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Abstract

The climate of cold regions is fragile and could be easily threatened by human activities. Hydrological

processes play an important role in the climate of cold regions, and using computational models to simulate

cold-region hydrological processes helps people understand past hydrological events and predict future ones.

With the need to get more accurate simulation results, more complex computational models are often

required. However, the complexity of models is often limited by available computational resources. Therefore,

improving the computational efficiency of model simulations is an urgent task for hydrological researchers

and software developers. The Canadian Hydrological Model (CHM) is a modular software package that is

used to simulate cold-region hydrological processes. CHM uses an efficient surface discretization, unstructured

triangular meshes, to reduce the number of discretization elements, which in turn decreases the complexity of

cold-region hydrological models. CHM also employs parallelization to make models more efficient. By profiling

the performance of CHM, we find that there are some computationally intensive functions inside CHM that are

evaluated repeatedly. Lookup tables (LUTs) followed by optional interpolation or Taylor series approximation

are common optimizations to replace such direct function evaluations. These optimizations can decrease the

complexity of cold-region hydrological models further. The Function Comparator (FunC) is a C++ library

that can automatically create one-dimensional LUTs for continuous univariate functions on uniformly spaced

grids.

In this thesis, we use FunC to implement LUTs for two computationally intensive and repeatedly called

functions in CHM, achieving an improvement of around 20% in the performance of CHM in the sense of running

time on two cold-region hydrological simulations. In the first step, we identify two computationally intensive

and repeatedly called functions by profiling the performance of CHM, determine the error tolerances and the

ranges of inputs for their LUT implementations, and use FunC to implement linear interpolation LUTs for

both functions in CHM. In the second step, we run CHM with and without LUT implementations on a cold-

region hydrological simulation with a small domain. We verify that CHM with LUT implementations produces

correct output and show that there is around an 18% improvement in the performance of CHM. In the third

step, we run the same CHM with and without LUT implementations on a cold-region hydrological simulation

with a large domain. We again verify that CHM with LUT implementations produces correct output and show

that there is around a 21% improvement in the performance of CHM.
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1 Introduction

Using computational models to simulate physical systems, like fluid dynamics, protein structures,

hydrological processes, and so on, is a common and effective approach to study them. However, running

these simulations becomes more and more expensive and is often limited by available computational resources

due to their high complexity. For example, enlarging simulation domains naturally increases the complexity

of simulations. Furthermore, more complex models are often required to make simulation results more

accurate. In this thesis, we focus our attention on cold-region hydrological process simulations. Cold-region

hydrological processes play an important role in the environment of cold regions. Simulations of cold-region

hydrological processes help people understand past hydrological events and predict future ones (Freeze and

Harlan, 1969). Understanding cold-region hydrological processes is important for human beings because the

cold-region environment is extremely sensitive to human activities, and the mountain snow in cold regions is

an important freshwater source (Viviroli et al., 2007; Duarte et al., 2012). Prediction of future cold-region

hydrological processes alerts people to take precautions against possible natural disasters, such as blizzards,

avalanches, etc.

The Canadian Hydrological Model (CHM) is an innovative open-source software package designed to

model hydrological processes with a focus on cold-region hydrological processes (Marsh et al., 2019a).

Spatial heterogeneities in surface, surface energy, snow interception by vegetation, etc., impact cold-region

hydrological processes significantly, and it is important to include them in simulations (Marsh et al., 2019a).

To capture these spatial heterogeneities, a fully distributed model is used in CHM (Marsh et al., 2019a).

The ability of widely used fully distributed, raster-based models to simulate over large extents is limited by

computational resources because fully distributed, raster-based models generally over-represent the surface

with unnecessarily many discretization elements in low spatial heterogeneity areas. To resolve these issues, CHM

employs unstructured triangular meshes to reduce the number of discretization elements (Marsh et al., 2019a).

Also, Marsh et al. parallelize CHM to reduce the running time further (Marsh et al., 2019a). These CHM features

improve the efficiency of cold-region hydrological simulations so that we can get simulation results within a

shorter time period and make possible the adoption of more complex models if necessary. We also find that

some computationally intensive functions in CHM are evaluated millions of times during a simulation (Marsh

et al., 2019b). These function evaluations may consume a significant amount of computational resources.

Optimizations called Lookup Tables (LUTs) can be used to significantly reduce computational resources

required by computationally intensive function evaluations and to further improve efficiency of cold-region

hydrological simulations.
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A LUT is a list of key and value pairs. Values can be retrieved quickly by using keys as indices. LUTs

have a wide range of applications in different areas, such as image processing and computer graphics (Pharr

and Fernando, 2005), hardware neural networks (Dias et al., 2014), and scientific computing (Wilcox et al.,

2011). In scientific computing, LUTs are generally used as optimizations to replace direct function evaluations.

Specifically, people sample the input space of a function, precompute function values of all the sample points,

and save sample point and function value pairs to LUTs. LUTs can be directly used to evaluate function values

at sample points or can be followed by interpolation or Taylor series approximation to evaluate function values

at other points. Both cases use many fewer floating point operations (FLOPs) than direct function evaluations

for computationally intensive functions with the cost of some extra cache/memory accesses. Green et al. show

that, in practice, adopting LUTs is an efficient and effective optimization for computationally intensive and

repeatedly called functions (Green et al., 2019), and Wilcox et al. show that this optimization is compatible

with another optimation parallelization (Wilcox et al., 2011). However, many programmers employ LUT

optimization manually. This not only requires a lot of extra development work (Wilcox et al., 2011), but it

also makes programs more difficult to maintain (Loh et al., 2005). To resolve these issues, Wilcox et al. create

a tool called Mesa that can automatically generate constant interpolation LUTs for user-specified functions

and calculate errors of generated LUTs (Wilcox et al., 2011). Later, Green et al. develop a C++ library

called Function Comparator (FunC) with a similar purpose but more functionality (Green et al., 2019). FunC

offers various types of LUTs for people to choose from and can generate LUTs by error tolerances (Green

et al., 2019).

In this thesis, we use FunC to implement LUTs for computationally intensive and repeatedly called

functions in CHM and demonstrate that there is a significant improvement in the performance of CHM. Our

contributions are as follows: (1) We identify two computationally intensive and repeatedly called functions

in CHM and determine the error tolerances, ranges, and LUT types for them according to the properties and

characteristics of these functions and two cold-region hydrological process simulations. (2) We use FunC to

implement linear interpolation LUTs for identified functions and gain around 20% performance improvement

in both cold-region hydrological process simulations. (3) We provide a systematic procedure of implementing

LUTs for other programmers so that they can implement LUTs in their programs in a similar way.

1.1 Structure of the Thesis

In Chapter 2, we introduce the mathematical theory of LUTs and nine different kinds of LUTs with the

corresponding storage strategies employed by FunC. In Chapter 3, we introduce applications of LUTs in

different areas of Computer Science, including Scientific Computing. We also describe two open-source

software packages, FunC and CHM, in depth. In Chapter 4, we use FunC to implement LUTs in CHM and

evaluate the performance improvement introduced by LUT implementations. In Chapter 5, we summarize

the conclusions and provide some possible future works.

2



2 Theory of Lookup Tables

Given a univariate function f(x) defined on a closed interval [a, b] ∈ R and n+ 1 distinct points {xi}ni=0

on [a, b], the essence of LUTs is to use space to trade off increased cache usage for decreased evaluation time.

Cache is a piece of small but fast storage. It stores a fraction of code and data of the running program that

the central processing unit (CPU) is going to execute and use. CPUs can access cache in a few clock cycles to

dozens of clock cycles. If we have no limitation on cache size, we can store all possible values of f(x). However,

the typical size of cache currently varies between a few kilobytes (KB) to a few megabytes (MB). Alternatively,

we can store only n+ 1 pairs {(xi, f(xi))}ni=0, and evaluate f(x) at any point in [a, b] with the help of those

pairs. One intuitive way is to find a polynomial pn ∈ Pn such that pn(xi) = f(xi), i = 0, 1, · · · , n, where

Pn is the set of all polynomials with degree at most n. We call pn(x) the interpolating polynomial for data

{(xi, f(xi))}ni=0.

For simplicity, we assume that all functions in the thesis are continuous and have all orders of derivatives

on its domain.

We recall the following theorem about existence and uniqueness of such an interpolating polynomial and

the interpolation error of it. The specific version in below and its proof can be found in (Quarteroni et al.,

2010).

Theorem 1 Given n+1 distinct points x0, x1, · · · , xn and n+1 corresponding values f(x0), f(x1), · · · , f(xn),

there exists a unique polynomial pn(x) ∈ Pn, such that pn(xi) = f(xi) for i = 0, 1, · · · , n. The polynomial

pn(x) has the following form

pn(x) =

n∑
i=0

f(xi)

n∏
j=0
j 6=i

x− xj
xi − xj

. (2.1)

If f(x) has a continuous derivative of order n + 1 on [a, b], the interpolation error at point x within the

domain is given by:

En(x) = f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi), (2.2)

where ξ ∈ Ix, which is the smallest interval containing {xi}ni=0 and x. We call the absolute value of the

interpolation error |En(x)| the absolute interpolation error.

Equation (2.1) shows that pn(x) requires O(n2) FLOPs per evaluation. We can rewrite Equation (2.1) to

reduce the FLOPs per evaluation to O(n). Let us define w̄n+1 =
∏n

i=0(x−xi) and wi =
∏n

j=0,j 6=i(xi−xj)−1,

3



then we can rewrite pn(x) as

pn(x) =

n∑
i=0

f(xi)

n∏
j=0
j 6=i

x− xj
xi − xj

=

n∑
i=0

f(xi)w̄n+1

x− xi

n∏
j=0
j 6=i

1

xi − xj

=w̄n+1

n∑
i=0

wi

x− xi
f(xi).

This is called first form of the barycentric interpolation formula (Quarteroni et al., 2010). We can compute

{wi}ni=0 beforehand. Then we only use O(n) FLOPs to compute w̄n+1 and
∑n

i=0
wi

x−xi
f(xi)s in each

evaluation.

Also, it is shown that there is no guarantee that pn(x) has smaller absolute interpolation errors when n

tends to infinity for an arbitrary function f(x); see for example (Quarteroni et al., 2010). One well-known

counter-example is the Runge function f(x) = 1/(1+x2). Figure 2.1 shows the Runge function on [−5, 5] and

its interpolating polynomials p5(x) and p10(x). The interpolating polynomial p5(x) is of degree five for points

{(−5, 1
26 ), (−3, 1

10 ), (−1, 12 ), (1, 12 ), (3, 1
10 ), (5, 1

26 )} and is shown with an orange line. The interpolating

polynomial p10(x) is of degree ten for points {(−5, 1
26 ), (−4, 1

17 ), (−3, 1
10 ), (−2, 15 ), (−1, 12 ), (0, 1), (1, 12 ),

(2, 15 ), (3, 1
10 ), (4, 1

17 ) (5, 1
26 )} and is shown with a green line. The interpolating polynomial p10(x) has

smaller absolute interpolation errors than p5(x) at points within [−1, 1], but it has much larger absolute

interpolation errors than p5(x) at points around x = ±4.5. This demonstrates that absolute interpolation

errors do not always decrease when we increase the degree of interpolating polynomials.

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.0

0.5

1.0

1.5

2.0

y

Runge function 1/(1 + x2)
Interpolating polynomial p5(x)
Interpolating polynomial p10(x)

Figure 2.1: The Runge function and its interpolating polynomials p5(x) and p10(x) on [−5, 5].
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Another way to interpolate a function is to partition the domain into subintervals and apply different

polynomials on each subinterval. This is called piecewise polynomial interpolation, also known as spline

interpolation. In theory, the lengths of subintervals can vary. In practice, we often partition the domain

into subintervals with equal lengths because (1) it is convenient for programming and (2) the theoretical

upper bound of absolute errors happens in the longest subinterval with a higher probability than in other

subintervals if we interpolate all subintervals in the same way.

2.1 Piecewise Polynomial Interpolation

Let us select N evenly spaced points {xi}Ni=0 on the closed interval [a, b] as

xi = a+ i · b− a
N

, i = 0, 1, · · · , N.

All subintervals {[xi−1, xi]}Ni=1 have a length of b−a
N , which is denoted by h for convenience. Because all

subintervals are equivalent here, we just consider f(x) and its interpolating polynomial on [xi−1, xi] without

loss of generality. Let p̃n,i(x) denote the interpolating polynomial of f(x) on [xi−1, xi], where n is the degree

of this interpolating polynomial and i is the index of the subinterval [xi−1, xi]. Theorem 1 guarantees the

existence and the uniqueness of p̃n,i(x). Let p̃n(x) denote the piecewise interpolating polynomial of f(x) on

[x0, xn] = [a, b], where n has the same meaning as before. The polynomials p̃n(x) and p̃n,i(x) satisfy the

relation

p̃n(x) = p̃n,i(x), ∀x ∈ [xi−1, xi], i = 1, 2, · · · , N.

One drawback of piecewise polynomial interpolation is that p̃n(x) is not always continuous at {xi}N−1i=1 .

But if the two endpoints of all the subintervals are used in the interpolation, we can guarantee that p̃n(x)

is continuous on [a, b]. This is the case in all the specific piecewise polynomial interpolations with different

degrees introduced next.

According to Theorem 1, the absolute interpolation error of p̃n,i(x) at point x ∈ [xi−1, xi] is given by

|f(x)− p̃n,i(x)| = |f
(n+1)(ξ)|
(n+ 1)!

n∏
i=0

|(x− xi)| ≤
max

x∈[xi−1,xi]
|f (n+1)(x)|

(n+ 1)!
hn+1 = O(hn+1). (2.3)

Because f (n+1)(x) is continuous, so is |f (n+1)(x)|. The maximum value of |f (n+1)(x)| on [xi−1, xi] exists

according to the Extreme Value Theorem; see for example (Rudin et al., 1964). Similarly, the absolute

interpolation errors of p̃n,i(x), i = 1, 2, · · · , N , are all O(hn+1). Therefore, the absolute interpolation error

|En(x)| of p̃n(x) on [a, b] is O(hn+1) as well. We observe that we can make |En(x)| as small as possible

by decreasing the length of subintervals h, whereas increasing the degrees of interpolating polynomials may

introduce larger absolute interpolation errors.
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2.1.1 Piecewise Linear Interpolation

Because a straight line is determined by two points, we use the two endpoints, xi−1 and xi, of the subinterval

[xi−1, xi] to formulate the linear interpolating polynomial:

p̃1,i(x) = f(xi−1) · x− xi
xi−1 − xi

+ f(xi) ·
x− xi−1
xi − xi−1

= f(xi−1) + (f(xi)− f(xi−1))
x− xi−1
xi − xi−1

.
(2.4)

The absolute interpolation error of p̃1,i(x) on [xi−1, xi] is O(h2) according to Equation (2.3). Because of

the arbitrariness of the subinterval we are considering, we conclude that the absolute interpolation error of

p̃1(x) on [a, b] is also O(h2). Figure 2.2 shows a function f(x) = sin(x) + 0.8x and its linear interpolating

polynomials p̃1,i−1(x), p̃1,i(x), and p̃1,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1]. For the subinterval

[xi−1, xi], the piecewise linear polynomial p̃1,i(x) has the same values as f(x) at points xi−1 and xi. The

same is true for the other subintervals.

xi 2 xi 1 xi xi + 1
x

2

0

2

4

6

y

f(x) = sin(x) + 0.8x
Piecewise linear interpolating polynomial

Figure 2.2: f(x) = sin(x) + 0.8x and its linear interpolating polynomials p̃1,i−1(x), p̃1,i(x), and

p̃1,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1].

The class UniformLinearInterpolationTable of FunC implements piecewise linear interpolation. It uses

the storage strategy demonstrated in Figure 2.3 to store {f(xi)}Ni=0 in an array of size N + 1. Because

x− x0
h

=
x− xi−1 + xi−1 − x0

xi − xi−1
=

x− xi−1
xi − xi−1

+ i− 1 =
x− xi−1
xi − xi−1

+

⌊
x− x0
h

⌋
⇓

x− x0
h

−
⌊
x− x0
h

⌋
=

x− xi−1
xi − xi−1

,

6



we know the array indices of f(xi−1) and f(xi), b(x− x0)/hc and b(x− x0)/hc+1, and (x−xi−1)/(xi−xi−1).

Then the class UniformLinearInterpolationTable uses Equation (2.4) to return the estimated value of

f(x) at point x. The class UniformLinearInterpolationTable uses six FLOPs and one C++ explicit type

conversion per evaluation. Specifically, it uses two FLOPs to calculate (x − x0)/h, one C++ explicit type

conversion to calculate b(x− x0)/hc, one FLOP to calculate (x− x0)/h−b(x− x0)/hc, and three FLOPs to

calculate the estimated value of f(x) from Equation (2.4).

f(x0)

0

Value:

Index:

f(x1)

1

· · ·

· · ·

f(xi−1)

i− 1

f(xi)

i

f(xi+1)

i+ 1

· · ·

· · ·

f(xN−1)

N − 1

f(xN )

N

Figure 2.3: The storage strategy of the class UniformLinearInterpolationTable.

Because we already know {f(xi)}Ni=0, we can compute all the differences {f(xi)−f(xi−1)}Ni=1 beforehand

and store them. The class UniformLinearPrecomputedInterpolationTable of FunC implements this

precomputed piecewise linear interpolation. It stores {f(xi)}N−1i=0 and {f(xi) − f(xi−1)}Ni=1 in an array

of size 2N as expressed in Figure 2.4. Similarly, 2b(x− x0)/hc and 2b(x− x0)/hc + 1 are array indices to

access f(xi−1) and f(xi) − f(xi−1). The class UniformLinearPrecomputedInterpolationTable uses five

FLOPs, one integer operation (IOP), and one C++ explicit type conversion per evaluation. Specifically, it

uses two FLOPs to calculate (x − x0)/h, one C++ explicit type conversion to calculate b(x− x0)/hc, one

FLOP to calculate (x−x0)/h−b(x− x0)/hc, one IOP to calculate 2b(x− x0)/hc, and two FLOPs to calculate

the estimated value of f(x).

f(x0)

0

Value:

Index:

f(x1)

−f(x0)

1

f(x1)

2

f(x2)

−f(x1)

3

· · ·

· · ·

f(xi)

2i

f(xi+1)

−f(xi)

2i+ 1

· · ·

· · ·

f(xN−1)

2N − 2

f(xN )−

f(xN−1)

2N − 1

Figure 2.4: The storage strategy of the class UniformLinearPrecomputedInterpolationTable.

2.1.2 Piecewise Quadratic Interpolation

Normally, cache is not big enough to store an entire LUT. Only a fraction of the LUT stays in cache. The

rest of it stays in main memory. If an evaluation of f(x) needs data that are not in cache, the CPU frees some

cache and copies a new fraction containing needed data from main memory to cache. This copy operation

takes much longer than accessing data in cache directly. In order to reduce the number of copy operations

from main memory to cache, we need to make LUTs smaller. The size of a LUT can be approximated by the

7



following formula

size of a LUT ≈ number of subintervals

× number of stored values per subinterval

× number of bytes for double-precision floating-point number.

The number of stored values per subinterval is a small positive integer. For example, the class UniformLinear-

InterpolationTable and the class UniformLinearPrecomputedInterpolationTable store one and two

values per subinterval, respectively. In principle, the number of bytes for double-precision floating-point

numbers varies according to hardware. In this thesis, we assume that a double-precision floating-point

number takes eight bytes, which is the typical size that C++ uses to store double-precision floating-point

numbers. To reduce the size of a LUT significantly, we need to reduce the number of subintervals. Because

the number of subintervals is proportional to the reciprocal of h and the absolute interpolation error of

a piecewise polynomial interpolation of degree n is O(hn+1), we can increase the degree of a piecewise

polynomial interpolation to make h larger for a given error.

A quadratic interpolation needs three distinct points. We already have two endpoints. The most common

candidate for the third node is the midpoint (xi−1 + xi)/2, denoted by xi− 1
2
. The quadratic interpolating

polynomial has the following form:

p̃2,i(x) = f(xi−1)

(
x− xi− 1

2

)
(x− xi)(

xi−1 − xi− 1
2

)
(xi−1 − xi)

+ f
(
xi− 1

2

) (x− xi−1) (x− xi)(
xi− 1

2
− xi−1

)(
xi− 1

2
− xi

)
+ f(xi)

(x− xi−1)
(
x− xi− 1

2

)
(xi+1 − xi−1)

(
xi+1 − xi− 1

2

) (2.5a)

= a
(0)
q,i−1 + a

(1)
q,i−1

(
x− xi−1
xi − xi−1

)
+ a

(2)
q,i−1

(
x− xi−1
xi − xi−1

)2

(2.5b)

= a
(0)
q,i−1 +

(
x− xi−1
xi − xi−1

)
·
(
a
(1)
q,i−1 +

(
x− xi−1
xi − xi−1

)
· a(2)q,i−1

)
, (2.5c)

where a(0)q,i−1 = f(xi−1), a(1)q,i−1 = −3f(xi−1)+4f
(
xi− 1

2

)
−f(xi) and a

(2)
q,i−1 = 2f(xi−1)−4f

(
xi− 1

2

)
+2f(xi).

Equation (2.5a), Equation (2.5b), and Equation (2.5c) are three different forms of p̃2,i(x). Equation (2.5a)

is called Lagrange’s form. It is easy to verify that p̃2,i(x) has the same values as f(x) at points xi−1,

xi−1/2 = (xi−1 + xi)/2, and xi, in this form. Equation (2.5b) is called power form and written in ascending

order of the degrees of x. Equation (2.5c) is called Horner’s form. It reduces the number of FLOPs and

rounding errors when evaluating a polynomial. The absolute interpolation errors of p̃2,i(x) and p̃2(x) are

both O(h3). Figure 2.5 shows f(x) = sin(x) + 0.8x and its quadratic interpolating polynomials p̃2,i−1(x),

p̃2,i(x), and p̃2,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1]. For the subinterval [xi−1, xi], the piecewise

quadratic polynomial p̃2,i(x) has the same values as f(x) at points xi−1, xi−1/2 = (xi−1 +xi)/2, and xi. The

same is true for the other subintervals.
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Figure 2.5: f(x) = sin(x) + 0.8x and its quadratic interpolating polynomials p̃2,i−1(x), p̃2,i(x), and

p̃2,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1].

The class UniformQuadraticPrecomputedInterpolationTable of FunC stores {a(0)q,i , a
(1)
q,i , a

(2)
q,i }

N−1
i=0 in an

array of size 3N as expressed in Figure 2.6. We can use 3b(x− x0)/hc, 3b(x− x0)/hc+1, and 3b(x− x0)/hc+2

as indices to access a(0)q,i−1, a
(1)
q,i−1, and a

(2)
q,i−1. The class UniformQuadraticPrecomputedInterpolationTable

uses seven FLOPs, one IOP, and one C++ explicit type conversion per evaluation. Specifically, it uses two

FLOPs to calculate (x − x0)/h, one C++ explicit type conversion to calculate b(x− x0)/hc, one FLOP to

calculate (x − x0)/h − b(x− x0)/hc, one IOP to calculate 3b(x− x0)/hc, and four FLOPs to calculate the

estimated value of f(x) by Equation (2.5c).

a
(0)
q,0

0

Value:

Index:

a
(1)
q,0

1

a
(2)
q,0

2

· · · a
(0)
q,i

3i

a
(1)
q,i

3i+ 1

a
(2)
q,i

3i+ 2

· · · a
(0)
q,N−1

3N − 3

a
(1)
q,N−1

3N − 2

a
(2)
q,N−1

3N − 1

Figure 2.6: The storage strategy of the class UniformQuadraticPrecomputedInterpolationTable.

For example, suppose f(x) is a continuous function defined on [0, 10] and has all orders of derivatives.

We want a piecewise interpolating polynomial of f(x) with an error tolerance 10−12. If we adopt piecewise

linear interpolation, the length of subintervals is O(10−6), and the number of subintervals is O(107). So the

class UniformLinearInterpolationTable needs O(107)× 1× 8 bytes ≈ O(102) MB. If we adopt piecewise

quadratic interpolation, the length of subintervals is O(10−4), and the number of subintervals is O(105). The

class UniformQuadraticPrecomputedInterpolationTable needs O(105)×3×8 bytes ≈ O(1) MB. Although
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these only are loose upper bounds, they demonstrate that increasing the degree of piecewise polynomial

interpolation reduces the required size of LUTs significantly.

2.1.3 Piecewise Cubic Interpolation

To reduce the size of a LUT even further, we use four points: xi−1, xi− 2
3

= 2
3xi−1+ 1

3xi, xi− 1
3

= 1
3xi−1+ 2

3xi,

and xi to derive the cubic interpolating polynomial on [xi−1, xi]:

p̃3,i(x) = f(xi−1)

(
x− xi− 1

3

)(
x− xi− 2

3

)
(x− xi)(

xi−1 − xi− 1
3

)(
xi−1 − xi− 2

3

)
(xi−1 − xi)

+ f
(
xi− 1

3

) (x− xi−1)
(
x− xi− 2

3

)
(x− xi)(

xi− 1
3
− xi−1

)(
xi− 1

3
− xi− 2

3

)(
xi− 1

3
− xi

)
+ f

(
xi− 2

3

) (x− xi−1)
(
x− xi− 1

3

)
(x− xi)(

xi− 2
3
− xi−1

)(
xi− 2

3
− xi− 1

3

)(
xi− 2

3
− xi

)
+ f(xi)

(x− xi−1)
(
x− xi− 1

3

)(
x− xi− 2

3

)
(xi − xi−1)

(
xi − xi− 1

3

)(
xi − xi− 2

3

)
= a

(0)
c,i−1 + a

(1)
c,i−1

(
x− xi−1
xi − xi−1

)
+ a

(2)
c,i−1

(
x− xi−1
xi − xi−1

)2

+ a
(3)
c,i−1

(
x− xi−1
xi − xi−1

)3

= a
(0)
c,i−1 +

(
x− xi−1
xi − xi−1

)
·
(
a
(1)
c,i−1 +

(
x− xi−1
xi − xi−1

)
·
(
a
(2)
c,i−1 +

(
x− xi−1
xi − xi−1

)
· a(3)c,i−1

))
, (2.6)

where

a
(0)
c,i−1 = f(xi−1),

a
(1)
c,i−1 = −11

2
f(xi−1) + 9f

(
xi− 2

3

)
− 9

2
f
(
xi− 1

3

)
+ f(xi),

a
(2)
c,i−1 = 9f(xi−1)− 45

2
f
(
xi− 2

3

)
+ 18f

(
xi− 1

3

)
− 9

2
f(xi),

a
(3)
c,i−1 = −9

2
f(xi−1) +

27

2
f
(
xi− 2

3

)
− 27

2
f
(
xi− 1

3

)
+

9

2
f(xi).

Absolute interpolation errors of p̃3,i(x) and p̃3(x) are both O(h4). Figure 2.7 shows f(x) = sin(x) + 0.8x and

its cubic interpolating polynomials p̃3,i−1(x), p̃3,i(x), and p̃3,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1].

For the subinterval [xi−1, xi], the piecewise cubic polynomial p̃3,i(x) has the same values as f(x) at points

xi−1, xi−2/3 = 2/3xi−1+1/3xi, xi−1/3 = 1/3xi−1+2/3xi, and xi. The same is true for the other subintervals.
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Figure 2.7: f(x) = sin(x) + 0.8x and its piecewise cubic interpolating polynomials p̃3,i−1(x), p̃3,i(x),

and p̃3,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1].

The class UniformCubicPrecomputedInterpolationTable of FunC stores {a(0)c,i , a
(1)
c,i , a

(2)
c,i , a

(3)
c,i }

N−1
0 in

an array of size 4N as expressed in Figure 2.8. We can use 4b(x− x0)/hc, 4b(x− x0)/hc + 1,

4b(x− x0)/hc + 2, and 4b(x− x0)/hc + 3 as indices to access a(0)c,i−1, a
(1)
c,i−1, a

(2)
c,i−1, and a

(3)
c,i−1. The class

UniformCubicPrecomputedInterpolationTable uses nine FLOPs, one IOP, and one C++ explicit type

conversion per evaluation. Specifically, it uses two FLOPs to calculate (x − x0)/h, one C++ explicit type

conversion to calculate b(x− x0)/hc, one FLOP to calculate (x−x0)/h−b(x− x0)/hc, one IOP to calculate

4b(x− x0)/hc, and six FLOPs to calculate the estimated value of f(x) by Equation (2.6).

a
(0)
c,0

0

a
(1)
c,0

1

a
(2)
c,0

2

a
(3)
c,0

3

· · · a
(0)
c,i

4i

· · · a
(0)
c,N−1

4N − 4

a
(1)
c,N−1

4N − 3

a
(2)
c,N−1

4N − 2

a
(3)
c,N−1

4N − 1

Value:

Index:

Figure 2.8: The storage strategy of the class UniformCubicPrecomputedInterpolationTable.

Let us continue with the previous example. We want a piecewise interpolating polynomial of a continuous

function f(x) defined on [0, 10] with an error tolerance 10−12. If we adopt piecewise cubic interpolation,

the length of subintervals is O(10−3), and the number of subintervals is O(104). The class UniformCubic-

PrecomputedInterpolationTable only needs O(104)× 4× 8 bytes ≈ O(10−1) MB.
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2.1.4 Piecewise Cubic Hermite Interpolation

One drawback of all the previous piecewise polynomial interpolations is that their first derivative is not

continuous at {xi}n−1i=1 . If piecewise interpolations are required to have continuous derivatives, we can use

another strategy called Hermite interpolation; see for example (Quarteroni et al., 2010). We still consider

[xi−1, xi]. First, we denote the piecewise cubic Hermite interpolating polynomial on [xi−1, xi] as H3,i(x) and

the piecewise cubic Hermite interpolating polynomial on [a, b] as H3(x), where i is the index of the subinterval

[xi−1, xi] and 3 is the degree of the piecewise cubic Hermite interpolating polynomial. The polynomials H3(x)

and H3,i(x) satisfy the relation

H3(x) = H3,i(x), ∀x ∈ [xi−1, xi], i = 1, 2, · · · , N.

Also, H3,i(x) satisfies

H3,i(xi−1) = f(xi−1), H3,i(xi) = f(xi),

H3,i
′(xi−1) = f ′(xi−1), H3,i

′(xi) = f ′(xi).

H3,i(x) is a cubic polynomial and has the following format:

H3,i(x) = f(xi−1)

(
1 + 2

x− xi−1
xi − xi−1

)(
x− xi

xi−1 − xi

)2

+ f ′(xi−1) (x− xi−1)

(
x− xi

xi−1 − xi

)2

+ f(xi)

(
1 + 2

x− xi
xi−1 − xi

)(
x− xi−1
xi − xi−1

)2

+ f ′(xi) (x− xi)
(
x− xi−1
xi − xi−1

)2

= a
(0)
h,i−1 + a

(1)
h,i−1

(
x− xi−1
xi − xi−1

)
+ a

(2)
h,i−1

(
x− xi−1
xi − xi−1

)2

+ a
(3)
h,i−1

(
x− xi−1
xi − xi−1

)3

= a
(0)
h,i−1 +

(
x− xi−1
xi − xi−1

)
·
(
a
(1)
h,i−1 +

(
x− xi−1
xi − xi−1

)
·
(
a
(2)
h,i−1 +

(
x− xi−1
xi − xi−1

)
· a(3)h,i−1

))
, (2.7)

where

a
(0)
h,i−1 = f(xi−1),

a
(1)
h,i−1 = f ′(xi−1)(xi − xi−1),

a
(2)
h,i−1 = −3f(xi−1) + 3f(xi)− (2f ′(xi−1) + f ′(xi))(xi − xi−1),

a
(3)
h,i−1 = 2f(xi−1)− 2f(xi) + (f ′(xi−1) + f ′(xi))(xi − xi−1).

It is shown that the absolute interpolation errors of H3,i(x) and H3(x) are O(h4); see for example (Quarteroni

et al., 2010). Figure 2.9 shows f(x) = sin(x)+0.8x and its cubic Hermite interpolating polynomialsH3,i−1(x),

H3,i(x), and H3,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1]. For the subinterval [xi−1, xi], the piecewise

cubic interpolating polynomial H3,i(x) has the same values and first derivatives as f(x) at points xi−1 and

xi. The same is true for the other subintervals.

12



xi 2 xi 1 xi xi + 1
x

2

0

2

4

6

y

f(x) = sin(x) + 0.8x
Piecewise cubic Hermite interpolating polynomial

Figure 2.9: f(x) = sin(x) + 0.8x and its cubic Hermite interpolating polynomials H3,i−1(x), H3,i(x),

and H3,i+1(x) on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1].

The class UniformCubicHermiteTable of FunC uses the same strategy to store {a(0)h,i , a
(1)
h,i , a

(2)
h,i , a

(3)
h,i}

N−1
i=0

as the class UniformCubicPrecomputedInterpolationTable. The class UniformCubicHermiteTable uses

nine FLOPs, one IOP, and one C++ explicit type conversion per evaluation. It uses two FLOPs to calculate

(x−x0)/h, one C++ explicit type conversion to calculate b(x− x0)/hc, one FLOP to calculate (x−x0)/h−

b(x− x0)/hc, one IOP to calculate 4b(x− x0)/hc, and six FLOPs to calculate the estimated value of f(x)

by Equation (2.7). Because H ′3,i(xi) = H ′3,i+1(xi) = f ′(xi), i = 1, 2, · · · , N − 1 and H ′3,i(x) is continuous on

the open interval (xi−1, xi), i = 1, 2, · · · , N − 1, H3
′(x) is continuous on [a, b].

Let us continue with the previous example. We want a piecewise interpolating polynomial of a continuous

function f(x) defined on [0, 10] with an error tolerance 10−12. If we adopt piecewise cubic Hermite

interpolation, the length of subintervals is O(10−3), and the number of subintervals is O(104). The class

UniformCubicHermiteTable only needs O(104)× 4× 8 bytes ≈ O(10−1) MB.

2.2 Piecewise Taylor Series Approximation

Taylor series approximation is another way to approximate function values by using information about

the function at points. Specifically, Taylor series approximation uses the function value and the function’s

derivatives at a point to evaluate function values at the neighbor of the point. Let us recall Taylor’s Theorem

first. Taylor’s Theorem is a well-known theorem, and it has many variants. The following statement is from

(Thomas et al., 2005).
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Theorem 2 (Taylor’s Theorem) If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for any points x, x +

∆x ∈ [a, b] we have

f(x+ ∆x) =

n∑
k=0

∆xk

k!
f (k)(x) +

∆xn+1

(n+ 1)!
f (n+1)(ξ),

where ξ is a point between x and x+ ∆x.

We can use
n∑

k=0

∆xkf (k)(x)/k! to approximate f(x + ∆x). This approximation is called the Taylor series

approximation of degree n at x. The absolute error of the approximation is |∆x|n+1/(n + 1)!|f (n+1)(ξ)| =

O
(
|∆x|n+1

)
, because |f (n+1)(ξ)| is continuous and has a maximum value between x and x+∆x. Because the

Taylor series approximation only uses values at a single point, we adopt a slightly different strategy to make

∆x smaller. The strategy is to evaluate f(x) at a point x ∈ [a, b] at the nearest point among {xi}Ni=0. If x is

exactly in the middle of two points, for example xi−1 and xi, we evaluate f(x) arbitrarily at the larger point,

herein xi. Because the maximum value of |∆x| is h/2, the absolute error of the Taylor series approximation

can be rewritten as

|∆x|n+1

(n+ 1)!
|f (n+1)(γ)| = O

(
|∆x|n+1

)
= O

(
hn+1

)
. (2.8)

2.2.1 Piecewise Constant Taylor Series Approximation

Figure 2.10 shows f(x) = sin(x) + 0.8x and its constant Taylor series approximations on [xi−2, xi−1],

[xi−1, xi], and [xi, xi+1]. For the subinterval [xi−1, xi], the piecewise constant Taylor series approximation on

[xi−1, (xi−1 + xi)/2) has the same value as f(x) at the point xi−1, and the piecewise constant Taylor series

approximation on [(xi−1 + xi)/2, xi] has the same value as f(x) at the point xi. The same is true for the

other subintervals. When x is exactly in the middle of two points, for example xi−1 and xi, we evaluate f(x)

arbitrarily at the larger point, herein xi. The absolute error of the constant Taylor series approximation is

O (h) according to Equation (2.8).
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Figure 2.10: f(x) = sin(x) + 0.8x and its constant Taylor series approximations on [xi−2, xi−1],

[xi−1, xi], and [xi, xi+1].

The class UniformConstantTaylorTable of FunC implements piecewise constant Taylor series

approximation. It stores the same data as the class UniformLinearInterpolationTable. We can use

b(x− x0)/h+ 0.5c as the index to access f(xi). The class UniformConstantTaylorTable uses three FLOPs

and one C++ explicit type conversion per evaluation. Specifically, it uses three FLOPs to calculate

(x− x0)/h+ 0.5 and one C++ explicit type conversion to calculate b(x− x0)/h+ 0.5c.

This kind of LUT is impractical for small error tolerances or large input ranges because it uses too much

space. Let us continue with the previous example. We want a piecewise constant Taylor Series Approximation

of a continuous function f(x) defined on [0, 10] with an error tolerance 10−12. The length of subintervals

is O(10−12), and the number of subintervals is O(1013). The class UniformConstantTaylorTable needs

O(1013)× 1× 8 bytes ≈ O(105) gigabytes (GB).

2.2.2 Piecewise Linear Taylor Series Approximation

According to Theorem 2, the linear Taylor series approximation of f(x), ∀x ∈ [xi−1+xi

2 , xi+xi+1

2 ) can be

expressed as:

f(x) ≈ f(xi) + f ′(xi)(x− xi). (2.9)

It is a straight line having the same value and first derivative as f(x) at the point xi. The absolute

error of the linear Taylor series approximation is O
(
h2
)
according to Equation (2.8). Figure 2.11 shows

f(x) = sin(x) + 0.8x and its linear Taylor series approximations on [xi−2, xi−1], [xi−1, xi], and [xi, xi+1]. For

the subinterval [xi−1, xi], the piecewise linear Taylor series approximation on [xi−1, (xi−1 + xi)/2) has the
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same value and first derivative as f(x) at the point xi−1, and the piecewise linear Taylor series approximation

on [(xi−1 + xi)/2, xi] has the same value and first derivative as f(x) at the point xi. The same is true for

the other subintervals. When x is exactly in the middle of two points, for example xi−1 and xi, we evaluate

f(x) arbitrarily at the larger point, herein xi.

The class UniformLinearTaylorTable of FunC implements piecewise linear Taylor series approximation.

It stores {f(xi)}Ni=0 and {f ′(xi)}Ni=0 in an array of size 2N + 2 as expressed in Figure 2.12. We can

use 2b(x− x0)/h+ 0.5c and 2b(x− x0)/h+ 0.5c + 1 as indices to access f(xi) and f ′(xi). The class

UniformLinearTaylorTable uses eight FLOPs, one IOP, and one C++ explicit type conversion per

evaluation. Specifically, it uses three FLOPs to calculate (x − x0)/h + 0.5, one C++ explicit type

conversion to calculate b(x− x0)/h+ 0.5c, one IOP to calculate 2b(x− x0)/h+ 0.5c, three FLOPs to

calculate x − xi = (x − x0) − (2b(x− x0)/h+ 0.5c)h/2 (noting that x − x0 is calculated in first step),

and two FLOPs to calculate the estimated value of f(x) by Equation (2.9).

Let us continue with the previous example. We want a piecewise linear Taylor Series Approximation of

a continuous function f(x) defined on [0, 10] with an error tolerance 10−12. The length of subintervals is

O(10−6), and the number of subintervals is O(107). The class UniformLinearTaylorTable needs O(107)×

2× 8 bytes ≈ O(102) (MB).

xi 2 (xi 2 + xi 1)/2 xi 1 (xi 1 + xi)/2 xi (xi + xi + 1)/2 xi + 1
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f(x) = sin(x) + 0.8x
Piecewise linear Taylor series approximation

Figure 2.11: f(x) = sin(x)+0.8x and its linear Taylor series approximations on [xi−2, xi−1], [xi−1, xi],

and [xi, xi+1].
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Index:

Figure 2.12: The storage strategy of the class UniformLinearTaylorTable.

2.2.3 Piecewise Quadratic Taylor Series Approximation

The quadratic Taylor series approximation of f(x), ∀x ∈ [xi−1+xi

2 , xi+xi+1

2 ) can be expressed as:

f(x) ≈ f(xi) + f ′(xi)(x− xi) +
f ′′(xi)

2
(x− xi)2

= f(xi) + (x− xi)
(
f ′(xi) + (x− xi)

f ′′(xi)

2

)
. (2.10)

It is a quadratic polynomial having the same value, first derivative, and second derivative as f(x) at xi. The

absolute error of the quadratic Taylor series approximation is O(h3) according to Equation (2.8). Figure 2.13

shows f(x) = sin(x) + 0.8x and its quadratic Taylor series approximations on[xi−2, xi−1], [xi−1, xi], and

[xi, xi+1]. For the subinterval [xi−1, xi], the piecewise quadratic Taylor series approximation on [xi−1, (xi−1+

xi)/2) has the same value, first derivative, and second derivative as f(x) at the point xi−1, and the piecewise

quadratic Taylor series approximation on [(xi−1 + xi)/2, xi] has the same value, first derivative, and second

derivative as f(x) at the point xi. The same is true for the other subintervals. When x is exactly in the

middle of two points, for example xi−1 and xi, we evaluate f(x) arbitrarily at the larger point, herein xi.

xi 2 (xi 2 + xi 1)/2 xi 1 (xi 1 + xi)/2 xi (xi + xi + 1)/2 xi + 1
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f(x) = sin(x) + 0.8x
Piecewise quadratic Taylor series approximation

Figure 2.13: f(x) = sin(x) + 0.8x and its quadratic Taylor series approximations on [xi−2, xi−1],

[xi−1, xi], and [xi, xi+1].
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The class UniformQuadraticTaylorTable of FunC implements piecewise quadratic Taylor series

approximation. It stores {f(xi), f
′(xi), f

′′(xi)/2}Ni=0 in an array of size 3N + 3 as expressed in Figure 2.14.

We can use 3b(x− x0)/h+ 0.5c, 3b(x− x0)/h+ 0.5c + 1, and 3b(x− x0)/h+ 0.5c + 2 as indices to access

f(xi), f ′(xi), and f ′′(xi)/2. The class UniformQuadraticTaylorTable uses ten FLOPs, one IOP, and one

C++ explicit type conversion per evaluation. Specifically, it uses three FLOPs to calculate (x− x0)/h+ 0.5,

one C++ explicit type conversion to calculate b(x− x0)/h+ 0.5c, one IOP to calculate 3b(x− x0)/h+ 0.5c,

three FLOPs to calculate x − xi = (x − x0) − (3b(x− x0)/h+ 0.5c)h/3 (noting that x − x0 is calculated in

first step), and four FLOPs to calculate the estimated value of f(x) by Equation (2.10).

Let us continue with the previous example. We want a piecewise quadratic Taylor Series Approximation

of a continuous function f(x) defined on [0, 10] with an error tolerance 10−12. The length of subintervals

is O(10−4), and the number of subintervals is O(105). The class UniformQuadraticTaylorTable needs

O(105)× 3× 8 bytes ≈ O(1) (MB).
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f ′′(x0)
2
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· · · f(xi)

3i

f ′(xi)

3i+ 1

f ′′(xi)
2
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· · · f(xN )
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f ′(xN )

3N + 1

f ′′(xN )
2

3N + 2

Value:

Index:

Figure 2.14: The storage strategy of the class UniformQuadraticTaylorTable.

2.2.4 Piecewise Cubic Taylor Series Approximation

The cubic Taylor series approximation of f(x), ∀x ∈ [xi−1+xi

2 , xi+xi+1

2 ) can be expressed as:

f(x) ≈ f(xi) + f ′(xi)(x− xi) +
f ′′(xi)

2
(x− xi)2 +

f (3)(xi)

6
(x− xi)3

= f(xi) + (x− xi)
(
f ′(xi) + (x− xi)

(
f ′′(xi)

2
+ (x− xi)

f (3)(xi)

6

))
. (2.11)

This is a cubic polynomial having the same value, first derivative, second derivative, and third derivative as

f(x) at xi. The absolute error of the cubic Taylor series approximation is O(h4) according to Equation (2.8).

Figure (2.15) shows f(x) = sin(x)+0.8x and its cubic Taylor series approximations on [xi−2, xi−1], [xi−1, xi],

and [xi, xi+1]. For the subinterval [xi−1, xi], the piecewise cubic Taylor series approximation on [xi−1, (xi−1+

xi)/2) has the same value, first derivative, second derivative, and third derivative as f(x) at the point xi−1,

and the piecewise cubic Taylor series approximation on [(xi−1 +xi)/2, xi] has the same value, first derivative,

second derivative, and third derivative as f(x) at the point xi. The same is true for the other subintervals.

When x is exactly in the middle of two points, for example xi−1 and xi, we evaluate f(x) arbitrarily at the

larger point, herein xi.
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Figure 2.15: f(x) = sin(x)+0.8x and its cubic Taylor series approximations on [xi−2, xi−1], [xi−1, xi],

and [xi, xi+1].

The class UniformCubicTaylorTable of FunC implements piecewise cubic Taylor series approximation.

It stores
{
f(xi), f

′(xi), f
′′(xi)/2, f

(3)(xi)/6
}N
i=0

in an array of size 4N + 4 as expressed in Figure 2.16. We

can use 4b(x− x0)/h+ 0.5c, 4b(x− x0)/h+ 0.5c+ 1, 4b(x− x0)/h+ 0.5c+ 2, and 4b(x− x0)/h+ 0.5c+ 3 as

indices to access f(xi), f ′(xi), f ′′(xi)/2, and f (3)(xi)/6. The class UniformCubicTaylorTable uses twelve

FLOPs, one IOP, and one C++ explicit type conversion per evaluation. It uses three FLOPs to calculate

(x − x0)/h + 0.5, one C++ explicit type conversion to calculate b(x− x0)/h+ 0.5c, one IOP to calculate

4b(x− x0)/h+ 0.5c, three FLOPs to calculate x − xi = (x − x0) − (4b(x− x0)/h+ 0.5c)h/4 (noting that

x−x0 is calculated in first step), and six FLOPs to calculate the estimated value of f(x) by Equation (2.11).

Let us continue with the previous example. We want a piecewise cubic Taylor Series Approximation of

a continuous function f(x) defined on [0, 10] with an error tolerance 10−12. The length of subintervals is

O(10−3), and the number of subintervals is O(104). The class UniformCubicTaylorTable needs O(104) ×

4× 8 bytes ≈ O(10−1) (MB).
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Figure 2.16: The storage strategy of the class UniformCubicTaylorTable.

Without causing ambiguity, we use class names in FunC to refer corresponding LUT types. Table 2.1
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is a summary of degree of polynomials (n), absolute error (AE), storage size (SS) in bytes, array accesses

per evaluation (AAs/Eval), FLOPs per evaluation (FLOPs/Eval), and IOPs per evaluation (IOPs/Eval) for

all LUT types that FunC provides, where we assume all LUTs have N subintervals. We do not put C++

explicit type conversions per evaluation in the table because all LUT types use the same C++ explicit type

conversion once per evaluation. The h and N satisfy the equation h = (b− a)/N .

Lookup Table n AE SS AAs/Eval FLOPs/Eval IOPs/Eval

UniformLinearInterpolationTable 1 O(h2) 8N + 8 2 6 0

UniformLinearPrecomputedInterpolationTable 1 O(h2) 16N 2 5 1

UniformQuadraticPrecomputedInterpolationTable 2 O(h3) 24N 3 7 1

UniformCubicPrecomputedInterpolationTable 3 O(h4) 32N 4 9 1

UniformCubicHermiteTable 3 O(h4) 32N 4 9 1

UniformConstantTaylorTable 0 O(h) 8N + 8 1 3 0

UniformLinearTaylorTable 1 O(h2) 16N + 16 2 8 1

UniformQuadraticTaylorTable 2 O(h3) 24N + 24 3 10 1

UniformCubicTaylorTable 3 O(h4) 32N + 32 4 12 1

Table 2.1: Lookup Table Summary.

We note that numbers of subintervals N for the various LUTs are significantly different when they

are generated by an error tolerance. Piecewise polynomial interpolations and piecewise Taylor series

approximations with higher degree trade off more array accesses and FLOPs per evaluation for decreased

storage sizes. They save time by reducing the number of copy operations from main memory to cache.

But they also spend more time on array accesses and FLOPs per evaluation. There is no guarantee that

piecewise polynomial interpolations and piecewise Taylor series approximations with higher degree have better

performance than piecewise polynomial interpolations and piecewise Taylor series approximations with lower

degree.

Also, Taylor series approximations require additional derivative information. They are not continuous

at {xi}n−1i=1 . This can be problematic when we want the estimated function values to be continuous. The

class UniformCubicHermiteTable is the only LUT that has a continuous first derivative. But it requires

additional derivative information as well.
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3 Literature Review

This chapter provides a brief introduction to the background of LUTs. Section 3.1.1 describes the history

of LUTs and applications of LUTs before computers were invented. Section 3.1.2 describes applications of

LUTs in areas of computer science outside of scientific computing. Section 3.1.3 describes applications of LUTs

in scientific computing. Section 3.2 describes the C++ library FunC in depth (Green et al., 2018). It generates

different one-dimensional LUTs for continuous univariate functions and compares the performance of LUTs

and direct function evaluation. Section 3.3 describes the open-source software package CHM in depth (Marsh

et al., 2019b). It is designed to simulate hydrological processes, especially cold-region hydrological processes.

Finally, we propose a systematic procedure of implementing LUTs that can be easily applied to numerical

computing software packages.

3.1 Lookup Tables

3.1.1 Applications before the Advent of Computers

A LUT is a list of key and value pairs. It is used to store paired information or save run-time computations.

All the keys are ordered in some way so that we can use indices to access the corresponding values in

the LUT quickly. For example, numerical keys are commonly ordered in ascending order or descending

order. Before computers were invented, people had to evaluate complicated functions, like the exponential

function, trigonometric functions, and probability density functions, by hand. It is generally difficult and

time consuming to calculate these functions. Adopting LUTs made these calculations much faster. People

sample the domain of a function, calculate all the function values at all the sample points, and create a LUT

for the function by storing sample point and value pairs in order. Because it is impossible to store all points

in the domain and their values, we cannot use the LUT to directly evaluate a function if the input point is not

a sample point. We can use the value corresponding to the nearest sample point as the function estimation

of the input or use the approximation methods introduced in Chapter 2 to achieve a better estimation with a

few more computations. LUTs are still very useful to evaluate complicated functions today in situations when

computers or calculators are not available. Table 3.1 shows a partial LUT for the cumulative distribution

function of the standard normal distribution.
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First decimal

place of x

Second decimal place of x

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
...

...
...

...
...

...
...

...
...

...
...

Table 3.1: A partial LUT for the cumulative distribution function of the standard normal distribution.

3.1.2 Applications outside of Scientific Computing

In the 1950s, IBM introduced two new instructions related to LUTs when they were developing their latest

computer system, the IBM 709 (Amdahl , 2013). They used LUTs to achieve code conversions between Binary

Coded Decimal (BCD) and American Standard Code for Information Interchange (ASCII). They also realized

addition and subtraction between BCD numbers by using LUTs.

LUTs are commonly used in image processing and computer graphics (Battiato and Lukac, 2008; Gonzales

and Woods, 2002; Pharr and Fernando, 2005). Color-mapped images use LUTs of colors to compress

images (Battiato and Lukac, 2008). Every pixel in an RGB image needs 24 bits, eight bits for red, green,

and blue, to store color information. By using LUTs of colors, every pixel only needs to store an integer.

The number of bits representing the integer is decided by the total number of colors in this image, which

generally is less than the largest positive integer that 24 bits can represent. Grayscale images use a single

integer to store the color information of each pixel. They can be converted to different color images by using

different LUTs of colors (Gonzales and Woods, 2002). LUTs also make real-time color transformations of high-

resolution imagery possible (Pharr and Fernando, 2005). Adopting LUTs simplifies a series of color operators

into one single LUT. The LUT has nothing to do with the number of color operators or the complication

of color operators. It significantly reduces the time used for color transformations. Both one-dimensional

and three-dimensional LUTs are often used in color transformations. The number of inputs decides which

type of LUTs are used. In practice, three-dimensional LUTs are used more frequently. In order to get more

accurate outputs, a linear interpolation or a trilinear interpolation, a generalization of linear interpolation in

three-dimensional space, follows one-dimensional LUTs or three-dimensional LUTs, respectively.

LUTs are also heavily used in field programmable gate arrays (FPGAs) (Kuon et al., 2008). FPGAs are

reprogrammable integrated circuits. They have five kinds of gates (basic logic operations): AND, OR, NOT,

XOR, and NAND. Users combine gates arbitrarily to create more complicated logic operations. FPGAs use

LUTs to implement these logic operations. A LUT in an FPGA is a truth table that has one or more inputs

and one output. All the inputs and the output are binary. Inputs of a LUT are addressable indices, and

outputs are results of logic operations. It is noteworthy that LUTs in FPGAs store all possible inputs and

do not involve any approximation methods.
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Using LUTs in hardware neural networks is also explored in many recent works (Kumar Meher , 2010; Reis

et al., 2014; Dias et al., 2014). LUTs for activation functions use fewer hardware resources and are faster than

real hardware functions (Dias et al., 2014). In order to reduce the sizes of LUTs (hardware areas), Meher

comes up with a LUT that maps a range of inputs to the same LUT entry for the hyperbolic tangent sigmoid

function f(x) = (1 + e−x)−1 (Kumar Meher , 2010). Reis et al. developed a tool that can generate hardware

neural networks automatically (Reis et al., 2014). This tool can generate LUTs with different sizes for the

hyperbolic tangent sigmoid function (Reis et al., 2014). Further, Dias et al. propose an automatic method

that can generate LUTs with more user-specified parameters for different activation functions in different

applications (Dias et al., 2014). This method also adopts a LUT optimization based on the LUT entry access

frequency (Dias et al., 2014). The optimization removes table entries with small numbers of accesses and

refines table entries with large numbers of accesses (Dias et al., 2014).

3.1.3 Applications in Scientific Computing

Using LUTs is an alternative way to evaluate functions. It is a straightforward and efficient performance

optimization. Green et al. show that LUTs are faster than direct function evaluation even for simple functions

like the exponential function (Green et al., 2019). So we can adopt LUTs as optimization for many function

evaluations. However, LUTs have their own limitations. If a function is not evaluated enough times during

the code execution, it may not be worthwhile to implement LUTs with the costs of extra development work.

The extra space used by LUTs is also a non-negligible factor in some cases.

LUTs as common optimizations are used in many scientific computing libraries. One significant scientific

computing library using LUTs is the Fastest Fourier Transform in the West (FFTW). FFTW is a C library

to compute discrete Fourier transforms efficiently (Frigo and Johnson, 2005). It uses a LUT to keep track of

plans of computed problems and returns the solution if a problem is already computed (Frigo and Johnson,

2005). This method is also known as memorization. Also, twiddle factors in fast Fourier transforms are

trigonometric constant coefficients and can be precomputed and stored in LUTs, one-dimensional arrays

herein, to improve performance (Frigo and Johnson, 2005).

Buehler et al. developed a modular program called the atmospheric radiative transfer simulator (ARTS)

that is used to simulate atmospheric radiative transfer (Buehler et al., 2005). ARTS uses two LUTs to

keep track of workspace variables and workspace methods separately (Buehler et al., 2005). This mechanism

makes it easy to add new workspace methods and to implement online documentation of both workspace

variables and workspace methods (Buehler et al., 2005). Absorption cross sections are functions of frequency,

pressure, temperature, and the water vapor volume mixing ratio and require a lot of computational resources

in radiative transfer models (Buehler et al., 2011). For each frequency, Buehler et al. precompute and

store absorption cross sections into reference profiles, a kind of two-dimensional irregular LUT, to save

space because not all the input combinations exist in the atmosphere (Buehler et al., 2011). Then, ARTS

uses an extraction strategy containing three high-order polynomial interpolations to obtain absorption cross
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sections (Buehler et al., 2011). Buehler et al. test ARTS with LUTs with three different satellite remote

sensing instrument scenarios and find that adopting LUTs significantly reduces the running time of all

scenarios (Buehler et al., 2011). Also, errors introduced by LUTs are small enough that they can be safely

ingored (Buehler et al., 2011).

Because using LUTs manually requires a lot of extra development work (Wilcox et al., 2011) and makes

programs more difficult to maintain (Loh et al., 2005), Wilcox et al. developed a software package called Mesa

that can automatically analyze errors and generate the code for LUT creation and approximation (Wilcox

et al., 2011). They precompute and store function values at all the midpoints of subintervals and adopt

constant or linear interpolation approximations (Wilcox et al., 2011). Then they test Mesa on three molecular

biology applications, and all three applications get a speed increase with speedup factor around 5 (Wilcox

et al., 2011). Here we need to point out that the amount of performance improvement depends on how much

the cost of direct function evaluations relative to the entire cost of the code. We can get higher performance

improvement when the cost of direct function evaluations is a higher proportion of the entire cost. They

also show that LUT optimization works on both single- and multi-core systems (Wilcox et al., 2011). A

disadvantage of Mesa is that it cannot generate LUTs by error tolerances. Users have to change the step size

manually based on the error analysis of previous LUTs. Another disadvantage is that users cannot change

the type of interpolation.

3.2 Function Comparator

Function Comparator (FunC) is a C++ library that is used to create one-dimensional LUTs for continuous

univariate functions on uniformly spaced grids (Green et al., 2018). FunC has an abstract base class

called EvaluationImplementation that only contains meta-information about the function we want to

evaluate. It has two derived classes: DirectEvaluation and UniformLookupTableGenerator. The class

DirectEvaluation is used to implement the direct function evaluation of a user-specified function. Specific

and detailed LUT implementations are achieved by derived classes, which are items listed with an asterisk

below, of the UniformLookupTableGenerator. The hierarchy of classes in FunC is:

• EvaluationImplementation

– DirectEvaluation

– UniformLookupTableGenerator

∗ UniformLinearInterpolationTable

∗ UniformLinearPrecomputedInterpolationTable

∗ UniformQuadraticPrecomputedInterpolationTable

∗ UniformCubicPrecomputedInterpolationTable

∗ UniformCubicHermiteTable

∗ UniformConstantTaylorTable
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∗ UniformLinearTaylorTable

∗ UniformQuadraticTaylorTable

∗ UniformCubicTaylorTable

Users can use class ImplementationComparator to compare the performance of LUTs and direct function

evaluation by the minimum running time, the mean running time, and the maximum running time (Green

et al., 2019).

FunC allows users to specify different parameters to generate desired LUTs. Specifically, users can specify a

step size, an error tolerance, or an implementation size. Generating a LUT by a step size or an implementation

size is trivial. FunC includes error analysis implicitly and can generate a LUT by an error tolerance (Green

et al., 2018). This is the most important one because the interpolation error of a LUT directly determines

whether the LUT can be used. The error measure adopted in FunC is

E = max
x

|f(x)− f̃(x)|
1
2 (|f(x)|+ |f̃(x)|)

, (3.1)

where f(x) is the direct function evaluation and f̃(x) is the value of a LUT approximation (Green et al.,

2019). Because the difference between f(x) and the true function value is assumed to be on the order of

machine precision, we can approximately regard f(x) as the true function value and E as a relative error.

Then, Green et al. assume E can also be approximated by

E(h) = Chr,

where C is a constant, h is the step size of the LUT interpolation, and r is the order of the LUT

interpolation (Green et al., 2019). They update the step size to achieve the user-specified error tolerance by

a Newton-like iteration in log-log space (Green et al., 2019).

However, error measure (3.1) encounters problems when f(x) is almost zero. In this case, error

measure (3.1) approximately equals to 2 and does not change markedly with the value of f̃(x). A better

error measure is

E = max
x

|f(x)− f̃(x)|
1 + |f(x)|

,

where f(x) and f̃(x) have the same meaning as they do in error measure (3.1). We get an approximation of

the relative error of f̃(x) when |f(x)| is large enough, and we get an approximation of the absolute error of

f̃(x) when |f(x)| is almost zero.

From Table 2.1, we know that LUTs with higher degree (for both piecewise polynomial interpolation and

Taylor series approximation) require more FLOPs per evaluation but have much smaller storage sizes. More

FLOPs result in more time for evaluation, whereas smaller storage sizes result in less time for evaluation

because of the higher probability of staying in cache. Green et al. design several experiments to roughly

explore the effects of cache on evaluation time and find that the LUT implementation with the fewest FLOPs

per evaluation takes the least evaluation time when the LUT stays in cache with a low probability or a high

probability (Green et al., 2019).
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The Cancer, Heart and Soft Tissue Environment (Chaste) is an open-source C++ library

that uses mathematical models to simulate biological and physiological problems with a focus on

cardiac electrophysiology simulation, cancer cell and cell population simulation, and lung ventilation

simulation (Mirams et al., 2013). Chaste employs linear interpolation LUTs as optimization in cardiac

electrophysiology simulations and uses a Python tool PyCml to identify computationally intensive and

repeatedly called functions and to generate linear interpolation LUTs for them (Cooper et al., 2006; Green

et al., 2019). Green et al. use FunC to generate quadratic and cubic interpolation LUTs for those functions

with similar errors of original linear interpolation LUTs (Green et al., 2019). They find that all linear

interpolation LUTs but one, most quadratic interpolation LUTs, and most cubic interpolation LUTs are

faster than direct function evaluations even when all LUTs stay in cache with a low probability (Green et al.,

2019). They also run two different cardiac electrophysiology simulations, one small and one large, and show

that there are significant speed increases in the ordinary differential equation components of both simulations

by adopting LUTs (Green et al., 2019). For the large cardiac electrophysiology simulation, both linear and

cubic interpolation LUTs yield a performance increase of around 30% in total CPU time for Chaste (Green

et al., 2019).

3.3 The Canadian Hydrological Model

The Canadian Hydrological Model (CHM) is an innovative open-source software package designed to model

hydrological processes with a focus on cold-region hydrological processes (Marsh et al., 2019b). It is about

63,000 lines of C++ code. It employs an efficient surface discretization and uses a fully distributed and

modular method to model hydrological processes (Marsh et al., 2019a).

Understanding cold-region hydrological processes is important for humans because the cold-region

environment is extremely sensitive to human activities, and the mountain snow in cold regions is an important

freshwater source (Viviroli et al., 2007; Duarte et al., 2012). One of the challenges in modeling cold-

region hydrological processes is the various spatial heterogeneities in cold regions. Spatial heterogeneities in

surface, surface energy, snow interception by vegetation, etc., impact snowmelt spatial heterogeneity, which

then impacts streamflow discharge spatial heterogeneity (Marsh et al., 2019a). To capture these spatial

heterogeneities, a fully distributed model is used in CHM (Marsh et al., 2019a). Fully distributed, raster-

based models discretize the surface with cells with the same size and generally cannot capture the spatial

heterogeneities very well. To capture the high spatial heterogeneity areas of the surface, fully distributed

raster-based models have to reduce the size of cells and over-represent low spatial heterogeneity areas. This

increases the computational cost significantly and makes modeling hydrological processes in large extents less

possible. To reduce the number of discretization elements as well as the computational cost, Marsh et al. use

unstructured triangular meshes to discretize a surface and its spatial heterogeneity of topography, vegetation,

etc. in CHM (Marsh et al., 2019a). Unstructured triangular meshes use triangles with various sizes in a single
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discretization of a surface. It uses small triangles to discretize high spatial heterogeneity areas of the surface,

like mountains and rivers, and uses large triangles to discretize low spatial heterogeneity areas, like valley

bottoms. Marsh et al. also developed a multi-objective mesh generation tool Mesher to convert raster data

into unstructured triangular meshes. The generated unstructured triangular mesh uses fewer elements than

the orignal raster discretization and reduces the uncertainty of distributed models because it reduces elapsed

time and the number of model parameters and forcing fields (Marsh et al., 2018).

Also, in order to make full use of raster-based algorithms without much modification, CHM uses a k-

dimensional (k-d) spatial search tree to accelerate the search of the target triangle (Marsh et al., 2019a).

Searching for a target cell by discretized coordinates is faster in raster-based models. However, because

discretization triangles in unstructured triangular meshes are irregular, we cannot use the same indexing

method to find the target triangle as in raster-based models. Instead, CHM uses a k-d spatial search tree to

search for the target triangle (Marsh et al., 2019a). As a demonstration, Marsh et al. apply this mechanism

to a shadowing algorithm of Dozier and Frew (Dozier and Frew , 1990) and find the calculated shadow areas

match the observed data well (Marsh et al., 2019a).

Marsh et al. also introduce process modularity in CHM so that a cold-region hydrological process can be

represented by a model composed of a series of ordered modules (Marsh et al., 2019a). There is uncertainty

of cold-region hydrological process modeling, and it is almost impossible to precisely represent a cold-region

hydrological process. What we can do is use different models to represent the same cold-region hydrological

process and evaluate the accuracy of each model. The process modularity in CHM enables users to quickly

change the model of a cold-region hydrological process and make the uncertainty analysis of cold-region

hydrological process modeling simpler and easier (Marsh et al., 2019a). Users can add or remove modules

and change the order of modules in the representation of a cold-region hydrological process (Marsh et al.,

2019a). Modules in CHM are hydrological process representations with different algorithms. There are two

types of modules in CHM: forcing data interpolant and standard module (Marsh et al., 2019b). Forcing

data interpolants are interpolation processes and are used to interpolate point-scale input forcing data onto

all discretization triangles (Marsh et al., 2019b). A module may provide some variables to other modules

and use variables from other modules (Marsh et al., 2019b). This creates dependencies between modules.

Modules can be combined in any way to model a cold-region hydrological process. However, if there are

cyclic dependencies in the model, users have to manually remove module dependencies to eliminate cyclic

dependencies. After that, CHM uses a topological sort to decide the execution order of modules so no modules

violate their dependencies. Figure 3.1 is an example of the modules of the Kananaskis snowpack simulation,

which we study in detail in the next chapter, and their dependencies. The execution order of modules is from

left to right. Directed lines are module dependencies and show that the right modules use variables from the

left modules. In terms of parallelization, all modules are either data parallel or domain parallel (Marsh et al.,

2019a). The difference between domain parallel modules and data parallel modules is whether information

about its neighbors is needed when computing values for a triangle (Marsh et al., 2019a). CHM groups modules
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in the execution order by their parallel types to facilitate parallelization (Marsh et al., 2019a).

Module execution order
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Figure 3.1: The modules and their dependencies of the Kananaskis snowpack simulation.

CHM takes text files or Network Common Data Form (NetCDF) files as input forcing data (Marsh et al.,

2019b). Both types of files contain forcing data from meteorological station measurements or numerical

weather prediction (NWP) output (Marsh et al., 2019a). Forcing data are in chronological order, and the

time difference between any two consecutive data point is the same (Marsh et al., 2019b). CHM also allows

users to filter forcing data that are out of range or to correct values of forcing data (e.g., correct precipitation

for under-catch) before any module is executed (Marsh et al., 2019a). After that, CHM uses forcing data

interpolants to interpolate forcing data onto all triangles.

All configuration information is stored in a JavaScript Object Notation (JSON) file (Marsh et al.,

2019b). Users can easily modify model parameters and forcing fields, add or remove modules, change the

order of modules, and remove module dependencies by editing the corresponding JSON file or overriding

specific configuration information from the command line (Marsh et al., 2019a). This mechanism makes the

uncertainty analysis of cold-region hydrological process modeling simpler and easier (Marsh et al., 2019a).

3.4 A Systematic Procedure for Implementing LUTs

The primary goal of this thesis is to use FunC to generate LUTs for computationally intensive and repeated

called functions in CHM so that we can improve the performance of CHM in terms of running time. In this
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section, we propose a systematic procedure of using FunC to implement LUTs. This procedure is used for

CHM in the next chapter and also can be easily applied to other numerical computing software packages.

The first thing we need to do is to identify computationally intensive and repeated called functions in the

numerical computing software package, the performance of which we want to improve. We can look through

the source code or use performance analysis software packages to identify such functions. To generate LUTs

by using FunC, we need to determine the error tolerances and the input ranges for LUT implementations of

the identified functions. If the input to a function has a physical meaning, we can first estimate the range of

the input. We can then verify the input range of the function through repeated testing. Although the error

tolerance is related to the accuracy of the numerical computing software package and we have to determine

the magnitude of the error tolerance according to the specific software package, the single-precision error

tolerance 10−8 and the double-precision error tolerance 10−16 are two good candidates that are widely used.

Next, we need to make sure that the software package with LUT implementations still yields the same results

as the original software package. The final step is to verify whether the LUT implementations improve the

performance of the software package. Figure 3.2 shows the workflow of implementing LUTs in numerical

computing software packages.

Figure 3.2: The workflow of implementing LUTs in numerical computing software packages.

In this chapter, we first introduced the applications of LUTs in different areas. Then, we described two

open-source software packages, FunC and CHM, that are the foundation for the study performed. Finally, we

proposed a systematic procedure of implementing LUTs that can be easily applied to numerical computing

software packages.
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4 Numerical Results

This chapter presents details of LUT implementations in CHM and evaluates the performance improvement

introduced by LUT implementations of running CHM on cold-region hydrological simulations. In Section 4.1, we

describe the procedure of profiling CHM and implementing LUTs for computationally intensive and repeatedly

called functions in CHM. In Section 4.2, we verify the outputs of CHM with LUT implementations on a small-

extent, cold-region hydrological simulation and show that LUT implementations improve the performance

of CHM. In Section 4.3, we get results similar to that of Section 4.2 when using a large-extent, cold-region

hydrological simulation. All the running times in Section 4.2 and Section 4.3 are measured using an Intel©

CoreTM i7-6700 Processor @ 3.40 GHz computer with 64 GB DDR4 RAM @ 2133 MHz. The Intel© CoreTM

i7-6700 has a 32 KB L1 data cache, a 32 KB L1 instruction cache, a 256 KB L2 cache, and a 8192 KB L3

cache.

4.1 LUT implementations in CHM

The VTune Amplifier, created by Intel, enables software developers to analyze their programs and detect

time-consuming or resource-consuming code sections (Intel , 2019). We use the VTune Amplifier to profile

the performance of running CHM on a problem called the Kananaskis snowpack simulation from September

01, 2017 to August 30, 2018. The simulation uses various meteorology inputs to drive a snowcover module,

snobal (Marks et al., 1999). The modules and their dependencies of the simulation are detailed in Figure 3.1.

Directed lines are module dependencies. The starting points of directed lines are modules that provide

variables corresponding to directed lines, and the end points of directed lines are modules that use variables

corresponding to directed lines. Variables provided by one module but not used by others are not shown in

Figure 3.1.

The domain covered by the simulation has an area of around 1000 km2 and is shown in blue and yellow

(blue = low elevation, yellow = high elevation) in Figure 4.1. The elevation of this domain ranges from 1827

m to 3053 m. The Kananaskis snowpack simulation divides the domain into 93,162 triangles and outputs

hourly values of variables provided by all modules for all triangles. We selectively save values of snow water

equivalent (SWE), snow depth perpendicular to triangle slope (snowdepthavg), and snow depth perpendicular

to triangle slope [cosine corrected ] (snowdepthavg_vert) into vtu files every 24 hours. All three variables are

provided by the module snobal. We choose this simulation because it spends a lot of running time on the

snobal module of CHM and, in this thesis, we only use LUTs to optimize the snobal module.
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Figure 4.1: The domain covered by the Kananaskis snowpack simulation has an area of around

1000 km2 and is shown in blue and yellow (blue = low elevation, yellow = high elevation). The elevation

of this domain ranges from 1827 m to 3053 m. The domain covered by the SnowCast simulation has

an area of around 17,880 km2 and is shown in black and white (black = low elevation, white = high

elevation). The elevation of this domain ranges from 787 m to 3453 m.

It takes the VTune Amplifier 203,540.832 s (around 2.4 days) of CPU time to run CHM on the Kananaskis

snowpack simulation. Figure 4.2 shows partial VTune Amplifier profiling results of running CHM on the

simulation. The blue highlights are performance issues that can potentially be improved by implementing

LUTs. We notice that there are two functions, sno::satw and sno::sati, where the letters “w” and “i” stand

for water and ice, in the snobal module that take up most of the computational resources. Most arithmetic

operations of sno::satw and sno::sati happen in

f(x) =10Zsatw ,

Zsatw =− 7.90298

(
373.15

x
− 1

)
+

5.02808

ln 10
ln

373.15

x

− 0.00000013816
(

1011.344(1−
x

373.15 ) − 1
)

+ 0.0081328
(

10−3.49149(
373.15

x −1) − 1
)

+
ln 101324.6

ln 10
,

(4.1)
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f(x) =100× 10Zsati ,

Zsati =− 9.09718

(
273.16

x
− 1

)
− 3.56654

ln 10
ln

273.16

x

+ 0.876793
(

1− x

273.16

)
+

ln 6.1071

ln 10
,

(4.2)

respectively, where the input x is a temperature in the unit of Kelvin (K). In practice, CHM computes and stores

ln 10 in the beginning of sno::satw and sno:sati to reduce computational effort. Although Equation (4.1) is

just a part of sno::satw, it accounts for most FLOPs of sno::satw. We regard sno::satw and Equation (4.1)

as the same thing in this thesis and refer to Equation (4.1) as sno::satw. The same is true for sno:sati and

Equation (4.2). The VTune Amplifier divides effective times by utilization into five categories: idle, poor,

ok, ideal, and over. We focus on poor effective times, which are shown in red horizontal bars in Figure 4.2.

The poor effective times for sno::satw and sno::sati themselves are 323.443 s and 1049.775 s, respectively.

From Figure 4.2, we can also observe that functions log and pow have a large amount of poor effective times.

Among those poor effective times, sno::satw and sno::sati make up the majority. More specifically, the

poor effective time for log is 3376.663 s, the poor effective time for sno::satw calling log is 559.764 s, and

the poor effective time for sno::sati calling log is 2019.602 s. The poor effective time for both sno::satw

and sno::sati calling log accounts for more than 75% of the poor effective time for log. The poor effective

for pow is 1817.079 s, the poor effective time for sno::satw calling pow is 603.607 s, and the poor effective

for sno::sati calling pow is 668.086 s. The poor effective time for both sno::satw and sno::sati calling

pow accounts for around 70% of the poor effective time for pow. All these poor effective times indicate that

we can improve the performance of sno::satw and sno::sati by implementing LUTs for them.

Equation (4.1) and Equation (4.2) show that sno::satw calls the log function three times (sno::satw

only calls the log function once for two ln 10 evaluations because it computes and stores ln 10 at the beginning

of sno::satw) and calls pow three times per evaluation, and that sno::sati calls the log function three

times (sno::sati only calls the log function once for two ln 10 evaluations because it computes and stores

ln 10 in the beginning of sno::sati) and calls pow one time per evaluation. From our previous discussion, we

know that the poor effective time for sno::sati calling log is around four times as long as the poor effective

time for sno::satw calling log and that the poor effective time for sno::sati calling pow is almost the same

as the poor effective time for sno::satw calling pow. Therefore, we can safely infer that the number of times

that sno::sati is called is three to four times as many as the number of times that sno::satw is called.
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Figure 4.2: Partial VTune Amplifier profiling results of running CHM on the Kananaskis snowpack

simulation. The blue highlights are performance issues related to CHM and can potentially be improved

by implementing LUTs. We notice that there are two functions, sno::satw and sno::sati in the

snobal module that perform poorly. There is a large amount of poor effective time for sno::satw and

sno::sati themselves and for sno::satw and sno::sati calling log and pow.

In theory, we can implement LUTs for all functions listed in the VTune Amplifier profiling results, but in

practice it may not be worth the effort to do so. The reasons why we only implement LUTs for sno::satw

and sno::sati include but are not limited to: (1) Other functions have little poor effective time. (2) Other

functions do not perform many arithmetical computations. (3) Other functions are in external libraries. If

we want to use LUTs to optimize external libraries, we should treat them as independent software packages

and apply the same procedure as here to them.

Let us take a closer look at the curves of sno::satw and sno::sati. The left subfigure of Figure 4.3

shows the curve of sno::satw from x = 0.01 to x = 300. From Equation (4.1) and the left subfigure of

Figure 4.3, we conclude that sno::satw has the following properties:

1. the domain of sno::satw is x > 0,

2. sno::satw is continuous and has all orders of derivatives on its domain,

3. sno::satw is a strictly increasing function,

4. all values of sno::satw are positive,

5. all values of sno::satw for x ≤ 150 are near zero. Specifically, sno::satw(x) < 2.46 × 10−6, ∀x ∈

(0, 150].

The right subfigure of Figure 4.3 shows the curve of sno::sati from x = 0.01 to x = 300. From Equation (4.2)

and the right subfigure of Figure 4.3, we conclude that sno::sati has all the same properties of sno::satw.
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Figure 4.3: The curves of functions sno::satw and sno::sati.

Because both sno::satw and sno::sati are continuous and have all orders of derivatives on x > 0, we

can implement all types of LUTs discussed in Chapter 2 for them. In order to do that, we need to determine

the error tolerances and domains for the LUT implementations of sno::satw and sno::sati, respectively.

We somewhat arbitrarily choose the single-precision tolerance 10−8 for both sno::satw and sno::sati LUT

implementations. This tolerance is widely used and works perfectly in the sense of the difference of simulation

outputs introduced by LUT implementations, as described below. Choosing domains is more complicated.

Domains that are too small may not include x values we want to evaluate, and domains that too large may

waste cache and memory and degrade the performance of LUTs. At first, we use the domain [273.16, 323.16]

for sno::satw because the letter “w” in sno::satw stands for water. Temperature 273.16 K (0◦C) is the

freezing point of water, and temperature 323.16 K (50◦C) is higher than the highest temperature ever recorded

in Canada (Wikipedia contributors, 2019). However, we find CHM calling sno::satw with temperatures much

lower than the freezing point during internal iterations. By using trial and error in combination of a binary

search strategy on the lower bound of the domain, we find [223.16, 323.16] is a proper domain for sno::satw.

A similar problem also happens with sno::sati. We find CHM calling sno::sati with temperatures much

higher than the freezing point during internal iterations. In order to solve this problem, we set the maximum

of the domain for LUT implementations of sno::sati to 323.16 K. We also find CHM calling sno::sati with

extremely low temperatures, like 45.50 K, during internal iterations. In order to solve this problem, we have

to set the minimum of the domain for LUT implementations of sno::sati to a temperature near 0 K. This

creates a problem that we have mentioned in Section 3.2. Error measure (3.1) approximately equals to 2

when f(x) is almost zero. This is the case for sno::sati when x is close to 0. We try to create a LUT for

sno::sati with the domain [0.01, 323.16] and the error tolerance 10−8. It takes FunC prohibitively long time

to do so. So we decide to use an if-else branch to solve this problem, as follows.

Because the machine epsilon εmach of double-precision arithmetic is 2.22 × 10−16 (Higham, 2002) and

sno::sati(90) = 1.38× 10−17 . εmach, we use [90, 323.16] as the domain for sno::sati. When sno::satw
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is called with a temperature lower than 90 K, we return 0 directly. Although there is a performance penalty

for using if-else branches, this strategy makes LUT implementations for sno::sati possible.

Next, we need to decide which type of LUT should be used in CHM. We ignore the class UniformConstant-

TaylorTable in the following discussion because it uses too much space and is inefficient in practice. Because

the Kananaskis snowpack simulation uses more than 20 GB RAM, which is much larger than the cache size of

the Intel© CoreTM i7-6700, LUT implementations are highly likely to stay out of cache all the time. There

is no other application programs running in the computer I use when we run the simulation. Because the

computer has 64 GB RAM and there are more than 30 GB available RAM when we run the simulation, we

can safely assume that all LUT implementations are always in the main memory. This case fits the description

of the worst case for LUT implementations in (Green et al., 2019). According to the rule of thumb Green

et al. propose for the worst case, we should use the LUT implementation with the fewest FLOPs. The

class UniformConstantTaylorTable uses the fewest FLOPs per evaluation. However, it is almost unusable

in practice because it uses much more space than other LUT implementations and takes prohibitively long

to generate the desired LUTs. The class UniformLinearPrecomputedInterpolationTable uses the second

fewest FLOPs per evaluation. Compared to the class UniformLinearInterpolationTable, it uses one fewer

FLOP but one more IOP per evaluation. Because an IOP is faster than a FLOP in theory, we should expect

that the class UniformLinearPrecomputedInterpolationTable performs slightly better than the class

UniformLinearInterpolationTable. However, the class UniformLinearPrecomputedInterpolationTable

uses twice as much space as the class UniformLinearInterpolationTable. Taking all the above factors into

consideration, we use the class UniformLinearInterpolationTable in our experiments.

For simplicity, we refer to the original CHM as CHM without LUT and refer to CHM with LUT implementations

for sno::satw and sno::sati as CHM with LUT.

4.2 Kananaskis Snowpack Simulation

First, we use vtu files that store daily values of SWE, snowdepthavg, and snowdepthavg_vert to check

whether there is a difference between outputs of CHM without LUT and CHM with LUT. Figure 4.4 visualizes

all daily outputs and root mean square errors (RMSEs) of CHM without LUT and CHM with LUT on the

Kananaskis snowpack simulation. Blue lines show the daily maximum values of all variables outputted by

CHM without LUT across all the triangles. Yellow dash-dot lines show the daily maximum values of all variables

outputted by CHM with LUT across all the triangles. The difference between outputs of two versions of CHM

is visually indistinguishable. Daily RMSEs of all variables between outputs of two versions of CHM shown in

green dotted lines also support this observation. The maximum RMSE of SWE is less than 0.06 mm, the

maximum RMSE of snowdepthavg is less than 0.0005 cm, and the maximum RMSE of snowdepthavg_vert

is less than 0.0008 cm. All the three maximum RMSEs are much less than the values of their corresponding

variables.
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Figure 4.4: Visualizations of daily outputs and RMSEs of both CHM without LUT and CHM with LUT

on the Kananaskis snowpack simulation. Blue lines show the daily maximum values of all variables

outputted by CHM without LUT across all the triangles. Yellow dash-dot lines show the daily maximum

values of all variables outputted by CHM with LUT across all the triangles. The difference between

outputs of CHM without LUT and CHM with LUT is visually indistinguishable. Green dotted lines show

daily RMSEs of all variables between outputs of two versions of CHM without LUT and CHM with LUT.

All the three maximum RMSEs are much less than the values of their corresponding variables.

We use both CHM without LUT and CHM with LUT to run the Kananaskis snowpack simulation 90 times,

respectively. All the running times are measured in seconds as reported by the debug mode of CHM. Table 4.1

provides summary statistics of the Kananaskis snowpack simulation running times for each CHM version. The

sample mean of the running times of CHM without LUT on the Kananaskis snowpack simulation is 8004.34 s

(around 2.2 h), and the sample mean of the running times of CHM with LUT on the Kananaskis snowpack

simulation is 6764.79 s (around 1.9 h). The difference between two sample means is 8004.34 − 6764.79 =

1239.55 s.
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Version Mean (s) Standard deviation (s) Minimum (s) Maximum (s)

CHM without LUT 8004.34 44.24 7965 8157

CHM with LUT 6764.79 46.62 6728 6930

Table 4.1: Summary statistics of the Kananaskis snowpack simulation running times for each

CHM version.

The difference may be due to LUT implementations for sno::satw and sno::sati or due to the natural

variation in running times. Formally, we can set two hypotheses to evaluate the cause of this difference:

H0: On average, the running times of CHM with LUT and CHM without LUT on the Kananaskis
snowpack simulation are equal.

HA: On average, the running times of CHM with LUT and CHM without LUT on the Kananaskis
snowpack simulation are not equal.

H0 is called the null hypothesis. It represents the case of no difference between the average running times

of two versions of CHM on the Kananaskis snowpack simulation. HA is called the alternative hypothesis. It

represents the case that there is a difference between the average running times of two versions of CHM on

the Kananaskis snowpack simulation. According to (Diez et al., 2012), we need to verify two conditions,

the independence requirement and the normality requirement of the data, to use a t-distribution to perform

an independent samples t-test. The independence requirement of running times is satisfied because we run

one experiment at a time. Figure 4.5 shows the running time histograms of the two versions of CHM on the

Kananaskis snowpack simulation. Because there are no particularly extreme outliers in either histogram (all

the running times are within 3.54 standard deviations of the corresponding mean), the normality requirement

of running times is also satisfied (Diez et al., 2012).

By using the Python library SciPy, we calculate that p-value is 4.11× 10−204, which is far less than the

standard significance level 0.05. Therefore, we can safely reject the null hypothesis H0 in favor of HA. The

data provide strong evidence that the average running time of CHM with LUT is less than the average running

time of CHM without LUT on the Kananaskis snowpack simulation. The corresponding 95% confidence interval

of the difference is (1226.18, 1252.93). We note that

1226.18

6764.79
= 18.12%,

1252.93

6764.79
= 18.52%.

So in the sense of the average running time, we are 95% confident that implementing linear interpolation

LUTs for sno::satw and sno:sati improves the performance of running CHM on the Kananaskis snowpack

simulation by 18.12% to 18.52%.
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Figure 4.5: The running time histograms of CHM without LUT and CHM with LUT on the Kananaskis

snowpack simulation.

Next, we check whether there is a significant difference between the minimum running times of the two

versions of CHM on the Kananaskis snowpack simulation. We randomly divide the 90 running times of CHM

without LUT on the Kananaskis snowpack simulation into three equal groups. Each group contains 30

running times and is a good estimation of the true running time distribution of CHM without LUT on the

Kananaskis snowpack simulation (Diez et al., 2012). The minimum running times of the three groups are

7965 s, 7965 s, and 7968 s. Each group minimum running time is an estimation of the minimum running

time of CHM without LUT on the Kananaskis snowpack simulation. According to the Central Limit Theorem;

see for example (Diez et al., 2012), the mean of the three group minimum running times,

7965 + 7965 + 7968

3
= 7966.00 s,

is a better estimate of the minimum running time of CHM without LUT on the Kananaskis snowpack simulation

than each group minimum running time.

We apply the same operations to the running times of CHM with LUT on the Kananaskis snowpack

simulation. The 90 running times of CHM with LUT on the Kananaskis snowpack simulation are randomly

divided into three equal groups. The minimum running times of the three groups are 6728 s, 6729 s, and

6738 s. Each group minimum running time is an estimation of the minimum running time of CHM with LUT

on the Kananaskis snowpack simulation. The mean of the three group minimum running times,

6728 + 6729 + 6738

3
= 6731.67 s,

is a better estimate of the minimum running time of CHM with LUT on the Kananaskis snowpack simulation

than each group minimum running time.

The difference between the two means of the minimum running times is 7966.00 − 6731.67 = 1234.33 s.

Similarly, we can create two hypotheses about the difference between the minimum running times:
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H0: The minimum running times of CHM with LUT and CHM without LUT on the Kananaskis
snowpack simulation are equal.

HA: The minimum running times of CHM with LUT and CHM without LUT on the Kananaskis
snowpack simulation are not equal.

Because each group minimum running time is independent of the others (the data independence requirement)

and all the group minimum running times of the same CHM version are close together (the data normality

requirement), we use a t-distribution to perform an independent samples t-test. The p-value here is 9.50 ×

10−7, which is far less than the standard significance level 0.05. Therefore, we can safely reject the null

hypothesis H0 in favor of HA. The data provide strong evidence that the minimum running time of CHM with

LUT is less than the minimum running time of CHM without LUT on the Kananaskis snowpack simulation.

The corresponding 95% confidence interval of the difference is (1222.02, 1246.64). We note that

1222.02

6731.67
= 18.15%,

1246.64

6731.67
= 18.52%.

So in the sense of the minimum running time, we are 95% confident that implementing linear interpolation

LUTs for sno::satw and sno:sati improves the performance of running CHM on the Kananaskis snowpack

simulation by 18.15% to 18.52%.

We often need to run a simulation hundreds of times to develop a simulation model and tune its parameters.

If we run the Kananaskis snowpack simulation 100 times, we can save around 1.5 days of computation time

just by using CHM with LUT. Also, generating LUTs for sno::satw and sno::sati in CHM with LUT takes

less than half a minute, which is negligible compared to the reduced running time.

4.3 SnowCast Simulation

Next, we consider a similar simulation called the SnowCast simulation on a larger domain. The SnowCast

simulation has the same start date and end date as the Kananaskis snowpack simulation but uses slightly

different meteorology inputs to drive the snowcover module snobal. The modules and their dependencies

of the simulation are detailed in Figure 4.6. The domain covered by the SnowCast simulation has an area

of around 17,880 km2 and is shown in black and white (black = low elevation, white = high elevation) in

Figure 4.1. The elevation of this domain ranges from 787 m to 3453 m. The SnowCast simulation divides the

domain into 238,790 triangles and outputs hourly values of variables provided by all modules for all triangles.

As before, we selectively save daily values of SWE, snowdepthavg, and snowdepthavg_vert into vtu files.
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Figure 4.6: The modules and their dependencies of the SnowCast simulation.

Because the Kananaskis snowpack simulation and the SnowCast simulation are very similar, we expect

that we can still implement LUTs for sno::satw and sno::sati to improve the performance of CHM on

the SnowCast simulation. The error tolerances and domains for LUT implementations of sno::satw and

sno::sati remain the same. Specifically, the error tolerances for both LUT implementations of sno::satw

and sno::sati are both set to 10−8, and the domains are [223.16, 323.16] and [90, 323.16], respectively.

When sno::satw is called with a temperature lower than 90 K, we return 0 directly. The validity of the error

tolerances and domains is proved by the following experiments. Also, the SnowCast simulation uses around

30 GB RAM, which is much larger than the cache size of the Intel© CoreTM i7-6700. Accordingly, LUT

implementations are likely to stay out of cache all the time. When we run the simulation, there is no other

application programs running in my computer. Because my computer has 64 GB RAM and there are around

30 GB available RAM when we run the simulation, we can safely assume that all LUT implementations are

always in the main memory. For the same reason of using the class UniformLinearInterpolationTable in

the Kananaskis snowpack simulation, we continue using the class UniformLinearInterpolationTable for

sno::satw and sno::sati.

First, we use vtu files that store daily values of SWE, snowdepthavg, and snowdepthavg_vert to check

whether there is a difference between outputs of CHM without LUT and CHM with LUT. Figure 4.7 visualizes

all daily outputs and RMSEs of the SnowCast simulation. Blue lines show the daily maximum values of
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all variables outputted by CHM without LUT across all the triangles. Yellow dash-dot lines show the daily

maximum values of all variables outputted by CHM with LUT across all the triangles. The difference between

outputs of two versions of CHM is visually indistinguishable. Daily RMSEs of all variables between outputs

of two versions of CHM shown in green dotted lines also support this observation. The maximum RMSE of

SWE is less than 0.14 mm, the maximum RMSE of snowdepthavg is less than 0.0014 cm, and the maximum

RMSE of snowdepthavg_vert is less than 0.0016 cm. All the three maximum RMSEs are much less than the

values of their corresponding variables.
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Figure 4.7: Visualizations of daily outputs and RMSEs of both CHM without LUT and CHM with LUT

on the SnowCast simulation. Blue lines show the daily maximum values of all variables outputted by

CHM without LUT across all the triangles. Yellow dash-dot lines show the daily maximum values of all

variables outputted by CHM with LUT across all the triangles. The difference between outputs of CHM

without LUT and CHM with LUT is visually indistinguishable. Green dotted lines show daily RMSEs of

all variables between outputs of CHM without LUT and CHM with LUT. All the three maximum RMSEs

are much less than the values of their corresponding variables.

We use both CHM without LUT and CHM with LUT to run the SnowCast simulation 90 times, respectively.

All the running times are measured in seconds by the debug mode of CHM. Table 4.2 provides summary

statistics of the SnowCast simulation running times for each CHM version. CHM without LUT takes 22,303.24 s

(around 6.2 h) on average to run the SnowCast simulation. CHM with LUT takes 18,417.44 s (around 5.1 h)
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on average to run the SnowCast simulation. The difference between two average running times is 22,303.24−

18,417.44 = 3885.80 s.

Version Mean (s) Standard deviation (s) Minimum (s) Maximum (s)

CHM without LUT 22,303.24 64.87 22,203 22,481

CHM with LUT 18,417.44 70.55 18,318 18,665

Table 4.2: Summary statistics of the SnowCast simulation running times for each CHM version.

We can set two hypotheses to evaluate the cause of this difference:

H0: On average, the running times of CHM with LUT and CHM without LUT on the SnowCast
simulation are equal.

HA: On average, the running times of CHM with LUT and CHM without LUT on the SnowCast
simulation are not equal.

The independence requirement between each running time holds because we run one experiment at a time.

Figure 4.8 shows the running time histograms of two versions of CHM on theSnowCast simulation. Because

there are no particularly extreme outliers in both histograms (all the running times are within 3.51 standard

deviations of the corresponding mean), the normality requirement of running times is satisfied (Diez et al.,

2012). So a t-distribution is still suitable for this inference.
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Figure 4.8: The running time histograms of CHM without LUT and CHM with LUT on the SnowCast

simulation.

From this independent samples t-test, the p-value is equal to 2.65 × 10−260, which is far less than the

standard significance level 0.05. Therefore, we can safely reject H0 in favor of HA. The data provide strong

evidence that the running times of CHM with LUT are less than the running times of CHM without LUT on

the SnowCast simulation. The corresponding 95% confidence interval of the difference is (3865.86, 3905.74).
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We note that
3865.86

18,417.44
= 20.99%,

3905.74

18,417.44
= 21.21%.

So in the sense of the average running time, we are 95% confident that implementing linear interpolation

LUTs for sno::satw and sno:sati improves the performance of running CHM on the SnowCast simulation

by 20.99% to 21.21%.

Next, we check whether there is a difference between the minimum running times of the two versions of

CHM on the SnowCast simulation. The 90 running times of CHM without LUT on the SnowCast simulation

are randomly divided into three equal groups. The minimum running times of the three groups are 22,204 s,

22,203 s, and 22,217 s. Each group minimum running time is an estimation of the minimum running time of

CHM without LUT on the SnowCast simulation. The mean of the three group minimum running times,

22,204 + 22,203 + 22,217

3
= 22,208.00 s,

is a better estimate of the minimum running time of CHM without LUT on the SnowCast simulation than

each group minimum running time.

We apply the same operations to the running times of CHM with LUT on the SnowCast simulation. The

90 running times of CHM with LUT on the SnowCast simulation are randomly divided into three equal groups.

The minimum running times of the three groups are 18,321 s, 18,318 s, and 18,341 s. Each group minimum

running time is an estimation of the minimum running time of CHM with LUT on the SnowCast simulation.

The mean of the three group minimum running times,

18,321 + 18,318 + 18,341

3
= 18,326.67 s,

is a better estimate of the minimum running time of CHM with LUT on the SnowCast simulation than each

group minimum running time.

The difference between the two means of the group minimum running times is 22,208.00 − 18,326.67 =

3881.33 s. We create two hypotheses about the cause this difference:

H0: The minimum running times of CHM with LUT and CHM without LUT on the SnowCast
simulation are equal.
HA: The minimum running times of CHM with LUT and CHM without LUT on the SnowCast
simulation are not equal.

Because each group minimum running time is independent of the others (the data independence requirement)

and all the group minimum running times of the same CHM version are close together (the data normality

requirement), we use a t-distribution to perform an independent samples t-test. The p-value in here is

3.71 × 10−9, which is far less than the standard significance level 0.05. Therefore, we can safely reject the

null hypothesis H0 in favor of HA. The data provide strong evidence that the minimum running time of CHM

with LUT is less than the minimum running time of CHM without LUT on the SnowCast simulation. The

corresponding 95% confidence interval of the difference is (3855.80, 3906.87). We note that

3855.80

18,326.67
= 21.04%,

3906.87

18,326.67
= 21.32%.
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So in the sense of the minimum running time, we are 95% confident that implementing linear interpolation

LUTs for sno::satw and sno:sati improves the performance of running CHM on the SnowCast simulation

by 21.04% to 21.32%.

If we run the SnowCast simulation 100 times, we can save around 4.5 days of computation time just by

using CHM with LUT. Also, generating LUTs for sno::satw and sno::sati in CHM with LUT takes less than

half a minute, which is negligible compared to the reduced running time.

In this chapter, we first profiled the performance of running CHM without LUT on the Kananaskis snowpack

simulation and identified two computationally intensive and repeatedly called functions sno::satw and

sno::sati. Then, we generated piecewise linear interpolation LUTs with error tolerances 10−8 for both

functions. Finally, we compared the outputs and the running times of CHM without LUT and CHM with LUT

on both the Kananaskis snowpack simulation and the SnowCast simulation. The experiments show that both

CHM versions produced the same outputs and CHM with LUT reduced the running times on both simulations

by around 20%.
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5 Conclusion and Future Work

Cold-region hydrological processes play an important role in the environment of cold regions. Simulations

of them help people understand past hydrological events and predict future ones (Freeze and Harlan, 1969).

Due to the need to use more complex models and simulations over larger domains, it is important to make

cold-region hydrological simulations efficient so they can be run within a reasonable period. For this purpose,

the open-source software package CHM uses unstructured triangular meshes to discretize domain surfaces and

it also employs parallelization. We implement LUTs in CHM to further reduce running times of cold-region

hydrological simulations.

Specifically, this thesis contributes to research on cold-region hydrological simulation in following aspects:

1. We analyze CHM and identify two computationally intensive and repeatedly called functions sno::satw

and sno::sati in the CHM module snobal by using Intel VTune. Their expressions are given in

Equation (4.1) and Equation (4.2). Then we scrutinize the curves of the two functions and identify key

features, that are critical to implement LUTs for them.

2. We implement UniformLinearInterpolationTable for functions sno::satw and sno::sati by using

the C++ library FunC and commit my implementations to the Git repository of CHM. We run the

Kananaskis snowpack simulation and the SnowCast simulation on an Intel© CoreTM i7-6700 CPU @

3.40 GHz computer with 64 GB DDR4 RAM @ 2133 MHz. Because both simulations use more than 20 GB

of memory, which is much larger than the cache size of the Intel© CoreTM i7-6700, LUTs stay in cache

with a low probability. Accordingly, we decide to implement UniformLinearInterpolationTable for

both sno::satw and sno::sati. By using trial and error in combination of a binary search strategy on

the lower bounds of domains, we find [223.16, 323.16] and [0, 323.16] large enough to include all inputs of

sno::satw and sno::sati respectively. Because the error measure (3.1) approximately equals to 2 when

f(x) is near zero, FunC cannot generate the correct LUT by error tolerance for sno::sati. We use an if-

else branch to divide the domain of sno::sati into two sub-domains: [0, 90] and [90, 323.16]. FunC only

generates UniformLinearInterpolationTable for sno::sati with domain [90, 323.16]. sno::sati

uses its UniformLinearInterpolationTable to evaluate function values when input x ∈ [90, 323.16]

and returns zero directly when x ∈ [0, 90].

3. We improve the performance of CHM by around 20% on both the Kananaskis snowpack simulation and

the SnowCast simulation by implementing LUTs for sno::satw and sno::sati. Specifically, we are

95% confident that, in the sense of the average running time, the performance improvement of CHM
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on the Kananaskis snowpack simulation is between 18.12% and 18.52% and that, in the sense of the

minimum running time, the performance improvement of CHM on the Kananaskis snowpack simulation

is between 18.15% and 18.52%. We are 95% confident that, in the sense of the average running time,

the performance improvement of CHM on the SnowCast simulation is between 20.99% and 21.21% and

that, in the sense of the minimum running time, the performance improvement of CHM on the SnowCast

simulation is between 21.04% and 21.32%. Also, all the maximum RMSEs of SWE, snowdepthavg, and

snowdepthavg_vert are much less than the values of their corresponding variables, and the difference

between outputs of the original CHM and the CHM with LUT implementations is visually negligible.

4. We provide a systematic procedure of implementing LUTs that can be easily applied to numerical

computing software packages. Nowadays, many software packages use iterative methods for optimization

or to find a solution of equations and may call some computationally intensive functions repeatedly.

Other researchers can follow the procedure and use FunC to implement LUTs in their programs as an

optimization.

Here are some possible directions that we can follow to extend the studies in this thesis further in future:

1. We wish to implement a different error measure in FunC. FunC has a problem with generating LUTs by

error tolerance when function values are near zero. This is demonstrated in Section 3.2. A better error

measure is

E = max
x

|f(x)− f̃(x)|
1 + |f(x)|

.

We get an approximation of the relative error of f̃(x) when |f(x)| is large enough, and we get an

approximation of the absolute error of f̃(x) when |f(x)| is near zero. By using this error measure, FunC

may generate LUTs by error tolerance for sno:sati with domain [0, 323.16] successfully.

2. We wish to compare the performance of LUTs when they stay in cache with different probabilities. In

this thesis, our LUT implementations are all likely to stay out of cache all the time. In such a case,

the LUT with the fewest FLOPs per evaluation performs the best. In the future work, we want to

compare the performance of different LUT types in the case where smaller LUTs with more FLOPs per

evaluation stay in cache with a higher probability and larger LUTs with fewer FLOPs per evaluation

stay in cache with a lower probability.

3. We wish to identify more functions in CHM that can be improved by LUT implementations. In this

thesis, we only implement LUTs for two functions, sno::satw and sno::sati in snobal. They are

computationally intensive and repeatedly called and take up many computational resources. Green

et al. find that LUTs are faster than direct evaluation even for simple functions like the exponential

function (Green et al., 2019). We may find some less computationally intensive functions that are

considered ideal by Intel VTune but can be improved by LUT implementations.
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4. We wish to use FunC to implement LUTs in other software packages. The procedure of implementing

LUTs in this thesis is systematic, and we can use the same procedure to implement LUTs for

computationally intensive and repeatedly called functions in other software packages. We may be

able to provide a significant improvement in the true minimum running time.
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