the required force to separate the two contacting spheres 

(Johnson et al., 1971). DEM Solutions
®
 calculates this maximum cohesion force when the 

particle is not in physical contact with the surface, but within the maximum acceptable gap 

calculated from equation 3.38 (2014). 

 

 𝑎 = [
𝑅𝑒𝑞𝐹𝐶

𝐾𝑒𝑞
]

1/3

 (3.35) 

 

 𝑎 = [
𝑅𝑒𝑞

𝐾𝑒𝑞
(𝐹𝐶 + 3𝛾𝜋𝑅𝑒𝑞 + √{6𝛾𝜋𝑅𝑒𝑞𝐹𝐶 + (3𝛾𝜋𝑅𝑒𝑞)

2
})]

1/3

 (3.36) 

 

 𝐹𝐶𝑚𝑎𝑥 = −
3

2
𝛾𝜋𝑅𝑒𝑞 

(3.37) 

 

 𝛿𝑔𝑎𝑝 = −√
4𝜋𝛾𝑎𝑐

𝐸𝑒𝑞
+

𝑎𝑐
2

𝑅𝑒𝑞
 (3.38) 

 

(see nomenclature below) 

where, 

 𝐾𝑒𝑞 =
4

3𝜋(𝑘1+𝑘2)
 (3.39) 

 

 𝑘1 =
1 − 𝑣1

2

𝜋𝐸1
 (3.40) 

 

 𝑘2 =
1 − 𝑣2

2

𝜋𝐸2
 (3.41) 
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 𝑎𝑐 = [
9𝜋𝛾𝑅𝑒𝑞

2

2𝐸𝑒𝑞
(

3

4
−

1

√2
)]

1/3

 

 
(3.42) 

 

(see nomenclature below 

In EDEM
®
, the tangential elastic force, normal dissipation force, and tangential dissipation 

force are calculated in the same way as the default Hertz-Mindlin contact model (2014). The 

cohesion and adhesion behavior are simulated by applying a normal force (JKR force) on a 

particle, which opposes the separation from the surface. The JKR cohesion force is added to the 

Hertz-Mindlin force, which equates to the total normal force acting on a particle. In an instance 

when a particle is in physical contact with this surface, the JKR normal force magnitude (eq. 

3.43) is a function of the particle overlap (eq. 3.44) and the user defined surface energy (DEM 

Solutions
®
, 2014). 

 

 𝐹𝐶 = −4√𝜋𝛾𝐸𝑒𝑞𝑎3/2 +
4𝐸𝑒𝑞

3𝑅𝑒𝑞
𝑎3 (3.43) 

 

 𝛿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
𝑎2

𝑅𝑒𝑞
− √

4𝜋𝛾𝑎

𝐸𝑒𝑞
 (3.44) 

 

where, 

a = Contact radius (m) 

R1 = Radius of sphere 1 (m) 

R2 = Radius of sphere 2 (m) 

v1 = Poisson’s ratio of sphere 1 (dimensionless) 

v2 = Poisson’s ratio of sphere 2 (dimensionless) 

E1 =Young’s modulus of sphere 1 (Pa) 

E2 =Young’s modulus of sphere 2 (Pa) 

FC = Cohesion force (N) 

FCmax = Maximum cohesion force (N) 

γ = Energy per unit contact area (J/m
2
) 

δgap = Maximum gap between particle and surface (m) 

δoverlap = Particle overlap with contacting surface (m) 
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3.3.3.7. Linear Cohesion 

The linear cohesion contact model alters the Hertz-Mindlin contact model by incorporating a 

normal cohesion and adhesion force for the particle and geometry interactions respectively 

(DEM Solutions
®
, 2015). Both contact models need to be selected in order to implement the 

calculations. The cohesion between particles and the adhesion to geometries can be adjusted by 

the user-defined cohesive energy density. This density is a function of the particle contact radius 

and cohesion force. The contact area radius (eq. 3.45) is based on Hertz’s theory of elastic 

contact and can be substituted in the normal repulsive force equation (eq. 3.46) (Grima and 

Wypych, 2011). The Hertz-Mindlin model is only applied once the linear cohesion model has 

calculated the cohesion forces. The Hertz-Mindlin then begins calculating the overall normal 

force acting on the particle by adding the linear cohesion forces.  

 

 𝑟2 = 𝑅∆𝑛 
(3.45) 

 

 𝐹𝑁 = 𝜋𝑟2𝐶𝑒 
(3.46) 

 

 

where, 

r = Contact area radius (m) 

FN = Normal repulsive force (N) 

R = Particle radius (m) 

Δn = Normal displacement/overlap increment (m) 

Ce = Cohesive energy density (J/m
3
) 
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3.3.3.8. Linear Spring 

The linear spring contact force model can be substituted for the default Hertz-Mindlin contact 

model entirely. The model uses the Cundall and Strack (1979) normal force equation for two 

contacting particles (eq. 3.47); a similar approach can be used for the tangential force. Both the 

spring stiffness (eq. 3.48) and dashpot coefficient (eq. 3.49) are indirectly defined by the user; 

the specified physical characteristics are used for this calculation (DEM Solutions
®
, 2014). The 

user-defined characteristic velocity is generally recommended to be set at the maximum velocity 

in the simulation (DEM Solutions
®
, 2014). 

 

The simulation time step can have an effect on the resulting force since it is usually calculated 

based on the spring stiffness; the time step should not allow for an excessive particle overlap 

(DEM Solutions
®
, 2014). This contact model is partly based on non-physical models and may 

not obtain an accurate simulation behavior (Boerner, 2011). The spring stiffness and time step 

values has to be adjusted until reasonable results are observed.   

 

 𝐹𝑁 = 𝑘𝐿𝑆∆𝑛 + 𝑐𝑣∆𝑛 
(3.47) 

 

 𝑘𝐿𝑆 =
16

15
𝑅𝑒𝑞

1/2
𝐸𝑒𝑞 (

15𝑚𝑒𝑞𝑉2

16𝑅𝑒𝑞
1/2

𝐸𝑒𝑞

)

1/5

 (3.48) 

 

 𝑐 = √
4𝑚𝑒𝑞𝑘𝐿𝑆

1 + (
𝜋

ln 𝑒
)

2 
(3.49) 
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where, 

FN = Normal force (N) 

kLS = Linear spring stiffness (N/m) 

Δn = Normal displacement/overlap increment (m) 

vΔn = Overlap velocity (m/s) 

c = Dashpot coefficient (N·s/m) 

V = Typical impact/characteristic velocity (m/s) 

e = Coefficient of restitution (dimensionless)  

 

 

 

 

3.3.3.9. Hysteretic Spring 

Opposite to the Hertz-Mindlin and linear spring models, which are elastic contact models, the 

hysteretic spring model replicates the plastic deformation behaviors for the particles (DEM 

Solutions
®
, 2015). In addition to the standard material properties, three parameters need to be set 

for particle and geometry interactions: damping factor, stiffness factor, and material yield 

strength. The damping factor accounts for the velocity-dependent damping, which prevents 

particle vibration from persisting (DEM Solutions
®

, 2015). The stiffness factor is used in the 

tangential force calculation and represents the ratio of tangential-to-normal loading stiffness 

(DEM Solutions
®
, 2015). The normal and tangential dampening forces are determined using 

equations 3.50 and 3.51 respectively (DEM Solutions
®
, 2014). In addition, the hysteretic spring 

contact model uses the coefficient of restitution differently from the Hertz-Mindlin contact 

model. The coefficient of restitution uses a different energy dissipation and recovery method 

during loading and unloading scenarios respectively (DEM Solutions
®
, 2015).  
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 𝐹𝑁𝐷 = −𝑏𝑁√
4𝑚𝑒𝑞(𝐾1 𝑜𝑟 𝐾2)

1 + (
𝜋

ln 𝑒
)

2 𝑣𝑁𝑟𝑒𝑙 
(3.50) 

 

  

 

 𝐹𝑆𝐷 = √
4𝑚𝑒𝑞𝛾𝑡(𝐾1 𝑜𝑟 𝐾2)

1 + (
𝜋

ln 𝑒
)

2 𝑣𝑇𝑟𝑒𝑙 
(3.51) 

 

 

where, 

e = Coefficient of restitution (dimensionless) 

K1 = Spring stiffness before plastic deformation (N/m) 

K2 = Spring stiffness after plastic deformation (N/m) 

FND = Normal damping force (N) 

FSD = Tangential (shear) damping Force (N) 

bN = Damping factor (dimensionless) 

γt = Stiffness factor (dimensionless) 

vNrel = Relative normal velocity (m/s) 

vTrel = Relative tangential velocity (m/s) 

 

 

 

3.3.3.10. Moving Plane 

The moving plane model is used to assign an in-plane linear velocity in any direction to a 

geometry surface (DEM Solutions
®
, 2014). The physical geometry is not required to physically 

move within the simulation. For instance, the resulting velocity of particles coming into contact 

with a horizontal plane (assigned with the moving plane model) will be calculated using the 

plane velocity. This model is particularly useful when simulating the conveying movement of 

particles.    

 

 



 

53 

 

3.3.3.11. Particle Body Force 

The particle body force interaction option can be used to couple user-defined external forces, 

external heat sources, and particle factories. This includes coupling options such as velocity 

fields, heat conduction models, particle substitution factories, and any customized properties that 

can be combined with the contact models. The plug-ins can be configured to only interact with 

the particles when certain conditions are met such as specific positions, velocities, forces, etc. 

(DEM Solutions
®
, 2014). The particle body force allows the user to incorporate unconventional 

parameters in the DEM general theory.    

 

 

3.3.4. Current Application 

Since the initial development of the DEM by Cundall in 1971, the application of the DEM has 

grown exponentially. Cundall’s initial purpose with the DEM was to replicate the behavior of 

rock mechanics, which was then applied to soil mechanics with Strack in 1979 (ICG, 1999a). 

Given the technological limitation at that time, simulations were limited to 2-dimensions with 

simple geometries. General advancements in technology and computational power since the 

1970’s have expanded the application of the DEM to numerous industrial fields. Simulations can 

now run in 3-dimensions with even larger amounts of particles (over 15 million); the particles 

can be non-spherical or clusters (Cleary, 2009). Specific industrial fields that utilize these 

processes can include: agriculture, construction, mining, natural resource extraction, 

pharmaceuticals, bio-medical, geology, thermodynamics, manufacturing, military, etc.  

 



 

54 

 

The future of DEM can anticipate simulations with larger amounts of particles at greater 

computational speeds while improving the model accuracy. Aoki shows a glimpse of the future 

by conducting simulations with over 72 million particles on a GPU-based supercomputer using 

84 GPUs (2014). This particular simulation was capable of modeling liquid water as a rogue 

wave colliding with a statue (6 m in height) as seen in Figure 3.23 (Aoki, 2014). The DEM has 

become an effective tool in technology development and refinement. A validated model can be 

used to optimize a particular design without having to physically build a testing apparatus. The 

benefits of simulating industrial processes can result in lower prototyping costs while minimizing 

time. Ability of understanding and predicting particulate and fluid flows will continue to be an 

applicable tool in many industries (Cleary, 2009). 

 

 
Figure 3.23. DEM simulation of a rogue wave colliding with a statue- 72 million particles with 

80 GPUs (Aoki, 2014). 
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 Summary 3.4.

The effects of terroir factors such as climate, grape variety, soil type, and cultural practices 

on viticulture were discussed. This included presenting the specific regions with the optimal 

conditions for grape growth.  

The introduction and evolution of mechanized grape harvesting in viticulture was presented. 

A description of the general configuration and functionality of grape harvesters followed. In 

addition, the cleaning methods and technologies that are commonly integrated in grape 

harvesters were discussed. Information on current cleaning systems that combine multiple 

methods of cleaning and sorting was included; specific patents and manufacturers that use these 

systems were highlighted.             

 The development of the DEM modeling scale in simulation software was 

presented. An extensive description of the DEM general theory discusses the application of the 

force-displacement law and Newton’s second law of motion. The required physical properties of 

the geometry and particle materials for the DEM calculations were also outlined. The contact 

models that are specifically used with the project’s DEM software package (EDEM
®

 version 2.7) 

were explained in detail with general equations. Examples of current industrial applications of 

the DEM were also provided. 

Research information pertaining to the application of the DEM for the optimizing agricultural 

practices was found. In particular, the de-stemming process of grape clusters was modeled using 

the DEM (Coetzee and Lombard, 2013).  Despite this, no research related to the DEM modeling 

of the pneumatic cleaning process (removal of foreign materials with aspirator) in grape 

harvesters was found.          
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4.0 MATERIALS AND METHODS       

Property testing for the biological materials was required for the development of the main 

crop flow simulation. This material initially consisted of grapes, grape stems, leaves, petioles, 

and vine shoots. Although these tests included the five biological materials, the DEM 

simulations concentrated on only three: grapes, leaves, and petioles. The grape stems and vine 

shoots were omitted given the high complexity of the geometrical shapes; the computational 

efficiency would have been significantly reduced by including the five materials. In general, the 

cleaning quality of grape harvesters is compromised by the presence of petioles and leaves rather 

than the grape stems and vine shoots. For this reason, the inclusion of grape stems and vine 

shoots was deemed outside the scope of the project. Similarly, the contacting surfaces between 

the biological materials and the cleaning system (conveyor and aspirator) only included stainless 

steel and rubber; the simulations only required these two materials. The additional materials were 

incorporated in the crop property tests for potential future developments.  

 

The obtained results from the crop property testing were used in validation simulations for the 

coefficient of static friction, coefficient of restitution, leaf material flexibility, and conveyor 

trajectory. Leaf development and validation for the DEM simulations were emphasized in 

particular. The main crop flow simulation, which incorporated the aspirator and conveyor, was 

developed using the physical properties and parameters from the previously validated 

simulations. This final simulation was validated with the grape harvester test bench results. The 

next section outlines the procedures and equipment used for each physical property test. It also 

explains the development and validation of the DEM simulations.  



 

57 

 

 Physical Property Testing 4.1.

The physical properties outlined in Table 4.1 were necessary in the characterization of 

biological materials for the DEM simulations. The testing period took place during the 2014 

grape harvest season (September-November) in France at three locations: Aigues-Mortes, Saint-

Gervais, and Pauillac. The testing procedures followed the applicable ASTM standards 

mentioned in the respective sections below. Some procedures were adapted from peer-reviewed 

articles that conducted similar experiments and others were based on CNH Industrial internal 

standards. Sample collection was fully randomized within different vine research parcels at the 

respective locations. This was imperative in reducing the potential bias in the collected data. The 

number of trials was maximized in accordance with the available time and resources; 

approximately 30 to 90 trials were conducted for each test. The testing procedures for the 

porosity, separation force, and static angle of repose can also be found in section B.1 of 

APPENDIX B. These tests were not imperative for the development of the main crop flow 

simulation, but were conducted for potential future developments based on the project.  

 

Table 4.1. Pertinent physical properties of the cleaning system. 

Measured Properties Calculated Properties 

 Geometric mean diameter 

 Thickness 

 Length 

 Mass 

 Static angle of repose 

 Angle of static friction (ASTM 

G115-10, 2013) 

 Bounce height (Hastie, 2013) 

 Terminal velocity (ASTM 

D3464-96, 2014) 
 Separation force and energy 

(Internal CNH Industrial standard) 
 Porosity   

 Sphericity  

 Particle density  

 Bulk density  

 Coefficient of restitution 

 Coefficient of static friction 

 Drag coefficient 
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The experimental design consisted of determining the DEM input properties for the 

Cabernet Sauvignon grape variety in France. The obtained values were used to create 

representative averages in ideal harvesting conditions. The R
®
 Version 3.1.2 (Foundation for 

Statistical Computing, Vienna, AUT) statistical software was used for the project statistical 

analysis. An analysis of variance (ANOVA) at a 95% confidence interval was used to determine 

if the locations had a significant effect on the measured property. The Tukey Honest Significant 

Difference (HSD) post-hoc test was then used to find which location was significantly different 

from the other. This was done to see if the three populations could be combined as a single 

dataset for the DEM input properties; a higher number of data points would increase the 

statistical power and improve the accuracy of the simulations. The Tukey HSD test is essentially 

used as a multi-level (minimum of three levels) ANOVA t-test, which provides an alternative to 

running multiple ANOVA tests for each level. Running multiple t-tests with the ANOVA 

function would increase the probability of a type I error, thus wrongfully stating a significant 

difference (Crawley, 2013). 

 

Prior to the 2014 grape harvesting season, a test bench for physical property testing was 

developed and built (Figure 4.1). This bench was designed to be portable and durable while 

testing in several different locations in France. Before the construction of the test bench, an 

initial research was conducted to identify the most effective methods of determining the physical 

properties of the biological materials. These methods were based on ASTM standards and peer 

reviewed experiments (referenced in the respective sections below). The test bench incorporated 

an accumulation bin (angle of repose), a rebound surface with a high-speed camera (coefficient 

of restitution), a conical wind column (drag coefficient), and a tilting platform (coefficient of 
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friction). Portable measuring devices (caliper, scale, force gauge, etc.) were also used to 

determine the remaining properties (average diameter, mass, separation force, etc.).   

 

 

 

  
Figure 4.1.Test bench used to determine the physical properties of the biological materials. (a) 

Designed 3D CAD model. (b) Fabricated test bench. 

(a) 

 

Tilting Platform 

Accumulation Bin 

Folding Bench 

Rebound Surface 

Conical Wind Column 

 

(b) 
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4.1.1. Geometrical and Mass Measurements  

 
Figure 4.2. Test bench equipped with instruments used for measuring the physical properties. 

 

The geometrical and mass measurements were necessary for determining the physical shapes 

and densities of the biological materials. Mass measurements were taken using a digital scale 

(KERN CKE 2000-2, Balingen, Germany). A digital caliper (Fischer Darex, Chambon-

Feugerolles, France) was also used to measure diameters, lengths, and thicknesses. The small, 

medium, and large diameters of grapes were measured in order to calculate the average diameter, 

sphericity, and volume. By using the grape mass and the calculated volume, true density (wet 

matter) was calculated. Leaf mass was measured along with three thickness points. Each leaf was 

then placed on a grid pattern and photographed (Figure 4.3). The pictures were then uploaded to 

a 3D CAD software (SolidWorks
®
 Version 2013, Massachusetts, USA) to trace out the leaf 

contour (Figure 4.4), which allowed for the determination of the leaf area. This was used to 

calculate the true density (wet matter) of the leaf. After being individually weighed, the 

diameters and lengths of the petioles were measured, thus enabling the calculation of the true 

density (wet matter). Vine shoot samples were measured the same way as the petioles to 
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calculate the true density (wet matter). A list of equations used to calculate the different 

properties can be found in the section A.1 of APPENDIX A.  

 
Figure 4.3. Photographed Cabernet Sauvignon leaf on grid pattern with reference ruler. 

 

 

 
Figure 4.4. SolidWorks

®
 2013 auto-recognition function being used to approximate 

photographed leaf perimeter and area. 
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4.1.2. Coefficient of Static Friction  

The coefficient of static friction measurement was used as a physical property and a 

validation test for the DEM simulations. The experimental procedure to find the coefficient of 

static friction was based on the G115-10 ASTM standard (ASTM, 2013). Each biological 

material was individually placed on a variable inclined plane. This plane initiated the rotational 

motion from a horizontal position and was gradually tilted to increase the angle. The material on 

the plane would begin to slide at a specific angle, which corresponded to the coefficient of static 

friction between the two contacting surfaces. Figure 4.5 depicts the free-body diagram of the 

experimental procedure. By summing the forces along the inclined plane direction, the 

coefficient of static friction equates to the tangent of the plane angle (eq. 4.1).       

 

 
Figure 4.5. Free-body diagram of experimental procedure (ASTM G115-10, 2013). 

 

 

 𝜇𝑠𝑡𝑎𝑡𝑖𝑐 = tan ∅ 
(4.1) 

 

where, 

μstatic = Coefficient of Static Friction (dimensionless) 

ϕ = Angle of Internal Friction (degrees) 
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The portable test bench used during the 2014 grape harvest season was equipped with a 

screw-type inclined plane as seen in Figure 4.6. The angle of the plane could be adjusted by 

turning the screw in either direction. A set of wheels were installed at the end of the plane to 

provide a smooth support as the angle changed. A digital inclinometer (FISCO Solatronic
®
 EN 

17, Rayleigh, UK) provided the angle measurements. 

 

 
Figure 4.6. Grape bunch and stainless steel surface on inclined plane with digital inclinometer. 

 

 

The coefficient of static friction was determined for any two contacting surfaces that 

would normally occur within a grape harvester cleaning system. Depending on the available 

time, approximately 30 to 60 trials were conducted for each combination. The interactions 

included contact between the biological materials themselves and with the cleaning system 

surfaces such as stainless steel (guarding), rubber (conveyor and buckets), and plastic (mesh 

conveyor). In order to increase the sampling rate, multiple samples were placed on a surface as 

seen in Figure 4.7. When an individual samples began to slip, the test would momentarily pause 



 

64 

 

to record the angle measurement on the inclinometer. The test continued until all the samples had 

slipped.    

 

 
 

 
Figure 4.7.Coefficient of static friction testing. (a) Petioles on a stainless steel surface. (b) Vine 

shoots on bucket surface. 

 

 

 

 

 

 

 

 

(a) 

(b) 
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4.1.3. Coefficient of Restitution  

Similarly to the coefficient of static friction, the coefficient of restitution measurement was 

also used as a physical property and a method of validation for the DEM simulations. The 

procedure used to determine the coefficient of restitution was based on the Hastie (2013) 

experimental method. Figure 4.8 is a schematic of the apparatus used to measure the coefficient 

of restitution. Individual samples for each biological material were dropped from the release 

platform and allowed to free-fall until contact occurred with the bounce surface. The bounce 

height would then be determined using a high–speed camera (GoPro HERO3
+
 BLACK 

EDITION
®
, California, USA), which would record the material movement on the grid pattern 

background at a rate of 240 frames per second (fps). The coefficient of restitution was calculated 

by means of the drop and bounce height ratio (eq. 4.2). 

 

 𝐶𝑅 = √
ℎ

𝐻
 (4.2) 

 

where, 

CR = Coefficient of restitution (dimensionless) 

h = Bounce height (mm) 

H = Drop height (mm) 

 

 

 

 
Figure 4.8. Schematic of the apparatus used for the coefficient of restitution. 

High-Speed Camera 

(Particle Inlet) 

 

Biological Material  

 

 

Release Platform 
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Grid Pattern Background 
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Approximately 30 to 60 trials for each biological material and surface combination were 

conducted; the number of trials was limited by the available time at each location. Similar to the 

coefficient of static friction, the combinations included any two contacting surfaces that would 

normally interact within a grape harvester cleaning system. Once recorded, the trials would be 

uploaded and analyzed on the video editing software (GoPro Studio
®
 Version 2.0.1, California, 

USA). The video speed would be significantly reduced in order to determine the corresponding 

bounce height of every trial (Figure 4.9). To compensate for the parallax effect (line of sight 

error) of the camera, distances between the camera, bouncing material (stainless steel, rubber, 

and plastic), and grid pattern background were measured before each set of trials. The parallax 

compensation calculations can be found in section A.2 of APPENDIX A.   

 
Figure 4.9. Analysis of bounce height for grapes in high-speed video with stainless steel bounce 

surface. 
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4.1.4. Aerodynamic Characteristics  

The terminal velocity and drag coefficient of the biological materials were required for the 

aspirator airflow adjustment process in the main crop flow simulation. These properties were 

determined by designing and fabricating a separate test bench in France (Figure 4.10). Initially, a 

centrifugal fan was coupled to a conical wind column, which was installed on the original test 

bench (Figure 4.1). The airflow was very turbulent and could not provide a steady flow to 

determine the terminal velocity of the biological materials. A new test bench was therefore 

developed to minimize the turbulent flow; this incorporated a stabilization box and a valve 

system. A centrifugal fan provided an airflow (~1900 m
3
·hr

-1
 /1100 CFM) that passed through a 

hopper and into the stabilization box. The air was then redirected through the directional tube 

and guided into the linear flow straightener, which was comprised of numerous smaller tubes 

parallel to the flow. After this, the air could be uniformly diffused into the wind column.  

 

 

          

 
Figure 4.10. Terminal velocity test bench (3D CAD model and actual test bench). 
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4.1.4.1. Terminal Velocity  

Samples were randomly selected from numerous Cabernet Sauvignon parcels at the testing 

locations. Only two of the testing locations (Aigues-Mortes and Pauillac) could be tested because 

of labor and time constraints. Given the large size of the terminal velocity test bench, samples 

were transported to the test bench location (CNH Industrial Plant in Coëx, France). During 

transport, the samples were sealed and refrigerated until taken out for terminal velocity testing. 

Afterward, each biological material was manually prepared in a manner that allowed consistent 

experimental parameters. The petioles were separated from the vine shoots and leaves ( 

Figure 4.11). Small samples of vine shoots were cut into small cylinders (Figure 4.12). The 

grapes were also individual picked from random grape bunches to reduce bias. Due to the small 

diameter of the wind column, small disks (diameter~50 mm) were cut out from individual leaves 

as displayed in Figure 4.14. The grape stems were omitted from the tests given the geometrical 

shape complexity. Prior to each individual test, the physical characteristics (mass, diameter, 

length, etc.) of the samples were recorded to later determine their respective drag coefficients.  

 

 
Figure 4.11. Petioles used in terminal velocity testing 
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Figure 4.12. Vine shoots used in terminal velocity testing. 

 

 

 

 

 

 

 

 

The conical wind column presents an advantage when testing for the terminal velocity of a 

particle. The conical nature of the column creates a varying velocity along the entire height. The 

air velocity decreases as the column height increases. Oppositely, the airflow volume increases 

as the column height increases. Figure 4.15 depicts a typically observed scenario when testing. 

By means of similar triangles, the velocity at the sample height was calculated (see section A.3. 

of APPENDIX A). The inlet velocity at the bottom of the column was measured with a 

Figure 4.13. Grapes used in terminal 

velocity testing. 

 

Figure 4.14. Leaf disk cut out used in 

terminal velocity testing. 
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temperature compensated hot wire anemometer (Extech Instruments
®
 SDL350, Waltham, MA, 

USA) as per the ASTM D3464-96 standard (ASTM, 2014). As shown in Figure 4.16, 

incremental measurements along two perpendicular axes were taken at the column inlet cross 

section. These measurement points were used to establish an average velocity of the cross 

section. This inlet velocity was then multiplied by the appropriate sample height ratio to obtain 

the final terminal velocity value of the suspended particle. 

    

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Conical wind column schematic for terminal velocity calculation. 
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Figure 4.16. Measurement points across cross sectional area (ASTM D3464-96, 2014). 

 

 

For testing, individual particles were placed into the column by using the breech equipped 

with a small hatch door. Both the main and air bleeding valves were adjusted until the particle 

stabilized within the air stream. At this moment, the height of the sample was recorded. In some 

instances where the air velocity was already set, consecutive samples were placed into the 

column and then measured with respect to the column height. 30 trials for every material and 

testing location were conducted.    
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4.1.4.2. Drag Coefficient Determination  

Given the dependency of the terminal velocity on the particle density and projected area, the 

physical geometry (thickness, diameter, length, etc.) and mass of each sample were recorded. 

The Mohsenin (1987) drag coefficient analysis simplified the biological material into simpler 

geometrical shapes such as spheres (grapes), thin disks (leaves), and cylinders (petioles and vine 

shoots). The airflow direction with respect to the disks and cylinders varied since the samples 

would often change orientation (normal or parallel to face) and regain equilibrium at an alternate 

velocity. For the drag coefficient calculations, the airflow direction was assumed to be normal to 

the disk and cylinder bodies.  

 

The corresponding drag coefficient (eq. 4.3) was determined with the general terminal 

velocity equation (eq. 4.4), which accounts for the flow regime, the particles projected area, and 

the meteorological conditions (temperature, humidity, atmospheric pressure, etc.). The 

meteorological readings were taken from local weather stations near the testing sites. The 

particle flow regime was also found by using the standard Reynolds number equation (eq. 4.5). 

Table 4.2 indicates the ranges of Reynolds number that correspond with the laminar, 

intermediate, and turbulent flow regimes (Mohsenin, 1984).      

 

Table 4.2. Particle flow regime for with respect to Reynolds number (Mohsenin, 1984). 

Flow Regime Laminar Flow Intermediate Flow Turbulent Flow 

Reynolds Number NR˂1 2˂ NR˂1,000 1,000˂ NR˂200,000 
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 𝐶 = [
2𝑊(𝜌𝑝 − 𝜌𝑓)

𝑉𝑡
2𝜌𝑝𝜌𝑓𝐴𝑝

] 
(4.3) 

 

 𝑉𝑡 = [
2𝑊(𝜌𝑝 − 𝜌𝑓)

𝜌𝑝𝜌𝑓𝐴𝑝𝐶
]

1/2

 
(4.4) 

 

 𝑁𝑅 =
𝜌𝑓𝑉𝑡𝐷

η
 

(4.5) 

 

 

where,  

C = Drag coefficient (dimensionless) 

Vt = Terminal velocity (m/s) 

NR = Reynolds number (dimensionless) 

D = Effective dimension (m) 

η = Dynamic viscosity or absolute viscosity (kg/m·s or Pa·s) 

W = Particle mass (kg) 

Ap = Particle projected area (m
2
) 

dp = Particle diameter (m) 

ρf = Fluid density (kg/m
3
) 

ρp= Particle density (kg/m
3
) 

g = Gravitational acceleration (9.81 m/s
2
) 
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 Physical Property Simulation and Validation  4.2.

To accurately replicate the behavior of the biological materials, the individual DEM 

simulations used the results from the experimental tests for the validations. For instance, the 

coefficients of static friction and restitution were adjusted in the simulations until they coincided 

with the measured results. A similar process also took place to mimic the leaf behavior. The 

geometrical shapes of the biological materials were based on the physical measurements taken 

during the physical property tests. These individual simulations were the precursor for the 

development of the main crop flow simulation, which combined all the validated properties and 

characteristics of the biological materials. As previously mentioned, the tests in the following 

sections have omitted the extra cleaning system materials (bucket rubber and mesh conveyor 

plastic) and biological materials (grape stem and vine shoot) since they were outside of the 

project scope.   
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4.2.1. Simulation Contact Models and Properties 

Table 4.3 outlines the selected contact models and particle body forces for the DEM 

simulations. The default Hertz-Mindlin contact model was chosen based on the simplicity, 

accuracy, and efficiency in the calculation of forces. No additional parameters are required from 

the user (i.e. characteristic velocity, damping factor, stiffness factor, etc.) in comparison to other 

contact models (i.e. hysteretic spring and linear spring). It can also be compatible with other 

models, which provides more options and flexibility when simulating complex processes.  

 

Table 4.3. Contact models and particle body forces used for the DEM simulations   

Simulation Modeling Parameters 

 Contact Models 

o Hertz-Mindlin (no slip) 

o Linear Cohesion 

o Moving Plane 

 Particle Body Force 

o Custom Bendable Particle and Factory 

o Velocity Vector Field 

 

To account for the adhesion and cohesion effects, the linear cohesion model was incorporated 

in addition to the Hertz-Mindlin model. An advantage for the linear cohesion model is that it can 

incorporate a multitude of other contact models such as the hysteretic spring or the Hertz-

Mindlin. The linear cohesion model was selected over the JKR cohesion in the event that the 

Hertz-Mindlin model was substituted for another; the linear contact model offered more 

flexibility and compatibility with other models. In addition, the JKR model was also initially 

designed for fine and dry particles, whereas the linear cohesion was a more generalized model 

(EDEM, 2014). Although the cohesion models have slight variances with the frictional force 

calculations, both models can offer accurate results.  
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The moving plane model was implemented for the conveyor surface within the simulation. 

This model significantly reduced the complexity of the simulation by allowing the use of a 

stationary plane for the conveyor belt. Alternate conveyor speeds and angles were adjusted 

accordingly. 

     

The particle body force coupling included a customizable factory capable of creating multiple 

leaves at any time interval. This coupling was specifically customized to capture the flexibility of 

a leaf. This approach was selected given the accuracy and automation in the simulation. It was 

also particularly useful when adjusting the flexibility and rigidity parameters in the validation 

phase of the simulations. In addition, a separate particle body force included a velocity vector 

field, which replicated the airflow from the aspirator. An equivalent force due to the airflow was 

applied to the particles in the simulation. This feature bridged the computational fluid dynamics 

(CFD) analysis of the aspirator (conducted by CNH Industrial) with the DEM simulations.   

 

Table 4.4 displays the physical properties used in the DEM simulations that were not 

measured during the 2014 grape harvest season. The determination of these particular properties 

required specialized equipment that was not readily available or portable; this was outside of the 

project scope. For that reason, the remaining physical properties for the DEM simulations were 

found using peer reviewed sources as described in the table below. The stainless steel and 

conveyor rubber properties were made available by the grape harvester team in France (CNH 

Industrial).   
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Table 4.4. Physical properties used in the DEM simulations that were not measured. 

Material Input Physical Property 

 Poisson’s Ratio 

(dimensionless) 

Shear Modulus 

(MPa) 

Density 

(kg/m
3
) 

Young’s Modulus 

(MPa) 

Stainless Steel 

 

0.275 84000 8100 210000 

Conveyor Rubber 

(Polyvinylchloride -

tpPVC) 

0.407 1490 1580 4140 

     

Grape 0.35
[a] 

0.30
[a] [*]  

0.81
[b]

 

Leaf 0.34
[c] 

3.70
[d] [*] 

9.92
[d] 

Petiole 0.30
[e] 

108.98
[g]

  
[*] 

283.34
[f]

 

[*] 
Represents the values measured during the 2014 grape harvesting season in France. [a] Value taken from 

Coetzee and Lombard (2013). [b] Calculated using equation 4.7, v=0.35 (Coetzee and Lombard, 2013), and G=0.3 

MPa (Coetzee and Lombard, 2013). [c] Taken from Farinas et al. (2013). [d] Calculated using equation 4.6, 

equation 4.7, v=0.34 (Farinas et al., 2013), and K=10.33 MPa (Alsina et al., 2007). [e] Taken from Faisal et al. 

(2010). [f] Taken from Caliaro et al. (2013). [g] Calculated using equation 4.7 and E= 283.34 MPa (Caliaro et al., 

2013). 

 

 

 

 𝐸 = 3𝐾(1 − 2𝑣) 
(4.6) 

 

 𝐺 =
𝐸

2(1 + 𝑣)
 

(4.7) 

 

 

where, 

G = Shear modulus (Pa) 

K = Bulk modulus (Pa) 

ν = Poisson’s ratio (dimensionless)  

E = Young’s modulus (Pa) 

 

 

 

 

 

 



 

78 

 

4.2.2. Inclined Plane Simulation 

The coefficient of static friction was determined between the selected biological materials 

(grapes, petioles, and leaves) themselves and with the equipment surfaces (stainless steel and 

rubber). The DEM simulations recreated the same experimental configurations as the tests. A 

plane with the corresponding material properties was used to find the maximum angle at which 

the biological materials began to slip. The slipping point for the biological material was extracted 

using the simulation analyst tool; the angle was determined using the particle and inclined plane 

positions with respect to the horizontal plane. This information was exported for each saved time 

interval (~0.01 s). As previously mentioned, the tangent of these friction angles corresponds to 

the coefficient of static friction (eq. 4.1), which is independent of mass and contact area.  

 

The samples used in the DEM simulations were configured to resemble the ones from the 

actual experiments. Figure 4.17 displays the grape (a), petiole (b), and leaf (c) samples used in 

the simulation tests. The grapes were given the average diameter from the previous tests done in 

France and organized in a cluster of four. The cluster organization was used to prevent rolling on 

the tilting surface and to ensure a constant contact between the surfaces until reaching the 

friction angle. The petioles were created using multiple overlapping spheres with diameters 

equivalent to the measured average from the actual tests. The leaf sample was built into a 

rectangular grid pattern using single spheres with diameters equivalent to the leaf thickness. 

During the actual tests, small strips were cut out from the leaves to maximize space on the tilting 

surface.  
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Figure 4.17. Particles generated for the DEM simulation tests. (a) Grape cluster. (b) Single 

petiole. (c) Leaf sample. 

 

 

Once created, multiple samples were randomly placed along the rectangular tilting 

surface (Figure 4.18). After the particles had settled, a slow rotation was applied to the surface. 

The geometry protractor in the analysis tool was used to dynamically measure the surface angle 

when samples began slipping (Figure 4.19). This process was repeated for every surface 

combination until a minimum of 100 samples were measured. The simulation parameters were 

adjusted for each biological material until the angle was within at least 5% of the actual 

measured angle. The parameters included both the coefficient of static friction and the energy 

density for the linear cohesion model with respect to the biological material and surface.    

(a) (b) (c) 
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Figure 4.18. Samples positioned along tilting surface. (a) Grape clusters. (b) Individual petioles. 

 

 

 

Figure 4.19. The geometry protractor tool used to measure the friction angle. (a) Grape clusters. 

(b) Individual petioles. 

 

(a) 

(b) 

(b) 

(a) 
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4.2.3. Rebound Surface Simulation 

As previously mentioned, the coefficient of restitution is a function of the drop and 

bounce heights (eq. 4.2) of the particles. A similar testing configuration from the bounce tests 

conducted in France was recreated in the DEM simulation (Figure 4.20). A test for every 

biological material interaction (i.e. grape-petiole, grape-rubber, petiole-leaf, etc.) was simulated. 

Given the large surface area of the leaves, a parachute effect was present when the leaf samples 

were dropped. For that reason, the leaf bounce height was considered negligible and was not 

tested or simulated; a low value for the coefficient of restitution was assigned within the DEM 

simulation.      

 

The grapes were simulated using a single factory with one hundred samples placed at a 

drop height of 0.5 m over the bounce surface. The surface properties (i.e. density, Poisson’s 

ratio, shear modulus, etc.) were modified until they corresponded with the desired material. The 

bounce height following the first contact with the surface was measured with the analyst tool; the 

sample position was exported for every time interval (0.01 s). The coefficient of restitution 

parameter within the simulation was adjusted until the bounce height corresponded to the value 

obtained from the physical tests. This calibration was done following the friction calibration to 

account for the effect of the linear cohesion model.       

 
Figure 4.20. Grape particles being dropped from 0.5 m in DEM simulation. 



 

82 

 

The petioles were simulated using the same method as the grapes (Figure 4.21). 

However, two simulations for each surface material were required given the effect of the linear 

cohesion model. An adhesion force to the surface is assigned to each sphere that constitutes the 

petiole. For that reason, the bounce height of a petiole will vary when it contacts the surface 

horizontally and vertically. A horizontal impact will have a larger adhesion effect than a vertical 

impact because of the higher number of spheres contacting the surface. The two simulations 

included a horizontal and vertical petiole orientation with respect to the surface. The coefficient 

of restitution parameter was adjusted for both orientations until the bounce height was within 5% 

of the actual measured value. The final value of the coefficient was obtained by averaging the 

configuration parameter from both simulations. This method was the most logical solution for 

replicating the petiole behavior given the effect of the linear cohesion model.   

  

 
Figure 4.21. Horizontal and vertical petioles being dropped from 0.5 m in DEM simulation. 
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4.2.4. Leaf Development and Deflection Simulations  

Among the biological materials that were incorporated within the main crop flow simulation, 

leaves were selected for additional testing. This was done to accurately replicate the physical 

characteristics and behaviour of the leaves during the cleaning process. The flexible nature of the 

material changes the physical shape and orientation of the leaves when interacting with the 

cleaning equipment and the other biological materials. The other materials have a greater rigidity 

than leaves, which allows them to maintain constant physical shape during the cleaning process. 

For this reason, leaf modeling needed to incorporate the elastic characteristics of the leaf 

material.  

 

4.2.4.1. Leaf Physical Shape 

Pictures taken of individual leaves during the initial testing in France were analyzed using 

SolidWorks
®
 (2013 version). An auto-recognition function was able to trace the leaf contour as 

depicted in Figure 4.22. An additional measuring feature provided the exact area within the leaf 

contour. Using this area and the previously recorded mass and thickness from the tests, the 

density and centre and gravity were calculated. 

 

 
Figure 4.22. SolidWorks

®
 2013 auto-recognition function used for leaf contouring. 
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A first attempt at generating a leaf in the DEM simulations began by extruding the two-

dimensional contour to the same thickness of the leaf. This provided a three-dimensional object, 

which could be converted into a stereolithography (.STL) file. This file type converts the object 

into a shell with the identical surface geometry. The leaf in the .STL file format was then 

imported into the DEM software and coupled with two particle factories (Figure 4.23). These 

factories generated particles with diameters equivalent to the leaf thickness. Particles continued 

to be introduced into the leaf template until it was completely filled. Afterwards, the solid 

template could be suppressed to allow the free movement of the leaf.            

 
Figure 4.23. Imported STL leaf file in DEM simulation with particle factories dynamically 

generating particles to fill the leaf-top view. 

 

 

After suppressing the solid leaf template, the linear cohesion and Hertz-Mindlin with bonding 

contact models were applied to the leaf particles. The Hertz-Mindlin with bonding was to keep 

the leaf particles connected while allowing the transfer of force between them. The flexibility of 

the leaf would be obtained from the bond settings. The linear cohesion was to provide an 

additional force keeping the particles connected, while adding rigidity to the leaf structure. 

Particle 

Factories 
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Figure 4.24 depicts the randomized positioning of the particles by the generators within the 

template. Irregularities among the bonds were present due to the non-uniform distances between 

the particles. Some areas of the leaf contained stronger bonds due to the contacts, which created 

an inconsistent rigidity throughout the leaf. Particles with insufficient number of bonds would 

also detach themselves from the rest of the particles. Ultimately, the computational efficiency 

was significantly reduced and the entire leaf failed to maintain the template leaf shape (Figure 

4.25). 

 
Figure 4.24. Non-uniform particle positioning due to randomized generation. The yellow 

particles represent all the non-uniform bonds with the black centre particle.  

 

 

 
Figure 4.25. Particles placed in non-uniform grid-pattern using coordinates in DEM software. 
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With the inability to maintain the leaf shape and consistent rigidity, an alternative approach 

for the leaf generation was developed. Alternatively, particles organized in a uniform grid pattern 

(Figure 4.26) could provide more consistent bonds; the uniformity would result in identical bond 

strengths throughout the leaf. The randomized placement of particles created varying distances 

between particles causing inconsistent bonds.     

 

 
Figure 4.26. Particle positioning in a uniform grid pattern. The yellow particles represent all the 

uniform bonds with the black centre particle. 

 

 

To create the uniform grid pattern, the auto-trace function (SolidWorks
®
 2013) was used to 

create a parasolid file with the leaf shape. This file was then imported into a second 3D-CAD 

software (Creo Parametric
®
 2.0) equipped with a point-filling feature. This was applied to the 

leaf contour as seen in Figure 4.27; all points were contained inside the contour boundary. The 

spacing between the points could be adjusted in accordance to the desired particle diameter. The 

coordinate location of each point was exported as a text file (.TXT). A customized leaf factory 

that used the exported text file was integrated as a particle body force. Having the coordinates for 

the particle placement allowed the custom factory to directly substitute a particle for every point 

(Figure 4.28). This method was advantageous because it allowed multiple consecutive leaves to 

be generated without any additional manual input. The particle body force also included a 
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custom bond model to keep the particles together while allowing the leaf to be flexible. The 

Hertz-Mindlin contact model was kept as the default model for the non-bonding interactions (i.e. 

leaf contact with geometries and other particles). 

 

 

   

 

 

4.2.4.2. Material Validation 

Two validation tests were conducted to accurately and precisely replicate the leaf behavior in 

the main crop flow simulation. These included a single deflection test for a rectangular leaf 

sample and a multi-deflection test for an entire leaf. Both tests used a single sample in five 

different configurations. The leaves used for this phase of testing were from the Vineland 

Research and Innovation Centre (VRIC) in Ontario. To maintain consistency between the tests in 

France and Canada, the leaves were also selected from the Cabernet Sauvignon variety. Three 

alternate shipments of leaves were sent in boxes with styrofoam insulation and a dry ice pack 

Figure 4.27. Uniform grid pattern 

positioning using the point filling feature. 

 

Figure 4.28. Particles placed in uniform 

grid pattern using coordinates in EDEM
®
. 
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(Figure 4.29). Approximately one hundred leaves were picked from a vine parcel and placed in 

sealed plastic bags before the insulated box. An express courier was then used to ship the leaves 

the day before testing. These steps were taken to preserve the freshness and physical 

characteristics of the leaves.  

 

    

 

4.2.4.2.1. Single Deflection for Cantilevered Leaf Sample 

 

Several small scale deflection tests were conducted to calibrate the leaf material with the 

DEM simulation. A sample was cut into a rectangular shape (~20 mm x 45 mm) that was then 

subjected to five cantilevered controlled deflections. The sample was secured on one the ends 

with a clamping device, which allowed the opposite end to move freely. The unsupported end 

was placed above an adjustable bolt (6.35 mm diameter) that created a controlled deflection at 

five increasing increments (Figure 4.31). These deflections were captured using a high-definition 

camera (Canon PowerShot
®
 SX40 HS) and a grid background. The obtained pictures were then 

used to plot a two-dimensional deflection curve.  

Figure 4.29. Insulated box used to 

ship leaves. 

 

Figure 4.30. Leaves used for testing. 
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Figure 4.31. Rectangular leaf samples subjected to a controlled deflection. 

 

 

Identical testing parameters were reproduced within the DEM software by using the particle 

body force to create the leaf samples (Figure 4.32). The exact placement of the bolt with respect 

to the sample and the clamping block was the most crucial aspect of the DEM simulation. The 

bond parameters of the particle body force were adjusted until the modeled samples coincided 

with the actual tests. The simulated deflection curves were obtained by plotting the particle 

coordinates of a single row.  

 
Figure 4.32. DEM leaf samples subjected to a controlled deflection. 

 

 

The comparison between the simulations and the actual tests was done by plotting the 

deflection curves on the same graph. A second order polynomial regression was also used to 

approximate the deflection shape using the plotted points in Microsoft Excel
®
 2010 (Version 

14.0.7015.1000). The basis of comparison between the DEM simulations and the actual tests 
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consisted of the deflection, angle of deflection, and physical shape of the regression lines. The 

deflection corresponded to the vertical displacement at the furthest horizontal point of the sample 

(IEEE CSS, 2005). The angle of deflection was determined by using the first derivative of the 

obtained regression equation and the vertical displacement at furthest horizontal point (IEEE 

CSS, 2005). The physical shapes of the deflection were also visually inspected using the plotted 

curves. 

 

4.2.4.2.2. Multi-Deflections of Leaves  

 

Given the flexible nature of leaves, multiple deflections can occur simultaneously. 

Accounting for this complex behavior presents challenges in calibrating the leaf model. For this 

reason, a small scale deflection plate was built. This plate incorporated nine evenly spaced (38 

mm apart) adjustable bolts (6.35 mm diameter). Larger corner bolts were used to level the plate 

on a given surface. To create multiple deflections, a leaf was placed over the centre of the plate 

where its lower section was secured by a weighted block (Figure 4.33). The centre bolts were 

then adjusted to lift the leaf at different points to create a varying topography. 

 
Figure 4.33. Leaf placed on multi-deflection plate next to the 3D scanner. 

Adjustable Bolts 

Corner Bolt 

3D Laser Scanner Block 
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A total of ten leaves were subjected to five different configurations as described by Figure 

4.34 and Table 4.5. Only one leaf was completely analyzed in detail and used in the DEM 

simulations. This was done to reduce the simulation complexity and to allow more time for the 

calibration process.  

 

 

  

 

 

 

For each deflection configuration, a 3D laser scanner (Creaform
®
 HandySCAN

®
 700, Québec, 

Canada) was used to capture the exact surface shape of the leaf (Figure 4.33). This particular 3D 

scanner was equipped with seven laser crosses and one single line laser resulting in an accuracy 

of 0.030 mm (0.0012 in) (Creaform
®
, 2015). Using the scanner editing software (VXelements

®
 

4.0 SR2, Québec, Canada), the scans could be exported as either a point cloud or .STL file. The 

goal of the tests was to capture the multiple deflections of the leaves in a usable format for the 

validation process. The .STL file in particular, could be imported in the DEM software and used 

to compare the actual and modelled leaf deflections. The comparison was done visually by 

inspecting the general overlay of the .STL file on the simulated leaf (Figure 4.35); the large 

deviations between the two leaves were identified. In particular, close attention was paid to the 

leaf edges during the comparison since it was the most significant deviation indicator. The 

Table 4.5. Deflection plate configurations. 

 Deflection Plate 

Configuration Elevated Bolt 

1 A2 

2 B3 

3 B2 

4 C1 + C3 

5 A2 + B1 +B3 

Figure 4.34. Deflection plate schematic-

bottom view. 
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particle body force parameters were refined in addition to the previous single deflection tests. 

These adjustments were necessary in finalizing the leaf model for the main crop flow simulation.  

 

 

 

 

Figure 4.35. DEM Leaf placed on multi-deflection plate. (a) Orthogonal view. (b) Top view. (c) 

Side view- comparison with overlaying scanned STL leaf.  

 

 

 

(a) 

(b) 

(c) 
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4.2.5. Grape Trajectory Simulation 

This testing phase was conducted in order to compare and validate the behavior of grapes on 

the conveyor. The previously validated properties from the other simulations (i.e. coefficient of 

static friction, coefficient of restitution, linear cohesion, etc.) were incorporated. An experimental 

test was conducted with grape samples from the Aigues-Mortes location in France. An analytical 

model was also included as a general comparison between the experimental and simulated 

results. The grape trajectory from the end of the conveyor to the floor was measured for all three 

tests. The basis of comparison between the DEM simulations, analytical model, and actual tests 

were the horizontal distance travelled by the grapes (from the end of the conveyor to the landing 

point on the floor) and the general trajectory path.      

 

4.2.5.1. Experimental Conveyor Test Bench  

During the 2014 grape harvest season in France, a separate conveyor test bench was built for 

the trajectory tests (Figure 4.36). The conveyor was set at an angle of 15⁰, which is the angle that 

is currently being used in the grape harvesters. Three conveyor rotational speeds (at the driving 

sprocket) were used for the tests: 300 rev/min (1.2 m/s), 400 rev/min (1.6 m/s), and 500 rev/min 

(2.0 m/s). These alternate speeds were achieved using a 5.5 kW (7.5 HP) alternating current 

(AC) motor with a variable frequency drive (VFD) (Siemens Sinamics
®
 V20 Package, Munich, 

Germany). A total of 40 grapes were placed through the introduction gate for each trial. The gate 

was used to ensure a consistent point of entry for the grapes during the experimental and DEM 

simulation trials. A high-speed camera (Nikon Coolpix
®
 P100, Tokyo, Japan) was placed just 

ahead of the conveyor with the lens facing the grid background for an optimized focus. The 

grape trajectory could be determined by reviewing the slow-motion footage and referencing the 
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grid background. To account for the camera parallax effect, distances between the camera, 

projected grapes, and grid background were measured before the trials. The parallax 

compensation calculations can be found in section A.2 of APPENDIX A.   

 

 

 
Figure 4.36. Conveyor test bench set at 15⁰ for the trajectory tests. 

 

 

4.2.5.2. DEM Simulation  

The CAD model for the conveyor test bench was configured at 15⁰ similar to the actual 

experiment configuration (Figure 4.37). This model could then be imported into the DEM 

software as a .STL file. Once the test bench was positioned, the conveyor belt was recreated with 

an angled plane and multiple curved ribs to concentrate the flow in the middle of the belt. By 

using the moving plane model, the plane was assigned a linear velocity at 15⁰ that corresponded 

with the respective conveyor speeds (Table 4.6). The ribs were also imported from a CAD model 

and positioned at the bottom of the plane. These ribs were assigned the same linear velocity as 

the plane; the correct rib spacing was achieved by offsetting the start time for each rib. An 

AC Motor 

with VFD 

 

Introduction Gate 

 

Conveyor 

 
Grid Background 
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additional rotational movement was assigned to each rib when it reached the end of the 

conveyor; the rib would rotate about the roller axis. The introduction zone was recreated in the 

exact same location as the actual experiments. An identical number of grapes (40) were also 

simultaneously introduced on the conveyor.  

 

Table 4.6. Conveyor test bench velocities. 

Rotational Speed (rev/min) Linear Speed (m/s) 

300 1.2 

400 1.6 

500 2.0 

 

 
Figure 4.37. Conveyor test bench set at 15⁰ in DEM simulation. 

 

 

The analyst tool of the DEM software allows the user to select specific particles for a 

multitude of different analysis functions (i.e. velocity, position, contact forces, etc.). In order to 

capture the trajectory of the grapes from the conveyor, the vertical and horizontal positions were 

exported for the corresponding time intervals. These data points could then be plotted and 

compared to experimental and analytical results.  

Conveyor 

 

Grape Introduction 

Gate 

 

Grapes 

 Conveyor Ribs 
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4.2.5.3. Analytical Model  

 The analytical model was based on the Sitkei (1986) conveying by throwing 

equations for fertilizer particles. These equations used the laws of inclined throw, which 

incorporated aerodynamic resistance, to predict the ballistic trajectory of particles. The initial 

velocity of the particles leaving the conveyor was simplified in the horizontal and vertical 

components. A force balance for both components accounted for the particle drag force (eq. 4.8); 

the final equations were integrated with respect to the elapsed time (eqs. 4.9 and 4.10). The 

trajectory for the three conveyor speeds was plotted using these equations. The complete 

derivation and simplification of the equations can be found in section A.4 of APPENDIX A.  

 

 𝑊 =
𝑐𝑤𝐴𝑝𝑣2𝜌𝑎

2
 

(4.8) 

 

 

where, 

W = Object drag force (N) 

cw = Drag coefficient (dimensionless) 

Ap = Particle projected area (m
2
) 

v = Initial velocity (m/s) 

ρa = Air density (kg/m
3
) 

 

 

 𝑥(𝑡) =
𝑚

𝐾
𝑣 (1 − 𝑒

−𝐾
𝑚

𝑡) cos 𝛼 
(4.9) 

 

 

 𝑦(𝑡) =
𝑚

𝐾
(

𝑚𝑔

𝐾
+ 𝑣 sin 𝛼) (1 − 𝑒

−𝐾
𝑚

𝑡) cos 𝛼 −
𝑚𝑔

𝐾
𝑡 

(4.10) 
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where, 

x = Horizontal displacement (m) 

y = Vertical displacement (m) 

m = Particle mass (kg) 

t = Time (s) 

α = Conveyor angle (⁰)  

K= Aerodynamic coefficient (kg/m) 

g = Gravitational acceleration (9.81 m/s
2
) 
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4.2.6. Main Crop Flow Simulation 

The main crop flow simulation was used to optimize the cleaning system performance in 

terms of crop throughput and product quality. The general behavior of the biological materials 

(grapes, leaves, and petioles) was also observed. The validation for the simulation was done by 

comparing the leaf aspiration performance from the grape harvester test bench. The success rate 

of leaves being aspirated and the minimization of product damage were the evaluation 

parameters for determining the optimal conveyor configuration.  

 

4.2.6.1. Experimental-Grape Harvester Test Bench  

This testing phase replicated the exact cleaning system setup for production grape harvesters 

(CNH Industrial). As one of the project objectives, the conveyor angles (10°, 15°, and 20°) and 

speeds (350 rev/min (1.4 m/s), 420 rev/min (1.7 m/s), and 500 rev/min (2.0 m/s)) were tested to 

optimize the cleaning performance. These tests were also a means of validation for the DEM 

simulation.  

  

4.2.6.1.1. Conventional Settings-Grape Harvester Cleaning System  

 

In grape harvesters, the main conveyor is set at an angle of approximately 15⁰ and at a speed 

of 400 to 440 rev/min (1.6 to 1.76 m/s). Based on the harvesting conditions, the aspirator is 

typically adjusted between 1600 and 1800 rev/min for an upward air velocity of approximately 

10 m/s for a section of approximately 0.24 m
2
. Crop material throughput, grape yield, and 

humidity levels influence the mechanical settings of the cleaning system. For instance, dry 

harvesting conditions require lower aspirator speeds as opposed to humid conditions. However, 

dry conditions increase the bursting susceptibility of grapes; grape juices are exposed and can be 
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aspirated, which results in product losses. These dry conditions also facilitate the elimination of 

leaves by the aspirator given the decreased mass. The challenge in correctly setting the cleaning 

system remains in minimizing both the presence of MOG and the product losses.  

 

4.2.6.1.2. Testing Materials and Parameters  

 

This grape harvester test bench consisted of three principle elements: feeding conveyor, main 

conveyor, and aspirator (Figure 4.38). All three elements were hydraulically driven and regulated 

using a tractor hydraulic system (2013 New Holland
®
 T8050). Both the main conveyor and 

aspirator assemblies were taken from the existing grape harvester cleaning system. Four high-

speed cameras (GoPro Hero3+ Black Edition
®
) were installed throughout the test bench in order 

to record the leaf behavior in the varying conveyor settings.  

 
Figure 4.38. Grape harvester test bench with aspirator, adjustable main conveyor, and feeding 

conveyor. 
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Table 4.7 shows the main conveyor angles and speeds used during the tests. Each speed was 

configured for every angle resulting in nine different configurations. The speed was set using a 

digital tachometer (REED
®
 ST-6236B, North Carolina, USA) directly on one of the conveyor 

rollers. The angle was adjusted using a digital inclinometer (Mastercraft
®
 57-4575-4, Ontario, 

Canada). The aspirator was kept at a constant speed of approximately 1600 rev/min to maintain 

an upward air velocity of 10 m/s given the relatively dry conditions. The air velocity was 

measured using a temperature compensated hot wire anemometer (Extech Instruments
®
 SDL350, 

Massachusetts, USA) as per the ASTM D3464-96 standard (ASTM, 2014).   

  

Table 4.7. Main conveyor settings for grape harvester test bench. 

Angle  Rotational Speed (rev/min)  Linear Speed (m/s)  

10⁰ 350   1.4 

15⁰ 420  1.7 

20⁰ 500  2.0 

 

The feeding conveyor was used to uniformly and consistently introduce materials on the main 

conveyor (Figure 4.39). The length was approximately 4.5 m, which provided room to load 

materials and sufficient time to attain a constant linear velocity. The feeding conveyor was used 

for replicating the grape harvester bucket conveyor, which matches the harvester ground speed. 

With the objective of at least matching the same crop throughput, the feeding conveyor was 

configured to have a linear velocity of 5 km/h. This speed was adjusted in the same way as the 

main conveyor by using a digital tachometer (REED
®
 ST-6236B).  
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Figure 4.39. Feeding conveyor with leaves and artificial grapes positioned in front of grape 

harvester test bench. 

 

 

 

4.2.6.1.3. Biological Materials 

 

The leaves used for these tests were also from the Vineland Research Innovation Centre 

(VRIC) in the province of Ontario, Canada. A collection screen within the aspirator hood was 

incorporated to reduce the amount of leaves required for testing. This screen was installed on sets 

of rollers to prevent the aspirator from plugging. As the leaves accumulated, the screen would 

move laterally and allow the leaves to fall to the side of the hood. This operation minimized the 

restriction at the aspirator inlet and maintained a relatively constant airflow. Only two trials were 

conducted for each configuration because of the fragile state of the leaves. Any additional leaf 

manipulation would have resulted in non-representative leaf behavior.  

 

Replicating actual harvesting conditions was accomplished by incorporating artificial grape 

clusters (see section C.2 of APPENDIX C for physical characteristics) with the leaves from 

Ontario (Figure 4.40). These clusters are often used by the manufacturer to test the cleaning 
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system and minimize the use of actual grapes. The grape clusters were necessary in keeping the 

leaves on the feeding conveyor. Due to the rapid acceleration of the feeding conveyor, the leaves 

had a tendency of being completely thrown off. The leaf-to-grape ratio for the tests was 20 

leaves per kg of grapes. This ratio was based on measurements of the materials going into the 

cleaning system by the grape harvester team in France in actual high yielding plots. To achieve 

the ratio, the equivalent of approximately 1 kg of artificial grape bunches was matched to 20 

leaves being placed on the feeding conveyor.  

 

 
Figure 4.40. Leaves and artificial grape bunches placed on the feeding conveyor. 
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4.2.6.2. DEM Simulation 

The main crop flow simulation incorporated the aspirator, conveyor, and the three biological 

materials (grapes, leaves, and petioles). The airflow coupling was integrated within the cleaning 

system to accurately replicate the aspirator effects. The same nine conveyor configurations as the 

grape harvester test bench were recreated to validate the simulation while determining the 

optimal settings. The general behavior of the biological materials and the leaf aspiration 

performance were evaluated for all the configurations.   

 

4.2.6.2.1. Aspirator and Conveyor Configurations  

 

A computational fluid dynamics (CFD) analysis for the entire grape harvester aspirator 

assembly was conducted by CNH Industrial. The analysis was based on the same aspirator 

configuration as the grape harvester test bench and the typical setting used during dry harvesting 

conditions. The aspirator speed was set at 1600 rev/min, which corresponded to an upward air 

velocity of approximately 10 m/s within the aspirator hood. The velocity vector field was 

provided as a text file that could be incorporated within the aspirator using the particle body 

force coupling (Figure 4.41). This coupling uses the velocity mapping and the shape of the 

particles to assign a drag force that acts on the particles in all three directions (X, Y, and Z). This 

mapping uses the inverse distance weighting method to interpolate the particle forces with a pre-

defined number of air velocity vectors. The measured terminal velocities and calculated drag 

coefficients from the testing phase in France were also used to adjust the velocity field. In 

particular, the drag coefficients were compared to the coupling parameters and adjusted 

accordingly.  
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Figure 4.41. Air velocity vector field integrated within the aspirator in the DEM simulation 

(CNH Industrial). 

 

 

The aspirator was placed in front and above the conveyor in the same location as 

production grape harvesters (CNH Industrial). The only modified parameters between 

simulations were the conveyor angles and speeds. When adjusting the angles, the conveyor was 

rotated about the conveyor front roller axis in order to maintain an identical distance to the 

aspirator. The simulation domain was limited partway through the aspirator hood to reduce the 

redundant calculations and increase the computational efficiency; a larger domain significantly 

increases the simulation time. The particle behaviour through the entire aspirator system was 

outside the scope of the project.  

 

The generator that introduced particles into the simulation was configured identically to a 

grape harvester (Figure 4.42). This generator was placed in the in same location as the conveyor 

deflector, which helps distribute the biological material across the entire width of the conveyor 

(Figure 4.43). These new particles were also given an initial velocity (~0.753 m/s) and direction 
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that corresponded to the emptying characteristics observed in an actual grape harvester. These 

values were determined using the deflector CAD model and the material slow-motion footage. 

The generator created the particles at a specified rate while randomly positioning them within the 

box with the assigned velocity. The random positioning ensured that the particles were evenly 

dispersed across the conveyor width.  

 

 
Figure 4.42. Material being propelled in airstream by main conveyor equipped with deflector. 

 

 

 
Figure 4.43. DEM simulation model of aspirator and conveyor with displayed particle generator 

and velocity direction assigned to particles. 
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4.2.6.2.2. DEM Biological Materials  

 

As discussed, the three biological materials were limited to grapes, petioles, and leaves for the 

main crop flow simulations (Figure 4.44). Identical grape particles were used throughout these 

simulations given the small variability observed during the testing phase in France. Contrarily, 

two sets of petiole particles were used because of the large variability in the length and mass. 

Although the leaves were among the most variable materials in terms of size and shape, a single 

leaf was used for the main simulation (the same leaf from the multi-deflection test). This was 

done to increase the accuracy of the leaf behavior; it was deemed more appropriate to have a 

single accurate leaf than multiple less accurate leaves.  

                                 

Figure 4.44. Biological materials recreated in DEM simulation. (a) Grapes. (b) Petioles. (c) Leaf.  

  

 

The generation rates of three biological materials conformed to the grape harvester 

engineering team measurements (CNH Industrial) in high yielding conditions. Approximately 

655 grapes/s, 18 leaves/s, and 10 petioles/s were dynamically created within the generator box at 

the initial velocity described above. These rates were applied for 2 seconds for all nine conveyor 

configurations.     

 

(c) (b) (a) 
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5.0 RESULTS AND DISCUSSION 

This section includes the statistical analysis for the population comparison, the summarized 

results for the DEM simulation inputs, the validation comparison between the experimental and 

simulated results, and the results from the main crop flow simulations. The population 

comparison included all five biological materials to maximize the samples space for the 

statistical analysis. The physical properties used in the DEM simulations included only the three 

biological materials (grapes, leaves, and petioles) and the two cleaning system materials 

(stainless steel and rubber). The results for the inclined plane, rebound surface, leaf deflections, 

and grape trajectory simulations are discussed and compared to the experimental tests for the 

validation process. The main crop flow simulation compares the leaf aspiration success rates to 

the experimental results from the grape harvester test bench. An optimal conveyor configuration 

is recommended based on the overall performance.   

 

 Physical Property Testing  5.1.

This section includes the statistical analysis of the physical property results from the 2014 

grape harvest season in France. For each measured property, all three populations (Aigues-

Mortes, Pauillac, and Saint-Gervais) were compared with one another to see if they are 

significantly different. In addition, the actual values of the properties selected for the DEM 

simulations are presented in tables with the mean, standard deviation, coefficient of variation, 

and number of samples.  
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5.1.1. Statistical Analysis 

Prior to conducting an ANOVA analysis, the population distribution patterns of the 

physical property results were analyzed to identify any potential discrepancies. In general, it 

could be assumed that the population datasets had a normal distribution, homogeneity of 

variance, and independence between the data points. Even with a skewed data set, an ANOVA 

test can be used since it is fairly robust with the violated assumption of a normal distribution. In 

addition, the Tukey HSD function is able to adjust for mildly unbalanced designs (Crawley, 

2013). The most important outputs from the tests are the p-values. Anything below 0.05 (5% 

significance level) rejects the null hypothesis, thus indicating a significant difference between the 

two compared populations.  

 

5.1.1.1. Population Comparison 

The Tukey HSD tests were conducted for all the measurements of the biological 

materials. Given the time and resource constraints during the 2014 grape harvesting season, the 

measurements could not be taken at all three locations. For that matter, some comparison levels 

were not available during the Tukey tests. Despite this, the Tukey test still provided the same p-

value as a two-way ANOVA test.   

 

The following tables are the summarized results from the ANOVA and Tukey HSD tests 

for all the measurements; the p-values for each population comparison are displayed. The first 

row of the tables shows the three possible population interactions between the Aigues-Mortes 

(AIG_MRT), Saint-Gervais (ST_GEV), and Pauillac (PIC) locations. The p-values that are 

below 0.05 are accompanied with an asterisk symbol, which indicates that the two populations 

are significantly different from one another. Oppositely, the p-values that are above 0.05 indicate 
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that the two populations are not significantly different. The detailed information on the numerical 

results for the same analysis can be found in section C.1 of APPENDIX C. The unavailable 

measurements prevented a complete population comparison between the locations; unavailable 

data sets are indicated within the tables (Na). 

 

Table 5.1 represents the ANOVA and Tukey tests for the physical characteristics of the 

biological materials. The grape stem material was not measured given its complex shape. The 

Aigues-Mortes and Saint-Gervais populations were all significantly different from each other. 

With the exception of the leaf mass, all the physical properties were significantly different for the 

Aigues-Mortes-Pauillac interaction. The Saint-Gervais-Pauillac interaction had an assortment of 

significantly and non-significantly different populations with respect to the biological materials 

and properties. These irregular results attest to the variability between the populations. The 

higher number of non-significantly different properties between the Saint-Gervais and Pauillac 

populations could be attributed to the close proximity of the two locations; similar terroir 

conditions may have been contributing factors.          

 

 

Table 5.1. Analysis of variance (ANOVA and Tukey HSD tests) for the physical properties of 

biological materials. 
Physical Characteristics AIG_MRT-ST_GEV AIG_MRT-PIC ST_GEV-PIC 
Mass (g) 0* 2.00E-7* Na  0* 0.383 Na  0.209 5.26E-5* 0.154  

Sphericity (%) 0*    4.50E-6*    0.426    

Average Diameter (mm) 0*  5.37E-4* 2.00E-7* 1.47E-5*  0.378 0* 0.009*  0.041* 0.984 

True Density (kg WM/m
3
) 8.70E-6*  Na 7.00E-7* 0*  Na 0* 1.00E-7*  7.57E-4* 0.019* 

Length (mm)   0*    4.00E-7*    0.336  

Thickness (mm)  9.13E-4*    1.00E-7*    0.409   
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p-value˂0.05: Significantly Different (*)  AIG_MRT: Aigues-Mortes 

p-value˃0.05: Not Significantly Different   ST_GEV: Saint-Gervais  

Na: Data Not Available    PIC: Pauillac 

Blank: Not Applicable  
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The ANOVA of the aerodynamic characteristics is summarized in Table 5.2. This series 

of tests was only conducted for the Aigues-Mortes and Pauillac locations. With the exception of 

the disc-shaped leaf material, the terminal velocities and drag coefficients were all significantly 

different between the locations. Given the small diameter of the vertical wind column, entire 

leaves could not be tested due to the inevitable contacts with the circular wall. For that reason, 

uniform leaf discs were tested instead. The uniformity of the samples would explain the non-

significantly different properties between the two populations. The variability of the other 

biological materials can be explained by the significantly different geometrical shapes (i.e. 

diameter and length) and densities as seen in the previous table. These parameters directly 

influence both the terminal velocity and drag coefficient (consult equations in section 4.1.4).     

 

 

Table 5.2. Analysis of variance (ANOVA and Tukey HSD tests) for the aerodynamic properties 

of biological materials. 

Aerodynamic Characteristics AIG_MRT-PIC 

Terminal Velocity (m/s) 0* 0.323 1.00E-7* 0* 

Drag Coefficient (dimensionless) 0* 0.157 0* 0* 
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p-value˂0.05: Significantly Different (*)  AIG_MRT: Aigues-

Mortes 

p-value˃0.05: Not Significantly Different   PIC: Pauillac 

Na: Data Not Available 
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The coefficient of restitution values were compared instead of the bounce heights because 

of a varying experimental parameter. The drop heights for the samples were subject to change 

due to the inconsistent thicknesses of the bounce surfaces. Because the drop height directly 

influences the bounce height, the coefficient of restitution was deemed as the more representative 

comparison parameter between populations. Table 5.3 encompasses all the ANOVA tests for the 

coefficient of restitution tests. The notation of the interactions is organized by the first material 

as the object being dropped and the second material (following the “-”) as being the bounce 

surface. A large portion of the Saint-Gervais measurements were not available for a direct 

comparison with the other Aigues-Mortes and Pauillac populations. From the available data, the 

interactions with the Saint-Gervais population were mostly significantly different. The Aigues-

Mortes-Pauillac comparison had over double the amount of significantly different interactions as 

non-significantly different interactions. It is difficult to attribute a cause to the variations in the 

interactions. Having an entire data set for all three locations would have helped to identify any 

possible relationships. 
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Table 5.3. Analysis of variance (ANOVA and Tukey HSD tests) for the coefficient of restitution 

of biological materials. 

Coefficient of Restitution 

Interactions AIG_MRT-ST_GEV AIG_MRT-PIC ST_GEV-PIC 

Grape-Grape 0* 0* 5.71E-5* 

Grape-Stainless Steel 0.700 0.362 0.042* 

Grape-Mesh 1.11E-4* 4.01E-5* 0.996 

Grape-Bucket 1.30E-6* 1.00E-7* 0* 

Grape-Conveyor 3.23E-4* 0.016* 0.601 

Grape-Grape Stem 0.019* Na Na 

Grape-Leaf 6.86E-4* Na Na 

Grape Stem-Grape Na 0.167 Na 

Shoot-Grape Na 0.097 Na 

Petiole-Grape Na 0.038* Na 

Grape Stem-Stainless Steel Na 0.041* Na 

Shoot-Stainless Steel Na 0.097 Na 

Petiole-Stainless Steel Na 8.62E-4* Na 

Grape Stem-Mesh Na 6.63E-4* Na 

Shoot-Mesh Na 0.018* Na 

Petiole-Mesh Na 0.442 Na 

Grape Stem-Bucket Na 1.48E-4* Na 

Shoot-Bucket Na 4.01E-5* Na 

Petiole-Bucket Na 0.887 Na 

Grape Stem-Conveyor Na 0.019* Na 

Shoot-Conveyor Na 0.0276* Na 

Petiole-Conveyor Na 0.967 Na 

Grape-Shoot Na Na 9.60E-3* 

Grape-Petiole Na Na 0.005* 

p-value˂0.05: Significantly Different (*)  AIG_MRT: Aigues-Mortes 

p-value˃0.05: Not Significantly Different   ST_GEV: Saint-Gervais  

Na: Data Not Available    PIC: Pauillac 
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The ANOVA for the angle of static friction is presented in Table 5.4. Similar to the 

results in Table 5.3, many measurements were not available for the Saint-Gervais location. A 

direct comparison between the populations was therefore not possible for every measurement.    

Contrary to the coefficient of restitution experiment, the experimental parameters for the 

coefficient of friction were constant throughout all the trials. For this reason, the corresponding 

friction angles were used to compare the different populations. From the available data, the 

angles between the Saint-Gervais and the other two locations were nearly all non-significantly 

different. Despite this, the majority of the interactions were not available; therefore a complete 

and representative comparison could not be completed. When comparing the Aigues-Mortes and 

Pauillac locations, one half of the interactions is significantly different while the other is not. 

These results still demonstrate the variability between the populations.     
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Table 5.4. Analysis of variance (ANOVA and Tukey HSD tests) for the angle of friction of 

biological materials. 

Angle of Static Friction 

Interactions AIG_MRT-ST_GEV AIG_MRT-PIC ST_GEV-PIC 

Grape-Leaf 0.516 0.574 0.999 

Grape-Petiole 0.090 0.015* 0.627 

Grape-Steel 0* 0* 0.006* 

Grape-Conveyor 0.887 0.196 0.361 

Grape-Grape 0.722 Na Na 

Grape Stem-Grape 0.593 Na Na 

Grape-Vine Shoot 0.741 Na Na 

Grape-Mesh 0.299 Na Na 

Grape-Bucket 0.011* Na Na 

Grape Stem-Leaf Na 0.052 Na 

Leaf-Leaf Na 0.581 Na 

Petiole-Leaf Na 0.003* Na 

Grape Stem-Vine Shoot Na 0.081 Na 

Grape Stem-Petiole Na 0.032* Na 

Vine Shoot-Petiole Na 3.39E-5* Na 

Petiole-Petiole Na 0* Na 

Grape Stem-Steel Na 0.111 Na 

Leaf-Steel Na 0.147 Na 

Vine Shoot-Steel Na 1.01E-4* Na 

Petiole-Steel Na 0* Na 

Grape Stem-Conveyor Na 0.002* Na 

Leaf-Conveyor Na 0.468 Na 

Vine Shoot-Conveyor Na 0.672 Na 

Petiole-Conveyor Na 0.422 Na 

Vine Shoot-Leaf Na 0.709 Na 

p-value˂0.05: Significantly Different (*)  AIG_MRT: Aigues-Mortes 

p-value˃0.05: Not Significantly Different   ST_GEV: Saint-Gervais  

Na: Data Not Available    PIC: Pauillac 
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5.1.2. Physical Properties used for DEM Simulations  

Based on the summarized results in the tables above, the analysis of variance between 

location populations was highly variable. For the most part, the interactions were significantly 

different between populations. The measured properties showed no particular trend or pattern 

when testing for significance between locations. Having a largely incomplete data set for the 

Saint-Gervais location also prevented a full comparison between the populations. In general, no 

two locations had prominent tendencies of being significantly different or not. Despite the close 

proximity of the Saint-Gervais and Pauillac location, a definitive relationship or non-relationship 

could not be established. For that reason, the population with the largest number or properties 

was used to create the DEM simulations: Aigues-Mortes. Missing physical properties were also 

taken from the Pauillac location (second largest number of properties) in order to have complete 

data set for the DEM simulations.  

 

As previously mentioned, the simulations were limited to only three biological materials 

(grapes, petioles, leaves) and two cleaning system materials (conveyor rubber and stainless 

steel). The complete results for all three locations can be found in section C.1 of APPENDIX C. 

The remaining properties that were not measured during the 2014 grape harvest season in France 

were obtained from academic sources as described in section 4.2.1 of the 4.0 MATERIALS 

AND METHODS. These properties included the Poisson’s ratio, shear modulus, and Young’s 

modulus for both the biological and cleaning system materials (stainless steel and rubber); the 

density for the cleaning system material was also included.   
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The following tables are the selected physical properties for the DEM simulations, which 

combines both the Aigues-Mortes and Pauillac locations. They are categorically organized by 

property or by interaction for the respective materials. The mean, standard deviation, coefficient 

of variation, test location, and number of trials are indicated for all the properties. The variability 

in the biological material can be observed throughout the following tables with moderately high 

coefficients of variation. Despite having a reasonably large sample space, the average coefficient 

of variation was approximately 20%. This demonstrates the natural variability of the biological 

material that can be susceptible to its continuously changing environment (i.e. temperature, 

moisture content, maturity, etc.).   

   

Table 5.5 shows the values of the physical characteristics of the biological materials. 

Only the petioles properties were taken from the Pauillac location as they were missing from the 

Aigues-Mortes location. With the exception of its mass, the grape material was the most 

consistent with lower coefficients of variation than the others. Given the shape and size of 

leaves, it is not surprising that the leaf mass had a higher coefficient of variation. Despite this, its 

thickness appears to be reasonably consistent. The lengths of the petioles had a large variation, 

which would explain the high coefficient of variation for the mass. Based on the location of the 

leaves, the petiole would often be sized to provide a direct line of sight between the sun and the 

leaves. The leaves were observed to have longer petioles when located in the centre of the grape 

vine canopy.  
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    Table 5.5. Physical characteristics of biological materials used for the Discrete-Element 

Method simulations. 

Grape Mean Std. Dev. Coef. of Variation Location n 

Mass (g) 1.25 0.31 24.5% AIG_MRT 80 

Sphericity (%) 98.0 1.26 1.2% AIG_MRT 80 

Average Diameter (mm) 12.57 0.99 7.9% AIG_MRT 80 

True Density (kg WM/m
3
) 1177.9 91.0 7.7% AIG_MRT 80 

      Leaf Mean Std. Dev. Coef. of Variation Location n 

Mass (g) 1.29 0.62 47.9% AIG_MRT 60 

Leaf Thickness (mm) 0.54 0.08 15.6% AIG_MRT 60 

True Density (kg WM/m
3
) 558.4 165.5 29.6% AIG_MRT 51 

Leaf Area (mm
2
) 4204.5 1924.8 45.8% AIG_MRT 51 

Leaf Perimeter (mm) 348.5 93.81 26.9% AIG_MRT 51 

      

Petiole Mean Std. Dev. Coef. of Variation Location n 

Mass (g) 0.36 0.26 70.4% PIC 50 

Average Diameter (mm) 2.29 0.60 26.3% PIC 50 

True Density (kg WM/m
3
) 1222.3 121.4 9.9% PIC 50 

Length (mm) 64.11 17.22 26.9% PIC 50 
AIG_MRT: Aigues-Mortes  

PIC: Pauillac 

 

The results from coefficient of restitution tests can be found in Table 5.6. With the 

exception of the grape-petiole and petiole-petiole interactions, all interactions are from the 

Aigues-Mortes location. The interaction values range between 0.134 and 0.357 for the 

coefficient of restitution and between 10.2% and 30.7% for the coefficient of variation. The leaf 

surface material had the highest values with an average of 0.320. The leaf surface was created 

using multiple stacked leaves that were tightly secured together. That may have increased the 

leaf density and hardness causing for a larger bounce height; a harder material is less likely to 

dampen the impact of an object than a softer material. The conveyor rubber and stainless steel 

surfaces had similar average values of 0.292 and 0.284 respectively. The relative hardness of 

these materials can explain the similarity between them. An intermediate average value for the 

petiole surface was 0.256. This lower value can be attributed to the softer nature of the petioles 
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that are capable of absorbing the impact of dropped objects. The grape surface had the smallest 

average coefficient of restitution value of 0.172; being the softest and most flexible material can 

explain the low value in caparison to the other materials.            

 

 

 

Table 5.6. Coefficient of restitution of biological materials used for the Discrete-Element Method 

simulations. 

Interaction Mean Std. Dev. Coef. of Variation Location n 

Grape-Grape 0.134 0.017 12.4% AIG_MRT 68 

Petiole-Grape 0.210 0.057 27.0% AIG_MRT 53 

Grape-Leaf 0.357 0.036 10.2% AIG_MRT 70 

Petiole-Leaf 0.283 0.052 18.4% AIG_MRT 51 

Grape-Steel 0.329 0.043 13.0% AIG_MRT 30 

Petiole-Steel 0.239 0.046 19.2% AIG_MRT 32 

Grape-Conveyor 0.312 0.033 10.6% AIG_MRT 34 

Petiole-Conveyor 0.272 0.057 21.0% AIG_MRT 42 

Grape-Petiole 0.298 0.048 16.2% PIC 45 

Petiole-Petiole 0.213 0.066 30.7% PIC 47 
AIG_MRT: Aigues-Mortes 

PIC: Pauillac 

 

 

Table 5.7 displays the angle of static friction between the biological materials themselves 

and the cleaning system materials. Given its completeness, the entire data set was taken from the 

Aigues-Mortes location. The friction angle between the biological materials themselves ranged 

from 30.2° to 50.0°; the coefficients of variation were between 9.8% and 20.6%. The friction 

angle varied significantly from one interaction to another due to the differences between the 

materials. The friction angles between the biological and cleaning system materials were 

between 22.0° and 50.8° with coefficients of variations ranging from 14.7% to 20.8%. The 

average angle between the stainless steel and the biological material was 24.8°; this was the 

smallest in comparison to the other materials. The stainless steel used in grape harvesters is 
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subjected to a passivation treatment in order to meet food handling standards. The process 

provides a smooth non-adhesive finish, which would explain the small friction angle. The largest 

observed angle amongst the cleaning system material was with the conveyor rubber at 48.9°. The 

conveyor rubber can exhibit an adhesion effect between itself and the contacting material despite 

the relatively smooth surface. Overcoming the frictional forces becomes more difficult, therefore 

increasing the friction angle. 

 

                  

Table 5.7. Angle (⁰) of static friction of biological materials used for the Discrete-Element 

Method simulations. 

Interaction Mean Std. Dev. Coef. of Variation Location n 

Grape-Grape 49.6 8.6 17.3% AIG_MRT 60 

Grape-Leaf 34.2 6.7 19.5% AIG_MRT 39 

Leaf-Leaf 48.0 9.9 20.6% AIG_MRT 44 

Petiole-Leaf 30.2 4.7 15.5% AIG_MRT 38 

Grape-Petiole 32.1 3.1 9.8% AIG_MRT 30 

Petiole-Petiole 50.0 9.3 18.6% AIG_MRT 50 

Grape-Steel 22.0 3.4 15.6% AIG_MRT 36 

Leaf-Steel 30.2 6.3 20.8% AIG_MRT 36 

Petiole-Steel 22.1 3.3 14.7% AIG_MRT 31 

Grape-Conveyor 47.5 9.6 20.1% AIG_MRT 37 

Leaf-Conveyor 48.4 9.0 18.6% AIG_MRT 41 

Petiole-Conveyor 50.8 10.5 20.8% AIG_MRT 53 
AIG_MRT: Aigues-Mortes 

 

 

 

The measured terminal velocity and the calculated drag coefficient for the biological 

materials are shown in Table 5.8. The entire Aigues-Mortes dataset was used since it had the 

complete set of tests for each biological material. It appears that the order of the terminal 

velocities corresponds to the same order as the masses. The grapes had both the largest mass and 

terminal velocity at 1.25 g and 22.71 m/s respectively. The petiole samples had the second 
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largest mass, therefore corresponding to the second largest terminal velocity at 12.50 m/s. The 

leaf samples had the smallest terminal velocity at 1.88 m/s.  

 

In a similar way as the terminal velocity, the order of the drag coefficients corresponded 

to the size of the material projected areas. The largest drag coefficient value was calculated at 

1.909 for the leaf samples; it had the largest projected area perpendicular to the airflow. The 

grapes had the second largest value at 0.275 with a larger projected area than the petioles. The 

petioles had the smallest value of 0.074; the projected area was based on the small cylinder shape 

and vertical orientation (parallel to the airflow).          

 

 

 

Table 5.8. Aerodynamic characteristics of grapes used for the Discrete-Element Method 

simulations. 

Ter. Velocity (m/s) Mean Std. Dev. Coef. of Variation Location n 

Grape 22.71 0.96 4.2% AIG_MRT 30 

Leaf (disc cut out) 1.88 0.18 9.4% AIG_MRT 30 

Petiole 12.50 3.63 29.1% AIG_MRT 42 

      

Drag Coefficient (--) Mean Std. Dev. Coef. of Variation Location n 

Grape 0.275 0.046 16.7% AIG_MRT 30 

Leaf (disc cut out) 1.909 0.697 36.5% AIG_MRT 30 

Petiole 0.074 0.034 45.8% AIG_MRT 42 
AIG_MRT: Aigues-Mortes 
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 Physical Property Simulation and Validation 5.2.

5.2.1. Inclined Plane Simulation  

Table 5.9 compares the actual test results to the DEM simulation results for the static 

friction angles. The test angles in the table below are the results from the complete population 

that were presented in the previous section. The standard deviation and coefficient of variation in 

this table describe the simulation results. These results correspond to an average of 100 samples 

that were tested on a single incline plane for each different interaction. Multiple iterations of 

each interaction simulation were conducted while adjusting the linear cohesion model. This was 

done until the average of each DEM angle was within 5% difference of the actual test angle; the 

percentage difference did not exceed 4.5%. Both the standard deviations and coefficients of 

variation are small in value because the simulation is able to produce repeatable results at a high 

precision. The adjustment of the linear cohesion model was accomplished by trial and error and 

by general observations of the material behavior.      

 

Table 5.9. Static friction angle comparison between the actual tests and the Discrete-Element 

Method simulations. 

Interaction Test Angle (°) DEM Angle (°) Std. Dev. Coef. of Variation % Diff. 

Grape-Steel 22.0 22.1 0.1 0.5% 0.5% 

Grape-Conveyor 47.5 47.2 0.7 1.6% 0.6% 

Petiole-Steel 22.1 23.0 0.2 0.7% 4.0% 

Petiole-Conveyor 50.8 51.5 0.9 1.7% 1.4% 

Grape-Grape 49.6 49.4 0.8 1.6% 0.4% 

Leaf-Steel 30.2 30.8 0.2 0.8% 2.0% 

Leaf-Conveyor 48.4 48.0 1.1 2.3% 0.8% 

Grape-Petiole 32.1 33.2 0.4 1.2% 3.4% 

Petiole-Leaf 30.2 31.6 0.5 1.5% 4.5% 

Petiole-Petiole 50.0 51.0 1.1 2.1% 2.0% 

Leaf-Leaf 48.0 47.5 1.0 2.1% 1.0% 

Grape-Leaf 34.2 35.6 0.5 1.5% 4.0% 
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5.2.2. Rebound Surface Simulation  

The comparison between the actual tests and the DEM simulation for the coefficients of 

restitution can be seen in Table 5.10. As previously mentioned, the leaves were excluded as a 

dropped material because the large surface area exhibited a lift force. This created a parachuting 

effect, which made its bounce height negligible. Its coefficient of restitution in the DEM 

simulations was therefore set to a very low value. Despite this, the leaves were still used as a 

surface material for the other particles. Similar to the friction test simulations, 100 samples were 

tested on each surface material while varying the coefficient of restitution parameter. This was 

done until the DEM simulation was within 5% difference of the actual test value.  

 

As the table below demonstrates, the interactions where the grapes were dropped have 

standard deviations and coefficients of variation equal to 0. The 100 dropped samples had no 

variations between them given the repeatability and high precision of the simulations. For the 

grapes, it was possible to adjust the simulation parameters until the coefficient of restitution 

exactly matched the actual tests. As mentioned in section 4.2.3, the linear cohesion model varied 

the bounce heights depending on the orientation of the petioles. A larger amount of contacting 

spheres increased the cohesion force while reducing the bounce height. For that reason, 

simulations for both the horizontal and vertical orientations of the petioles were adjusted until 

they were within 5% of the actual value. The petiole interaction values displayed in the table 

below correspond to the averaged coefficient of restitution for the two simulations. In general, 

both simulations for each petiole interaction were within 1% of the actual value with a fairly low 

variation.      
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Table 5.10. Coefficient of restitution (COR) comparison between the actual tests and the 

Discrete-Element Method simulations. 

Interaction Test COR DEM COR Std. Dev. Coef. of Variation % Diff. 

Grape-Steel 0.329 0.329 0 0.0% 0.0% 

Petiole-Steel 0.239 0.238 1.41E-03 0.6% 0.4% 

Grape-Conveyor 0.312 0.307 0 0.0% 1.6% 

Petiole-Conveyor 0.272 0.271 1.41E-03 0.5% 0.4% 

Grape-Grape 0.134 0.134 0 0.0% 0.0% 

Grape-Petiole 0.298 0.298 0 0.0% 0.0% 

Grape-Leaf 0.357 0.356 0 0.0% 0.3% 

Petiole-Petiole 0.213 0.213 9.57E-04 0.5% 0.0% 

Petiole-Grape 0.21 0.209 2.22E-03 1.1% 0.5% 

Petiole-Leaf 0.283 0.283 2.06E-03 0.7% 0.0% 
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5.2.3. Simulation and Validation of Leaf Deflection 

The following sections describe the results for the two deflection validation tests. Both the 

single and multi-deflection test results include a comparison between the actual and simulated 

leaf deflection shapes. The presented DEM leaf shapes are the optimized results following the 

adjustments of the bond properties in the particle body force.  

 

5.2.3.1. Single Deflection for Cantilevered Leaf Sample 

Figure 5.1 to Figure 5.5 shows the leaf sample deflection comparison between the DEM 

simulations and the actuals tests at different bolt heights. The deflection shape was plotted in 2-

dimensions along the horizontal and vertical directions. The polynomial regressions of the 

graphs below display a goodness of fit value (R
2
) that surpasses 0.99 for both the DEM and 

actual test deflections. These high R
2
 values indicate that the regression lines accurately 

represent the deflection data points. An observational comparison of the deflections shows the 

largest difference between the simulation and actual test results at the 5 mm bolt height (Figure 

5.1). A small deflection deviation can also be observed at the 22.5 mm bolt height (Figure 5.5). 

The remaining graphs indicate a fairly close match between the two compared deflections.  
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Figure 5.1. Graph of rectangular leaf sample deflection comparison between the Discrete-

Element Method simulation and actual test at a 5 mm bolt height.  

 

 

 

 

 
Figure 5.2. Graph of rectangular leaf sample deflection comparison between the Discrete-

Element Method simulation and actual test at a 12 mm bolt height. 
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Figure 5.3. Graph of rectangular leaf sample deflection comparison between the Discrete-

Element Method simulation and actual test at a 15 mm bolt height.  

 

 

 

 

 
Figure 5.4. Graph of rectangular leaf sample deflection comparison between the Discrete-

Element Method simulation and actual test at an 18 mm bolt height. 
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Figure 5.5. Graph of rectangular leaf sample deflection comparison between the Discrete-

Element Method simulation and actual test at a 22.5 mm bolt height.  

 

 

 

Table 5.11 compares the results for deflection and angle of deflection between the 

simulations and the actual tests (see section B.2 of APPENDIX B for sample calculation). As 

seen in Figure 5.1, the largest deviation between the simulated and actual tests was present at the 

5 mm bolt height; the differences in deflection and angle of deflection were 40.0% and 59.9% 

respectively. The 12 mm and 15 mm bolt heights had the smallest differences below 3% for the 

angle of deflection. The 18 mm and 22.5 mm bolt heights had slightly higher deviations for the 

angle of deflection at 13.6% and 14.5% respectively. With the exception of the 5 mm bolt height, 

the deflection differences between the simulations and actual tests were all less than 6%. These 

discrepancies can be attributed to the positioning of the bolt with respect to the leaf sample 

particles. The bolt may have been positioned between or directly on the spherical particles. 

Samples could be slightly lower or higher depending on this positioning. In general, the DEM 
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simulation parameters were able to accurately replicate the deflection behavior of the rectangular 

leaf sample.    

 

 

 

Table 5.11. Rectangular leaf sample deflection and angle of deflection comparison between the 

Discrete-Element Method simulation and actual tests. 

 

Deflection (mm) Angle of Deflection (°) 

Bolt Height (mm) Test DEM %Diff. Test DEM %Diff. 

5.0 7.5 5.0 40.0% 21.9 11.8 59.9% 

12.0 14.3 13.5 5.8% 34.5 35.4 2.6% 

15.0 15.8 16.3 3.1% 44.5 43.4 2.5% 

18.0 19.3 19.1 1.0% 47.8 54.8 13.6% 

22.5 22.9 22.2 3.1% 59.5 68.8 14.5% 

 

 

 

 

5.2.3.2. Multi-Deflections of Leaves 

As previously mentioned, a single leaf was analyzed for the five deflection configurations. 

Multiple iterations for each configuration was done while adjusting the bond properties of the 

leaf particles. In particular, the leaf rigidity was modified to try and capture the deflection shape 

of the actual leaf. In general, the simulated leaf was able to flex and move freely when subjected 

to the deflections. It was capable of replicating the general shape of the scanned leaf; however, 

significant discrepancies between the compared leaves were evident. Figure 5.6 shows the scans 

of the actual leaf without being subjected to any deflections. It can be seen that the leaf is 

naturally deformed and has distinct curves along its edges. The simulated leaf was created using 

a 2-dimensional grid based on the original leaf’s contour. For that reason, the natural curves of 

the actual leaf could not be replicated without applying external forces. The deviations between 

the scanned and simulated leaves can be attributed to this discrepancy.         
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Figure 5.6. Scanned leaf without being subjected to a deflection. (a) Top view. (b) Orthogonal 

view. (c) Side view. (d) Front view. 

 

 

Figure 5.7 is an example of the comparison between the simulated and scanned leaves 

from multiple views. Configuration 5 is displayed in this figure with the .STL file being overlaid 

on the simulated leaf into the DEM software. The comparisons of the other configurations can be 

found in section C.3 of APPENDIX C. For this particular configuration, the simulated leaf did 

follow the general deformation trends of the actual leaf. The small curves along the edges and 

the medium curves around the center region were not completely captured. The bottom and top 

regions of the leaf appeared to have been correctly aligned with the scanned leaf. Prior to 

adjusting the bond parameters, the leaf was not capable of maintaining a concave shape. It had a 

tendency of folding over itself and not remaining upright. By gradually adjusting the rigidity, the 

leaf was eventually able to form a realistic leaf shape.   

 

 

 

(a) (b) 

(c) (d) 
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Figure 5.7. Multi-deflection test comparison -Configuration 5. (a) Top view. (b) Orthogonal 

view. (c) Side view. (d) Front view.  

 

 

The other tested configurations displayed a similar behavior as described above for the 

configuration 5. The bond parameters continued to be adjusted until a reasonable equilibrium 

was found for all the configurations. Despite this, significant deviations were still identified in 

some areas of the leaf. The inability of the leaf to have a natural deformation and a varying 

rigidity in specific areas contributed to these deviations. The structure of the actual leaf included 

a midrib along its center with lateral veins branching out. The areas with these veins appeared to 

have a higher rigidity than the leaf blade area. The slight offset of the midrib and the non-

uniform location of the lateral veins caused the leaf to deflect irregularly. The simulated leaf had 

a consistent bond strength and rigidity between its spheres; its deflections could not account for 

the varying proprieties across the leaf area. The simulated leaf would have to incorporate an 

increased rigidity in the vein areas to fully capture the behavior of the actual leaf. That being 

said, the leaf was adjusted to the best of its abilities using the 2-dimensional grid and bond 

parameters in the particle body force.  
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5.2.4. Grape Trajectory Simulation 

The following figures (Figure 5.8 to Figure 5.10) show the conveyor trajectories for the 

three sets of results at alternate speeds (300 rev/min (1.2 m/s), 400 rev/min (1.6 m/s), and 500 

rev/min (2.0 m/s)) and at a constant 15° angle. The analytical model (blue), the DEM simulation 

(red), and the experimental results (green) are plotted with respect to the vertical and horizontal 

distances from the end of the conveyor. The plotted trajectories are second order polynomial 

regression lines fitted to scattered data points. The R
2
 for the experimental results were between 

0.81 and 0.93; the analytical and DEM trajectories had R
2
 values above 0.97. These high R

2
 

values indicate that the regression lines reasonably replicate the trajectories. 

 

 
Figure 5.8. The conveyor (at 300 rev/s (1.2 m/s) and 15⁰) trajectory comparison between the 

analytical model, Discrete-Element Method simulation, and experimental results. 
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Figure 5.9. The conveyor (at 400 rev/s (1.6 m/s) and 15⁰) trajectory comparison between the 

analytical model, Discrete-Element Method simulation, and experimental results. 

 

 

 

 

 
Figure 5.10. The conveyor (at 500 rev/s (2.0 m/s) and 15⁰) trajectory comparison between the 

analytical model, Discrete-Element Method simulation, and experimental results. 
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Table 5.12 outlines the percentage difference between each trajectory for the three 

conveyor speeds. In general, the trajectories appeared to have a greater horizontal distance as the 

conveyor speed was increased. The experimental results had the longest horizontal distance at all 

three speeds. The DEM simulation was the second furthest followed by the analytical model in 

third. As the speed increased, all three trajectories appeared to converge on themselves by having 

less of a difference between each other. The largest difference occurred between the 

experimental and analytical model; the differences at 300 rev/min (1.2 m/s), 400 rev/min (1.6 

m/s), and 500 rev/min (2.0 m/s) were 40.5%, 19.8%, and 9.3% respectively. The experimental 

and DEM simulation results were closer in comparison (34.6%, 17.8%, and 7.7%) than the 

analytical model and experimental. The smallest difference in horizontal distance was between 

the DEM simulations and the analytical model (6.1%, 2.0%, and 1.6%). This can be explained by 

the use of similar displacement equations in both the DEM simulation and analytical model. The 

small differences can be attributed to the influence of the other applied contact models; the effect 

of friction and adhesion were incorporated in the simulations.  

 

The discrepancies between the simulations and the experimental trajectories could be the 

result of the DEM limitations. This includes the inability to elastically or plastically deform the 

particles at the contacts. In the experimental trials, some grapes ruptured upon contact with the 

conveyor; the damaged grapes may have had different trajectories. The rolling friction parameter 

in the simulations was adjusted to try and minimize the differences, but no significant effect was 

observed. As a result, the particle adhesion effect with the moving conveyor belt was possibly 

not accounted for in the simulation. Another possible cause for the discrepancies may have been 

the increased effects of gravity and friction on the initial acceleration of the grapes as they were 



 

134 

 

propelled from the conveyor. Despite these differences, the DEM simulations still managed to 

reasonably replicate behavior of the grapes on the conveyor.     

 

Table 5.12. Horizontal distance comparison between the analytical model, Discrete-Element 

Method simulation, and experimental trajectories. 

300 rev/min 

(1.2 m/s) 

  Analytical Model DEM Experimental 

Horizontal Distance (mm) 367.4 390.5 553.8 

 %Diff. Analytical Model --------  40.5% 

DEM 6.1% --------  

Experimental  34.6% -------- 

      

400 rev/min 

(1.6 m/s) 

  Analytical Model DEM Experimental 

Horizontal Distance (mm) 505.4 515.5 616.2 

% Diff.  Analytical Model --------  19.8% 

 DEM 2.0% --------  

 Experimental  17.8% -------- 

      

500 rev/min 

(2.0 m/s) 

  Analytical Model DEM Experimental 

Horizontal Distance (mm) 681.6 692.4 748.2 

% Diff. Analytical Model --------  9.3% 

 DEM 1.6% --------  

 Experimental  7.7% -------- 
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5.2.5. Main Crop Flow Simulation 

The experimental results of the leaf aspiration success rate are discussed and compared to the 

main crop flow simulation. The overall cleaning performance and observed biological material 

behavior are also explained with respect to the nine conveyor configurations.  

 

5.2.5.1. Experimental-Grape Harvester Test Bench  

The leaf aspiration success rate and the general behavior of the biological materials were 

observed in the grape harvester test bench trials. Table 5.13 shows the averaged success rate 

results for the two trials per configuration. The success rate is expressed as a percentage of 

leaves that were aspirated. The standard deviation and coefficient of variation are moderately 

high for some configurations (>10%). This was caused by the small amount of trials, which were 

limited by the availability of the leaves from Ontario. Although a collection screen was installed, 

a maximum of two uses could be done before the leaves were significantly damaged. Further 

testing with the same leaves may not have provided representative results. An increased number 

of trials with additional leaves would have increased the statistical power of the experiment. 

 

In general, the best cleaning performance was observed at the 20° angle followed by the 15° 

and 10° angles. The best performing speed was at 420 rev/min (1.7 m/s) followed by the 500 

rev/min (2. m/s) and 350 rev/min (1.4 m/s) speeds. The best combined cleaning configuration 

was at a speed of 420 rev/min (1.7 m/s) for both the 15° and 20° angles with a success rate of 

85.0%. The 20° angle configuration at speeds of 350 rev/min (1.4 m/s) and 500 rev/min (2.0 m/s) 

had the next best performances with success rates of 80.0% and 77.5%, respectively. The worst 

performances were at a speed of 350 rev/min (1.4 m/s) for the angles of 10° and 15°; the success 
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rates were 55.0% and 62.5%, respectively. An intermediate success rate of approximately 70.0% 

was observed in the remaining three configurations: 420 rev/min (1.7 m/s)-10°, 500 rev/min (2.0 

m/s)-10°, and 500 rev/min (2.0 m/s)-15°. 

 

Table 5.13. Results of leaf aspiration success rate for the grape harvester test bench trials. 

 

10° 15° 20° 

Speed Mean STDEV COV Mean STDEV COV Mean STDEV COV 

350 rev/min (1.4 m/s) 55.0% 7.1% 12.9% 62.5% 17.7% 28.3% 80.0% 7.1% 8.8% 

420 rev/min (1.7 m/s) 74.5% 6.3% 8.5% 85.0% 7.1% 8.3% 85.0% 0.0% 0.0% 

500 rev/min (2.0 m/s) 67.5% 10.6% 15.7% 72.5% 17.7% 24.4% 77.5% 10.6% 13.7% 
STDEV: Standard Deviation 

COV: Coefficient of Variation 

 

 

 

5.2.5.1.1. Statistical Analysis  

 

The tests followed a factorial experimental design with the conveyor angle and speed as 

the explanatory variables and the aspiration success rate as the response variable. A combination 

of three angles and three speeds were tested. A general linear model (GLM) with these variables 

was fitted. Given the experimental design, the explanatory variables were coded as factors 

instead of continuous variables. An ANOVA analysis of the GLM model provided p-values to 

determine the significant effects; a p-value below 0.05 indicates a significant effect. 

 

model1<-glm(S_RATE~factor(ANGLE)*factor(SPEED),data=Data_2) 

anova(model1,test="F")    

 

Table 5.14 displays the ANOVA results from the GLM model. The p-values from this 

analysis were all above 0.05 (95% confidence level), which indicated that the conveyor speed 

and angle had no significant effect on the success rate. The results also indicated that the speed 
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and angle were independent of each other. Despite this, the p-values for the speed (0.08887) and 

angle (0.10104) variables were not overly high. In essence, these results could also be interpreted 

as inconclusive given the small sample space of the experiment. Unfortunately, the available 

time and resources were very limited for this testing phase of the project. A higher number of 

trials (~5-10 per configuration) with more leaves would have increased the statistical power and 

provided more conclusive results.  

 

 

Table 5.14. Analysis of variance results for experimental-grape harvester test bench.  

 Df Deviance Resid. Df Redis. Dev F Pr(˃F) 

NULL   17 0.26870   

ANGLE 2 0.069087 15 0.19962 2.9892 0.10104 

SPEED 2 0.074096 13 0.12552 3.2059 0.08887 

ANGLE:SPEED 4 0.021516 9 0.10401 0.4655 0.76002 

 

 

A quantile (Q-Q) plot was done for this model to verify the normal distribution 

assumption for a GLM. Figure 5.11 displays the QQ plot for the model and confirms a fairly 

normal distribution.  

 
Figure 5.11. Quantile-quantile (Q-Q) plot for fitted GLM model of experimental-grape harvester 

test bench results.  
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Although the results from Table 5.13 indicated certain performance trends with respect to the 

conveyor settings, the statistical results showed that they were not statistically significant. 

Observationally, an increasing angle and speed did appear to change the behavior of the 

biological materials. Figure 5.12 shows a testing example of the grape harvester test bench. The 

highest success rate at the 20° angle was the result of a mixing effect and higher trajectory path. 

During the tests, it was observed that the steeper angle created a mixing effect that allowed the 

biological materials to turn over. Leaves that would normally become trapped underneath other 

materials could be freed before entering the aspirator airstream. Otherwise, the leaves would be 

weighed down by other materials and prevented from being aspirated. This steeper angle also 

propelled the biological materials with a more direct path into the aspirator hood where the air 

velocity was higher. The higher location in the aspirator hood provided a longer period of time 

for the MOG materials to be aspirated. A slipping effect between the biological materials and the 

conveyor was also observed at higher conveyor speeds. Table 5.13 did show a reduction in the 

success rate at the 500 rev/min (2.0 m/s) speed in comparison to the 420 rev/min (1.7 m/s) speed 

for all three angles. The 500 rev/min (2.0 m/s) speed appeared too fast to carefully handle the 

biological materials; they had a tendency of being thrown in the opposite direction of the 

conveyor travel. Grape damage would be inevitable at this high transport speed.   
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Figure 5.12. Testing example of grape harvester test bench with 350 rev/min (1.4 m/s) and 20° 

conveyor settings. (a) Orthogonal view. (b) Top view. 

 

 

 

 

Ultimately, the randomized placement of the leaves will determine the probability of being 

aspirated. The more materials that cover the leaves, the less likely they are of being aspirated. In 

actual grape harvesters, the mesh conveyor is positioned directly below the aspirator. This 

provides an additional opportunity for missed leaves to be aspirated. Materials landing on the 

moving mesh conveyor are also subject to a mixing effect; leaves can be freed and then 

aspirated. 

(a) 

(b) 
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5.2.5.2. Crop Flow DEM Simulation 

The nine conveyor configurations were implemented in nine separate DEM simulations; the 

aspiration success rate and the general cleaning performance were determined. The parameters 

for the introduction of the biological materials were kept constant throughout all the 

configurations. Figure 5.13 displays an example of a main crop flow simulation; this particular 

one is with the 420 rev/min (1.7 m/s) and 15° conveyor settings. All three biological materials 

are being propelled from the conveyor into the aspirator upward airstream.   

 

 
Figure 5.13. Example of main crop flow model with 420 rev/min (1.7 m/s) and 15° conveyor 

settings. (a) Side view. (b) Orthogonal view. 

(a) 

(b) 
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The leaves used in the experimental tests had petioles still attached. Having the petioles 

attached to the leaves in the simulations was beyond the scope of the project. Including 

individual petioles in the simulations may not have been imperative since their elimination was 

not a parameter of the validation process. As a precaution, they were included within the main 

crop flow simulations to account for any possible effect they may have had in the experimental 

tests. Although attached to the leaves, the petioles still interacted with other materials and the 

conveyor belt; for that reason it was deemed prudent to include them in the simulations.  

 

In actual grape harvesters, petioles that are still attached to the leaves typical get aspirated 

with the leaves. This occurs since the leaves have a larger drag coefficient and a lower density 

than petioles. As observed during the terminal velocity tests, the petioles had a tendency of 

behaving sporadically in an airstream. A petiole drag coefficient is dependent on its orientation 

to the airflow direction; a perpendicular (horizontal) orientation has more lift than a parallel 

(vertical) orientation. From the aerodynamics testing, the grape, leaf, and petiole samples had 

average terminal velocities of 22.71 m/s, 1.88 m/s, and 12.50 m/s respectively (Table 5.8). 

Currently, the harvester aspirators are configured to have an airflow velocity of approximately 10 

m/s near the entrance of the aspiration hood; the velocity increases further in the hood as the 

particles get closer to the impeller. To successfully aspirate individual petioles, they would have 

to be subjected to a higher air velocity. In the DEM simulations, no petioles were successfully 

aspirated in any of the nine conveyor configurations. Similarly to actual grape harvesters, 

individual petioles are rarely aspirated when separated from leaves. Increasing the air velocity at 

the hood inlet, could increase the success rate for both the leaves and petioles. However, the 
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expelled juice from the grapes would become susceptible to aspiration. This would cause an 

undesirable product loss.  

 

Table 5.15 outlines the leaf aspiration success rate for the nine conveyor settings. The success 

rate is expressed as a percentage of leaves that were aspirated. The percentage difference in 

comparison to the benchmark configuration (420 rev/min (1.7 m/s)-15°) is presented in the 

brackets. In general, the cleaning performance increased with both the angle and speed. With the 

exception of the 10° angle, the success rate did increase with the conveyor speed. The 10° angle 

configurations had difficulties creating a mixing effect, which made the success rates completely 

dependent on the randomized placement of the materials rather than the conveyor settings. As 

observed in the experimental results, the steeper angles in the simulations had a tendency of 

propelling the materials with a more direct path into the aspirator. This subjected the materials to 

a greater air velocity (˃10 m/s), thus increasing the success rate. The steeper angles also created 

a mixing effect, which helped separate the leaves from the other materials. Contrary to the 

experimental results, the 500 rev/min (2.0 m/s) speed had a higher success rate than the 420 

rev/min (1.7 m/s) speed in the simulations. Like the grape trajectory simulations, the horizontal 

distances of the material appeared to be slightly scaled down compared to the experimental tests. 

The material acceleration from the conveyor may have also been affected by the increased 

effects of gravity and friction.   
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Table 5.15. Results of leaf aspiration success rate for the main crop flow simulation. 

Speed 10° 15° 20° 

350 rev/min (1.4 m/s) 86.1% (0.0%) 80.6% (-6.4%) 83.3% (-3.3%) 

420 rev/min (1.7 m/s) 80.6% (-6.4%) 86.1% 94.4% (+9.6%) 

500 rev/min (2.0 m/s) 88.9% (+3.3%) 94.4% (+9.6%) 97.2% (+12.9%) 

 

When compared to the conventional conveyor settings (420 rev/min (1.7 m/s)-15°) the 420 

rev/min (1.7 m/s)-20° and 500 rev/min (2.0 m/s)-20° configurations had increased performances 

of 9.6% and 12.9% respectively. Although a greater success rate was present with the 500 

rev/min (2.0 m/s) speed, some materials were thrown in the opposite direction of the conveyor 

travel like in the experimental trials. The grapes also behaved sporadically by being propelled on 

the top of the aspirator hood. This would ultimately lead to more grape damage throughout the 

cleaning process. Considering product damage and the aspiration success rate, it is recommended 

to implement the 20° angle with the 420 rev/min (1.7 m/s) speed for an optimized configuration. 

A greater mixing effect was observed at this angle, which increased the chances of leaves being 

aspirated. The speed also provided the optimal trajectory for an increased success rate, while 

reducing product damage. 
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6.0 SUMMARY AND CONCLUSIONS  

The principle objective of the project was to optimize the cleaning system of grape harvesters 

by developing a main crop flow simulation based on the Discrete-Element Method (DEM). This 

optimization included reducing the presence of foreign materials (petioles and leaves) for the 

same crop throughput. Individual simulations were validated using the physical characteristics 

and properties of biological materials (grape, petioles, and leaves) from the Cabernet Sauvignon 

grape variety. The parameters from these simulations were then applied in the main crop flow 

simulation, which included the cleaning system conveyor and aspirator. The leaf aspiration 

success rate was optimized by testing nine conveyor configurations that included three speeds 

(350 rev/min (1.4 m/s), 420 rev/min (1.7 m/s), 500 rev/min (2.0 m/s)) and three angles (10°, 15°, 

and 20°). The aspirator performance was validated with the experimental trials from the grape 

harvester test bench. Based on the project results, the following conclusions were drawn:  

 

1. The individual crop flow simulations were able to replicate the physical characteristics 

and properties of the biological materials (grapes, leaves, and petioles).  

a. The inclined plane and rebound surface simulations were very accurate and could be 

adjusted within 5% of the actual tests.   

b. The single deflection tests for the leaf sample were fairly accurate when compared to 

the simulations. Some discrepancies could be attributed to the bolt positioning with 

respect to the leaf sample particles.  

c. The simulated leaf in the multi-deflection tests was able to replicate the general 

behavior of the actual leaf. Deviations near the edges and centre were identified. These 
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were caused by the inability of the simulated leaf to maintain a natural deflection 

without the application of external forces. 

d. At lower speeds, the conveyor trajectory simulations had moderate differences with 

the experimental tests. The grape acceleration in the simulations was possibly affected 

by the increased effects of conveyor friction/adhesion and gravity acting on the grapes. 

2. The optimized parameters from the individual simulations were integrated within the main 

crop flow simulation. The leaf aspiration success rate was compared between the 

simulations and the experimental trials.  

a. A statistical analysis for the experimental trials revealed that both the speed and angle 

variables did not have a significant effect on the success rate despite the low p-values. 

The small number of trials due the limited amount of available leaves contributed to 

the non-significance. Despite this, a mixing effect was observed at greater angles, 

which contributed to an increased success rate. 

b. The simulations did behave similarly to the experimental trials with respect to the 

conveyor angle. In general, the simulations showed that the cleaning performance 

increased with both the conveyor angle and speed. The 420 rev/min (1.7 m/s)-20° and 

500 rev/min (2.0 m/s)-20° configurations had increased performances of 9.6% and 

12.9% respectively when compared to the conventional conveyor settings (420 

rev/min (1.7 m/s)-15°). Although the 500 rev/min (2.0 m/s) speed had a better success 

rate, it also showed signs of greater product damage. It was recommended that the 20° 

angle with the 420 rev/min (1.7 m/s) speed be implemented for the optimal cleaning 

configuration. These particular settings minimized product damage and met the 

targeted performance increase.  
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7.0 RECOMMENDATIONS 

For future developments based on this project, the following recommendations should be 

considered: 

1. A particle generation method that accounts for the natural deflection of leaves is required 

to improve the simulated behaviour of leaves.  

2. A bonding method of attaching the petioles to the leaves to increase the accuracy of the 

simulations. 

3. Incorporating complete bunches of grapes with stems to replicate more realistic 

conditions. Ideally, the grapes should be able to separate from the stem when subjected to 

excess forces. 

4. A dynamics coupling in DEM software that allows the ribs to elastically deform instead 

of maintaining a rigid form when rotating about the roller axis.  

5. Additional testing for the physical characteristics and biological properties to obtain a 

consist number of trials for each experiment and location.   

6. Increase the number of experimental conveyor and aspirator trials to validate the DEM 

simulations. 

7. Develop and compare other crop flow simulations from different grape varieties.      
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A APPENDIX A 

A.1 Physical Property Equations 

 

Sphericity Equation 

 𝑆 =
(𝑎𝑏𝑐)1/3

𝑎
 

(A.1)  

where, 

S = Sphericity index (dimensionless) 

a = major diameter (mm) 

b = intermediate diameter (mm) 

c = minor diameter (mm) 

 

 

Average Diameter Equation 

 
𝐷𝑎𝑣𝑒 = [𝑎𝑏𝑐]1/3 

 (A.2)  

where, 

Dave = Average diameter (mm) 

 

 

 

Coefficient of Static Friction Equation 

 
𝜇𝑠𝑡𝑎𝑡𝑖𝑐 = tan 𝜃 

 (A.3)  

where, 

μstatic = Static coefficient of friction (dimensionless) 

θ = Slope of friction angle (degrees) 
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Coefficient of Restitution Equation 

 𝐶𝑅 = √
ℎ

𝐻
 

(A.4)  

where, 

CR = Coefficient of restitution (dimensionless) 

h = Bounce height (mm) 

H = Drop height (mm) 

 

 

 

General Equation for Drag Coefficient (Mohsenin, 1984) 

 𝐶 =
2𝑊(𝜌𝑝 − 𝜌𝑓)

𝑉𝑡
2𝐴𝑝𝜌𝑝𝜌𝑓

 
(A.5)  

 

 

where, 

C = Drag coefficient (dimensionless) 

ρp = Particle density (kg/m
3
) 

ρf = Fluid density (kg/m
3
) 

Ap = Projected area normal to direction of motion (m
2
) 

W = Mass of particle (kg) 

Vt = Terminal velocity (m/s) 

 

 

 

 

Surface Area of Sphere Equation 

 
𝐴𝑠𝑝ℎ𝑒𝑟𝑒 = 4𝜋𝑟2 

 (A.6)  

where, 

Asphere = Surface area (mm
2
) 

r = Mean radius (mm) 

 

 

 

 



 

156 

 

Surface Area of Cylinder 

 
𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 2𝜋𝑟ℎ + 2𝜋𝑟2 

 (A.7)  

where, 

Acylinder = Surface area (mm
2
) 

r = Mean radius (mm) 

h = Height (mm) 

 

 

Porosity  

 ∅ = 1 −
𝜌𝑏𝑢𝑙𝑘

𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
=

𝑉𝑉

𝑉𝑇
 

(A.8)  

where, 

ϕ = Porosity (dimensionless) 

ρbulk = Bulk density (kg/m
3
) 

ρparticle = Particle density (kg/m
3
) 

VV = Void volume 

VT = Total/bulk volume 

 

 

 

Bulk Density Equation 

 𝜌𝑏𝑢𝑙𝑘 =
𝑚𝑡𝑜𝑡𝑎𝑙

𝑉𝑡𝑜𝑡𝑎𝑙
 

(A.9)  

where, 

ρbulk = Bulk density (kg/m
3
) 

mtotal = Total bulk mass (kg) 

Vtotal = Total bulk volume (m
3
) 
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Particle Density Equation 

 𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑉𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
 

(A.10)  

 

where, 

ρparticle = Particle density (kg/m
3
) 

mtotal = Mass of individual particle (kg) 

Vtotal = Calculated volume of particle (m
3
) 

 

 

 

Shear Cell Based Equations (McKyes, 1985) 

 
𝜏 = 𝑐 + 𝜎𝑛 tan ∅ 

 (A.11)  

where, 

τ = Shear strength (Pa) 

c = Cohesion (Pa) 

σn = Normal pressure on internal shear surface (Pa) 

ϕ = Angle of internal friction (rad) 

 

 

 

 
𝜇𝑖 = tan ∅ 

 (A.12)  

where, 

μi = Coefficient of internal friction (dimensionless) 

ϕ = Angle of internal friction (rad) 

 

 

Dynamic Viscosity of Grape Juice (Simion et al., 2011) 

 𝜇 = 𝜇𝑤𝑎𝑡𝑒𝑟 ∙ 𝑒𝑥𝑝 [
(−0.24 + (1821.45

𝑇⁄ )°𝐵𝑥)

100 − ((0.86 + 0.000441𝑇)°𝐵𝑥)
] 

(A.13)  

where, 

μ: Dynamic viscosity (Pa·s) 

T: Absolute temperature (K) 

◦Bx: Degress brix (g of sugar/100 g solution) 
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A.2 Parallax Compensation 

 

Coefficient of Restitution  

 
Figure A.1. Configuration schematic of coefficient of restitution platform. 

 

When H˃=E: 

 𝐻𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐸 + [(𝑎𝑏𝑠(𝐸 − 𝐻)) ×
𝐴

𝐵
] 

(A.14)  

 

 

When H˂E: 

 𝐻𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐸 − [(𝑎𝑏𝑠(𝐸 − 𝐻)) ×
𝐴

𝐵
] 

(A.15)  

 

where, 

A = 145mm 

B = 210mm 

C = 52mm 

D = Varies with surface setup 

E = C-D 

H = Bounce height 
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Conveyor  

 
Figure A.2. Configuration schematic of conveyor grid pattern. 

 

 
𝑋

𝐷2
= tan 𝜃 

(A.16)  

 𝑊

𝐷1
= tan 𝜃 

(A.17)  

 
𝑋 =

𝐷2 ∙ 𝑊

𝐷1
 

(A.18)  

 

 

where, 

W = Grid distance (seen) 

X = Actual grid distance 

D1 = Distance between camera and grid background 

D2 = Distance between camera and projected particles 

θ = Working angle between D1 and line of sight  
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A.3 Terminal Velocity Determination 

 

Conical Wind Column Compensation 

 
Figure A.3. Calculation schematic for terminal velocity calculation. 

 

 

By using similar triangles: the diameter of the cross sectional area at the height of the sample: 

 

 

 

 
𝑥

𝑄
=

𝑍

𝐻𝑇𝑜𝑡𝑎𝑙
 

(A.19)  

 
𝑥 =

𝑍𝑄

𝐻𝑇𝑜𝑡𝑎𝑙
 

 

(A.20)  

 
𝐷𝑖𝑎𝑆𝑎𝑚𝑝𝑙𝑒 = (

𝐷𝑖𝑎1

2
− 𝑥) × 2 

 

(A.21)  
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Using the ratio of diameter 2 and the diameter at the sample height 

 

 

 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑉𝑜 × (
𝐷𝑖𝑎2

𝐷𝑖𝑎𝑆𝑎𝑚𝑝𝑙𝑒
) 

(A.22)  

 

where,  

Vo = Inlet velocity at the bottom of the conical wind column (point with 

greatest velocity) 

 

 

 

 

Calculating Aerodynamic Properties  

The general equations for the Reynolds number (NR), the drag coefficient (C), and 

terminal velocity (Vt) are as follows:  

 

 𝑁𝑅 =
𝜌𝑓𝑉𝑡𝐷

η
 

(A.23)  

 
𝐶 = [

2𝑊(𝜌𝑝 − 𝜌𝑓)

𝑉𝑡
2𝜌𝑝𝜌𝑓𝐴𝑝

] 
(A.24)  

 

𝑉𝑡 = [
2𝑊(𝜌𝑝 − 𝜌𝑓)

𝜌𝑝𝜌𝑓𝐴𝑝𝐶
]

1/2

 

(A.25)  

 

where,  

NR = Reynolds number (N kg m/s
2
) 

C = Drag coefficient (dimensionless) 

Vt = Terminal velocity (m/s) 

D = Effective dimension (m) 

η = Dynamic viscosity or absolute viscosity (kg/m·s or Pa·s) 

W = Particle mass (kg) 

Ap = Particle projected area (m
2
) 

dp = Particle diameter (m) 

ρf = Fluid density (kg/m
3
) 

ρp= Particle density (kg/m
3
) 

g = Gravitational acceleration (9.81 m/s
2
) 

 

 

 



 

162 

 

 

Table A.1 shows the general equations modified with respect to the flow direction and 

geometrical shapes of the particles. 

 

 

 

 

Table A.1. Equations of motion of spheres, disks, and circular cylinders (Adopted from Lapple, 

1956). 

 
 

 

 

The effective dimension (D) and the projected area (Ap) terms in the equations are 

dependent on the particle physical shape with respect to the air stream. When theoretically 

determining the terminal velocity, both the Reynolds number (NR) and drag coefficient (C) 

include a terminal velocity (Vt) term, which requires a trial and error approach (Mohsenin, 

1984). By using the CN
2

R or C/NR graphs, the Reynolds number can be found and then used for a 

better approximation of both the terminal velocity and drag coefficient (Mohsenin, 1984). This 

particular method is preferable as it also applies to irregularly shaped particles. The explanatory 

variables (CN
2

R or C/NR ) on the graphs can be calculated as follows:   
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 𝐶𝑁𝑅
2 =

2𝑔𝜌𝑓𝑑𝑝
3(𝜌𝑝 − 𝜌𝑓)

3η2
 

(A.26)  

 
𝐶/𝑁𝑟 =

4𝑔η(𝜌𝑝 − 𝜌𝑓)

3𝜌𝑑𝑓
2𝑉𝑡

3  
(A.27)  

 
𝐶𝑁𝑅

2 =
8𝑊𝜌𝑓(𝜌𝑝 − 𝜌𝑓)

𝜋η2𝜌𝑝
 

(A.28)  

 

 

Equations A.26 and A.27 apply to only spherical particles and equation A.28 to any form 

of particle (sphere, plate, cube, rounded body, and round plate).  Figure A.4 to Figure A.6 are 

used to determine the Reynolds number for particles that may be spherical, rounded, cubic, 

plated, or round plated. Figure A.7 is then used to find the drag coefficient, which can also be 

applied to equation 1 for the terminal velocity.    
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Figure A.4. Graphical relationship between Reynolds number (NR) and CNR

2
 for spherical 

particles (Schiller, 1932). 

 

 

 

 

 
Figure A.5. Graphical relationship between Reynolds number (NR) and CNR

2
 for plates, cubes, 

and rounded particles (Lapple, 1956; Henderson and Perry, 1952). 
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Figure A.6. Graphical relationship between Reynolds number (NR) and CNR

2
 for round plates 

(Schiller, 1932). 

 

 

 

 
Figure A.7. Graphical relationship between Reynolds number (NR) and drag coefficient for plates 

(Schiller, 1932). 
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Dynamic Viscosity of Air (Crane, 1988 and Weast, 1984) 

 𝜇 = 𝜇𝑜

𝑎

𝑏
(

𝑇

𝑇𝑜
)

3
2⁄

 
(A.29)  

 𝑎 = 0.555𝑇𝑜 + 𝐶 (A.30)  

 𝑏 = 0.555𝑇 + 𝐶 (A.31)  

where, 

μ = Dynamic (absolute) viscosity (Pa·s) 

μo = Reference viscosity (Pa·s) 

T = Input temperature (◦R) 

To = 524.07 – Reference temperature (◦R) 

C = 120 – Sutherland’s constant (dimensionless) 

 

 

 

Density of Air 

 𝜌𝑎𝑖𝑟 =
(

𝑃
𝑅𝑎 ∙ 𝑇) (1 + 𝑆𝐻)

(
1 + 𝑆𝐻 ∙ 𝑅𝑤

𝑅𝑎
)

 

(A.32)  

where, 

ρair = Moist air density (kg/m
3
) 

SH = Specific humidity of air vapor mixture (kg/kg) 

P = Atmospheric pressure (Pa)   

T = Input temperature (K) 

Ra = 286.9 – Individual gas constant of air (J/kg·K) 

Rw = 461.5 – Individual gas constant of water vapor (J/kg·K) 
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A.4 Derivation of Analytical Model Trajectory 

The following derivation is based on the Sitkei (1986) conveying by throwing equations for 

fertilizer particles: 

 

 

The initial velocity of the particles is simplified in the respective horizontal and vertical 

components: 

 

 𝑣 = √�̇�2 + �̇�2 (A.33)   

 

where, 

v = Initial velocity (m/s) 

ẋ = Velocity horizontal component (m/s) 

ẏ = Velocity vertical component (m/s) 

 

 

The following equation accounts for the drag force of a given object:  

 

 

 𝑊 =
𝑐𝑤𝐴𝑝𝑣2𝜌𝑎

2
 

(A.34)   

 

where, 

W = Object drag force (N) 

cw = Drag coefficient (dimensionless) 

Ap = Particle projected area (m
2
) 

v = Initial velocity (m/s) 

ρa = Air density (kg/m
3
) 

 

 

The drag force is simplified in both its horizontal and vertical components: 

 

 

 𝑊𝑥 = 𝑊 cos 𝛼 (A.35)   

 𝑊𝑦 = 𝑊 sin 𝛼 (A.36)   

 

where, 

W = Object drag force (N) 

Wx = Object drag force horizontal component (N) 

Wy = Object drag force vertical component (N) 

α = Conveyor angle (⁰)  
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Further simplification of the horizontal and vertical components: 

 

 cos 𝛼 =
�̇�

𝑣
 

(A.37)   

 
sin 𝛼 =

�̇�

𝑣
 

(A.38)  

 

 

The second law of Newton is used for the force balance for the horizontal component, which 

excludes the effect of gravity. 

 

 𝑚�̈� = −𝑊𝑥 =
−𝐾𝑣2�̇�

𝑣
 

(A.39)   

 𝑚�̈� = −𝐾�̇�√�̇�2 + �̇�2 (A.40)   

 

where, 

ẍ = Acceleration horizontal component (m/s
2
) 

 

 

 

where, 

 

 𝐾 =
𝑐𝑤𝐴𝑝𝜌𝑎

2
 

(A.41)   

 

 

A similar force balance for the vertical component includes the effect of gravity.  

 

 𝑚�̈� = −𝐾�̇�√�̇�2 + �̇�2 − 𝑚𝑔 (A.42)   

 

 

where, 

ÿ = Acceleration vertical component (m/s
2
) 

g = Gravitational acceleration (9.81 m/s
2
) 

 

 

 

 

 

Equations A and B are simplified into the following equations:  
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 �̈� = −
𝐾

𝑚
�̇�√�̇�2 + �̇�2 

(A.43)   

 
�̈� = −

𝐾

𝑚
�̇�√�̇�2 + �̇�2 − 𝑔 

(A.44)  
 

 

The double integration of the previous equations results in the following horizontal and vertical 

positioning equations:  

 

 𝑥(𝑡) =
𝑚

𝐾
𝑣 (1 − 𝑒

−𝐾
𝑚

𝑡) cos 𝛼 
(A.45)   

 
𝑦(𝑡) =

𝑚

𝐾
(

𝑚𝑔

𝐾
+ 𝑣 sin 𝛼) (1 − 𝑒

−𝐾
𝑚

𝑡) cos 𝛼 −
𝑚𝑔

𝐾
𝑡 

(A.46)  
 

 

 

where, 

x = Horizontal displacement (m) 

y = Vertical displacement (m) 
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B APPENDIX B 

B.1 Additional Physical Property Testing 

Porosity Measurements  

The porosity of the biological materials was determined using a 200 ml glass beaker. Each 

material was placed into the beaker until the 200 ml level was attained. The material mass was 

then recorded by the digital scale (KERN CKE 2000-2) as seen in Figure B.1. Water was 

introduced into the glass beaker to fill the void spaces of the 200 ml volume. The new mass was 

recorded and used to calculate to total void space. These measurements provided the necessary 

information to calculate the porosity of each material (eq. A.8).  

 
Figure B.1. Measuring grape porosity using a glass beaker. 
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Separation Force  

To characterize the bond strength between the biological materials, the axial force (N) 

required to separate two elements was determined. A digital force gauge (SAUTER Model FK 

100, Balingen, Germany) was used to measure the separation force. Four bond strengths were 

evaluated between the biological materials:  grape-grape stem, grape stem (large segment)-grape 

stem (small segment), leaf-petiole, and vine shoot-petiole. The samples were secured using a 

steel wire, which could be wrapped around the biological material and attached to the force 

gauge hook (Figure B.2). Once the sample was installed, a tension force was applied by hand 

until the two materials separated.   

 

 
Figure B.2. Experimental apparatus used in measuring the separation between the vine shoot and 

petiole. 

 

Force Gauge 

 

Steel Wire 

 

Hook 

 

Sample 

 



 

172 

 

Static Angle of Repose  

The static angle of repose provided information on the biological materials in bulk quantities. 

The testing apparatus consists of a rectangular plexiglass box equipped with a removable side 

panel. The container width was designed to be approximately 20 times the average diameter of 

the grapes. This design was based on a similar experimental procedure for the angle of repose 

conducted by Zhou et al. (2002). The large width was to prevent frictional effects between the 

side walls of the container and the material.  

 

For each trial run, the container would be filled uniformly until completely level. The side 

panel could then be removed slowly to allow the material to cascade down and create a natural 

angle of repose. The angle was obtained by using two rulers to measure the opposite and 

adjacent sides of the right triangle formed by the material. The angle was calculated by taking 

the inverse tangent of the opposite-adjacent side ratio.    

 

 
Figure B.3. Grape static angle of repose formed after removing the container side panel. 
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B.2 Sample Calculation for Single Leaf Deflection 

Angle of Deflection (5 mm Cylinder Height) 

 

Test:    

 

Outermost point (42.24, 7.47) 

 

 0.0044𝑥2 + 0.01𝑥 − 0.4378 
(B.1) 

 

Angle of Deflection (First Derivation) 

 0.0088𝑥 + 0.01 
(B.2) 

 

 0.0088(42.24) + 0.01 = 0.38𝑟𝑎𝑑𝑖𝑎𝑛𝑠 = 21.87° (B.3) 

 

  

DEM:  

 

Outermost point (42.15, 5.00) 

 

 0.0019𝑥2 + 0.0462𝑥 − 0.1315 
(B.4) 

 

Angle of Deflection (First Derivation) 

 0.0038𝑥 + 0.0462 
(B.5) 

 

 0.0038(42.15) + 0.0462 = 0.21𝑟𝑎𝑑𝑖𝑎𝑛𝑠 = 11.82° (B.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

174 

 

C APPENDIX C 

C.1 Physical Property Testing Results 

Summary Results for the Three Locations 

 

Table C.1. Physical characteristics of biological materials for the Aigues-Mortes location. 

Grape Mean Std. Dev. Coef. of Variation Count 80 

Mass (g) 1.25 0.31 24.5% 

  Sphericity (%) 98.0 1.26 1.3% 

  Average Diameter (mm) 12.57 0.99 7.9% 

  True Density (kg WM/m
3
) 1177.9 91.0 7.7% 

  

      Leaves Mean Std. Dev. Coef. of Variation Count 

 Mass (g) 1.29 0.62 47.9% 60 

 Leaf Thickness (mm) 0.54 0.08 15.6% 60 

 True Density (kg WM/m
3
) 558.4 165.5 29.6% 51 

 Leaf Area (mm
2
) 4204.5 1924.8 45.8% 51  

Leaf Perimeter (mm) 348.5 93.81 26.9% 51  

      

Petioles Mean Std. Dev. Coef. of Variation Count 50 

Mass (g) 0.36 0.26 70.4% 

  Average Diameter (mm) 2.29 0.60 26.3% 

  True Density (kg WM/m m
3
) 1222.3 121.4 9.9% 

  Length (mm) 64.11 17.22 26.9% 

  

      Vine Shoot Mean Std. Dev Coef. of Variation Count 32 

Average Diameter (mm) 5.40 0.76 14.1% 

  True Density (kg WM/ m
3
) 882.6 149.7 17.0% 
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Table C.2. Coefficient of restitution of biological materials for the Aigues-Mortes location. 

Interaction Mean Std. Dev. Coef. of Variation n 

Grape_on_Grape 0.134 0.017 12.4% 68 

Gstem_on_Grape 0.209 0.040 19.3% 54 

Shoot_on_Grape 0.157 0.021 13.5% 62 

Petiole_on_Grape 0.210 0.057 27.0% 53 

Grape_on_Gstem 0.232 0.043 18.7% 51 

Gstem_on_Gstem 0.228 0.018 7.9% 27 

Shoot_on_Gstem 0.221 0.067 30.1% 37 

Petiole_on_Gstem 0.163 0.026 15.9% 25 

Grape_on_Leaf 0.357 0.036 10.2% 70 

Gstem_on_Leaf 0.293 0.033 11.2% 53 

Shoot_on_Leaf 0.315 0.034 10.9% 53 

Petiole_on_Leaf 0.283 0.052 18.4% 51 

Grape_on_Steel 0.329 0.043 13.0% 30 

Gstem_on_Steel 0.244 0.033 13.4% 47 

Shoot_on_Steel 0.327 0.046 14.1% 51 

Petiole_on_Steel 0.239 0.046 19.2% 32 

Grape_on_Mesh 0.259 0.028 10.8% 31 

Gstem_on_Mesh 0.251 0.031 12.2% 50 

Shoot_on_Mesh 0.227 0.037 16.1% 62 

Petiole_on_Mesh 0.263 0.041 15.6% 40 

Grape_on_Bucket 0.274 0.030 11.1% 34 

Gstem_on_Bucket 0.270 0.034 12.4% 52 

Shoot_on_Bucket 0.268 0.050 18.5% 57 

Petiole_on_Bucket 0.268 0.068 25.2% 44 

Grape_on_Conveyor 0.312 0.033 10.6% 34 

Gstem_on_Conveyor 0.266 0.042 15.7% 33 

Shoot_on_Conveyor 0.307 0.040 13.1% 58 

Petiole_on_Conveyor 0.272 0.057 21.0% 42 
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Table C.3. Angle of static friction of biological materials for the Aigues-Mortes location. 

Interaction Mean Std. Dev. Coef. of Variation n 

Grape-Grape 49.6 8.6 17.3% 60 

Gstem-Grape 48.1 7.5 15.6% 60 

Gstem-Gstem 43.4 8.7 20.% 52 

Grape-Leaf 34.2 6.7 19.5% 39 

Gstem-Leaf 42.1 7.7 18.2% 51 

Leaf-Leaf 48.0 9.9 20.6% 44 

Shoot-Leaf 40.1 10.5 26.1% 49 

Petiole-Leaf 30.2 4.7 15.5% 38 

Grape-Shoot 28.8 3.9 13.5% 40 

Gstem-Shoot 42.5 5.9 13.8% 42 

Shoot-Shoot 41.0 8.5 20.7% 50 

Grape-Petiole 32.1 3.1 9.8% 30 

Gstem-Petiole 46.5 6.9 14.8% 47 

Shoot-Petiole 38.4 8.1 21.2% 45 

Petiole-Petiole 50.0 9.3 18.6% 50 

Grape-Steel 22.0 3.4 15.6% 36 

Gstem-Steel 41.0 6.8 16.5% 37 

Leaf-Steel 30.2 6.3 20.8% 36 

Shoot-Steel 34.4 6.5 18.8% 45 

Petiole-Steel 22.1 3.3 14.7% 31 

Grape-Mesh 23.0 2.3 10.2% 44 

Gstem-Mesh 39.8 9.2 23.0% 46 

Leaf-Mesh 41.2 8.9 21.7% 39 

Shoot-Mesh 28.2 5.5 19.6% 48 

Petiole-Mesh 36.4 6.1 16.6% 48 

Grape-Conveyor 47.5 9.6 20.1% 37 

Gstem-Conveyor 44.9 8.4 18.6% 43 

Leaf-Conveyor 48.4 9.0 18.6% 41 

Shoot-Conveyor 42.0 6.9 16.4% 45 

Petiole-Conveyor 50.8 10.5 20.8% 53 

Grape-Bucket 36.5 6.8 18.5% 40 

Gstem-Bucket 48.4 9.8 20.2% 54 

Leaf-Bucket 28.2 7.1 25.1% 41 

Shoot-Bucket 48.6 9.2 18.9% 58 

Petiole-Bucket 47.3 9.1 19.1% 44 
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Table C.4. Separation force (N) of biological materials for the Aigues-Mortes location. 

Interaction Mean Std. Dev. Coef. of Variation n 

Grape-Gstem 2.14 0.88 41.1% 100 

Gstem-Gstem 13.63 8.38 61.5% 103 

Leaf-Petiole 15.18 6.05 39.8% 103 

Shoot-Petiole 21.61 9.53 44.1% 103 

 

 

 

 

 

Table C.5. Static angle of repose (◦) of grapes for the Aigues-Mortes location. 

Material Mean Std. Dev. Coef. of Variation n 

Grape 46.3 5.3 11.5% 15 

 

 

 

 

Table C.6. Aerodynamic characteristics of grapes for the Aigues-Mortes location. 

Drag Coefficient (--) Mean Std. Dev. Coef. of Variation n 

Grape  0.275 0.046 16.7% 30 

Leaf (disc cut out) 1.909 0.697 36.5% 30 

Petiole 0.074 0.034 45.8% 42 

Vine Shoot 0.130 0.030 23.5% 44 

     Terminal Velocity (m/s) Mean Std. Dev. Coef. of Variation n 

Grape  22.71 0.96 4.2% 30 

Leaf (disc cut out) 1.88 0.18 9.4% 30 

Petiole 12.50 3.63 29.1% 42 

Vine Shoot 14.64 1.41 9.6% 44 
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Table C.7. Physical characteristics of biological materials for the Saint-Gervais location. 

Grape Mean Std. Dev. Coef. of Variation n 

Mass (g) 1.64 0.31 18.9% 90 

Sphericity (%) 96.3 2.31 2.4% 90 

Average Diameter (mm) 13.63 0.83 6.1% 90 

True Density (kg WM/m
3
) 1223.0 39.6 3.2% 90 

     Leaf Mean Std. Dev. Coef. of Variation n 

Mass (g) 2.46 1.44 58.4% 30 

Leaf Thickness (mm) 0.48 0.08 16.6% 30 

     Petiole Mean Std. Dev. Coef. of Variation n 

Mass (g) 0.45 0.30 66.8% 30 

Average Diameter (mm) 2.57 0.60 23.4% 30 

True Density (kg WM/m
3
) 1127.5 109.4 9.7% 30 

Length (mm) 69.35 17.05 24.6% 30 

     Vine Shoot Mean Std. Dev. Coef. of Variation n 

Average Diameter (mm) 6.84 0.84 12.3% 30 

True Density (kg WM/m
3
) 1009.0 35.4 3.5% 30 

 

 

 

 

 

Table C.8. Bulk characteristics of biological materials for the Saint-Gervais location. 

True Density (kg WM/m
3
) Mean Std. Dev. Coef. of Variation n 

Grape 1140.5 53.7 4.7% 20 

Grape Stem 845.4 75.1 8.9% 3 

     Porosity  Mean Std. Dev. Coef. of Variation n 

Grape 0.30 0.03 9.9% 20 

Grape Stem 0.87 0.01 1.3% 3 
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Table C.9. Coefficient of restitution of biological materials for the Saint-Gervais location. 

Interaction Mean Std. Dev. Coef. of Variation n 

Grape_on_Grape 0.184 0.016 8.9% 55 

Grape_on_Gstem 0.208 0.043 20.8% 31 

Grape_on_Leaf 0.334 0.037 11.0% 50 

Grape_on_Steel 0.321 0.053 16.4% 57 

Grape_on_Mesh 0.303 0.053 17.6% 38 

Grape_on_Bucket 0.311 0.034 11.0% 49 

Grape_on_Conveyor 0.348 0.049 14.1% 56 

 

 

 

 

 

Table C.10. Angle of static friction of biological materials for the Saint-Gervais location. 

Interaction Mean Std. Dev. Coef. of Variation n 

Grape-Grape 50.2 7.4 14.7% 50 

Gstem-Grape 48.9 8.5 17.4% 50 

Grape-Leaf 35.5 5.2 14.7% 50 

Grape-Shoot 29.1 3.4 11.8% 50 

Grape-Petiole 30.4 3.6 11.9% 50 

Grape-Steel 31.3 7.5 23.8% 50 

Grape-Mesh 22.1 5.0 22.4% 50 

Grape-Conveyor 46.8 6.2 13.2% 50 

Grape-Bucket 40.6 8.1 20.0% 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

180 

 

Table C.11. Physical characteristics of biological materials for the Pauillac location. 

Grape Mean Std. Dev. Coef. of Variation n 

Mass (g) 1.56 0.30 19.1% 90  

Sphericity (%) 96.7 1.7 1.7% 90 

Average Diameter (mm) 13.23 0.94 7.1% 90 

True Density (kg WM/m
3
) 1275.5 44.5 3.5% 90 

     Leaf Mean Std. Dev. Coef. of Variation n 

Mass (g) 1.5226 0.81 53.5% 50 

Leaf Thickness (mm) 0.46 0.06 13.4% 50 

     Petiole Mean Std. Dev. Coef. of Variation n 

Mass (g) 0.36 0.26 70.4% 50 

Average Diameter (mm) 2.29 0.60 26.3% 50 

True Density (kg WM/m
3
) 1222.3 121.4 9.9% 50 

Length (mm) 64.11 17.22 26.9% 50 

     Vine Shoot Mean Std. Dev. Coef. of Variation n 

Average Diameter (mm) 6.80 1.14 16.8% 50 

True Density (kg WM/m
3
) 1066.2 55.4 5.2% 50 

 

 

 

 

 

 

Table C.12. Physical characteristics of biological materials for the Pauillac location (continued). 

True Density (kg WM/m
3
) Mean Std. Dev. Coef. of Variation Location n 

Grape 1077.2 8.8 0.8% PIC 12 

Grape Stem 727.1 128.4 17.7% PIC 4 

Leaf 684.6 29.4 4.3% PIC 10 

Petiole 1016.7 0.3 0.0% PIC 2 

Vine Shoot 1079.3 7.0 0.6% PIC 4 

      Porosity Mean Std. Dev. Coef. of Variation Location n 

Grape 0.41 0.02 4.7% PIC 12 

Grape Stem 0.90 0.04 4.2% PIC 4 

Leaf 0.78 0.04 4.8% PIC 10 

Petiole 0.68 0.04 6.6% PIC 2 

Vine Shoot 0.56 0.07 11.8% PIC 4 
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Table C.13. Coefficient of restitution of biological materials for the Pauillac location. 

Interaction Mean Std. Dev. Coef. of Variation n 

Grape_on_Grape 0.202 0.028 13.8% 44 

Gstem_on_Grape 0.197 0.038 19.4% 34 

Shoot_on_Grape 0.167 0.032 19.0% 27 

Petiole_on_Grape 0.237 0.058 24.4% 31 

Grape_on_Steel 0.345 0.036 10.5% 36 

Gstem_on_Steel 0.261 0.040 15.4% 34 

Shoot_on_Steel 0.310 0.050 16.2% 40 

Petiole_on_Steel 0.280 0.057 20.3% 50 

Grape_on_Mesh 0.304 0.040 13.1% 46 

Gstem_on_Mesh 0.229 0.034 14.9% 50 

Shoot_on_Mesh 0.208 0.036 17.2% 30 

Petiole_on_Mesh 0.272 0.061 22.6% 31 

Grape_on_Bucket 0.230 0.028 12.2% 40 

Gstem_on_Bucket 0.241 0.042 17.5% 50 

Shoot_on_Bucket 0.226 0.036 15.9% 35 

Petiole_on_Bucket 0.266 0.054 20.2% 36 

Grape_on_Conveyor 0.340 0.040 11.6% 37 

Gstem_on_Conveyor 0.243 0.045 18.5% 56 

Shoot_on_Conveyor 0.285 0.051 17.7% 33 

Petiole_on_Conveyor 0.271 0.073 26.9% 41 

Grape_on_Shoot 0.267 0.063 23.6% 38 

Grape_on_Petiole 0.298 0.048 16.2% 45 

Gstem_on_Shoot 0.221 0.041 18.5% 36 

Shoot_on_Shoot 0.182 0.032 17.8% 26 

Petiole_on_Shoot 0.269 0.074 27.6% 40 

Gstem_on_Petiole 0.225 0.045 20.2% 41 

Shoot_on_Petiole 0.215 0.052 24.3% 39 

Petiole_on_Petiole 0.213 0.065 30.4% 47 
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Table C.14. Angle of static friction of biological materials for the Pauillac location. 

Interaction Mean Std. Dev. Coef. of Variation n 

Grape-Leaf 35.4 4.6 13.0% 40 

Gstem-Leaf 45.5 8.4 18.4% 40 

Leaf-Leaf 49.2 10.5 21.3% 40 

Shoot-Leaf 39.3 8.6 21.9% 38 

Petiole-Leaf 34.6 7.5 21.6% 40 

Gstem-Shoot 44.7 5.2 11.6% 40 

Grape-Petiole 29.8 3.5 11.7% 40 

Gstem-Petiole 43.3 6.5 14.9% 40 

Shoot-Petiole 32.2 4.1 12.8% 40 

Petiole-Petiole 38.2 5.4 14.1% 40 

Grape-Steel 34.9 5.8 16.50% 60 

Gstem-Steel 43.2 6.4 14.9% 59 

Leaf-Steel 31.9 4.7 14.8% 60 

Shoot-Steel 30.3 3.7 12.3% 60 

Petiole-Steel 30.6 4.4 14.3% 60 

Grape-Conveyor 44.8 7.4 16.5% 59 

Gstem-Conveyor 40.6 5.6 13.7% 60 

Leaf-Conveyor 47.1 8.5 18.1% 60 

Shoot-Conveyor 41.4 6.6 15.9% 60 

Petiole-Conveyor 49.3 9.0 18.2% 60 

 

 

 

 

Table C.15. Aerodynamic characteristics of grapes for the Aigues-Mortes location. 

Drag Coefficient (--) Mean Std. Dev. Coef. of Variation n 

Grape  0.467 0.033 7.0% 30 

Leaf (disc cut out) 2.156 0.634 29.4% 30 

Petiole 0.163 0.030 18.5% 30 

Vine Shoot 0.239 0.051 21.2% 30 

     

     Terminal Velocity (m/s) Mean Std. Dev. Coef. of Variation n 

Grape  19.45 0.78 4.0% 30 

Leaf (disc cut out) 1.83 0.21 11.4% 30 

Petiole 8.46 0.83 9.8% 30 

Vine Shoot 11.55 1.24 10.7% 30 
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ANOVA Results for Physical Properties between the Three Locations 

This analysis was conducted using a post-hoc ANOVA test. The Tukey HSD test was 

employed given the three levels of comparison (three locations). The comparisons with only two 

available levels were analyzed using an ANOVA test. Below is an example for the code used in 

the R
®
 software. The tables that follow are the results from the post-hoc ANOVA tests for all the 

measured physical properties.  

 

  

##Grape Material  

model1<-with(subset(Data_1,MATERIAL=="GRAPE"),aov(MASS~LOCATION)) 

summary(model1) 

tuk1<- TukeyHSD(model1) 

tuk1 

 

 

 

 

 

Table C.16. Analysis of variance (Tukey HSD Test) results for the mass of biological materials. 

Mass (g)    

Grape   diff lwr upr p adj 

PIC-AIG_MRT 0.312556 0.20233 0.422781 0* 

ST_GEV-AIG_MRT 0.389444 0.279219 0.49967 0* 

ST_GEV-PIC 0.076889 -0.03005 0.183824 0.209044 

      

Leaf  diff lwr upr p adj 

PIC-AIG_MRT 0.2326 -0.18337 0.648567 0.383805 

ST_GEV-AIG_MRT 1.174333 0.688588 1.660078 2E-07* 

ST_GEV-PIC 0.941733 0.440058 1.443409 5.26E-05* 

      

Petiole  diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC 0.090933 -0.03497 0.216837 0.154467 
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Table C.17. Analysis of variance (Tukey HSD Test) for the sphericity of grapes. 

Sphericity (%)    

Grape   diff lwr upr p adj 

PIC-AIG_MRT -1.36886 -2.02431 -0.71342 4.5E-06* 

ST_GEV-AIG_MRT -1.70564 -2.36108 -1.05019 0* 

ST_GEV-PIC -0.33678 -0.97265 0.299097 0.425789 

 

 

 

 

Table C.18. Analysis of variance (Tukey HSD Test) results for the average diameter of 

biological materials. 

Average Diameter (mm)  

Grape   diff lwr upr p adj 

PIC-AIG_MRT 0.653667 0.323493 0.98384 1.47E-05* 

ST_GEV-AIG_MRT 1.059 0.728827 1.389173 0* 

ST_GEV-PIC 0.405333 0.085018 0.725649 0.008755* 

      

Petiole  diff lwr upr p adj 

PIC-AIG_MRT 0.1152 -0.08873 0.319131 0.377617 

ST_GEV-AIG_MRT 0.3962 0.151106 0.641294 0.000537* 

ST_GEV-PIC 0.281 0.009092 0.552908 0.041018* 

      

Vine Shoot  diff lwr upr p adj 

PIC-AIG_MRT 1.3988 0.878332 1.919268 0* 

ST_GEV-AIG_MRT 1.437 0.852738 2.021262 2E-07* 

ST_GEV-PIC 0.0382 -0.49274 0.569142 0.984019 
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Table C.19. Analysis of variance (Tukey HSD Test) results for the density of biological 

materials.  

True Density (kg WM/m
3
)  

Grape   diff lwr upr p adj 

PIC-AIG_MRT 97.62014 75.36498 119.8753 0* 

ST_GEV-AIG_MRT 45.13858 22.88343 67.39374 8.70E-06* 

ST_GEV-PIC -52.4816 -74.0722 -30.8909 1.00E-07* 

      

Petiole  diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC -94.8051 -148.634 -40.9766 0.000757* 

      

Vine Shoot  diff lwr upr p adj 

PIC-AIG_MRT 183.619 135.256 231.982 0* 

ST_GEV-AIG_MRT 126.3978 72.10701 180.6886 7E-07* 

ST_GEV-PIC -57.2212 -106.557 -7.88503 0.018672* 

 

 

 

Table C.20. Analysis of variance (Tukey HSD Test) results for the length of petioles.  

Length (mm)    

Petiole  diff lwr upr p adj 

PIC-AIG_MRT 15.3089 8.730765 21.88703 4E-07* 

ST_GEV-AIG_MRT 20.55243 12.6465 28.45837 0* 

ST_GEV-PIC 5.243533 -3.52731 14.01438 0.336358 

 

 

 

Table C.21. Analysis of variance (Tukey HSD Test) results for leaf thickness. 

Thickness (mm)  

Leaf  diff lwr upr p adj 

PIC-AIG_MRT -0.08553 -0.12011 -0.05096 1E-07* 

ST_GEV-AIG_MRT -0.063 -0.10338 -0.02262 0.000913* 

ST_GEV-PIC 0.022533 -0.01917 0.064236 0.408692 
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Table C.22. Analysis of variance (Tukey HSD Test) results for the porosity of biological 

materials. 
Porosity    

Grape   diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC -0.1085 -0.12819 -0.08881 0* 

      

Grape Stem  diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC -0.035 -0.09519 0.025194 0.195235 

 

 

 

 

Table C.23. Analysis of variance (Tukey HSD Test) results for the density of biological 

materials. 
True Density (kg WM/m

3
)  

Grape   diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC 63.2705 31.15056 95.39044 0.000359* 

      

Grape Stem  diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC 118.275 -98.1191 334.6691 0.218998 
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Table C.24. Analysis of variance (Tukey HSD Test) results for the terminal velocity of biological 

materials. 

Terminal Velocity (m/s)  

Grape 

 

 diff lwr upr p adj 

PIC-AIG_MRT -3.25833 -3.71079 -2.80588 0* 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Leaf 

 

 diff lwr upr p adj 

PIC-AIG_MRT -0.04967 -0.14943 0.050102 0.323149 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Petiole  diff lwr upr p adj 

 PIC-AIG_MRT -4.03795 -5.38761 -2.68829 1.00E-07* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot  diff lwr upr p adj 

PIC-AIG_MRT -3.08459 -3.71938 -2.4498 0* 

ST_GEV-AIG_MRT     

ST_GEV-PIC     
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Table C.25. Analysis of variance (Tukey HSD Test) results for the drag coefficient of biological 

materials. 
Drag Coefficient  

Grape 

 

 diff lwr upr p adj 

PIC-AIG_MRT 0.192467 0.171903 0.21303 0* 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Leaf 

 

 diff lwr upr p adj 

PIC-AIG_MRT 0.246633 -0.09766 0.590927 0.156964 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Petiole  diff lwr upr p adj 

 PIC-AIG_MRT 0.088367 0.072929 0.103804 0* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot  diff lwr upr p adj 

PIC-AIG_MRT 0.10895 0.090162 0.127738 0* 

ST_GEV-AIG_MRT     

ST_GEV-PIC     
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Table C.26. Analysis of variance (Tukey HSD Test) results for the coefficient of restitution of 

biological materials. 
Coefficient of Restitution   

Grape-Grape   diff lwr upr p adj 

PIC-AIG_MRT 0.067844 0.058594 0.077093 0* 

ST_GEV-AIG_MRT 0.049848 0.041178 0.058518 0* 

ST_GEV-PIC -0.018 -0.02767 -0.00833 5.71E-05* 

      

Grape-Steel  diff lwr upr p adj 

PIC-AIG_MRT 0.015556 -0.01148 0.042586 0.36215 

ST_GEV-AIG_MRT -0.00838 -0.03304 0.016286 0.700011 

ST_GEV-PIC -0.02393 -0.04721 -0.00065 0.042405* 

      

Grape-Mesh  diff lwr upr p adj 

 PIC-AIG_MRT 0.044608 0.021334 0.067882 4.01E-05* 

 ST_GEV-AIG_MRT 0.043801 0.019562 0.068041 0.000111* 

 ST_GEV-PIC -0.00081 -0.02276 0.021149 0.99581 

      

Grape-Bucket  diff lwr upr p adj 

 PIC-AIG_MRT -0.04393 -0.06127 -0.02658 1.00E-07* 

 ST_GEV-AIG_MRT 0.037369 0.020771 0.053966 1.30E-06* 

 ST_GEV-PIC 0.081298 0.065452 0.097144 0* 

      

Grape-

Conveyor 

 diff lwr upr p adj 

 PIC-AIG_MRT 0.028259 0.004291 0.052227 0.016371* 

 ST_GEV-AIG_MRT 0.03694 0.015006 0.058875 0.000323* 

 ST_GEV-PIC 0.008681 -0.01269 0.030055 0.601289 
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Table C.27. Analysis of variance (Tukey HSD Test) results for the coefficient of restitution of 

biological materials (continued). 
Coefficient of Restitution  

Grape-Grape Stem 

 

 diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT -0.02375 -0.04341 -0.00408 0.018569* 

ST_GEV-PIC     

      

Grape-Leaf 

 

 diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT -0.02357 -0.03696 -0.01019 0.000686* 

ST_GEV-PIC     

      

Grape Stem-Grape  diff lwr upr p adj 

 PIC-AIG_MRT -0.01208 -0.02932 0.005156 0.167099 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot-Grape  diff lwr upr p adj 

 PIC-AIG_MRT 0.00956 -0.00178 0.020901 0.097456 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Petiole-Grape  diff lwr upr p adj 

 PIC-AIG_MRT 0.027183 0.001483 0.052883 0.038429* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Grape Stem-Steel  diff lwr upr p adj 

 PIC-AIG_MRT 0.016874 0.000709 0.033038 0.040977* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot-Steel  diff lwr upr p adj 

 PIC-AIG_MRT -0.01697 -0.03709 0.00315 0.097281 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Petiole-Steel  diff lwr upr p adj 

PIC-AIG_MRT 0.04144 0.017622 0.065258 0.000862* 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

 

 

 



 

191 

 

Table C.28. Analysis of variance (Tukey HSD Test) results for the coefficient of restitution of 

biological materials (continued 2). 
Coefficient of Restitution  

Grape Stem-Mesh diff lwr upr p adj 

 PIC-AIG_MRT -0.0228 -0.03566 -0.00994 0.000663* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot-Mesh 

 

 diff lwr upr p adj 

PIC-AIG_MRT -0.01934 -0.03535 -0.00333 0.018472* 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Petiole-Mesh  diff lwr upr p adj 

 PIC-AIG_MRT 0.009437 -0.01492 0.03379 0.442124 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Grape Stem-Bucket diff lwr upr p adj 

 PIC-AIG_MRT -0.02965 -0.04456 -0.01474 0.000148* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot-Bucket  diff lwr upr p adj 

 PIC-AIG_MRT -0.04157 -0.06068 -0.02245 4.01E-05* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Petiole-Bucket  diff lwr upr p adj 

 PIC-AIG_MRT -0.00197 -0.02962 0.025675 0.887431 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Grape Stem-Conveyor diff lwr upr p adj 

 PIC-AIG_MRT -0.02304 -0.04214 -0.00395 0.018604* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot-Conveyor diff lwr upr p adj 

 PIC-AIG_MRT -0.02156 -0.04068 -0.00243 0.027588* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     
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Table C.29. Analysis of variance (Tukey HSD Test) results for the coefficient of restitution of 

biological materials (continue 3). 

Coefficient of Restitution  

Petiole-Conveyor 

 

 diff lwr upr p adj 

PIC-AIG_MRT -0.00059 -0.02912 0.02795 0.967449 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Grape-Vine Shoot 

 

 diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC 0.030473 0.007593 0.053353 0.009603* 

      

Grape-Petiole  diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT     

ST_GEV-PIC 0.028245 0.008543 0.047947 0.005466* 
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Table C.30. Analysis of variance (Tukey HSD Test) results for the friction angle of biological 

materials. 

Friction Angle (◦)   

Grape-Leaf 

 

 diff lwr upr p adj 

PIC-AIG_MRT 1.252821 -1.69642 4.202065 0.573514 

ST_GEV-AIG_MRT 1.298821 -1.50105 4.098686 0.515722 

ST_GEV-PIC 0.046 -2.73413 2.826134 0.999151 

      

Grape-Petiole 

 

 diff lwr upr p adj 

PIC-AIG_MRT -2.36917 -4.3508 -0.38753 0.014689* 

ST_GEV-AIG_MRT -1.69267 -3.58747 0.202138 0.090038 

ST_GEV-PIC 0.6765 -1.06399 2.416989 0.627081 

      

Grape-Steel  diff lwr upr p adj 

 PIC-AIG_MRT 12.93889 9.95831 15.91947 0* 

 ST_GEV-AIG_MRT 9.375222 6.284892 12.46555 0* 

 ST_GEV-PIC -3.56367 -6.27091 -0.85642 0.006207* 

      

Grape-Conveyor  diff lwr upr p adj 

 PIC-AIG_MRT -2.77783 -6.56879 1.013132 0.195615 

 ST_GEV-AIG_MRT -0.77254 -4.6928 3.147714 0.886975 

 ST_GEV-PIC 2.005288 -1.46962 5.480191 0.361099 

      

Grape-Grape  diff lwr upr p adj 

 PIC-AIG_MRT     

 ST_GEV-AIG_MRT 0.550333 -2.51435 3.615018 0.722577 

 ST_GEV-PIC     

      

Grape Stem-Grape  diff lwr upr p adj 

 PIC-AIG_MRT     

 ST_GEV-AIG_MRT 0.817 -2.20406 3.83806 0.593027 

 ST_GEV-PIC     

      

Grape-Vine Shoot  diff lwr upr p adj 

 PIC-AIG_MRT     

 ST_GEV-AIG_MRT 0.2565 -1.27793 1.790929 0.740527 

 ST_GEV-PIC     

      

Grape-Mesh  diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT -0.85418 -2.48012 0.771758 0.299505 

ST_GEV-PIC     

 

 

 



 

194 

 

Table C.31. Analysis of variance (Tukey HSD Test) results for the friction angle of biological 

materials (continued). 

Friction Angle (◦)   

Grape-Bucket 

 

 diff lwr upr p adj 

PIC-AIG_MRT     

ST_GEV-AIG_MRT 4.172 0.984881 7.359119 0.010891* 

ST_GEV-PIC     

      

Grape Stem-Leaf  diff lwr upr p adj 

PIC-AIG_MRT 3.318088 -0.03239 6.668565 0.052208 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Leaf-Leaf  diff lwr upr p adj 

 PIC-AIG_MRT 1.229773 -3.19122 5.650762 0.581521 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Petiole-Leaf  diff lwr upr p adj 

 PIC-AIG_MRT 4.356053 1.52388 7.188226 0.003028* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Grape Stem-Vine Shoot diff lwr upr p adj 

 PIC-AIG_MRT 2.165 -0.27429 4.604289 0.081162 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Grape Stem-Petiole diff lwr upr p adj 

 PIC-AIG_MRT -3.1441 -6.00327 -0.28492 0.031535* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Vine Shoot-Petiole  diff lwr upr p adj 

 PIC-AIG_MRT -6.25 -9.08548 -3.41452 3.39E-05* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Petiole-Petiole  diff lwr upr p adj 

PIC-AIG_MRT -11.8065 -15.102 -8.51097 0* 

ST_GEV-AIG_MRT     

ST_GEV-PIC     
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Table C.32. Analysis of variance (Tukey HSD Test) results for the friction angle of biological 

materials (continued 2). 
Friction Angle (◦)   

Grape Stem-Steel 

 

 diff lwr upr p adj 

PIC-AIG_MRT 2.208933 -0.52058 4.938446 0.111444 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Leaf-Steel 

 

 diff lwr upr p adj 

PIC-AIG_MRT 1.65 -0.59065 3.890649 0.147042 

ST_GEV-AIG_MRT     

ST_GEV-PIC     

      

Vine Shoot-Steel  diff lwr upr p adj 

 PIC-AIG_MRT -4.05 -6.03466 -2.06534 0.000101* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Petiole-Steel  diff lwr upr p adj 

 PIC-AIG_MRT 8.45 6.678947 10.22105 0* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Grape Stem-Conveyor diff lwr upr p adj 

 PIC-AIG_MRT -4.26713 -6.98677 -1.54749 0.002413* 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Leaf-Conveyor  diff lwr upr p adj 

 PIC-AIG_MRT -1.28732 -4.79299 2.21836 0.467953 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

Vine Shoot-Conveyor diff lwr upr p adj 

 PIC-AIG_MRT -0.56111 -3.18355 2.061331 0.672196 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

      

Petiole-Conveyor  diff lwr upr p adj 

 PIC-AIG_MRT -1.4805 -5.11677 2.155767 0.421511 

 ST_GEV-AIG_MRT     

 ST_GEV-PIC     

Vine Shoot-Leaf  diff lwr upr p adj 

PIC-AIG_MRT -0.79667 -5.02128 3.427937 0.708636 

ST_GEV-AIG_MRT     

ST_GEV-PIC     
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C.2 Physical Characteristics of Artificial Grape  

 

Table C.33. Physical characteristics of artificial grapes. 

Artificial Grapes Mean St. Dev. Coef. of Variation 

Mass (g) 1.9 0.19 10.1% 

Sphericity (%) 97.7 1.2 1.2% 

Average Diameter (mm) 19.73 0.74 3.7% 

True Density (kg WM/m^3) 467.9 26.6 5.7% 
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C.3 Multi-Deflection Tests for Complete Leaf 

The following figures show the comparison between the scanned and simulated leaf for the five 

deflection configurations. Multiple views of the comparison are displayed for each configuration. 

 

 

 

 
 

 
 

 

Figure C.1. Multi-deflection test comparison-Configuration 1. (a) Top view. (b) Orthogonal 

view. (c) Side view. (d) Front view.  
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Figure C.2. Multi-deflection test comparison-Configuration 2. (a) Top view. (b) Orthogonal 

view. (c) Side view. (d) Front view.  

 

 

 

 

 
 

 
Figure C.3. Multi-deflection test comparison-Configuration 3. (a) Top view. (b) Orthogonal 

view. (c) Side view. (d) Front view. 
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Figure C.4. Multi-deflection test comparison -Configuration 4. (a) Top view. (b) Orthogonal 

view. (c) Side view. (d) Front view.  

 

 

 

 

 

 

 

 
Figure C.5. Multi-deflection test comparison -Configuration 5. (a) Top view. (b) Orthogonal 

view. (c) Side view. (d) Front view. 
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Figure C.6. Leaf on multi-deflection plate-configuration 4. (a) Actual leaf that was scanned for 

the configuration 4. (b) Comparison between scanned (STL file) and simulated leaf.    
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