

Establishing a mycotoxin quantification platform to support FHB research and breeding programs

Lipu Wang

Cereal & Flax Pathology Lab

Department of Plant Sciences/Crop Development Centre College of Agriculture and Bioresources

Fusarium head blight (FHB)

- Fungal disease of small grain cereals
- bleaching spikes and Fusarium damaged kernels

Fusarium produced Mycotoxins

- Secondary metabolites and virulent factors
- harmful to humans and livestock.
- Significantly reduced grain quality and price.
- Poor-quality food products (e.g., bread and beer)
- Regulations on the maximum acceptable mycotoxin level

Fusarium mycotoxins found in western Canada

- **Deoxynivalenol (DON, or Vomitoxin)**, is predominant in North America.
- Nivalenol (NIV) prevail in Asia, but was detected in western Canada in 2015.
- Significant shift from the 15-ADON to the more aggressive 3-ADON chemotype in western Canada.
- **T-2** and **HT-2** Toxin are more toxic than DON.

Masked mycotoxin in grain

- DON is modified through plant detoxification system to form less toxic form, Deoxynivalenol-3-glucoside (D3G) in plant.
- Unlike DON, D3G are not routinely monitored.
- D3G can be reversed to toxic form in mammalian digestive systems (Gratz et al., 2013).
- The high level of D3G has been detected in the resistant wheat lines (Amarashinghe et al., 2016).

High demand on mycotoxin measurement

Plant pathologistUnderstand the disease mechanism and surveilthe mycotoxins in western Canada

Liquid Chromatography- Tandem Mass Spectrometry (LC-MS/MS)

The Core Mass Spectrometry Facility, College of Pharmacy and Nutrition, U of Saskatch The 4000 QTRAP[®] LC/MS/MS System is a hybrid triple quadrupole/linear ion trap mass spectrometer coupled to an Agilent 1260 Binary HPLC

LC-MS/MS

Crude Extraction

LC separation MS/MS separation

I: high-throughput DON phenotyping assay

- Breeding programs dealing with a large number of samples
- II: multiple mycotoxins quantification assay
 - Mycotoxin surveillance in Western Canada
 - Masked toxins determination in grain

Method validation

the US Food and Drug Administration (FDA) Guidelines for Bioanalytical Method Validation

I: high-throughput DON phenotyping assay

small amount of sample request 100 mg of any tissue from plant

I: high-throughput DON phenotyping assay

Сгор	LOQ (ng/mL or ppb)	r ²
durum	3.13	0.9990
barley	6.25	0.9993
oats	6.25	0.9973
canary seed	6.25	0.9953
rye	6.25	0.9987

Limit of quantification (LOQ) and regression coefficient (r²) for each crop

II: multiple mycotoxins quantification assay

II: multiple mycotoxins quantification assay

Analyte	LOQ (ng/mL or ppb)	r ²
NIV	6.25	0.9999
D-3-G	3.13	0.9984
DON	1.56	0.9973
3AcDON	1.56	0.9973
15AcDON	3.13	0.9996
HT-2	0.16	0.9997
T-2	0.16	0.9995

Limit of quantification (LOQ) and regression coefficient (r²) for each mycotoxin

Collaboration opportunity:

- Mycotoxin diagnose service
- DON phenotyping service

Cereal & Flax Pathology Lab Crop Development Centre Email: <u>liw791@mail.usask.ca</u> Cell: (306) 260 9186

Acknowledgements

Dr. Randy Kutcher

The Cereal and Flax Pathology Lab

Collaborators: Dr. Anas El-Aneed and Deborah Michel, The Core Mass Spectrometry Facility, College of Pharmacy and Nutrition Dr. Yuefeng Ruan, AAFC Swift Current Drs. Pierre Fobert and Wentao Zhang, ACRD, NRC-Saskatoon

Funding:

the Saskatchewan Agriculture Development Fund (ADF) the Saskatchewan Wheat Development Commission (SWDC)

Thanks!

