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Abstract

Double-Qdots (DQDs) are attractive in light of their potential application to quantum

computing and other electronic applications, e.g. as specialized sensors. We consider the

electronic properties of a system consisting of two quantum dots in physical proximity,

which we will refer to as the DQD. Our main goal is to derive the essential properties

of the DQD from a model that is rigorous yet numerically tractable, and largely circum-

vents the complexities of an ab initio simulation. To this end we propose a class of novel

Hamiltonians that captures the dynamics of a bi-partite quantum system, wherein the

interaction is described via a convolution or a Wiener-Hopf type operator. We subse-

quently describe the density of states function and derive the electronic properties of the

underlying system. Our analysis shows that the model captures a plethora of electronic

profiles which serves as evidence for the versatility of the proposed framework for DQD

channel modelling.

A massive body of mathematical physics results, dating mostly to the last half a

century, give evidence to the claim that the statistical characteristic of fluctuations in

the level structure of a quantum system provides essential information about its dynamic

properties, e.g. in some instances these statistical parameters show whether or not the

underlying classical dynamics is integrable or chaotic. Following this tradition we have

conducted statistical analysis of the data generated numerically from the model at hand.

In this way we have characterized the fine-scale fluctuations of the spectra for several

choices of the constituents. In conclusion, we have found that the model is versatile

enough to produce several statistically distinct types of level structure. In particular,

the model is capable of reproducing very complex level structures, such as those of the

resonant microwave cavities that have been obtained experimentally in the 1990s.
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Introduction

Semiconductor quantum dots (QDs) are man-made nano-size structures typically com-

prised of 103 − 109 atoms with equivalent number of electrons as well as tractable size

and shape [46]. Electrons are confined in all three dimensions in these nano-structures.

Therefore, their energies are quantized. Because of that they are called artificial atoms

[2]. In particular, the idea of using double quantum dots (DQD) in quantum computing

devices has attracted much interest and led to the development of experimental tech-

niques, see [74, 29]. One of the remarkable examples is a double-Qdot comprising two

single-electron quantum dots, see [61, 21]. Since these double-Qdots provide a means for

controlling the charge qubits and spin qubits via gate potentials— the latter ones imple-

menting a spin-swap which is a fundamental quantum computing operation, [48]—they

may well become the enabling hardware components of a quantum computer. Moreover,

the DQDs have been used effectively to substitute for the traditional piezoelectric sensors,

[45].

In this regard the topic attracts quit a bit of attention, and it is necessary to develop

good models for the electronic structure of DQDs systems. The main focus of my work

has been to try and improve upon the current state of the art in the area of nano-circuit

simulation with particular focus on the existing example of DQDs. I have attempted to

find an elemental, mathematically rigorous, and physically correct model for the DQD.

I have subsequently tested my hypothesized model by means of applying it to drive pre-

dictions about the behaviour of physical systems. Based on numerical experimentation,

I find that the proposed approach captures the essential electronic features of the DQD.

I also believe that the proposed simulation algorithms may be scaled and extended via

future research work to assist in realistic large scale simulation and modelling work for

applications such as nano-circuit analysis and quality control.
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I have strived to improve upon the pre-existing approaches to quantum dot modelling,

such as:

• The quantum master equation (QME) The dynamics of open quantum systems

have been studied extensively in the field of quantum optics, [30]. The main goal in

this approach is to describe the time evolution of an open system via the quantum

master equation that describes non-unitary behaviour (irreversible dynamics of a

quantum systems coupled to two contacts). Recently, it has been used to study

electron tunnelling through DQDs, [39, 49, 60].

• Scattering Matrix (SM) Scattering matrix is limited to the elastic resistors that

their resistance determined by the channel, but the corresponding heat is entirely

dissipated in the contacts. This method has been used to for predicting current-

voltage characteristics of a quantum system connected to two metal contacts,[14].

• The non-equilibrium Green’s function (NEGF) In order to study charac-

teristics of electron-electron interaction inside the QDs, researchers have applied

many body perturbation theory (MBPT), see [69, 81]. Of note is the Hartree-Fock

approximation method. But it is well established that this method overestimates

the interaction potential and there are various approaches for estimating this reduc-

tion. One of these methods is density functional theory (DFT), [18]. Although this

theory is successful in describing the correction for equilibrium problems it is not

too useful in explaining the non-equilibrium phenomena such as current flow, [18].

The non-equilibrium Green’s function theory has been developed to correct this fail-

ure. Particularly, in [48] the authors assessed the validity of the equation of motion

approach to the NEGF formalism specifically for a double-Qdot coupled with two

contacts. The model takes into account both intra- and intro-dot Coulomb inter-

actions. In general, the equation of motion NEGF formalism provides a qualitative

description of transport phenomena that occur in strongly correlated systems, such

as the Coulomb blockade effect. The authors study the effect of different approxi-

mate closures to the equation of motion NEGF formalism on steady state properties
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within an extended Hubbard model (also known as the double Anderson model).

For comparison in [74] the authors consider a NEGF model based on a Hubbard-

type Hamiltonian, which accounts for tunnelling type electron transfer between the

two Qdots as well as the isolator-type electrostatic Coulomb interaction between

them. The effect of contacts is also modelled via a tunnelling electron transport.

The (NEGF) can treat both elastic and inelastic processes, so this is one of the

advantages of (NEGF) approach to (SM) approach, [39].

Both of the models of a double-quantum dot, the ab initio one, say, the Hartree-

Fock approximation and the NEGF theory require intensive computation. In Chapter

2 I undertake to consider a novel model for a DQD which enables some scalability of

computational complexity. The model based on a Hamiltonian for a bipartite quantum

system, wherein the subsystem Hamiltonians are given a priori, and the interaction term

is constructed with the use of a convolution or a Wiener-Hopf type operator. My moti-

vation to focus on this type of interaction resulted from a principle of succinctness, the

“Occam’s razor”, which states that among competing hypotheses, the one with the fewest

assumptions should be selected. The model must, first, incorporate each single dots dy-

namics and, second, it must account for the Qdot-Qdot interaction. We emphasize that

the interaction is modelled at a rather general level to avoid the complexity trap that

would be inevitable in an ab initio approach. The type of construction being proposed

is perhaps somewhat reminiscent of the classical Jaynes-Cummings model, [40, 70], fre-

quently evoked in Quantum Optics. However, in stark contrast to the Jaynes-Cummings

Hamiltonian our model incorporates a high-dimensional parameter (the kernel function)

which makes it possible to adjust the model to the specific classification of any particular

physical system of the given type.

One of the main goals of Chapter 2 is to examine the cumulative density of states

function, N(E), arising from the proposed Hamiltonian. Extensive numerical simulations

have been conducted to examine the dependence of N(E) on the choice of the parameters

K, the kernel, whose role is to capture qualitatively the inter-Qdot interaction, and λ,

the interaction strength moderator. In section 2.5, we demonstrate numerically that the
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kernel function strongly affects the characteristics of N(E). One of my main results is

depicted in Figure (2.7) which evidences the model’s versatility and predicts at least three

different electronic categories. In Section 2.6 a qualitative comparison of these predic-

tions to the known experimental data is given. These data resulted from an experiment

conducted over single electron transport through a DQD. In Section 2.7 I discuss a range

of issues relating to the numerical efficiency of the model. Material presented in this

Chapter has appeared in print, [68].

A set of mathematical tools has been developed in the previous decades to model

and understand the fundamental characteristics of atomic nuclei. It remains to be seen

if the fundamental characterisation of nano-systems is similar or rather different in some

fundamental way. In Chapter 3 I embark on a project to see if the known methodology,

including the methods for constructing quantum Hamiltonians, may be used to model

the fundamental behaviour of nano-systems. In particular, I ask if the spectral properties

of objects such as quantum dots are similar or different from those of atomic nuclei. I

have applied the apparatus of statistical analysis of spectra, as first developed by the

theorists of semiclassical physics, to see whether or not any definitive statements could

be made on the comparison between the nano and the nuclear. The main idea that led to

the introduction of statistical methods, specifically the Random Matrix Theory (RMT),

was the notion of complexity that nowadays is referred to as chaos which is related to

the large number of degrees of freedom involved in a many-body problem. Since nano-

systems are many-body systems it is reasonable to expect that the level statistics of such

systems are described by the RMT or a similar framework.

Researchers have employed statistical methods to the spectrum of atomic systems in

order to determine whether the system is integrable or chaotic. Distinguishing between

integrable and chaotic systems requires considering the fluctuation of energy levels; that

is, how the energy levels are distributed around the average density of states. Since

energy levels corresponding to different systems or different regions of energy levels of

the same system may have different average density, one must unify the average density

before comparing fluctuations. To this end one must renormalize (unfold) the levels of
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energy.

The simplest quantity that describes the level fluctuations is the nearest neighbour-

hood spacing distribution (NNSD) p(s) where p(s)ds is the probability of finding two

adjacent unfolded energy levels in [s, s+ds]. For the quantum systems whose underlying

classical system is integrable, Berry and Tabor in [7] show that p(s) is universal and is a

Poisson distribution. It was conjectured by Bohigas, Giannoni and Schmit [9], that the

NNSD of the spectra of a quantum system whose classical analogue is fully chaotic can be

predicted by the Gaussian Orthogonal Ensemble (GOE). There is numerical evidence as

well as analytical arguments supporting this conjecture; see [6]. The best approximation

to the NNSD for the GOE is given by the Wigner distribution 3.2.3, [80, 62]. Brody

generalized the Wigner distribution in order to study mixed (partialy chaotic) systems

to a distribution with a parameter b which is called the repulsion parameter, [12].

As mentioned above, in order to determine the NNSD, it is necessary to unfold the

original spectra. To this end, In section 3.2 the methodology of unfolding is discussed

and equation 3.2.2 is taken into account. In section 3.3 the statistical analysis of the

DQD model is studied in detail. The method of moment estimate is applied to find the

best repulsion parameter in order to approximate NNSDs by the Brody-type distribu-

tions. Accordingly, the most important outcomes of this section are illustrated in figures

3.3 and 3.4 which show the NNSDs as well as their approximations by the appropriate

Brody distributions. Afterwards, the two methods of quantile-quantile plot (A.1) and

Kolmogorov-Smirnov (A.2) are employed to confirm the accuracy of the introduced ap-

proximations. The author has not been able to find an actual experimental spectrum data

for an interacting DQD. Instead, however, in section 3.4 a comparison with experimental

data from a real quantum system, courtesy of A. Richter and C. Rangacharyulu, is made.

These data were generated by means of an experiment on a two-dimensional supercon-

ducting microwave resonator shaped like a quarter of a stadium billiard, [31]. I refer to

these data as the Richter data throughout the thesis. It is demonstrated that a specific

type of spectrum of the model at hand and actual data have the same distribution, even

though they come from an application of seemingly non-congrouent approaches. Further-
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more, my purely quantum model captures approximately the same repulsion parameter

as the experimental data interpreted via the semiclassical theoretical apparatus.
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Chapter 1

Preliminaries from Mathematics and Physics

In order to introduce the novel model for a quantum composite system and derive

the essential electronic properties of a double quantum dot from the model we require

some background knowledge from operator theory as well as quantum mechanics and

semi-conductor theory. Accordingly, these subjects are introduced in this chapter.

1.1 Preliminaries from mathematics

1.1.1 Spectral theorem

An operator is bounded if its norm is a non-negative real number. According to the

Hellinger-Toeplitz theorem [64] any symmetric operator defined on the entire Hilbert

space is bounded. To put this fact the other way around, an unbounded self-adjoint

operator can not be defined on the entire Hilbert space. It is defined on a dense subset,

the Domain, of the relevant Hilbert space. Although we know most of the operators

in quantum mechanics are unbounded, in this preliminary section our emphasise is on

bounded operators. Most systems stay close to the ground state. In other words, the

electrons will hardly ever go very high on the energy ladder. So the shape of the ladder

very high up really does not matter in most considerations. So, for applications, such as

to electronic modelling, the finite dimensional approximation is good enough. Sometimes

we still use infinite-dimensional operators, but mostly when it is more convenient to do

so, e.g. it would be clumsy not to consider the partition function based on all system

levels in the Statistical Physics.
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Let A be a bounded operator on a Hilbert space H.
Definition 1.1.1. The resolvent set ρ(A) of A consists of all complex numbers λ for

which R(λ;A) = (A − λI)−1 is a bounded operator (with domain H). Thee spectrum

σ(A) of A consists of the complement of ρ(A) in C.

The operator R(λ;A) = (A − λI)−1 if bounded is called the resolvent of A.

Let λ ∈ σ(A). Then there are three possibilities [28]:

1. R(λ;A) exists and is unbounded but its range is dense in H. We say that λ belongs

to the continuous spectrum of A, σc(A).
2. R(λ;A) exists and is bounded and its domain is not dense in H. We say that λ

belongs to the residual spectrum of A, σr(A).
3. A − λI is not invertible. We say that λ is an eigenvalue or belongs to the discrete

spectrum of A, λ ∈ σd(A).
Theorem 1.1.1. If operator A on Hilbert space H is self-adjoint, then σ(A) ⊆ R. And

σ(A) = σc(A) ∪ σd(A).
For a proof see [28].

Example 1. Spectrum of operator P = 1

ι
d
dx

on L2(R), the operator of momentum, is R.

Or further σ(P ) = σc(P ) = R.
See [67].

Definition 1.1.2. Two operators A and B on a Hilbert space are called unitary equivalent

if there exist a unitary operator U,U∗U = UU∗ = I, such that A = U∗BU.

Theorem 1.1.2. If operators A and B are unitary equivalent then σ(A) = σ(B).
see [67].

Next, I express the spectral theorem in its rather general form adopted from [64].
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Theorem 1.1.3. (Spectral theorem—multiplication operator form) Let A be a bounded

self-adjoint operator on a separable Hilbert space H. Then, there exists measures {µn}Nn=1
(N = 1,2,⋯,∞) on σ(A) and a unitary operator

U ∶ H Ð→ N⊕
n=1

L2(R, dµn)
so that

(UAU−1ψ)n(λ) = λψn(λ)
where ψ(λ) = (ψ1(λ),⋯, ψN (λ)).

For a proof see [64].

Remark 1.1.3. If H = L2(R, dx),
(UAU−1ψ)n(λ) = (Aψ)(λ) = λψ(λ)

where U ∶ L2(R)Ð→ L2(R).
Definition 1.1.4. Let u ∶ R2 Ð→ C be a continuous function and the operator M on

L2(R) acting by the rule

Mu(ψ)(x) = u(x)ψ(x) ∀ψ(x) ∈ L2(R).
Mu is called the operator of multiplication by the continuous function u. In the special

case if u = x for an independent variable x,

Mx(ψ)(x) = xψ(x) ∀ψ(x) ∈ L2(R)
or, following quantum-mechanics terminology, the coordinate operator.

Example 2. The spectrum of the operator of multiplication, M, on L2(R) is

σ(M) = σc(M) = R.
See [67].
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Remark 1.1.5. Since ∀λ ∈ R, (x − λ)δ(x − λ) = 0 therefore δ(x − λ) is a solution of

Mu = λu, but δ(x − λ) ∉ L2(R)
Example 3. Let ∆ = − d2

dx2
on L2(R). Then

σ(M) = σc(M) = [0,∞).
Proof. According to theorem 1.1 the spectrum of the momentum operator P = 1

ι
d
dx

is

σ(M) = σc(M) = R. and by remark 1.1 functions

e(x,λ) = eιλx√
2π

λ ∈ R

are the generalized eigenvectors of P. On the other hand P 2 = ∆. Therefore e(x,λ) is a

generalized eigenfunction of operator ∆ for eigenvalues µ = λ2 and e(x,λ) = 1√
2π
e±
√
µx.

Since µ = λ2 and λ ∈ R, then

σ(M) = σc(M) = [0,∞).
In conclusion,

{ 1√
2π
e+
√
µx,

1√
2π
e−
√
µx}µ∈[0,∞)

is the set of eigenfunction of the operator ∆. Another conclusion of above theorem is that

spectrum of the Schrödinger operator of a free particle is continuous.

1.1.2 Integral operators

Let D = (a, b) be a finite or infinite interval in R and K(x, y) a function on (a, b)× (a, b).
The integral operator on L2(D) is the formal expression

(Kf)(x) = ∫
D
K(x, y)f(y)dy, x ∈D.

K(x, y) is called the kernel of the integral operator K.

Theorem 1.1.4. Let K be an integral operator on L2(D). Then the kernel K∗(x, y) of

the adjoint operator K∗ is given by K∗(x, y) = K(y, x). And for a self-adjoint integral

operator we have K = K∗⇔K(x, y) =K(y, x).
10



Examples

• The Fourier transform Let f(x) ∈ L1(R) then the Fourier transform of f(x) is

(Ff)(λ) = 1√
2π
∫ ∞

−∞
e−ιλxf(x)dx

and also denoted by f̂(λ). The adjoint of the Fourier transform is

(F∗f)(x) = 1√
2π
∫ ∞

∞
eιλxf(λ)dλ

which is called the inverse Fourier transform and also denoted by f̌(x).
Theorem 1.1.5. The Fourier transform is a unitary operator on L2(R).
See [67].

Remark 1.1.6. Let f, f ′ ∈ L1(R) then using integration by parts

f̂ ′(λ) = ιλf̂(λ)
Consequently, one can infer

F (1
ι

d

dx
)F −1 = λ.

It means the operators of differentiation and multiplication by λ are unitarily equiv-

alent. The quantum mechanical interpretation of this relation is: The coordinate

and the momentum representations are equivalent.

Definition 1.1.7. If f and g belong to the L1(R), the convolution f ∗ g of these

functions is defined as

(f ∗ g)(x) = 1√
2π
∫ ∞

−∞
f(s)g(x − s)ds

The convolution has following properties:

1. (f ∗ g)(x) = (g ∗ f)(x)
2. f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

11



3. f ∗ (g1 ∗ g2) = (f ∗ g1) ∗ g2
4. f̂ ∗ g = f̂ .ĝ

For proofs See [33].

• Let K =Mu (multiplication operator) for this operator the kernel is

K(x, y) = u(x)δ(x − y).
See [33].

1.2 Preliminaries from Quantum Mechanics1

1.2.1 General background

Let us consider a single particle moving on the real line. The wave function for such a

particle is a map ψ ∶ R Ð→ C. This map evolves in time, but let us just assume time

is frozen. The function ∣ψ(x)∣2is the probability density for the position of the particle.

Thus, the probability that the position of the particle belongs to a set E ⊂ R is

∫
E
∣ψ(x)∣2dx.

ψ should be normalized so that

∫
E
∣ψ(x)∣2dx = 1.

It means ψ is a unit vector in Hilbert space L2(R).
We know from probability theory that if ∣ψ∣2 is the probability distribution the expectation

value of the position will be

E(x) = ∫
R

x∣ψ(x)∣2dx.

1Most of the background for quantum mechanics is based on [38]
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ψ(x), at any fixed time, encodes the probabilities for the particle’s position. As it

turns out the momentum is encoded in the oscillations of the wave function. The following

proposition sheds more light at this idea.

Proposition 1.2.1. (de Broglie’s hypothesis) If the wave function of the particle has

spatial frequency k, the momentum p of the particle is

p = h̵k

where h̵ is Planck’s constant.

Definition 1.2.2. For a particle moving in R, the position and momentum operators X

and P are defined by

Xψ(x) = xψ(x)
Pψ(x) = −ιh̵dψ

dx

Remark 1.2.3. Both these operators are unbounded, so they are defined on dense sub-

spaces of L2(R), not the whole space.

Proposition 1. (The canonical commutation relation) The position and momentum op-

erators X and P satisfy following relation

[X,P ] =XP − PX = ιh̵I
, that is they don’t commute. (Here I is the identity operator on L2(R).)

1.2.2 Axioms of quantum mechanics

In this section we consider axioms of quantum mechanics. There are two types of axioms,

kinematics and evolutionary. The former ones are those that apply at one fixed point

and the latter ones are those that govern the time evolution of a quantum system.

Axiom 1 The state of a quantum system is represented by a unit vector ψ in an appro-

priate Hilbert space H. If ψ1 and ψ2 are two unit vectors in H with ψ2 = cψ1 for some

constant c ∈ C, then ψ1 and ψ2 represent the same physical state.

13



Remark 1.2.4. In this axiom the unit vectors represent only the pure states of the

theory. There is more general notion of a mixed state which we will discuss later.

Axiom 2 To each real-valued function f on the classical phase space there is associ-

ated a self-adjoint operator f̂ on the quantum Hilbert space.

Remark 1.2.5. Weyl quantization is the standard approach to defining operator f̂ for

an arbitrary function f on the classical phase space, [38].

Remark 1.2.6. The classical phase space corresponding to a particle moving in R is

R2. We can think of it as pairs (x, p) where x is the particle’s position and p is its

momentum. The quantum Hilbert space in this case is L2(R). In that case, if f is the

position function, f(x, p) = x, then the corresponding operator f̂ is the position operator

X, given by multiplication by x. If f(x, p) = p, the momentum function, the associated

operator f̂ is the momentum operator P = −ιh̵ d
dx
.

Axiom 3 If a quantum system is in a state described by a unit vector ψ ∈ H, The

expectation value for a measurement of f is given by

⟨ψ, f̂ψ⟩ .
Remark 1.2.7. If A is a self-adjoint operator on H and ψ ∈ H is a unit vector, the

expectation value of A in the state ψ is denoted by ⟨A⟩ψ and is defined to be

⟨A⟩ψ = ⟨A,Aψ⟩
Axiom 4 The time-evolution of the wave function ψ in a quantum system is given by

the Schrödinger equation
dψ

dt
=

1

ιh̵
Ĥψ

Hear Ĥ is the operator corresponding to the classical Hamiltonian H as in Axiom 2.

Proposition 1.2.8. Assume Ĥ is a self-adjoint operator on H. Then the solution of the

Schrödinger equation is

ψ(t) = e− ιĤt
h̵ ψ(0)
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Definition 1.2.9. If Ĥ is a Hamiltonian operator for a quantum system, the eigenvalue

problem

Ĥψ = Eψ, (E ∈ R)
is called time-independent or stationary Schrödinger equation.

The classical Hamiltonian for a particle with mass m moving in R is

H(x, p) = p2

2m
+ V (x)

where V is the potential energy function. Now we may take

Ĥ(X,P ) = P 2

2m
+ V (X)

where the operator V (X) is the multiplication by the potential energy function V (x). Ĥ
is called the Schrödinger operator. It’s action on the state ψ is given by

Ĥψ(x) = − h̵2
2m

d2ψ

dx2
+ V (x)ψ(x)

.

1.2.3 Quantum composite systems and tensor product

I will define tensor product before introducing quantum composite systems.There are

couples of ways to create new Hilbert spaces from old ones. In this section we describe

the tensor product H1 ⊗H2 of two Hilbert spaces H1 and H2.

Definition 1.2.10. Let H1 and H2 be two Hilbert spaces. For each φ1 ∈H1 and φ2 ∈H2,

let φ1 ⊗ φ2 denote the conjugate bilinear form which acts on H1 ×H2 by

(φ1 ⊗ φ2)(ψ1, ψ2) = ⟨ψ1, φ1⟩1 ⟨ψ2, φ2⟩2
Let E be the set of finite linear combinations of such conjugate linear forms; we define an

inner product ⟨., .⟩ on E by defining

⟨φ⊗ψ, η ⊗ µ⟩ = ⟨φ, η⟩
1
⟨ψ,µ⟩

2

and extending by linearity to E, see [64].
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Proposition 1.2.11. The inner product ⟨., .⟩ is well defined and positive definite, see

[64].

Definition 1.2.12. We define H1⊗H2 to be the completion of E under the inner product

⟨., .⟩ defined above. H1 ⊗H2 is called the tensor product of H1 and H2 .

Proposition 1.2.13. If φk and ψl are orthonormal bases for H1 and H2 respectively,

then φk ⊗ ψl is an orthonormal basis for H1 ⊗H2, see [64].

Proposition 1.2.14. If H1 and H2 are bounded operators on H1 and H2 respectively,

then H1 ⊗H2 is the unique bounded operator on H1 ⊗H2, such that

(H1 ⊗H2)(φ1 ⊗ φ2) = (H1φ)(H2φ)
for all φ1 ∈ H1 and φ2 ∈H2

Proposition 1.2.15. Suppose that (X1, µ1) and (X2, µ2) are σ-finite measure spaces.

Then there is a unique isomorphism

p ∶ L2(X1, µ1)⊗L2(X2, µ2)Ð→ L2(X1 ×X2, µ1 ⊗ µ2)
so that f ⊗ g z→ fg.

Axiom 5 The Hilbert space for a composite system consists of two subsystems H1 and

H2 is the Hilbert tensor product H1 ⊗H2, see [38].

Proposition 1.2.16. Suppose H1 and H2 are self-adjoint operators on H1 and H2 re-

spectively. Following operators are self-adjoint as well

H1 ⊗H2 and H1 ⊗ I + I ⊗H2,

as well as

• σ(H1 ⊗H2) = {λ1λ2∣λi ∈ σ(Hi)}
• σ(H1 ⊗ I + I ⊗H2) = {λ1 + λ2∣λi ∈ σ(Hi)}

For a proof look at [75]
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Axiom 6 Suppose Hi, i = 1,2 are the Hilbert spaces for two quantum systems, with

Hamiltonians Hi. Then the Hamiltonian for the non-interacting composite system is

H1 ⊗ I + I ⊗H2.

Generally, the two subsystems of a composite quantum system will interact, in this case

the Hamiltonian for the composite system is

H =H1 ⊗ I + I ⊗H2 +Hint,

where Hint is an interaction term.

1.2.4 The physics notation

In quantum mechanics, it is common to use the Dirac notation introduced by P. Dirac in

1930’s.

1. A vector ψ ∈ H is denoted by ∣ψ⟩ and referred to as a ket. A continuous linear

functional on H is called a bra and denoted by ⟨φ∣. < φ∣ψ > is referred to as the

bracket of two vectors φ,ψ ∈ H by applying the bra ⟨φ∣ to the ket ∣ψ⟩, namely the

inner product of φ and ψ.

2. If A is an operator on H and φ ∈ H the linear functional ⟨φ∣A is the linear map

ψ z→ ⟨φ∣A ∣ψ⟩ . There are two different ways of thinking about this notation. we

can think of it as the linear functional ⟨φ∣A applied to the vector ∣ψ⟩, or as the

linear functional ⟨φ∣ applied to the vector A ∣ψ⟩ .
3. For any φ and ψ ∈H, ∣φ⟩ ⟨ψ∣ denotes the following linear operator on H. Let χ ∈H,

(∣φ⟩ ⟨ψ∣)(χ) = ∣φ⟩ ⟨ψ∣ χ⟩ = ⟨ψ∣ χ⟩ ∣φ⟩ .
4. Suppose the orthonormal eigen-basis of Ĥ is {ψn}. It is common to express the

decomposition of a general vector in the basis {ψ} via the identity operator

I =∑
n

∣n⟩ ⟨n∣ .
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Here, ψn is represented as ∣n⟩ and ∣n⟩ ⟨n∣ is the orthogonal projection onto the one

dimensional subspace spanned by the vector ∣n⟩ .
5. If ∣Φc⟩ and ∣Ψc⟩ be in H1 ⊗H2 we can show them as

∣Φc⟩ =∑
k,l

skl∣φk⟩∣ψl⟩, ∣Ψc⟩ = ∑
m,n

zmn∣φm⟩∣ψn⟩

then

< Φc,Ψc >= ∑
m,n,k,l

zmns̄kl < φk, φm >< ψl, ψn > .

It follows that if φm ∈H1 and ψn ∈ H2 are orthonormal bases, then

< Φc,Ψc >= ∑
m,n

zmns̄mn.

1.2.5 Quantum Harmonic Oscillator2

By a quantum harmonic oscillator we mean a system consisting of one particle on the

line whose dynamics is determined via the following Hamiltonian

Ĥ =
1

2m
(P 2 + (mωX)2) .

Here, m is the mass of the particle, ω is the frequency of the corresponding classical

harmonic oscillator (mass attached to a spring), P is the momentum andX is the position

operator. Both P and X are self- adjoint operators and satisfy [X,P ] = ιh̵I. We now

introduce the lowering (creation) and it’s adjoint, the rising (annihilation), operators

given by

a =
mωX + ιP√

2h̵mω

and

a∗ =
mωX − ιP√

2h̵mω

respectively. Thus

a∗a =
1

2h̵mω
((mωX)2 + P 2 + ιmω[X,P ])

2This subsection is mostly based on [26].
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=
1

h̵ω

1

2m
(P 2 + (mωX)2) − 1

2
I.

From this we obtain

Ĥ = h̵ω(a∗a + 1

2
I) (1.2.1)

The derivation consists of following steps: First

[X,P ] = ιh̵I.
Second in the world of noncommuting operators

(A −B)(A +B) = A2 −B2 + [A,B].
It is easy to see that

[a, a∗] = I
and from this compute that

[a, a∗a] = a
[a∗, a∗a] = −a∗.

Since (a∗a)∗ = a∗a∗∗, a∗a is self-adjoint. This operator is also non-negative because

⟨ψ,a∗aψ⟩ = ⟨aψ,aψ⟩ ⩾ 0
for all ψ.

Theorem 1.2.1. If ψ0 is a normalized vector with the property that aψ0 = 0, then

ψn =
1√
n!
(a∗)nψ0, n ⩾ 0

satisfy the following relations for all n,m ⩾ 0:

a∗ψn =
√
n + 1ψn+1

aψn =
√
nψn−1

a∗aψn = nψn

⟨ψn, ψm⟩ = 1√
n!m!

δn,m
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What we have consider so far is an algebraic approach to the study of the harmonic

oscillator. we are now going to look at that from an analytical point of view.

To simplify our analysis, we change position variable x to

x̃ =

√
mω

h̵
x

By a simple calculation we obtain the following expressions for the creation and annihi-

lation operators

a =
1

2
(x̃ + d

dx̃
)

a∗ =
1

2
(x̃ − d

dx̃
)

Using this one can solve the equation aψ0 = 0 explicitly, and obtain

ψ0 =
4

√
πmω

h̵
exp{−mω

2h̵
x2} (1.2.2)

which is called ground state.

Theorem 1.2.2. The excited state ψn of the harmonic oscillator is given by

ψn =Hnψ0

where Hn is the Hermite polynomial given by following formula

Hn(x̃) = (−1)nex̃2 dn
dx̃n

e−x̃
2

, n = 0,1,2,⋯.

Theorem 1.2.3. The functions

ψn(x) = Hn(x̃)ψ0(x̃)
= Hn (

√
mω

h̵
x) 4

√
πmω

h̵
exp{−mω

2h̵
x2}

form an orthonormal basis for the Hilbert space L2(R).
Theorem 1.2.4. En = h̵ω (n + 1

2
) and {ψn} are the eigenvalues and the eigenfunctions

of the harmonic oscillator.
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Now we are interested in representing the harmonic oscillator operator in two spaces

ℓ2(N) and the space of entire analytic functions (Segal-Bargmann space) D
Since eigenvectors of a harmonic oscillator span the Hilbert space, so if ψ ∈H

ψ =∑
n

Cn
(a∗)n√
n!
ψ0 ∑

n

∣Cn∣2 < ∞,

where φ0 is given by 1.2.2. Each vector φ ∈ H is uniquely determined by the coefficient

sequence {Cn}.
If ψ ←→ {Bn}, then

⟨ψ,φ⟩ =∑
n

BnC̄n.

After calculations

aφ = ∑
n

√
n + 1Cn+1

(a∗)n√
n!
ψ0

a∗φ = ∑
n

√
nCn−1

(a∗)n√
n!
ψ0

In the basis the operators a and a∗ have matrix representations

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
1 0 0 ⋯

0 0
√
2 0 ⋯

0 0 0
√
3 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

a∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ⋯√
1 0 0 0 ⋯

0
√
2 0 0 ⋯

0 0
√
3 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The eigenvectors of the operator H in this representation have the form
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ψi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

⋮

1

0

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Where the ith element is 1.

Now, the harmonic oscillator Hamiltonian, momentum and position operators will be

given as

H = h̵ω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
0 0 0 ⋯

0 3

2
0 0 ⋯

0 0 5

2
0 ⋯

0 0 0 7

2
⋯

⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P =

√
h̵mω(a − a∗)

ι
√
2

=

√
h̵mω

ι
√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
1 0 0 ⋯

−
√
1 0

√
2 0 ⋯

0 −
√
2 0

√
3 ⋯

0 0 −
√
3 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

X =

√
h̵(a + a∗)√
2mω

=

√
h̵√

2mω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
1 0 0 ⋯√

1 0
√
2 0 ⋯

0
√
2 0

√
3 ⋯

0 0
√
3 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Another representation where H is diagonal is constructed as follows. Let

D = {F ; F is an entire function on C and ∣F ∣2 = ∫ ∣F (z)∣2e−∣z∣2 < ∞}
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with the inner product

⟨f, g⟩ = 1

π
∫ f(z) ¯g(z)e−∣z∣2dµ(z) f, g ∈ D

where dµ(z) = dxdy. D is a Hilbert space with the orthonormal basis

fn(z) = zn√
n!

n = 0,1,2,⋯.

The following correspondence indicates that ℓ2 ≃ D,
ℓ2 ∋ c = {cn} z→ f(z) =∑

n

cnfn(z) ∈ D.
The isomorphism between ℓ2 and D leads to the following representation of a and a∗

a∗ = z, a =
d

dz
.

Subsequently

H = h̵ω (z d
dz
+
1

2
) .

1.3 Quantum mechanics in electronics

One of the main objects of modern electronics is to fabricate nano-transistors . Since

their dimensions are getting tinier day by day employing quantum mechanics in order to

model the devices is inevitable.

1.3.1 The quantum dot

It is necessary to explain semiconductors before any discussion of quantum dots. A

semiconductor is a material with electrical conductivity between those of metals and

insulators. Typically, semiconductors are made of silicon (Si), germanium (Ge) or gallium

arsenide (GaAs). These materials have many important technological applications. They

are the basic constituents of electronic devices such as computers, telephones and so on.

Semiconductors devices include transistors, diodes and so on.

Band theory of semiconductors An isolated silicon atom possesses 14 electrons

with electron configuration 1s22s22p63s23p2 as shown in figure 1.1.
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Figure 1.1: The occupation of the energy levels in an isolated silicon atoms and

the energy bands in a silicon crystal.

If we plot the energies of 3s and 3p energy levels for N silicon atoms as a function of

inter-atomic distance we observe that the two sets of energy levels interact, as shown in

Figure 1.2. At the level of exiton Bohr radius the states split up into two bands which are

each mixture of 3s-and 3p-like states. The lower energy band possesses 4N electrons and

is known as the valance band. Valance band corresponds to electrons which are involved

in forming covalent bonds of crystal. The electrons in the upper band are relatively free

and so can take part in electrical conduction. This band possesses 4N electrons as well

and is called conduction band. These two bands are separated by an energy range in

which there are no allowed electron energy levels. This is the band gap and we denote its

energy space by Eg. The most significant difference between metals and non-metals is the

existence of the band gap. In metals there is no band gap so the highest occupied band

is only partially filed, whereas in non-metals the highest occupied states (at T = 0 K, or

absolute zero) are separated from lowest vacant states by a band gap which is a region

of forbidden energy. Excitation of electrons from the valance band through the gap into

the conduction band is mainly responsible for electrical conduction.
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Figure 1.2: The energy levels of the 3s and 3p states for a group of N silicon atoms

as a function of inter-atomic distance3.

According to this fact one can explain the difference between conductivity in met-

als and non-metals. Once one applies an electric field to the material the electron in

metals can gain a small amount of energy by moving to a nearby unoccupied state. In

contrast to this in non-metals, because of presence of energy gap between valance band

and conduction band, this process can not occur. Therefore these materials are electrical

insulators. If the band gap is sufficiently small and T > 0K, there is a chance to find some

electrons in the conduction band, so the material conducts the electricity. This is the

key point to understanding the difference between semiconductors and insulators. The

conductivity is dependent on temperature and the band gap energy. In order to explain

this fact quantitatively we need to introduce the Fermi-Dirac distribution.

Definition 1.3.1. The probability that a state with energy E is occupied at temperature

T is given by Fermi-Dirac distribution

f(E) = 1

1 + exp(E−EF

KBT
) 0 ⩽ E < ∞

where EF is the Fermi energy that is the energy for which the probability of occupation

is 1

2
.

Now, the question is at what energy for non-metals the probability is one-half. It has

been proven that the Fermi energy is located at the center of the band gap, see [77]. So

3Partially adopted from google images
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E −Ef =
Eg

2
. Consequently using previous equation implies

f(E) = 1

1 + exp( Eg

2KBT
) .

Since the exponential term of previous equation is much larger than 1, therefore

f(E) ≈ exp −Eg
2KBT

.

Consequently the concentration of electron in conduction band increases as the temper-

ature rises up.

So far we have seen that how electrons contribute to the electrical conductivity. However,

they are not the only contributors. Once the electron get excited to the conduction band

it leaves behind electron hole, or unoccupied state in the valance band. Then a neigh-

bouring electron move to file this hole, so it leaves another hole in a place just come from,

therefore we have a sequence of events in which an electron moves towards the opposite

side of crystal and in this way the hole appear to move. In this regard the hole behaves

as if it was actual positively charged particle. Since these two types of particles have

opposite charges, the total current is equal to the sum of the electron and hole (exciton)

current, see [77].

Research in semiconductors has taken on new dimensions, two, one, and zero. Electron

in new electronic devices can be confined to a mathematical point that is called for the

first time by Mark Reed “quantum dot”[66, 65]. Now question is, how is it possible to

make this mathematical object in a real, three dimensional material? Quantum mechanics

answers this question.

If an electron is confined in a small enough three dimensional box it exhibits properties

similar to a particle confined in an infinite quantum well that its energy is discrete. We

observed that its lower energy is not zero compared to a free quantum particle. Therefore

size quantization is a result of confinement. Quantization effects become apparent when

the dimensions of the confining region are comparable to the De Broglie wavelength of the

charge carriers (electrons and holes). The De Broglie wave length is λ ≃ h√
2m∗KBT

, where

h and KB are the Planck’s and Boltzmann’s constants, T the temperature and m∗ the
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effective mass of the excitons (electron-hole) in the semiconductor. At low temperature λ

is of the order 10 to 100 nm. Instead of considering De Broglie wave length for electrons

and holes separately, it is reasonable to describe a quantum dot as a region of space

in a semiconductor whose size is on the order of the exciton Bohr radius. The exciton

Bohr radius is considerably larger than the hydrogen Bohr radius which is about 0.53

Angstrom or 0.053 nm,[63].

Quantum dot modelling A simple model for a quantum dot should incorporate two

different types of potential. First, a confining potential which traps the electrons into the

dot and, second, the interaction potential which characterizes the interaction between

trapped electrons.

• The confining potential In order to model a quantum dot we need a potential to

confine electrons inside the dot. This potential does the job that in real atom is done

by the nucleus. Some experimental studies have shown that , the harmonic oscillator

potential,
n

Σ
i=1

1

2
mω2(∣X(i)∣)2 where X(i) = (x(i), y(i), z(i)), is a good candidate [2].

• The interaction potential In quantum mechanics the Schrödinger operator for

a system of n pairwise interacting particles in an external field is expressed via

H =

n

Σ
i=1

−1

2m
∆i +

n

Σ
i=1
V (X(i)) +

n

Σ
i<j
U(X(i) −X(j))

[26]. The first term is the kinetic energy operator of the system of particles (elec-

trons, the second term describes the interaction of the particles with external field

such as electro magnetic field, and the third term is the interaction of the particles

with each other. m is the mass of the particles.

Usually, it is assumed the interaction between the electron in the quantum dot is

the Coulomb interaction. Since electron in the quantum dot trapped by harmonic

oscillator potential the Schrödinger operator is
n

Σ
i=1
(−h̵2
2m

∆2

i +
1

2
mω2(∣X(i)∣)2) + q2

4πǫ0ǫ

n

Σ
i<j

1

∣X(i) −X(j)∣
where q is the charge of the electron, ǫ0 and ǫ are dielectric constants. In this

approach, the external field such as electro magnetic field has been neglected.
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1.3.2 The quantum-effect devices

Fabricating nano-transistors is one of the main objects of modern electronics. Since

their dimensions are getting tinier day by day invoking quantum mechanics becomes

necessary. There are two different quantum effect devices, field effect transistors (FET)

and single electron transistors (SET). Each of these devices has its own advantages and

disadvantages [71].

• The FET As it is illustrated in figure 1.3 a field effect transistors (FET) consists of

three main parts, the source, the channel and the drain that one can assume them

as three quantum wells [73]. A FET is a transistor that uses an electric field to

control the conductivity of a channel of one type of charge carrier (electron-hole) in a

semiconductor material. I give a simplistic picture of electron transport through this

FET via a three-infinite-quantum-well model to analyse this simple three-partite

junction and then in next section a sophisticated model will be introduced.

Figure 1.3: A FET .

First I will briefly explain the infinite quantum well. Recall that the time indepen-

dent Schrödinger equation is

Eψ(x) = − h̵2
2m

d2ψ(x)
dx2

+ V (x)ψ(x).

Now, assume a particle is confined to an interval [0,L] which V = 0 in there and

V = ∞ outside of this interval So, the above equation reduces to following one

d2ψ(x)
dx2

+ k2ψ(x) = 0
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where

k =

√
2mE

h̵

with the boundary conditions ψ(0) = ψ(L) = 0. Solutions are readily found in the

form

ψ(x) = A sin(kx) k = kn =
nπ

L
n = 1,2,3,⋯.

Now since kn =
√
2mE
h̵
= nπ

L

E = En = h̵2π2

2mL2
n2 n = 1,2,3,⋯.

Figure 1.4: An infinite well.

Since 1eV = 1.6 × 10−19J and J = Kg.m2

s2
then for an infinite well with length L nm

(nano-meter).

En = h̵2π2

2mL2
n2 =

(1.054 × 10−34)2(3.14159)2
2(9.11 × 10−31)(L × 10−9)2 n2 [ J2s2

Kg.m2
]

= .6 × 10−19
eV

1.6 × 10−19
n2 = 0.375(n

L
)2eV.

Therefore for a well with length 2L nm

En = 0.093(n
L
)2eV.
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The figure 1.3 illustrates a semiconductor field-effect transistor, or FET.

An infinite well which is separated in three parts or three quantum wells is depicted

in figure1.5. The middle well is L nm like above infinite quantum well. The right

and left wells are 2L nm. It is common to think of the right well as the source, the

left well as the drain and the middle well as the channel.

Figure 1.5

It is interesting to ask how a particle moves from the source to the drain. Momen-

tarily, assume the partitions are not infinite. And let a particle in the right well be in

its second eigenstate (n=2) so its energy is E2 = 0.093×4( 1L)2eV and let the middle

well (The channel) be in its ground state (n=1) so its energy is E1 = 0.375( 1L)2eV.
Thus the particle can tunnel into the channel and from channel into the drain.

• The SET 4 A SET can be considered as a FET whose channel consists of a low

capacitance quantum dot coupled to the source and contact by two tunnel junctions

and “capacitively coupled” to the gate which is used to control the transfer of single

electron from source to drain [71]. The fundamental concept behind the SET is

single electron transfer or “single electronics” [50, 51]. It can be explained by

4Most of this section is based on [71]
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assuming a small metallic sphere which the net charge on it is zero. If a single

electron approaches to the sphere it will get attracted by the sphere. So in this case

the charge of the sphere is negative. This negative charge produces an electric field

around the sphere that repels any other electron.

The phenomenon of single electron transfer is comprehensible provided the concept

about the movement of electronic charge through a conductor is clear. Due to free

electrons in a conductor the current flows through it. Since the charge transferred

through the conductor may have any value it is not quantized. In order to quantize

the charge transfer, a tunnel junction is located in a conductor. Therefore, the flow

of electrons will be restricted. Now, if an electron tunnels through the junction, the

charge will be accumulated at the tunnel junction. An individual electron can be

forced to transfer by applying a high bias voltage across the junction.

The charging and discharging of the tunnel junction and thermal fluctuations are

correlated. Since the the high temperature can disturb quantization effect the

Coulomb energy must be grater than thermal fluctuation, (Ec = e2

2c
>KBT ) , where

c is the capacitance of the junction and e is the electron charge. This is the required

condition for single electron phenomenon. Unlike the FET, the SET is based on a

quantum mechanic phenomenon known as the tunnelling effect. This effect may be

observed when two metallic electrodes are separated by an insulator named tunnel

junction. This three-partite device transfer electrons from source to drain on by

one.

Figure 1.6: SET circuits with one QD.
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Quantum dot is a small conducting island that contain a tunable number of elec-

trons. As shown in figure 1.6 a gate voltage is used to control one by one electron

transfer. One tunnel junction is located between source and QD and another one

is located between QD and drain with tunnel capacitances (c1, c2) and tunnel re-

sistances (R1,R2) respectively. The capacitance of the QD, C, is the total sum

of the capacitances of tunnel junctions and gate capacitance. So the coulomb en-

ergy or electrostatic energy of the QD is EC = e2

C
. This is the repelling energy of

previous electron present in the QD to the next electron approaching towards the

QD. Now, since the smaller QD has smaller capacitance the blockaded energy EC

is high enough to prevent simultaneous movement of electrons. Therefore, the elec-

trons pass on by one. This phenomenon is called “Coulomb blockade”.

In FETs, the drain current depends on the number of electrons passing through the

channel. Hence, the more electrons in the channel, the larger the drain current.

Therefore Vg/Id diagram is monotonic. In case of SETs, the drain current does

not depend on the number of electrons in the channel. Therefore Vg/Id diagram is

periodic, see [71].

1.3.3 Electron transport5

The most remarkable characteristic of modern technology is its emphasis on miniatur-

ization. Electronics is the most striking example where technological progress has come

from reductions in the size of transistors. The tinier the transistor, the more transistors

can be etched in a chip. Classical models to describe transistors behaviour have been

abandoned. For example, it has been shown that electrons in modern transistors travel

“ballistically”. That is, they do not collide with any component of the silicon channel

unlike “diffusive” conductors in which electron takes a random walk from the source to

the drain. Therefore, scientists have chosen the “bottom-up” approach rather “top-down”

approach, from large complicated conductors down to atoms, to analyse these transistors.

5Most of this section is based on [18]
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Since quantum mechanics starts from atoms not from bulk solids it is the cornerstone of

bottom-up approach.

Transport through a channel involves two different types of processes, frictionless trans-

fer and heat generation. The first involves mechanics of the type described by Newton’s

laws or the Schrödinger equation. The second described by laws of thermodynamics. A

proper description of electron transport in an electronic device depends on methods of

non-equilibrium statistical mechanics which integrates mechanics with thermodynamics.

Historically, there are two different models to describe electron transport in an electronic

device, semi-classical model and quantum models.

• Boltzmann transport equation (BTE), results from integrating Newtonian

mechanics with heat generating or entropy processes, is accepted as the base of

semi-classical transport theory.

• The non-equilibrium Green function (NEGF) method integrating quantum

dynamics with heat generating processes in order to gives a full description of

quantum transport.

The former one introduced by Boltzmann over a century ago and the latter one introduced

in 1960’s by Keldysh [44], Martin and Schwinger [54].

Next, I will describe briefly the two approaches for one level case. This method has

been developed by Supriyo Datta [16, 18, 17].

• The semi-classical approach: Assume we have a channel that consists of only one

level connected to two contacts, with two different Fermi-Dirac distributions

f1(E) = 1

1 + exp(E−µ1
kT
) f2(E) = 1

1 + exp(E−µ2
kT
)

where µi is the electrochemical potential of contacts (the value at which the proba-

bility of occupation of the level is 1

2
), k = 1.38×10−23Joule/K is Boltzmann constant

and T (Kelvin) is temperature.

Remark 1.3.2. Fermi-Dirac distribution expresses the probability that a quantum

state at energy E is occupied.
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Now, what makes electrons flow through the channel is the difference between f1

and f2 and the current through the channel is

I(E) = q ν1ν2

ν1 + ν2
(f1(E) − f2(E))

where q = 1.6 × 10−19coul. is the electronic charge and νi represent the rates (per

second) at which an electron escapes into the contacts.

• The quantum approach: By introducing contacts into the time dependent Schrödinger

equation 1.2.2, we obtain

ιh̵
d

dt
ψ = (ε − ιγ1 + γ2

2
)ψ

where γi
h̵
= νi. And the corresponding time independent Schrödinger equation is

Eφ = (ε − ιγ1 + γ2
2
)φ.

This equation has a solution φ = 0, so at steady-state there are no electrons occu-

pying the level because we have not included the source term s1, that is the rate at

which electrons try to enter from the source into the channel. Therefore,

Eφ = (ε − ιγ1 + γ2
2
)φ + s1.

Subsequently

φ = [(E − ε) + ιγ
2
]−1s1

where γ = γ1 + γ2. And [(E − ε) + ιγ
2
]−1 is the retarded Green’s function. Therefore

the number of electrons passing through this one level channel is

φφ∗ = [(E − ε) + ιγ
2
]−1s1s∗1[(E − ε) − ιγ

2
]−1 = [(E − ε)2 + (γ

2
)2]−1s1s∗1.

Considering another inflow source term s2 one can obtain

φφ∗ = [(E − ε)2 + (γ
2
)2]−1(s1s∗1 + s2s∗2).

which is the one dimensional analogue of NEGF.
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Remark 1.3.3. Since the extra terms s1s∗2+s2s
∗
1

are never observed experimentally

we don’t take them into the account, see [18].

By integrating the total number of electron over all energies

∫ ∞

−∞
φφ∗dE = ∫ ∞

−∞

(s1s∗1 + s2s∗2)(E − ε)2 + (γ
2
)2dE

= ∫ ∞

−∞

γ

2π(E − ε)2 + (γ
2
)2 (f1(E) − f2(E))dE

= ∫ ∞

−∞
D(E)(f1(E) + f2(E))dE

where 2π(s1s∗1 + s2s∗2) = γ(f1(E) + f2(E)) and D(E)is density of states[18]. Now

after considering some assumptions [18] the current through the channel would be

I = Iin − Iout =
q

h̵

γ1γ2

γ1 + γ2
∫ ∞

−∞
D(E)(f1(E) − f2(E))dE

Remark 1.3.4. According to quantum mechanics coupling the channel to the contacts

spreads a single energy level into a state that is distributed in energy. This is a conse-

quence of uncertainty principle γt ⩾ h which relates the time that electron spends in a

level to the uncertainty γ in the energy. The stronger the coupling, the shorter the time

and the larger the broadening [18].

Remark 1.3.5. According to uncertainty principle the process of coupling the device to

the contacts spreads a single energy level into a state that is distributed in energy, so this

phenomenon is the property of quantum picture which semi-classical picture misses.

Above argument can be extended to more than one energy level [18]. Assume [H] is

a n × n Hamiltonian matrix whose eigenvalues give the n energy levels. For an n level

channel, the wave function {ψ} and source term {s1} are n×1 vectors and the Schrödinger

equation looks like

E{φ} = [H +Σ1 +Σ2]{φ} + {s1}
where Σi are n × n non-Hermitian matrices which Γi = ι[Σi − Σ†

i ] play the roles of γi in

the one-level case. One can write above equation as

{φ} = [EI −H −Σ]−1{s1}
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where

G(E) = [EI −H −Σ]−1
is the retarded Green’s function which it is shown by GR. The matrix electron density,

the NEGF, define as

Gn = 2π{φ}{φ}∗ = 2πGR{s1}{s1}∗(GR)∗.
Assuming 2π{s1}{s1}∗ = Γ1

Gn = GRΓ1(GR)∗.
This is NEGF for single source term. For two sources

Gn = GRΣin(GR)∗
where Σin = Γ1f1(E) + Γ2f2(E) as well as f1 and f2 are the Fermi function of source

and drain respectively. If both f1 and f2 are equal to one then all states are occupied,

therefore the matrix electron density becomes equal to the matrix density of states, called

the spectral function, see [18]. Accordingly the matrix density of states is

A = GRΓ(GR)∗
where Γ = Γ1 + Γ2. after some calculation [18]

A = ι[GR − (GR)∗].
The system’s conductivity is determined by the quantity trace(A). This is the main

observation of NEGF theory. And the current flowing through the channel would be

I =
q

2πh̵
∫ ∞

−∞
Trace(Γ1G

RΓ2(GR)∗)(f1(E) − f2(E))
where T = Trace(Γ1GRΓ2(GR)∗) is called the transition function.

1.4 The Jaynes-Cummings model6.

Two fundamental models of quantum mechanics, are the two level system and harmonic

oscillator. If one combines these two into a bipartite system they can get several inter-

6This section is based on [72]
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esting models, which one of them is Jaynes-Cummings (JC). Jaynes-Cummings model

was introduced for describing the interaction between a two level atom and a quantized

electromagnetic field. This model has so many applications in modern science and tech-

nology.

The Jaynes-Cummings model is based on a Hamiltonian which assumes the following

form:

H = I ⊗HF +Ha ⊗ I +Hint ∶ Ha ⊗HF Ð→Ha ⊗HF .

Figure 1.7: Jaynes-Cummings model 7.

The Hilbert spaces Ha and HF , as well as the three terms of the Hamiltonian are

described below.

HF describes free EM field in a cavity. It results from a quantization of the EM

field with periodic boundary conditions. It turns out that HF is the shifted harmonic

7Wikipedia
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oscillator8

HF = h̵ωâ
∗â ∶ HF Ð→ HF .

The eigenbasis of HF consists of vectors denoted ∣n⟩. We have HF = span{∣n⟩ ∶ n =
0,1,2, . . .}. One has

â ∣n⟩ =√n ∣n − 1⟩
and

â∗ ∣n⟩ =√n + 1 ∣n + 1⟩,
so that

â∗â ∣n⟩ = n ∣n⟩.
For simplicity, Ha, which describes non-interacting matter, is taken to be a two-level

Hamiltonian:

Ha =
h̵ω0

2
(∣e⟩⟨e∣ − ∣g⟩⟨g∣) ∶ Ha Ð→ Ha,

where Ha = span{∣g⟩, ∣e⟩},( This system is called the two-level system). Note that the

energy gap between the ground state ∣g⟩ and the excited state ∣e⟩ is h̵ω0.

Finally, the interaction part Hint is defined as

Hint = h̵λ (σ+ ⊗ â + σ− ⊗ â∗) ∶ Ha ⊗HF Ð→ Ha ⊗HF
where

σ+ = ∣e⟩⟨g∣ and σ− = ∣g⟩⟨e∣.
A direct check shows that:

(I ⊗HF +Ha ⊗ I +Hint) ∣g⟩∣n⟩ = (h̵ωn − h̵ω0

2
) ∣g⟩∣n⟩ + h̵λ√n ∣e⟩∣n − 1⟩, (1.4.1)

as well as

(I ⊗HF +Ha ⊗ I +Hint) ∣e⟩∣n − 1⟩ = (h̵ω(n − 1) + h̵ω0

2
) ∣e⟩∣n − 1⟩ + h̵λ√n ∣g⟩∣n⟩, (1.4.2)

8For computational convenience we take HF = Ĥ −
1

2

̵hωI, where Ĥ is the harmonic oscillator 1.2.1.
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Let us represent the composite Hilbert space in the form:

Ha ⊗HF =̇S0 ⊕ ∞⊕
n=1

Sn,

where S0 = span{∣g⟩∣0⟩}, and Sn = span{∣g⟩∣n⟩, ∣e⟩∣n − 1⟩} for n = 1,2,3, . . ..

Following theorem guarantees " =̇".

Theorem 1.4.1. Suppose Aj’s are self-adjoint operators on Hj then A = ⊕j Aj is self-

adjoint and RA(z) =⊕j RAj
(z), where z ∈ ρ(A) = C ∖ σ(A) and σ(A) = ⋃j σ(Aj) [75].

Formulas (1.4.1), (1.4.2) show that H filters through this decomposition, i.e.

H ∣Sn ∶ Sn Ð→ Sn, n = 0,1,2, . . .

This fundamental property of the Hamiltonian H allows us to understand its properties

via a representation of each component as a 2 × 2 matrix. Let n > 0 (the case of n = 0 is

trivial). In view of (1.4.1), (1.4.2) we can represent H ∣Sn in the basis {∣g⟩∣n⟩, ∣e⟩∣n − 1⟩}
as

H ∣Sn=
h̵

2

⎛⎜⎝
2ωn − ω0 2λ

√
n

2λ
√
n 2ω(n − 1) + ω0

⎞⎟⎠ . (1.4.3)

Next, we find the eigenvalues E±(n) of H ∣Sn. We solve the quadratic equation in ν (

defined by E = h̵
2
ν):

det
⎛⎜⎝
2ωn − ω0 − ν 2λ

√
n

2λ
√
n 2ω(n − 1) + ω0 − ν

⎞⎟⎠ = 0. (1.4.4)

It yields

ν = (2n − 1)ω ±Ωn, where Ωn = [(ω − ω0)2 + 4λ2n]1/2
The correction term Ω is known as the Rabi frequency. We obtain the following eigen-

values of H :

E±(n) = (n − 1

2
)h̵ω ± h̵

2
Ωn.

Note that in the resonance case ω = ω0 the Rabi frequency is Ωn = 2λ
√
n.
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The spectrum of the composite system is different than that of either one of its

components. This effect is the main prediction of the Jaynes-Cummings model.
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Chapter 2

A Numerically Efficient Approach to The

Modelling of Double-Quantum Dot Chan-

nels

2.1 Introduction

In the last decade the theory and modelling of quantum dots have attracted a lot of

attention and, indeed, the topic may be regarded as one of the central ones in the area of

nanotechnology. Researchers have been successful in applying the ab-initio DFT simula-

tion to explain the fundamental characteristics of a single quantum dot, which is typically

considered as an artificial molecule, see e.g. [52], [53]. More recently there has been a

lot of enthusiasm about nano-systems that consist of a pair of interacting quantum dots,

here referred to as the double-Qdots. One of the remarkable examples is a double-Qdot

comprising two single-electron quantum dots, see [61] and also [21]. Since these double-

Qdots provide a means for controlling the electron spin via gate potentials—effectively

implementing a spin-swap which is a fundamental quantum computing operation, [48]—

they may well become the enabling hardware components of a quantum computer. Some

very significant progress toward developing addressable quantum registers based on this

type of technology was reported in [15]. A very promising feature of these new structures

is their comparatively long coherence time. Of course, apart from quantum computing,

the double-Qdots are bound to find other electronic applications, e.g. substituting for

the traditional piezoelectric sensors, [45].
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In light of this it is vital to develop good models for the electronic structure of double-

Qdot systems and, indeed, the topic attracts a lot of attention. Of note are the early

ab initio models, [69] or [81]. In addition, there has been progress in the modelling of

a double-Qdot with metal contacts via the Non-equilibrium Green’s Function Theory

(NEGF). In particular, in [48] the authors assessed the validity of the equation of mo-

tion approach to the NEGF formalism specifically for a double-Qdot coupled with two

contacts. The model takes into account both intra- and intro-dot Coulomb interactions.

In general, the equation of motion NEGF formalism provides a qualitative description

of transport phenomena that occur in strongly correlated systems, such as the Coulomb

blockade effect and the Kondo effect. The authors study the effect of different approx-

imate closures to the equation of motion NEGF formalism on steady state properties

within an extended Hubbard model (also known as the double Anderson model). For

comparison in [74] the authors consider a NEGF model based on a Hubbard type Hamil-

tonian, which accounts for tunneling type electron transfer between the two Qdots as

well as the isolator-type electrostatic Coulomb interaction between them. The effect of

contacts is also modelled via a tunneling electron transport. Yet another approach is

taken in [39] wherein the electron transport, in structures such as the Qdots or single

molecules, is captured via a quantum master equation. Naturally, this is meant as a brief

introductory outline. While a complete literature review would go beyond the scope of

this chapter, we return to the topic of NEGF and consider some additional aspects of

this theory in Section 2.7.

It is vital to realize that a typical model of a double-Qdot system, be it of the ab initio

or the NEGF type requires intensive computation. At the same time some applications

of modelling—such as, say, production quality control, but also numerical experimenta-

tion for the sake of fundamental research—require high numerical efficiency ensuring real

time computability. In this chapter we undertake to consider a new class of models for

double-Qdots, which enable some scalability of computational complexity. The proposed

composite-quantum-system type model is to the author best knowledge conceptually

novel and hitherto unexplored. It is based on a Hamiltonian for a bipartite quantum
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system, wherein the subsystem Hamiltonians are given a priori, and the interaction term

is constructed with the use of a convolution or a Wiener-Hopf type operator, see e.g. [10],

[47]. Our decision to focus on this type of interaction term arose from a dictum that if a

new mathematical structure is to be constructed to capture the essence of an element of

increased complexity, it is probably best done with as much conceptual parsimony and as

few additional “ingredients" as possible. Indeed, the proposed model is perhaps the sim-

plest possible, given that it must incorporate each single Qdot’s dynamics and needs to

account for the Qdot-Qdot interaction. We emphasize that the interaction is modelled at

a rather general level to avoid the complexity trap that would be inevitable in an ab initio

approach. The type of construction being proposed is perhaps somewhat reminiscent of

the classical Jaynes-Cummings model, [40], [70], frequently evoked in Quantum Optics.

However, in stark contrast to the Jaynes-Cummings Hamiltonian our model incorporates

a high-dimensional parameter (the kernel function) which, by design, can be fitted to a

physical system a posteriori.

One of the main goals of this chapter is to examine the cumulative density of states

function, N(E), arising from the proposed Hamiltonian. We have conducted extensive

numerical simulations to understand the dependence of N(E) on the choice of the un-

derlying parameters. As it turns out, the choice of parameters, especially the kernel

function, strongly affects the characteristics of N(E), which bodes well for the model’s

applicability and versatility. We apply the results concerning N(E) to draw conclusions

about the electronic characteristics of the double Qdot channel. One of our main find-

ings is summarized in Fig. 2.7. Our model suggests that the functional features of such

systems should fall within several distinct categories. In Section 2.6 we give a brief qual-

itative comparison of these predictions to the known experimental data. In Section 2.7

we discuss a range of issues pertaining to the numerical efficiency of the model at hand.
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2.2 Constructing the composite system Hamiltonian

We wish to consider a quantum system that consists of two distinguishable components

(subsystems), e.g. two distinct Qdots. We assume that the subsystem properties are well

understood and given to us a priori as constituents of the model. More specifically, let the

dynamic properties of these components, when in isolation, be captured by Hamiltonians

Hi ∶ Hi Ð→ Hi (i = 1,2), both having pure-point spectrum. In order to fix notation let us

specify the eigenstates:

H1(ψk) = Ek ψk, and H2(φl) = Fl φl,
where, for convenience, we allow the eigenstates to be indexed by arbitrary integers, i.e.

k, l ∈ Z. Note that the two bases — i.e. {ψk}k∈Z and {φl}k∈Z — furnish the Hilbert space

isomorphisms Hi ≅ ℓ2(Z) (i = 1,2.)
Next, construct the composite system Hamiltonian H ∶ H1 ⊗H2 Ð→ H1 ⊗H2 in the

form

H = H1 ⊗ I + I ⊗H2 + λHint, (2.2.1)

which accounts for inter-component interaction. We wish to propose a simple model for

Hint. First, observe that the basis {ψk ⊗ φl}(k,l)∈Z2 furnishes an identification H1 ⊗H2 ≅

ℓ2(Z)⊗ ℓ2(Z) ≅ ℓ2(Z2) via a unitary map T :

T ∶H1 ⊗H2 Ð→ ℓ2(Z2)
∣ψk⟩∣φl⟩ z→ δ(k,l).

In other words, for a composite system state vector Ψ ∈ H1 ⊗H2 we obtain TΨ = X ∈

ℓ2(Z2), such that

Ψ = ∑
(k,l)∈Z2

X(k, l) ∣ψk⟩∣φl⟩ (notation: ∣ψk⟩∣φl⟩ = ψk ⊗ φl). (2.2.2)

Second, consider a matrix K ∈ ℓ2(Z2) (whose properties will be specified later). We

attempt to prescribe the interaction Hamiltonian by

HintΨ = ∑
(k,l)∈Z2

Y (k, l) ∣ψk⟩∣φl⟩,
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where

Y =K ∗X, i.e. Y (n1, n2) = ∑
(k,l)∈Z2

K(n1 − k,n2 − l)X(k, l).
In other words,

HintΨ = T
∗K ∗ TΨ equivalently THintT

∗ =K ∗ . (2.2.3)

Of course, we need to specify conditions on K for Hint to be a viable interaction Hamil-

tonian. The first issue of concern is ensuring self-adjointness H∗int = Hint. In order to

resolve the problem we proceed as follows. Let us define a unitary operator

U ∶H1 ⊗H2 Ð→ L2([0,2π]2)
∣ψk⟩∣φl⟩z→ eikxeily,

and let F denote the unitary map of the Fourier transform, i.e.

F ∶ L2([0,2π]2)Ð→ ℓ2(Z2),
eikxeily z→ δ(k,l).

We can summarize above discussion in following diagram

H1 ⊗H2

T
��

U // L2([0,2π]2)

ℓ2(Z2) F∗ // L2([0,2π]2)
id

OO

We write FX = X̌. As is well known the Fourier transform is an algebra homomor-

phism which trades multiplication for convolution. Therefore, K ∗X = F(Ǩ ⋅ X̌). Let

V = Ǩ ∈ L2([0,2π]2), and let V× ∶ L2([0,2π]2) → L2([0,2π]2) denote the operator of

multiplication by V . By (2.2.3) we have THintT ∗ = FV×F∗ or, equivalently,

Hint = T
∗FV×F∗T = U∗V×U . (2.2.4)

It is now clear that Hint is formally self-adjoint iff V = Ǩ is real valued. This obser-

vation is also helpful in describing the analytic properties of Hint, although we do not

undertake to do so in this chapter, which is focused on numerical experimentation.
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Remark 2.2.1. In the special case of H1 =
d2

dx2
, H2 =

d2

dy2
, with (x, y) in the flat torus,

the unitary operator U in (2.2.4) is in fact an identity, and so H given by (2.2.1) is in fact

equivalent to the Schrödinger operator with the potential V = Ǩ ∈ L2([0,2π]2). In light

of this (2.2.1) may be viewed as a generalization of the standard Schrödinger model.

2.3 Examining the special case

For the Hamiltonian H with the convolution kernel K = δ(1,−1) + δ(−1,1), one obtains

Hint∣ϕk⟩∣ψl⟩ = ∣ϕk−1⟩∣ψl+1⟩ + ∣ϕk+1⟩∣ψl−1⟩.
Furthermore, let us fix the subsystem Hamiltonians H1,H2 with equal discrete energy

spectra En = Fn and En = 0 for n ⩽ 0. Departing slightly from convolution scenario, we

consider the Hamiltonian H̄ = P ○H where P ∶ ℓ2(Z2) Ð→ ℓ2(Z2
+) is the projection op-

erator. This construction closely resembles the architecture of the classical Wiener-Hopf

operators. We are going to represent the composite system Hamiltonian in the basis

{∣ϕk⟩∣ψl⟩} ordered in a special way as follows:

∣ϕ0⟩∣ψ0⟩, (k + l = 0)
∣ϕ1⟩∣ψ0⟩, ∣ϕ0⟩∣ψ1⟩, (k + l = 1)
∣ϕ2⟩∣ψ0⟩, ∣ϕ1⟩∣ψ1⟩, ∣ϕ0⟩∣ψ2⟩, (k + l = 2)
∣ϕ3⟩∣ψ0⟩, ∣ϕ2⟩∣ψ1⟩, ∣ϕ1⟩∣ψ2⟩, ∣ϕ0⟩∣ψ3⟩, (k + l = 3)
⋮

Observe

H̄ ∣ϕ2⟩∣ψ0⟩ = (E2 +E0) ∣ϕ2⟩∣ψ0⟩ + λ ∣ϕ1⟩∣ψ1⟩,
H̄ ∣ϕ1⟩∣ψ1⟩ = (E1 +E1) ∣ϕ1⟩∣ψ1⟩ + λ ∣ϕ0⟩∣ψ2⟩ + λ ∣ϕ2⟩∣ψ0⟩,
H̄ ∣ϕ0⟩∣ψ2⟩ = (E0 +E2) ∣ϕ0⟩∣ψ2⟩ + λ ∣ϕ1⟩∣ψ1⟩, . . . etc.

Thus H̄ is represented by the following block structured matrix:
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H̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0 +E0 0 0 0 0 0 ⋯ ⋯

0 E1 +E0 λ 0 0 0 ⋯ ⋯

0 λ E0 +E1 0 0 0 ⋯ ⋯

0 0 0 E2 +E0 λ 0 ⋯ ⋯

0 0 0 λ E1 +E1 λ ⋯ ⋯

0 0 0 0 λ E0 +E2 ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
When the energy levels are those of a harmonic oscillator1, i.e. En = 2n+1

2
, the H matrix

consists of increasing diagonal blocks of the form:

HN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N λ 0 ⋯ 0 0

λ N λ ⋯ 0 0

0 λ N ⋯ 0 0

⋮ ⋮ ⋮ ⋱ λ 0

0 0 0 ⋯ N λ

0 0 0 ⋯ λ N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The eigenvalues of such matrices may be calculated explicitly by using the row expan-

sion of the determinant that results in a recurrence relation. Characteristic polynomial

of Hn is:

CN(x) = det(HN − xIN)

= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N − x λ 0 ⋯ 0 0

λ N − x λ ⋯ 0 0

0 λ N − x ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ 0

0 0 0 ⋯ N − x λ

0 0 0 ⋯ λ N − x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1Since the model is parametric by design and all the essential predictions are of qualitative nature,

the physical constants may be viewed as parameters and are here set at trivial values for convenience.

47



In order to calculate eigenvalues of CN(x), we state with observation that

CN(x) = (N − x)CN−1(x) − λ2CN−2(x), (2.3.1)

where CN−1(x) obtained from CN(x) by omitting the first row and the first column.

In order to solve above recurrence equation we apply the following well-known lemma

Lemma 2.3.1. If x1 = 1 and x2 = A the general solution of second order linear recurrence

equation xN = AxN−1+BxN−2 is xN =
aN−bN

a−b where a and b are solutions of x2−Ax−B = 0.

The lemma is easily seen to be hold true by means of an application of Vieta’s formulas.

In our case, A = (N − x) and B = −λ2, so a = 1

2
((N − x) +√(N − x)2 − 4λ2) and

b = 1

2
((N − x) −√(N − x)2 − 4λ2).

Assume

∆N =
aN+1 − bN+1

a − b
.

Easily one can observe that

∆N = A∆N−1 − λ
2∆N−2

Thus, according to equation 2.3.1

CN(x) = aN+1 − bN+1√(N − x)2 − 4λ2 .
Next, assuming CN(x) = 0 we obtain aN+1 = bN+1, or equivalently

((N − x) +√(N − x)2 − 4λ2)N+1 = ((N − x) −√(N − x)2 − 4λ2)N+1
substituting z = (N − x) we get

(z +√z2 − 4λ2)N+1 = (z −√z2 − 4λ2)N+1
i.e. (z+√z2−4λ2

z−
√
z2−4λ2

)N+1 = 1. Multiplying the numerator and the denominator by the congruent

of the denominator yields ( (z+√z2−4λ)
2λ

)2(N+1) = 1, hence
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(z +√z2 − 4λ)
2λ

= e
2kπi

2(N+1) , k = 1,2,⋯,2N + 1.

The last equation yields z = λ1+e
2kπi
N+1

e
kπi
N+1

. Multiplying the numerator and the denominator of

the fraction by e−
kπi
N+1 we get z = 2λcos( kπ

N+1), in summary, the eigenvalues turn out to be:

EN,k = N − 2λ cos
kπ

N + 1
, k = 1, . . . ,N. (2.3.2)

The doubly-indexed collection {EN,k ∶ k = 1, . . . ,N, N = 1,2,3, . . .} is the complete set of

the eigenvalues of the H matrix. Another method for calculating the eigenvalues of HN

can be found in[11].

We have used the above observation to test the correctness as well as the accuracy

of the general numerical experiments with the Hamiltonian (2.2.1)-(2.2.3). In order to

briefly summarize our findings, let {ei ∶ i = 1,2,3, . . . ,N(N + 1)/2} be the complete set

of theoretical eigenvalues of H̄ , i.e. the eigenvalues are determined via formula (2.3.2)

and ordered according to their magnitudes. Similarly, let {Ei ∶ i = 1,2,3, . . . ,N(N + 1)/2}
denote the magnitude-ordered eigenvalues of H resulting from numerical simulation. The

maximal distance ∣ei−Ei∣ may then be regarded as a measure of accuracy of the numerical

schema used to obtain {Ei}. In this way we have established convincing evidence for the

reliability of our specific numerical schema, which is described in the Appendix. To

give an example, we find that for N = 21 and λ = 1 or λ = 10, max{∣ ei − Ei ∣∶ i =
1,2,3, . . . ,N(N + 1)/2} ≅ 10−14 and for λ = 100 the accuracy is hardly diminished at

10−13.

2.4 Modelling a double-Qdot channel

We wish to consider a conceptual semiconductor channel device comprising two (similar

or identical) quantum dots suspended in between metal contacts (source and drain), see

Fig. 2.1. In a laboratory setting the Qdots become coupled when brought into physical

proximity, close enough for the electron clouds to interleave. It is intuitively natural to

expect that within a moderate range of the inter-Qdot distances the qualitative nature
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of the interaction remains unchanged, while its strength should depend on the actual

distance, e.g. it might be in the inverse proportion to it. Note that the difference

between a nanoscopic system such as the one at hand and a microscopic one is that it

precludes the possibility of chemical bonding. We believe that systems as these may find

numerous applications in electronics and sensing, including the problem of detecting and

quantifying the strength of micro-vibrations. In light of this, we find it interesting to

understand the dependence of their strength of interaction-to-conductivity characteristic

on the parameters characterizing a given set of components and their geometry. This is

the focus of the remainder of this chapter.

Figure 2.1: The simplest circuit with the double Qdot channel (DQDC).

In order to come up with a workable conceptual model of the system at hand, we will

ignore the effect of the contact-Qdot interaction (— for additional comments see Remarks

at the end of this section), and focus solely on the double Qdot subsystem. Subsequently,

we elect to view the double Qdot as a bipartite quantum system, and construct its

model via Hamiltonians of type (2.2.1)-(2.2.3), experimenting with different choices of the

constituent parameters, including several deliberate modifications of the kernel function

K. The role of the kernel is to capture, at least qualitatively, the inter-Qdot interaction,

while the parameter λ moderates its strength. In light of the proposed interpretation

λ may be conceived of as a parameter quantifying the effect of the adjustment of the

inter-Qdot distance.

Another external parameter is the number of electrons, which we fix throughout the

discussion, assuming that each of the Qdots has 2N orbital electrons. Furthermore, we

ignore the effect of temperature, e.g. when the Qdots are in isolation, the electrons

occupy the first N of the energy levels determined by H1 and H2 respectively, i.e. two
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opposite spin electrons per level. For simplicity, we assume thatH1 =H2 are the harmonic

oscillators.

At equilibrium, the system has a common Fermi energy EF which is equal to the

electrochemical potentials of source µs and drain µd. On the other hand, when voltage V

is applied across the double-Qdot channel, the two electrochemical potential levels split

(µs − µd = qV ). If µs > EF ≥ µd, with µs sufficiently high, there exist unoccupied levels of

energy in the molecule within the range [µd, µs]. In these conditions a current is forced

through the double Qdot channel, see the schematic representation in Fig. 2.2. The

electric charge is transported in charge quanta of −1e by electrons.

Figure 2.2: Schematic representation of the concepts used to determine the con-

ductivity of the DQDC. Note that the Fermi energy EF exactly coincides with the

HOMO level (at zero temperature).

We discuss the problem of calculating the conductivity of a double Qdot channel

placed between the source and drain contacts (DQDC for short). To this end, we invoke

the density of states function D(E), and the cumulative density of states function N(E).
Denoting Ei the eigenvalues of the composite system Hamiltonian H , we have

D(E) =∑
i

δ(E − Ei),
and

N(E) = ∫ E

−∞
D(E)dE.

Briefly, since D(E) is a string of delta functions, N(E) is the counting function which

increases in steps of size one as the variable E passes through each energy level.

51



As mentioned above, the first assumption is that the DQDC is a quantum system

whose dynamics is governed by the Hamiltonian H of the type (2.2.1)-(2.2.3). Secondly,

we assume that the conductivity κ(E) of the DQDC per spectral range dE is proportional

to the number of energy levels in [E,E + dE]. More precisely, we have κ(E) = kD(E),
where the coefficient of proportionality k depends on a variety of external parameters

such as the effective electron mass, the mean free time, and the geometry of the system,

[18]. Thus, assuming for simplicity µd = 0, µs = qV , the overall conductivity is the sum

of κ(E) over the span of unoccupied energy levels below the applied potential:

κ =

V

∫
EF

κ(E)dE = k [N(V ) −N(EF )] . (2.4.1)

This formula is the foundation for the numerical study of the conductivity properties of

a DQDC in the next section.

Remarks. In applications a DQDC element is typically hooked up to a circuit via a pair

of contacts (metal leads). While the discussion of DQDC carried out above abstracts

from the effects induced by the contacts, the conductivity of the device as a whole could

still be modelled via an effective Hamiltonian. However, in some applications it is of

interest to separate the effect of contacts and make it an inherent part of the model.

As mentioned in the Introduction such effects are typically modelled within the frame-

work of the NEGF (also known as the Keldysh calculus)2. Following [59] we observe

that at the phenomenological level the main effect of coupling to the contacts is energy

level broadening as well as a shift of the effective Fermi energy level. The energy level

broadening induces flow of a fractional-charge current through the DQDC, even if there

are effectively no “pure energy levels" in the interval [µd, µs]. Also, the Fermi energy

level is effectively shifted to occupy a position mediating between HOMO and LUMO,

whose exact value is typically left free as an adjustable parameter that may be fitted to

2A similar approach was taken early on in a study of the conductivity of a molecule suspended

between two metal leads, [59].
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a system a posteriori. (Note that if charge transport is effected in integer quanta, the

Fermi energy coincides with the HOMO level, as schematically indicated in Fig. 2.2.) A

slew of additional corrections would originate from lifting the assumption of absolute-zero

temperature (leading to a different statistics of energy-level occupation). At the end of

Section 2.7 we briefly discuss the consequences for numerical efficiency that stem from

extending the model to explicitly account for the coupling to contacts.

2.5 Numerical Experiments

We report the results of a numerical study of the λ-to-κ characteristic of a DQDC with

different choices of the kernel function K. Recall that we base the model of a DQDC on

a Hamiltonian of type (2.2.1)-(2.2.3), and calculate the across-channel conductivity via

formula (2.4.1). Another of the underlying a priori assumptions is the number of occupied

levels, i.e. the number of orbital electrons. We have developed numerical algorithms in

the MATLAB environment. At this stage, the real-time experimentation is feasible only

for relatively small numbers of orbital electrons. Nevertheless, we believe these results

outline a qualitatively adequate picture. Our main findings are presented in Figures (2.3)-

(2.6). The graphs illustrate the dependence of N(E) on K. We have used the following

two kernel types:

1. The “special" K is as in Section 2.3.

2. The “periodic" K is a kernel matrix built in two steps: First, take a matrix L whose

rows are filled with the values of a discretized periodic function, e.g. sin. Second,

take K to be the Fourier transformed L.

It is interesting to observe that regardless of the kernel the graphs tend to be charac-

terized by stronger concavity of their course scale shape for smaller values of λ.
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Figure 2.3: The cumulative density of states function N(E) for the periodic K

and coupling constant λ = 1.

Figure 2.4: The cumulative density of states function N(E) for the periodic K

and coupling constant λ = 10.
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Figure 2.5: The cumulative density of states function N(E) for the special K and

coupling constant λ = 1.

Figure 2.6: The cumulative density of states function N(E) for the special K and

coupling constant λ = 10.
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Fig. 2.7 displays the dependence of DQDC’s conductivity κ on the coupling constant

λ for three different Ks. In addition to the two kernel types described above, we have also

considered a random type kernel, i.e. a kernel obtained via the discrete Fourier transform

of a random matrix3. Clearly the three λ-to-κ curves display individualized and signifi-

cantly differentiated characteristics, which evidences the proposed model’s versatility. We

predict all the three λ-to-κ profiles and possibly more to be physically realizable. We also

expect the model to be broadly adaptable to the analysis of other systems with bi-partite

architectures.
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Figure 2.7: Conductivity κ of a double-Qdot channel (DQDC) as a function of the

coupling constant λ for three different kernel functions. For computational efficiency

the number of orbital electrons has been fixed at a low value (21).

Remark. An additional, finer characterization of the properties of the model at hand

depends on the statistical profile of the fine-scale oscillations found in the N(E) curves

3Here, a random matrix means a matrix populated by uniformly distributed (in [0,1]) random

numbers obtained with one of the MATLAB’s standard random number generators.
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(—see box inserts in Figs. 2.3-2.6). We anticipate further results in this direction which

will be reported in the next chapter.

2.6 Qualitative comparison to the experimental data

Several experimental studies of the DQDC type structures may be found in the literature,

e.g. [41]. In particular, the aforementioned article [15] reports, among other results,

conductivity measurements of a particular DQDC structure, referred to as the single

electron transistor (SET). The electronic characteristic of a SET is controlled by a pair

of gate potentials (VG1, VG2). Clearly, the gate potentials adjust the electrochemical

potentials of the two QDots. However, their overall influence on the structure and function

of a SET is more complex than that as even the fundamental Hamiltonian is profoundly

affected by these parameters.

Figure 2.8: Schematic structure of a SET with DQD.

Figure 2.9: Single electron transistor circuits with DQD.
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Indeed, the external electric field modifies the shape of the electronic wave function

and through that influences Coulomb interactions as well as the hyperfine coupling be-

tween the electron and nuclear spins. The reported measurement of source-drain current

at a constant applied source-drain bias, see Fig. 1f-g therein, demonstrates strong depen-

dence of conductivity on (VG1, VG2). One of the striking features is the presence of abrupt,

nearly discontinuous, changes in conductivity as (VG1, VG2) traverses different regions of

the plane. This particular result may be reinterpreted within the framework proposed

here. Indeed, we postulate that the two-dimensional (VG1, VG2)–space can be mapped

into our model’s high-dimensional (λ,K)–space in such way as to carry over the essential

features of the effective Hamiltonian. Note that due to inherent complexity the exact

dependence of the Hamiltonian on the gate potentials is unknown. Nevertheless, there

are strong similarities between our predictions and the reported experimental findings.

Indeed, our simulations demonstrate that continuous change in λ effects continuous ad-

justment of the conductivity, whereas qualitative change in K effects conductivity jumps,

Fig. 2.7. In light of that it should be possible, at least in principle, to find a translation

rule (λ,K) = Φ[VG1, VG2]4 resulting in the accurate predicted conductivity function. Such

a task might be attempted via the known techniques for automated parameter fitting.

2.7 A discussion of numerical efficiency

In some applications the speed of simulation is the most important parameter. When

that is the case it is necessary for the modeller to have the option of easing the simula-

tion accuracy for gains in computational time. This requirement seems to disadvantage

simulation schemas based on ab initio models, or even higher-level models that rely upon

geometrically localized description of the device in question. Indeed, in those cases the

only possible speed gains come from relaxing the tolerance of parameter fitting rather

than a reduction in the number of parameters itself. Therefore, when speed is of essence

there arises a need for models that keep in check the number of tunable parameters, such

4Note that Φ could turn out to be a nonlocal functional rather than just a local function.
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as the one proposed here.

All simulation that is based on the fundamental (as contrasted with the merely phe-

nomenological) principles unavoidably involves some computational constants: a compu-

tation of the eigenvalues of the matrix representing the Hamiltonian, parameter fitting

via optimization algorithms, such as the genetic algorithm or the simulated annealing

schema, etc. Given this constraint a speed-up may still be achieved by limiting the com-

plexity of the Hamiltonian matrix. Such a feat may not always be possible, e.g. it is

hard to reduce the complexity of a model that relies on the local geometric description

of the simulated device. However, one may hope to achieve complexity reduction by

delocalization of parameters, which is the approach we have taken.

Let us briefly compare the model proposed here with the one adopted in the highly

regarded standard of nano-system simulation, specifically NEMO 3D,5. NEMO 3D is

a remarkably versatile tool which enables simulation of nano-devices at a rather funda-

mental level. However, its demand for the computational power is indeed very high, and

speed-up can only be achieved via parallel computation with an increased number of

nodes. That computational rigidity is at least partly a by-product of the rigidity of the

“bottom-up" models that NEMO 3D computation relies upon. Namely, NEMO 3D syn-

thesizes a Hamiltonian of a nano-structure from a description of the global inter-atomic

architecture as well as a relatively detailed description of localized atomic orbitals. In

order to solve the model it is necessary to compute the eigenvalues of a large matrix

whose characteristics are essentially beyond the modeller’s control. In particular, this

approach offers no possibility of building progressively less complex simplified models for

a structure of interest.

In contrast, the model we propose does not incorporate any strictly geometric de-

scriptions of the underlying physical structure. Thus far we observe sufficient flexibility

within this framework to simulate fairly complex electronic spectra of structures such as

the DQDC, and capture the essential features of their conductivity. Moreover, in the

proposed approach there is a possibility of choosing the model complexity within the

5Introduction to the NEMO 3D Tool, http://nanohub.org/resources/11080/download/
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constraint of desired accuracy of its predictions. In particular, the Hamiltonians may

have a block structure by design, offering easy parallellizability. This cannot be achieved

with models that relate the Hamiltonian to the local geometric architecture of the device.

In our simulation schema, as in most other, the dominant factor determining the time

of computation is the evaluation of the eigenvalues of the Hamiltonian matrix. A compu-

tation of the eigenvalues of an N ×N matrix requires O(N3) arithmetical operations, and

becomes prohibitively complex for large N . However, we note that in order to compute

conductivity κ, defined in (5), only very selective information about the eigenvalues is

used — namely, the number of eigenvalues in the interval [EF , V ]. Thus, for this ap-

plication, the eigenvalues need not be known with high accuracy. Instead, it suffices to

localize each eigenvalue inside or outside this interval. While further research is required

to fully develop this idea, we expect an increased efficiency of such a computation can be

obtained with suitable modifications of iterative schemas such as the celebrated Lanczos

iteration, [76].

It is also interesting to briefly consider the changes that would result from extending

our model to include an explicit discussion of contacts, particularly the effect it would

have on the numerical complexity of the model. In essence the contacts are viewed as

a quantum reservoir characterized by a Hamiltonian HR. The NEGF type coupling of

contacts to the central device is expressed via the super-system Hamiltonian

H̃ =
⎛⎜⎝
H τ

τ∗ HR

⎞⎟⎠ ,

where the interaction part τ is typically a rectangular sparse matrix. The electronic

conductivity through the core is then determined via the effective resolvent (alternatively

called the Green’s function) G = G(E), which is defined via

(E − H̃)−1 = ⎛⎜⎝
G(E) GR(E)
GR(E)∗ GRR(E)

⎞⎟⎠ ,

While the sub-matrix G(E) is essential, GR and GRR are merely auxiliary in the con-

struction and play no further role. It is easily seen that G(E) = [E −H − Σ]−1, where
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Σ = Σ(E) = τ[E −HR]−1τ∗. The main observation of the NEGF theory is that the sys-

tem’s conductivity is determined by the quantity Trace[GΓG∗] with Γ =
√
−1 [Σ − Σ∗]

in conjunction with the energy level occupation statistics. We observe that the NEGF

framework is universal and can be developed for any core Hamiltonian H , including the

Hamiltonians proposed here. However, most importantly, the resulting numerical schema

involves the inversion of large matrices resulting in a substantially increased demand for

the computational power.

2.8 Chapter conclusion

We have analysed the electronic properties of a channel comprising two interacting quan-

tum dots (DQDC) within the framework of a numerically efficient quantum model. The

proposed model is based on a bipartite quantum system Hamiltonian with a class of

novel convolution or a Wiener-Hopf type interaction term. We have conducted a numer-

ical analysis of the resulting cumulative density of states function and drawn conclusions

regarding the dependence of the DQDC’s conductivity on the coupling constant. Our

results suggest that the proposed model is capable of capturing diverse DQDC character-

istics. We consider the nano-structure at hand to be of interest because of its potential

significance for next generation sensors and circuits.
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Chapter 3

Fine Scale Spectral Analysis

3.1 Introduction

Determining the spectrum of a quantum system as well as its corresponding density

of states function are the most important objectives in the study of quantum systems.

Despite the fact that we are easily able to calculate the energy levels of a harmonic os-

cillator or an infinite quantum well it is difficult to calculate the energy levels of most

real quantum systems. In the absence of an explicit formula for the energy levels En,

one might employ approximation methods such as the Bohr-Sommerfeld quantization or

the Wentzel-Kramers-Brillouin (WKB) methods, which rely upon the semiclassical ap-

proach to quantum mechanics. Semiclassics is a discipline of physics that attempts to

compute spectra of a quantum system on the basis of its classical trajectories, adding only

two additional ingredients: quantum mechanical superposition principle and the Planck’s

constant h̵ [8]. The semiclassical method predicts quantum properties, such as energy

levels, based on classical trajectories considering quantum phases and the superposition

principle. One might be able to drive classical information from a given quantum in-

formation such as the spectra and, conversely, one might be able to construct the wave

functions and spectra from the classical trajectories and actions of the system. That is

the classical-quantum connection.

One of the main questions in this realm is: for a given quantum system, can one

determine whether the underlying classical motion is integrable or chaotic? Results con-
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cerning the relationship between quantum and classical mechanics can be translated into

the language of Differential Geometry. So the previous question can be translated into

one of the so-called “drum questions” [43], “Can one hear the chaology of a drum?” In

other words, is it possible to decide, only by listening to a drum, whether the rays of

elasticity underlying the vibrations of a given drum are chaotic or regular? This is, of

course, reminiscent of the famous original question posed by M. Kac [42], “Can one hear

the shape of a drum?”

In order to distinguish between integrable and chaotic systems one needs to consider

fluctuations properties; that is, how the energy levels are distributed around the average

density of states D̄(E) = dN̄
dE

where

N̄(E) = 1

(2πh̵)dΩ(E),
and

Ω(E) =[
H(p,q)<E

dqddpd

is the volume of energy shell and d is the number of degrees of freedom. Since energy levels

corresponding to different systems or different regions of energy levels of the same system

may have different average density, one must unify average density before comparing

fluctuations. To this end one must renormalize the local unit of energy. Such a procedure

is called unfolding.

The simplest quantity that describes the level fluctuations is the nearest neighbour-

hood spacing distribution (NNSD) p(s) where p(s)ds is the probability of finding two

adjacent unfolded energy levels in [s, s + ds]. For the case of semiclassical regimes the

quantum systems whose underlying classical system is integrable, Berry and Tabor [7]

show that p(s) is universal and is a exponential distribution

p(s) = exp(−s), 0 ⩽ s <∞.

In their 1984 papers [9], Bohigas, Giannoni and Schmit formulate a conjecture regarding

universality of the laws of level fluctuations of a quantum system with an underlying

classically chaotic system. The conjecture was derived from a numerical study of the

63



Sinai billiard. Specifically the conjecture, still unproven, states that:

Spectra of a system whose underlying classical analogue is chaotic has a NNSD as

predicted by the Gaussian Orthogonal Ensemble (GOE).

Semiclassical approximation method called the periodic orbit theory is considered to be

the main tool with which to prove BGS conjecture. In 1957 Wigner [80] conjectured that

the energy levels of a complex nuclear system have similar statistical distribution as the

GOE. He proposed the following distribution

p(s) ≈ π
2
s exp(−π

4
s2), 0 ⩽ s <∞.

In periodic orbit theory we are able to express the semiclassical density of states as

D(E) = D̄(E) +Dflu(E).
The fluctuating term Dflu(E) is given by trace formula introduced by Gutzwiller [34, 35,

36, 37] and by Balian and Bloch [3, 4, 5].

To the best of the author’s knowledge the problem of characterizing the universal

properties of p(s) in the mixed case, where both chaotic and KAM orbits are present in

the phase space, is still unsettled see [57] and references in there.

As mentioned above, certain mathematical tools have been developed to model and

understand the fundamental characteristics of atomic nuclei. It remains to be seen if the

fundamental characterisation of nano-systems is similar or rather different in some fun-

damental way. I have embarked on a project to see if the known methodology, including

methods for constructing quantum Hamiltonians, may be used to model the fundamen-

tal behaviour of nano-systems. In particular I have asked if the spectral properties of

objects such as quantum dots are similar or different from those of atomic nuclei. I have

applied the apparatus of statistical analysis of spectra, as first developed by the theorists

of semiclassical physics, to see whether or not any definitive statements could be made

on the comparison between the nano and the nuclear. The main idea that led to the

introduction of statistical methods specifically the Random Matrix Theory RMT was the

notion of complexity that nowadays is referred to as chaos and it is related to the large
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number of degrees of freedom involved in a many-body problem. Since nano-systems are

many-body systems it is reasonable to expect that the level statistics of such systems are

described by RMT or a similar framework.

3.2 A statistical methodology for the analysis of Hamil-

tonian dynamics

Two important functions of the spectrum of a quantum system are the density of states

D(E) =∑
n

δ(E −En).
and the spectral staircase function or the cumulative spectral function

N(E) = ∫ E

−∞
D(E)dE

which gives the number of energy levels En with energy less than E.

Differentiating with respect to E yields

D(E) = dN(E)
dE

.

The smooth function N̄(E) corresponding to the function N(E) is the mean staircase

function interpolating N(E). Again by differentiating with respect to E we get

D̄(E) = dN̄(E)
dE

which is called the smooth density of states or average density of states.

We wish to explore statistically the patterns of the spacings between energy levels of a

quantum system. To this end we apply the statistical measure which is called the nearest

neighbour spacing distribution(NNSD). Suppose we obtain an ordered set of energy levels

of a system. Before applying the NNSD method we have to unfold the energy levels. The

unfolding procedure serves to universalized the system-dependent (non-universal) mean

level density D̄(E) [32]. By universality we mean the distribution function of spacings

of energy levels will be the same for a broad class of systems [57, 43]. We outline this
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universalizing as follows.

Consider two adjacent energy levels Enand En+1 and their difference, the energy level

spacing, Sn = En+1 −En. In order to universalize the distribution function, we replace the

spectrum En by a new set of numbers en with mean spacing 1 [9] defined by

en = N̄(En). (3.2.1)

Suppose sn = en+1 − en, we are looking for the universal distribution p(s) such that for

randomly chosen n, the probability that s ⩽ sn ⩽ s + ds is p(s)ds. In other words the

probability of finding pairs (en, en+1) with en+1 − en ∈ [s, s + ds] is p(s)ds [25].

Definition 3.2.1. The nearest neighbour spacing distribution p(s) is the probability

that the spacing between two adjacent energy levels is s. It is required that p(s) and its

mean satisfy the normalization constraints

∫ ∞

0

p(s)ds = 1 ∫ ∞

0

sp(s)ds = 1.
The spacing between two adjacent levels in the unfolded spectrum can be obtained

by a Taylor series of N̄(E)
en+1 − en = (En+1 −En)dN̄(En)

dEn
+ h.o.t.1

=
En+1 −En

Dn

+ h.o.t. (3.2.2)

where Dn =
1

D̄(En) is the mean level spacing in the vicinity of En [1]. Equation (3.2.2)
suggests that the direct relation between the original and unfolded spectra is valid when

the higher order terms can be neglected, which is expected to happen where the level

density is slowly varying [1].

Nuclear physics deals with complicated interacting systems. A quantum system is

characterized by its Hamiltonian. Since the Hamiltonian for the nucleus is not known

1higher order terms.
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RMT was introduced by Wigner in the 1950s [79, 80] and [62] to make statistical inference

about nuclei’s Hamiltonian and its spectrum particularly the spaces between adjacent en-

ergy levels. The method was developed in [22, 23, 24] and [56] to extend its applicability

to other systems. In [80] Wigner proposed that the energy level spectra of complicated

nuclear systems have statistical properties similar to the spectra of ensembles (collec-

tions) of random matrices. This ensemble has to satisfy two statistical conditions on its

probability distribution. First, the matrix elements are independent random variables,

So the distribution of a matrix is product of the distributions of its under diagonal ele-

ments. Second, the probability distribution for the elements of each matrix is invariant

with respect to orthogonal transformations of that matrix (H Ð→ OtHO.)
It can be shown [80] that these two hypotheses imply Gaussian distributions for elements

of each matrix. The variances for these Gaussians are 1 for all the diagonal elements and

1

2
for all off-diagonal elements.

An excellent approximation to the NNSD for the GOE is given by the Wigner Surmise

p(s) ≈ π
2
s exp(−π

4
s2), 0 ⩽ s <∞ (3.2.3)

introduced by [80] and [62] .

As it turns out the experimental data of nuclear systems fit the Wigner distribution rather

well and the predictions of GOE agree approximately, although not exactly [56].

Most of physical systems belong to the category of mixed systems, the motion in some

parts of the classical phase space is integrable while it is chaotic in some other parts.

Integrable and chaotic systems are the two extremes. Brody generalized the Wigner

distribution in order to study mixed systems by means of the Ansatz

p(s) = a(1 + b)πsb exp(−aπs1+b), a =
1

π
(Γ(2 + b

1 + b
))1+b , 0 ⩽ s <∞ (3.2.4)

where b is called a repulsion parameter [12] and [13]. Brody distribution interpolates

between two extremes, the exponential distribution (b = 0) and the Wigner distribution

(b = 1).
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3.3 Statistical analysis of the double quantum dot model

In Chapter 2 I reported results of a numerical study of the conductivity characteristics

of a double quantum dots channel (DQDC) with different choices of the kernel function

K. Recall that the model of a DQDC is based on a Hamiltonian of type (2.2.1)-(2.2.3),

and a calculation of the across-channel conductivity via formula 2.4.1. Another one of

the underlying a priori assumptions in that model is the number of occupied levels, i.e.

the number of orbital electrons.

In this section, I undertake a deeper analysis of the spectra of the Hamiltonians

(2.2.1)-(2.2.3) which probe their statistical characteristics, as well as of the question of

their universalized type. The main findings of the model presented in chapter 2 are

succinctly encapsulated in the contents of Figs. 3.1 and 3.2. The graphs illustrate the

dependence of N(E) on K. We have used the following two kernel types:

1. The “special" K = δ(1,−1) + δ(−1,1).

2. The “periodic" K is a kernel matrix built in two steps: First, take a matrix L whose

rows are filled with the values of a discretized periodic function, e.g. sin. Second,

take K to be the Fourier transformed L.

Although two graphs looks more or less the same on the course scale, they have dif-

ferent finer scale behaviour and structure. In order to study this finer structure we need

a new apparatus. The nearest neighbour spacing distribution (NNSD) provides us with

a means to study the eigenvalues statistically.
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Figure 3.1: N(E) and N̄(E) for the periodic kernels K when λ = 1 and the

number of orbital electrons N = 45.

Figure 3.2: N(E) and N̄(E) for the “special" kernels K when λ = 1 and the

number of orbital electrons N = 45.

Each one of the above mentioned cases yields a spectrum of the Hamiltonian (2.2.1)-

(2.2.3). When the density of states is known, unfolding procedure is possible by employing

mean cumulative spectral function N̄(E) to transform the eigenvalues into dimensionless

variables with unit mean level spacing. On the other hand, when density of states is

not known, as is the case in most practical situations, one usually approximates the
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cumulative density of state N(E) by a polynomial [1, 78]. In [1, 78] the authors indicate

that the neighbourhood spacing distribution of the spectrum shows little sensitivity to the

unfolding method. They indicate as well that the unfolding procedure does not depend

strongly on the degree of the polynomial used to interpolate N(E).
In summary, in order to quantify the spectra statistically by employing NNSD. we need

to carry out the following steps

1. Unfolding In order to unfold spectrum En we interpolate N(E) by a polynomial

N̄(E) (as mentioned earlier its degree doesn’t play a strong role). en = N̄(E) is

called unfolded spectrum.

2. Fitting Fit {sn = en+1 − en} to the Brody probability distribution function with an

appropriate repulsion parameter.

After step one is carried out for two different kernels, we obtain histograms as follows

Figures (3.3) and (3.4).
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Figure 3.3: NNSD for periodic K, its Brody-type approximation with b = 0.8755

and Wigner distribution (b=1).
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Figure 3.4: NNSD for special K, its Brody-type approximation with b = 0.1298

and exponential distribution.

Since the Brody distribution depends on parameter b, first we have to find the best

estimator of the parameter (b) for which the distribution will fit the data. There are at

least two methods for finding the estimation of the parameter: the method of maximum

likelihood and the method of moment estimation. The latter method is preferable because

the former one is cumbersome to solve analytically. However, we obtain confirmation of

our results by an application of a standard MATLAB routine which relies upon the second

method. Thus, an application of the method of moment estimation yields

1

n

n∑
i=1

(ei/ē)2 = Γ(1 + 2

b̂
)

Γ2(1 + 1

b̂
) , (3.3.1)

where ē is the mean of the random sample of the unfolded eigenvalues. Solving this

equation gives the best estimate for b or the best model and, since a = 1

π
(Γ(2+b

1+b))(1+b),
one can consequently come up with a .

The particular values we have obtained are as follows. a = 0.25 and b = 0.8755 for

periodic K, and a = 0.3 and b = 0.1298 for the special K. These outcomes demonstrate that

with high likelihood the periodic kernel correspond to a chaotic system and the special

kernel a mixed type system.

One of the simplest methods usually employed by statisticians to verify whether a
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sample fits a specific distribution or not, is the method of probability plot or quantile-

quantile plot, see appendix A. The following Q-Q plots (Figs.3.6 and 3.7) are drawn in

order to reinforce the aforementioned outcomes regarding periodic and special kernels re-

spectively. They demonstrate that two distributions with cdfs F (s) = 1−exp(−.25πs1.8755)
and F (s) = 1 − exp(−.3πs1.1298) fit the unfolded eigenvalues resulting from the periodic

and special kernels respectively.

Figure 3.6 in conjunction with the estimate b = 0.8755 which is close to b = 1(Wigner

distribution) convince us that the periodic kernel yields a Hamiltonian which governs a

chaotic system. Figure 3.5 depicts two cases, b = 0.8755 and b = 1 together. As one

observes their behaviour is the same.
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Figure 3.5: Quantiles of Brody distribution for different repulsion parameters vs.

quantiles of unfolded eigenvalues corresponding to periodic K.

There are several other statistical methods that can be used to decide if a sample

comes from a population with a specific distribution. Some of them are graphical such as

the method of quantile-quantile plot and some of them are formal such as the methods of

goodness-of-fit. Both have their own advantages and disadvantages. Graphical methods

are subjective whereas goodness-of-fit methods are objective. Statisticians usually use

the latter methods in order to confirm results of graphical methods, see appendix A. We

will follow this tradition, first we us the quantile-quantile plot, see A.1 to demonstrate
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that the parameter b which we have found is appropriate.
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Figure 3.6: Quantiles of Brody distribution for b=0.8755 vs. quantiles of unfolded

eigenvalues corresponding to periodic K.
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Figure 3.7: Quantiles of Brody distribution for b=0.1298 vs. quantiles of unfolded

eigenvalues corresponding to special K.

In order to confirm the above graphical results quantitatively we use Kolmogorov-

Smirnov test , see A.2. To this end, we have developed the code, which relies upon

the MATLAB “kstest" built-in function to perform Kolmogorov-Smirnov test. Numerical

estimates are summarized in the following table.
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Kernel(K) Repulsion parameter(b)

Periodic 0.62 ⩽ b ⩽ 1

Special 0.05 ⩽ b ⩽ 0.42

Table 3.1: The repulsion parameter b for two different kernels.

Manifestly, the two parameters b = 0.8755 and b = 0.1298, corresponding to periodic

and special kernels respectively, belong to the above mentioned intervals of repulsion

parameter b. As one observes, regarding periodic kernel, b can be 1 which corresponds to

the Wigner distribution. Since the repulsion parameter at the second row of the table 3.1

can be as small as b = 0.05, one might ask, can the unfolded eigenvalues, corresponding

to special kernel, be fitted to the exponential distribution p(s) = e−s? The following Q-Q

plot Fig. 3.8 demonstrates that the answer is negative.
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Figure 3.8: Quantiles of exponential distribution vs. quantiles of unfolded eigen-

values corresponding to special K.

This result can be confirmed by the Kolmogorov-Smirnov test as well.

3.4 A comparison with real quantum data

There is a scarcity of real quantum data with quality sufficient to make a meaningful

comparison with the proposed model possible. However a notable exception is the data
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obtained for the quantum billiard. The quantum billiard has been investigated theoreti-

cally [7] as well as numerically [55]. In order to study it experimentally the authors in [31]

conducted the following experiment. They considered the quantum billiard corresponding

to the Bunimovich stadium which is known to be classically chaotic [7]. The quantum

billiard consists of a flat electromagnetic cavity in the shape of a quarter of Bunimovich

stadium and approximately flat.

The key point is that the Helmholtz equation, which describes electromagnetic waves

in the cavity, is mathematically equivalent to the stationary Schrödinger equation. The

outcome of the experiment is the set of about 1060 point spectrum with frequencies

between 0.75 and 17.5 GHz. The semiclassical approach is then employed to calculate

locations and strengths of the peaks in the Fourier transformed spectrum in terms of

classical periodic orbits. The authors also perform a statistical analysis of the spectrum

and compare the results to those of the GOE.

We have conducted an analysis of the experimental data analogous to the content of

section 3.2. First we approximate the N(E) by N̄(E) in order to unfold the data. To

this end the cumulative level density function N(E) versus energy of aforementioned

spectrum is drawn and then it is approximated by N̄(E) which fit the data. See figure

3.9. Here N̄(E) is a polynomial of degree three.

Equation 3.2.2 enables us to determine unfolded eigenvalues corresponding to the data.

Again, we first try to find the repulsion parameter by the aforementioned statistical

methods.

Next, using either the method of moment estimate or the method of maximum likeli-

hood I have been able to find the repulsion parameter b and subsequently the parameter

a. Again I use the method of moment estimate and equation 3.3.1 to find a and b sim-

ilarly as I have done with the periodic and the special kernels. The results are a = 0.25

and b = 0.8376. Fig. 3.10 shows the NNSD frequency histogram of the 1060 energy levels

and its approximation with the Brody distribution with cdf F (s) = 1−exp(−0.25πs1.8376).
Note that b = 0.8376 is apparently close to the repulsion parameter of the Brody distri-

bution corresponding to the periodic kernel, b = 0.8755.
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Figure 3.9: N(E) and N̄(E) for the Richter data.
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Figure 3.10: NNSD histogram real date, the best fitting Brody distribution and

Wigner distribution

The Q-Q plot in Fig. 3.11 shows that distribution with cdf F (S) = 1−exp(−0.25πs1.8376)
fits the unfolded eigenvalues of the real data.
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Figure 3.11: Quantiles of Wigner distribution vs. quantiles of unfolded real data.

Note that the repulsion parameters of the two distributions fitted to the unfolded

eigenvalues corresponding to periodic kernel and the real data(b = 0.8755 and b = 0.8376

respectively) are remarkably close to each other; in particular, one can expects that they

are fitted to the same distribution. The Q-Q plot in Fig. 3.12 demonstrates that this is

indeed very likely.
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Figure 3.12: Quantiles of unfolded real data vs. quantiles of unfolded eigenvalues

corresponding to the periodic K.

Applying the same methods to the data those presented in Section 3.3, as well as tak-
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ing steps 1 and 2 described in there, one is able to unfold the data and find the repulsion

parameter b

Data Repulsion parameter(b)

Richter 0.52 ⩽ b ⩽ 1

Table 3.2: The repulsion parameter b for Richter data.

and since a = 1

π
(Γ(2+b

1+b))(1+b) one obtains a ∈ {0.24,0.25,0.26,0.27,0.28,0.29,0.30}.
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Appendix A

Some statistical tools

Assume we have data from a population of interest, and the goal is to model the

underlying cumulative density function (cdf) F(x). The composite goodness of fit problem

in this situation is assessing the null hypothesis:

F (x; θ) = F0(x; θ) for all x and some θ (A.0.1)

where F0(x; θ) is a completely specified cdf.

Of particular interest are parametric location-scale families

F (x) = F0(x − µ
σ
) (A.0.2)

where µ is a location parameter and σ is a scale parameter.

In order to solve problem A.0.1 statisticians usually apply two different methods, graph-

ical methods and goodness-of-fit tests. Both methods have their own advantages and

disadvantages. Graphical methods allow one to visually examine the data and look for

symmetric pattern and if the distribution does not fit the data they will suggest the alter-

native models. However, this approach is subjective. On the other hand, goodness-of-fit

tests provide rigorous criteria for accepting and rejecting a hypothesis. However, if a

hypothesis is rejected they give little inkling as to which alternative distribution may be

appropriate. By combining the graphical methods and confidence band one can use the

two methods for their respective advantages [27].

A.1 Quantile-Quantile plot (Q-Q plot)

Assume we are given a numerical sample X1,X2,⋯,Xn independent and identically dis-

tributed from F (x) (iid∼ F (x)), and we wish to know if F (x) can be approximated by

a given distribution F0(x). We can estimate F (x) by the emperical distribution function
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(ecdf):

F̂ (x) = 1

n

n∑
i=1

H(Xi ⩽ x)
where

H(Xi ⩽ x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 Xi ⩽ x,

0 otherwise

Let the values Xi be arranged in an increasing order X(1) ⩽ X(2)⋯ ⩽ X(n). Then, ecdf

is a step function that jumps a height of 1

n
at the value of each order statistic X(i). An

effective way to check a distributional assumption is to construct the Q −Q plot. If the

distribution on which the plot is based is correct, the points in the plot stay close to a

straight line. The Q-Q plot is a plot of the quantiles from the hypothesized cdf against

the quantiles from the ecdf . More specifically, let F −1
0
(p) be the pth quantile (=the

100pth percentile) of the hypothesized cdf. Then, the Q-Q plot is a plot of

F −10 (i − 0.5n
) vs. X(i).

[27] The 100pth percentile is the number η(p) that satisfies F (η(p)) = p. That is, η(p) is

the number on the measurement scale such that the area under the density curve to the

left of η(p) is p [20].

Equivalently the Q-Q plot is a plot of F −1
0
(F̂ (x)), i.e., a plot of the ecdf F̂ (x) with the

y-axis transformed [27]. If the location-scale model A.0.2 holds, it is easy to see that

F −1
0
(F̂ (x)) is approximately equal to x−µ

σ
. Thus the Q-Q plot is linear with slope 1

σ
and

intercept −µ
σ

. This suggests that location-scale model is reasonable. So we can verify the

location-scale hypothesis by checking if the Q-Q plot follows a line without considering its

slope and interception. Thus, we can use the same Q-Q plot, without any modification,

to check the fit of an entire location-scale family of cdfs.

So far we have assessed a non-parametric distribution. To extend the Q-Q plot method to

a parametric families of distributions, first we have to estimate the unknown parameters.

Two methods of maximum likelihood and moment estimate can be used to estimate these

parameters.
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• The Method of Moments [20]. Let X1,⋯,Xn be a random sample from a dis-

tribution f(x). The kth population moment is E(Xk) and kth sample moment is

1

n ∑ni=1Xk
i .

Now, let X1,⋯,Xn be a random sample from a distribution f(x; θ1,⋯, θm), where θi

is a parameter whose value is unknown. Then the moment estimator θ̄i is obtained

by equating the first m sample moments to the corresponding first m population

moments which are functions of parameters and solve for θi.

• Maximum likelihood estimation [20]. Let X1,⋯,Xn jointly distributed by

f(x1,⋯, xn; θ) where θ has unknown value. The maximum likelihood estimate θ̂ is

the value of θ that maximaizes f

f(x1,⋯, xn; θ̂) ⩾ f(x1,⋯, xn; θ) for all θ

One can extend maximum likelihood estimation to more than one parameter.

A.2 The Kolmogorov-Smirnov test

Since the interpretation of Q-Q plots might be different from person to person and can be

difficult statisticians developed the idea of confidence bands that allow them to explain

the uncertainty in the Q-Q plots and to provide more objective assessments. The most

well-known confidence band for F (x) is the Kolmogorov band (K-band):

(F̂ (x) − cα√
n
, F̂ (x) + cα√

n
)

where cα is the 100(1 − α)th percentile of a corresponding test statistic. That is, the

probability that the band will contain the true F(x) for all x is at least (1 − α).
There is a one to one correspondence between the K-band and the Kolmogorov test

statistic:

K =max∣F̂ (x) − F0(x)∣ x ∈ R
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The Kolmogorov statistic has this property that, if the null hypothesis A.0.1 holds and

if F0(x) is continuous and increasing, then it is distribution free. That is, it does not

depend on what F0(x) is.

For convenience, we assume F̂(x) = Fn(x), where n is the total number of outcomes of

sample, and

Kn =max∣Fn(x) − F0(x)∣ x ∈ R.

When the null hypothesis is true, the probability distribution ofKn is a distribution which

is the same for any possible F0(x) and that does not depend on the particular F0(x) being

studied in a specific problem. If the null hypothesis is true, then limn→∞Kn = 0 which is

the Glivenko-Cantelli theorem, see [19].
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If the null hypothesis is true, then for any given value s > 0,

lim
n→∞

p(√nKn ⩽ s) =H(s) = 1 − 2 ∞∑
i=1

(−1)i−1 exp(−2i2s2).
We can write approximate the right hand side of the above equation as

H(s) ≃ 1 − 2 exp(−2s2)
[58]. A test procedure which reject the null hypothesis when

√
nKn > cα is called

Kolmogorov-Smirnov test.

We can find cα from the following equation

1 −α = H(cα) ≃ 1 − 2 exp(−2c2α)
then

cα ≃

√
−1

2
log(α

2
).

Therefore, Kolmogorov-Smirnov test rejects the null hypothesis if

cα >

√
−1

2
log(α

2
).
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Accordingly, The Kolmogorov confidence band is

(F̂ (x) −
√
−1

2n
log(α

2
), F̂ (x) +

√
−1

2n
log(α

2
)).

Now, for example, if α = 0.05, the confidence band is

(F̂ (x) − 1.36√
n
, F̂ (x) + 1.36√

n
),

where 1.36 is 95th percentile of kolmogorov test statistic K. That is, the probability that

the band will contain the true F (x) for all x is at least 0.95.
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Appendix B

MATLAB Codes

B.0.1 The numerical algorithms corresponding to Chapter 2

In order to ensure reproducibility of the reported results we outline the numerical pro-

cedures. The main task is to construct the composite system Hamiltonians of type

(2.2.1)-(2.2.3). Let X denote an N × N matrix representing the state of a composite

system (—compare (2.2.2)). The preparatory phase consists of two parts: first, the con-

struction of the interaction operator Hint which is a convolution type operator, roughly,

Hint[X] = K ∗ X and second, the construction of a non-interacting composite system

Hamiltonian of the form H̃ = H1 ⊗ I + I ⊗H2. Note that the operators act on matrices,

and hence the main challenge is in representing these operators in a suitable basis in the

space of matrices. We describe this in more detail below.

The input data consist of:

• A p×p matrixK (we take p odd for simplicity). Recall that for the final Hamiltonian

to be a hermitian operator, Ǩ must have real entries.

• Two N-vectors h1 and h2, each containing the ordered list of the eigenvalues of its

corresponding subsystem Hamiltonian.

• A real number representing the coupling constant λ.

First, the interaction matrix Hint is built in steps as follows:

1. Choose a special basis in the space of N ×N matrices as follows:

X11, (X12,X21), (X13,X22,X31),⋯
(parentheses are only used to emphasize the pattern), where Xij denotes a matrix

with Xij(i, j) = 1 and zeros elsewhere.

85



2. Define C = conv2(K,Xij). Subsequently, select the N ×N mid-centered sub-matrix

of C and call it Cij . (This is necessary because the numerical convolution algorithm

results in an enlarged matrix which is inconsistent with the definition of Hint.)

3. Build an N2-vector Vij by reordering the entries of Cij into a sequence, starting

from the top right and proceeding through consecutive diagonals to the bottom left

of Cij. The following example illustrates the principle:

If Cij =

⎛⎜⎜⎜⎜⎝

a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞⎟⎟⎟⎟⎠
, then Vij = [a3, a2, b3, a1, b2, c3, b1, c2, c1]T .

4. Build N2 ×N2 matrix Hint whose columns are vectors Vij ordered in the same way

as the Xij in step 1.

Second, one constructs the non-interacting part of the Hamiltonian, i.e. H̃:

1. Define H(i, j) = h1(i) + h2(j).
2. Build an N2-vector W by reordering the entries of H in a way analogous to step 3

above.

3. Define: H̃ = diag(W ) (a diagonal matrix with W filling the diagonal).

At this stage one is ready to define the total Hamiltonian: Hamiltonian = H̃ + λHint.

The Hamiltonian is now represented by a matrix, and one can rely on the MATLAB’s

standard ‘eig’ command to find its eigenvalues. Note that MATLAB utilizes the QR

iteration algorithm to compute the eigenvalues of a matrix.

B.0
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f unc t i on [G1,EIG , Hamiltonian , F , NofE ] =

Gblock_solvable (K, h1 , h2 , npoints , lambda )

n=length ( h1 ) ;

n=length ( h2 ) ;

p=length ( diag (K) ) ;

C=zero s (n+p−1) ;

D=zero s (n^2) ;

%%% D rep r e s en t s the i n t e r a c t i o n term in Hamiltonian %%%

count1=1;

count2=0;

count3=1;

V=zero s (n^2 ,1 ) ;

H1=zero s (n ) ;

L=f l i p l r (K) ;

% Below X i s a member o f ba s i s f o r space o f n by n matr i ces %

f o r j =2:2∗n

f o r i=1+count2 : j −1−count2

X=zero s (n ) ;

X( i , j − i )=1;

C=conv2 ( lambda∗L ,X) ;

% C1=conv2 (K,X, ’ same ’ )

C1=C( ( p−1)/2+1:n+(p−1)/2 ,(p−1)/2+1:n+(p−1 )/2 ) ;

%%% C1 i s the middle submatrix o f C %%%
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F=f l i p l r (C1 ) ;

m=length ( diag (C1 ) ) ;

count=1;

f o r s =1:2∗m−1

T=diag (F ,m−s ) ;

f o r t=1: l ength (T)

V( count)=T( t ) ;

count=count+1;

end

end

D( : , count1)=V;

count1=count1+1;

end

i f ( j>n)

count2=count2+1;

e l s e

count2=0;

end

end

D;

%%% D i s the i n t e r a c c t i o n term %%%

fo r i =1:n

f o r j =1:n

H1( i , j )=h1 ( i )+h2 ( j ) ;

end

end
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H2=f l i p l r (H1 ) ;

f o r s =1:2∗n−1

U=diag (H2 , n−s ) ;

f o r t =1: l ength (U)

W( count3)=U( t ) ;

count3=count3+1;

end

end

H3=diag (W) ;

Hamiltonian = H3+D;

EIG = e i g (H3+D) ;

Peaks = l s h i f t (NofE ) − NofE ;

subplot ( 2 , 1 , 1 ) ;

bar (E, Peaks ) ; t i t l e ( ’ Eigenvalue peaks ’ )

subplot ( 2 , 1 , 2 ) ;

p l o t (E, NofE , ’ k ’ ) ; t i t l e ( ’N(E) ’ ) ; drawnow

hold on

p lo t ( [ ( n+1)/2 ,(n+1)/2 ] , [ 0 ,NofE( npo ints ∗(n+1)/2) ] )

hold on

p lo t ( [ 0 ,E( npo ints ∗(n+1)/2 ) ] , [ NofE( npo ints ∗(n+1)/2) ,NofE( npo ints ∗(n+1)/2) ] )

hold on

end

Following code is conducted in order to create Figure 2.7:

f unc t i on [KAP] = kapa (K, h1 , h2 , npoints , v ,T, Ef )
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n=length ( h1 ) ;

n=length ( h2 ) ;

p=length ( diag (K) ) ;

C=zero s (n+p−1) ;

D=zero s (n^2) ;

kapa=zero s (1 ,T) ;

lambda =[1 :T ] ;

%%% D rep r e s en t s the i n t e r a c t i o n term in Hamiltonian %%%

fo r u=1:T

count1=1;

count2=0;

count3=1;

count4=0;

V=zero s (n^2 ,1 ) ;

H1=zero s (n ) ;

L=f l i p l r (K) ;

%%% in f o l l ow ing X i s a member o f ba s i s f o r space o f n by n matr i ces

%%%

fo r j =2:2∗n

f o r i=1+count2 : j −1−count2

X=zero s (n ) ;

X( i , j − i )=1;

C=conv2 (u∗L ,X) ;

% C1=conv2 (K,X, ’ same ’ )

C1=C( ( p−1)/2+1:n+(p−1)/2 ,(p−1)/2+1:n+(p−1 )/2 ) ;

F=f l i p l r (C1 ) ;

m=length ( diag (C1 ) ) ;

count=1;
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f o r s =1:2∗m−1

T=diag (F ,m−s ) ;

f o r t=1: l ength (T)

V( count)=T( t ) ;

count=count+1;

end

end

D( : , count1)=V;

count1=count1+1;

end

i f ( j>n)

count2=count2+1;

e l s e

count2=0;

end

end

D;

f o r i =1:n

f o r j =1:n

H1( i , j )=h1 ( i )+h2 ( j ) ;

end

end

H2=f l i p l r (H1 ) ;

f o r s =1:2∗n−1

U=diag (H2 , n−s ) ;

f o r t =1: l ength (U)

W( count3)=U( t ) ;

count3=count3+1;
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end

end

H3=diag (W) ;

Hamiltonian = H3+D;

EIG = e i g (H3+D) ;

F=unique (EIG ) ;

F1=F( 1 : ( n∗(n+1)/2))

F1=r e a l (F1 ) ;

t o t a l = length (F1 ) ;

E = l i n s p a c e (0 , c e i l (max(F1 ) ) , npo ints ∗ c e i l (max(F1 ) ) ) ;

NofE = zero s ( s i z e (E ) ) ;

f o r l = 1 : t o t a l %par f o r

NofE = NofE + (E>F1( l ) ) ;

end

kapa (u)=NofE(v)−(n+1)/2;

kapa ;

p l o t ( lambda , kapa , ’ k ’ )

hold on

end

B.0.2 The numerical algorithms corresponding to Chapter 3

In order to ensure reproducibility of the reported results we outline the numerical proce-

dures. The main task is first to find the unfolded spectrum results from the Hamiltonian

(2.2.1)-(2.2.3) and then fit the unfolded spectrum to the Brody type (3.2.4) distribution

for appropriate repulsion parameter. The numerical algorithm consists of two parts. Part
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one comprises a function which accepts the eigenvalues of the Hamiltonian as an input

and gives unfolded eigenvalues as an output. Part two consists of another function which

accepts the unfolded eigenvalues results from part one and gives the repulsion parameter

(b). Thus the Brody distribution is fitted to the unfolded eigenvalues.

1. Part one

The input data consists of:

• A vectore K consists of eigenvalues of the Hamiltonian.

• Two real numbers c and d determining an interval on energy axis.

• A real number t to divide interval [c, d] to subintervals.

Interpolating N(E) by N̄(E):
• Evaluate difference of any two adjacent eigenvalues in each subinterval.

• Find an appropriate polynomial to be fitted to the eigenvalues of the Hamil-

tonian and take a derivative of that and evaluate the derivative at the middle

point of each subinterval.

• Multiply the results of two previous steps in each individual subinterval.

Output:

• We obtain a sub-vector for each subinterval. Coalescing the sub-vectors yields

a vector S which contains of all unfolded eigenvalues of the Hamiltonian.

2. Part two

The input data consists of:

• Vector S, unfolded eigenvalues.

Fitting data to a Brody type distribution:

Fit vector S to the CDF (cumulative density function)

F (S) = 1 − exp(−aπSb)
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for appropriate parameter a and b resulting from next step.

• Obtain vector F for different a, b ∈ [0.1,2].
• Obtain vector G=[S F].

• Utilize the “kstest", a built-in function of MATLAB, H=kstest(S,G,.05). If

H==0, print a and b.

Remark 1. The returned value of H = 1 indicates that kstest rejects the null hypothesis

(Brody distribution) at the default 5 percent significance level. It means we are about 95

percent confident that we have made the right decision. In other words, we could be wrong

with probability 0.05.

%s i s unfo lded e i g enva l u e s

index =0;

f o r a=10:1:200

f o r b=10:1:200

F=1−exp (−( a /100)∗ p i ∗ s .^ (b/100)) ;%( p e r i o d i c K and Richter )

G=[ s F ] ;

[H, p]= k s t e s t ( s ,G, . 0 5 ) ;

%(k s t e s t i s a standard MATLAB funct i on to perform Kolmogorov−Smirnov t e s t )

i f H==0

index=index +1;

c=[a b ] ;

d i sp ( c )

d i sp ( a )

d i sp (b)

end

end
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fo r a=1:1:100

F=1−exp (−( a∗ p i /100)∗ s ) ; %(Spec i a l K)

G=[ s F ] ;

[H, p]= k s t e s t ( s ,G, . 0 5 ) ;

i f H==0

index=index +1;

d i sp ( a )

% B( index )=a ;

%P( index )=p ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fo r a=1:1:100

%F=1−exp (−(1−( a /100))∗ s −(a /100)∗( .7+.3∗( a /100 ) )∗ ( ( p i ∗ s . ^ 2 ) / 4 ) ) ;

F=1−exp (−( a /100)∗ s −( p i /4)∗(1−a /100)∗ s . ^ 2 ) ;

G=[ s F ] ;

[H, p]= k s t e s t ( s ,G, . 0 5 ) ;

i f H==0

disp ( a )

end

end

end
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f unc t i on [ F_clean , p ] = unfo ld (K, a , b , t )

E=K(K>=a & K<=b ) ;

A=[a : t : b ] ;

f o r i =1: l ength (A)−1

F= E(E>= A( i ) & E<A( i +1)) ;

G=( l s h i f t (F)−F)∗ (7∗(A( i+1)+A( i ) )/2 −1 .3 )

%mult ip ly by d e r i v a t i v e o f the polynomia l which f i t the N(E) curve . ( Richter )

G=( l s h i f t (F)−F)∗

(7 . 0416∗ (A( i+1)+A( i ))/2 −1.3037 −1) ;

G=( l s h i f t (F)−F)∗

( − . 057∗((A( i+1)+A( i ))/2)^2+8∗(A( i+1)+A( i ) ) / 2 −4 . 9 ) ; ( R ichter )

G=( l s h i f t (F)−F)∗

( −0 .0114∗((A( i+1)+A( i ))/2)^2+1.4576∗((A( i+1)+A( i ) ) /2 ) −3 .5614 ) ;

( p e r i o d i c K)

G=( l s h i f t (F)−F)∗

( −0 .0067∗((A( i+1)+A( i ))/2)^2+1.2630∗((A( i+1)+A( i ) ) /2 ) −2 .1081 ) ;

( s p e c i a l K)

M( i , 1 : l ength (G))=G;

end

M;

N=M( : ) ;

p=N(N>0)

% % h i s t (p , 2 5 )

% % h = f i ndob j ( gca , ’ Type ’ , ’ Patch ’ ) ;

% % se t (h , ’ FaceColor ’ , [ 1 1 1 ] , ’ EdgeColor ’ , ’ black ’ ) ;

[ counts , b ins ]= h i s t (p , 5 0 ) ;
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%counts1 =(50/3.5)∗(1/sum( counts ) ) . ∗ counts %(p e r i o d i c K)(50/6 old one )

counts1 =(50/4)∗(1/sum( counts ) ) . ∗ counts %(Spec i a l K)(50/8 old one )

%counts1 =(50/3)∗(1/sum( counts ) ) . ∗ counts ; %(Richter )

s t a i r s ( r e a l ( b ins ) , counts1 )

Following code create Figure 3.9 and its fitting curve.

f unc t i on [ ]= Richter_NofE ( Richter )

npo ints =100000;

E = l i n s p a c e (0 , c e i l (max( Richter ) ) , npo int s ∗ c e i l (max( Richter ) ) ) ;

% E = l i n s p a c e (0 , c e i l (max( Richter ) ) , c e i l (max( Richter ) ) ) ;%new

NofE = zero s ( s i z e (E ) ) ;

f o r l = 1 : l ength ( Richter ) %par f o r

NofE = NofE + (E>Richter ( l ) ) ;

end

Peaks = l s h i f t (NofE ) − NofE ;

subplot ( 2 , 1 , 1 ) ;

bar (E, Peaks ) ; t i t l e ( ’ Eigenvalue peaks ’ )

subplot ( 2 , 1 , 2 ) ;

p l o t (E, NofE , ’ k ’ ) ; t i t l e ( ’N(E) ’ ) ; drawnow % ORIGINAL

plo t (E∗4/45 , (1/(max(NofE ) ) ) ∗ ( NofE ) , ’ k ’ ) ; t i t l e ( ’N(E) ’ ) ; %new

hold on

p=p o l y f i t (E, NofE , 3 )

pprime=po lyder (p )

y=po lyva l (p ,E ) ;

%p lo t (E, NofE , ’ 0 ’ ,E, y )
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p lo t (E, y , ’ l i n e s t y l e ’ , ’ − − ’ , ’ co lo r ’ , ’ g ’ )

a x i s ( [ 0 20 0 600 ] )

end

Although MATLAB has a built-in function to draw Q-Q plots, following code is conducted

in order to create Q-Q plots as well.

f unc t i on [ ]= q_plot (S , a , b)

% For s p e c c i a l K assume b=1 %

syms s

F( s)= f i n v e r s e (1−exp (−( a /100)∗ p i ∗ s .^ (b /100)) , s ) %(p e r i o d i c K and Richter )

%F( s)= f i n v e r s e (1−exp (−( a /100)∗ s .^b ) , s ) %(Spec i a l K)

T=so r t (S ) ;

n=length (S)

A=((1− .5)/n ) : 1 / n : ( ( n− . 5 )/n ) ;

G=F(A) ;

l ength (A) ;

G=eva l (G) ;

l ength (G) ;

s c a t t e r (G,T)

%qqplot (G,T)

end
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