TOTAL SYNTHESIS OF VALLARTANONE A

A thesis submitted to the
College of Graduate Studies and Research in partial fulfillment of the requirements
for the degree of Master of Science in the
Department of Chemistry
University of Saskatchewan
Saskatoon
by
Leon Chun Kiu Lai

Fall, 2014

Permission to use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make this thesis freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised the thesis work, or in their absence, by the Head of the Department, or the Dean of the College in which the thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition will be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in this thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to:

The Head
Department of Chemistry
University of Saskatchewan
110 Science Place
Saskatoon, SK S7N 5C9
CANADA

Acknowledgements

I first met Dr. Ward during the undergraduate course, CHEM 353, and since then I have been working for him and have never stopped learning from him. He taught me the importance of commitment, attitude, and responsibility. Those aspects are more important than just chemistry and experiments. His patience and wisdom allowed me to acquire the ability to think critically and analyze logically (and write properly lol). With the above being said, I want to express my first and foremost gratitude to my MSc supervisor: Professor Dale Edward Ward.

I want to thank all the Ward-group members, current and graduated, for teaching me valuable lessons and coping with my eccentric personality along with my colorful emotion. I also want to acknowledge Gravel-group and Müller-group members for the tremendous amounts of technical support. Special recognitions go to all the laboratory managers, Dr. Alexander Bartole-Scott, Dr. Marcelo Sales, and Dr. Pia Wennek, for the liberty and opportunity that they have given me over the years to educate the students.

Table of contents

Permission to use i
Acknowledgements ii
Dedication iii
Table of contents iv
Abstract vi
List of tables viii
List of figures ix
List of schemes x
List of abbreviations xi

1. INTRODUCTION 1
1.1. Isolation of vallartanones A and B 1
1.2. Elucidation of relative and absolute configurations of vallartanone A 2
1.3. Arimoto synthesis of $(3 S, 4 S, 8 R)$-vallartanone B 6
1.4. Arimoto synthesis of $(3 S, 4 S, 8 S)$-vallartanone B 8
1.5. Revision of absolute configuration of vallartanone B 9
1.6. Conclusion 12
2. RESULTS AND DISCUSSION 13
2.1. Research objectives 13
2.2. Synthesis of aldehyde 11 15
2.2.1 Previous protocols 15
2.2.2 Ward protocol 17
2.3. Establishment of the diastereoface selectiity of rac-11 19
2.4. Characterizations of aldol adducts 21
2.4.1 Structural elucidations 21
2.4.2 Correlation between structural features and spectral data 24
2.5. Synthesis of ketone 44 26
2.5.1 Enantioselective proline-catalyzed intermolecular aldol reaction 26
2.5.2 Establishment of the diastereoface selectivity of ketone 44 27
2.6 Total synthesis of ($3 S, 4 S, 8 S$)-vallartanone A 28
2.6.1 Aldol reaction with kinetic resolution 28
2.6.2 Structural elucidation of aldol adduct 49 30
2.6.2 Endgame 34
2.7 Total synthesis of 8-epi-vallartanone A 35
2.7.1 Strategic switch of one stereocontrol element 35
2.7.2 Aldol reaction with kinetic resolution (sequal) 40
2.7.3 Structural elucidation of aldol adduct 67 41
2.7.4 Endgame 42
2.8 Explanation of stereochemical outcome of aldol reactions 43
2.9 Comparison of physical data 45
2.10 Conclusion 49
3. EXPERIMENTAL 51
3.1 General methods 51
3.2 Spectral data 52
3.3 Materials 53
3.4 General experimental procedures 53
3.4.1 General procedure for desulfurization of aldol adducts 53
3.5 Experimental procedures and spectral data for compounds 54
4. REFERENCES 84

Abstract

Vallartanones A (1) and B (2) are polypropionates isolated from Siphonaria maura. Their structures were reported by Faulkner and Manker in 1989. ${ }^{1}$ The only structural difference between 1 and $\mathbf{2}$ is an extra methyl group in the peripheral region of the molecule and thus both natural products share similar ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR properties. Vallartanone $\mathrm{A}(\mathbf{1})$ was assigned the $(3 R, 4 R, 8 R)$ relative configuration through ${ }^{1} \mathrm{H}$ NMR and conformational analyses of $\mathbf{1}$ and 8-epi-1 along with their respective 6,7-dihydro derivatives; the absolute configuration was assigned on the basis of circular dichroism. The same $(3 R, 4 R, 8 R)$ absolute configuration was assigned for vallartanone B based on the close similarity of its spectroscopic properties with those reported for 1.

Proposed Absolute Configuration: $(3 R, 4 R, 8 R)$

Arimoto and co-workers reported the syntheses of $(3 S, 4 S, 8 R)$-vallartanone B and its $C-8$ epimer in 1996 and concluded that the structure of vallartanone B should be revised to the $(3 S, 4 S, 8 S)$ absolute configuration. ${ }^{2}$ Consequently, it is likely that $\mathbf{1}$ also possesses the $(3 S, 4 S, 8 S)$ configuration; however, this has not been proven and there have been no previous synthetic studies reported.

The research presented herein describes the first enantioselective total syntheses of vallartanone A and its ($8 R$) epimer both starting with propanoic acid and isobutyraldehyde. The key steps involved a proline-catalyzed intermolecular aldol reaction and a second aldol reaction that
proceeded with kinetic resolution. It is concluded that the absolute configuration of vallartanone A should be revised to $(3 S, 4 S, 8 S)$.

List of tables

Table 2.1 Unique characteristic NMR features of 39a-d with corresponding structural features. 24
Table 2.2 Unique characteristic NMR features of 42a-d with corresponding structural features. 25
Table 2.3 Proton spin-coupling constants comparison of 49-51. 30
Table 2.4 Comparison of chemical shifts between 39a-d and 49. 32
Table 2.5 Comparison of chemical shifts between 42a-d and 52 33
Table 2.6 Configurational relationship between 49 and 54-57 36
Table 2.7 Comparison of chemical shifts between 42a-d and 67. 41
Table 2.8 Comparison of ${ }^{1} \mathrm{H}$ NMR spectra between natural 1 and synthetic ($3 S, 4 S, 8 S$)-1. 45
Table 2.9 Comparison of ${ }^{13} \mathrm{C}$ NMR spectra between natural $\mathbf{1}$ and synthetic ($3 S, 4 S, 8 S$)-1. 46
Table 2.10 Comparison of ${ }^{1} \mathrm{H}$ NMR spectra between isolated 8 -epi-1 and synthetic $(3 S, 4 S, 8 R)$-1. 47

List of figures

Figure 1.1 Metabolites isolated from Siphonaria maura. . 1

Figure 1.2 Negative split Cotton effect exhibited by 1. .. 4
Figure 1.3 Calculated energy minima of (8R)-vallartanone A and (8S)-vallartanone A. 9
Figure 1.4 Calculated energy minima of (8S)-3 and (8R)-4. ... 10
Figure 1.5 Energy minima of $\mathbf{3}$ and $\mathbf{4}$ based on avoidance of syn-pentane interactions. 11
Figure 1.6 Vallartanone A initiative. .. 12
Figure 2.1 Retrosynthetic analysis of (3S,4S,8S)-vallartanone A. .. 13
Figure 2.2 Starting materials of Arimoto syntheses of vallartanone B's.. 14
Figure 2.3 A synthetic precursor that can be transformed into ($3 S, 4 S, 8 S$)-vallartanone A. 28
Figure 2.4 Conformational analyses of 50 and 51. .. 31
Figure 2.5 Possible synthetic precursors (54-57) for 8-epi-vallartanone A. ... 35
Figure 2.6 A synthetic precursor that can be transformed into 8-epi-vallartanone A.............................. 40
Figure 2.7 Aldol adducts 49 and 67. .. 43
Figure 2.8 Proposed transition state for aldol reaction between 48 and (R)-11...................................... 44
Figure 2.9 Proposed transition state for aldol reaction between 62 and (S)-11. 45
Figure 2.10 Circular dichorism spectra of isolated 1, $(3 S, 4 S, 8 S)-1$, and $(3 S, 4 S, 8 S)-1 . \ldots \ldots \ldots . ~ 48$
Figure 2.11 Summary of the total syntheses of vallartanone A and 8-epi-vallartanone A. 50

List of schemes

Scheme 1.1 Faulkner's analysis of the relative configuration at C-8 for vallartanone A. 3
Scheme 1.2 Arimoto synthesis of ($3 S, 4 S, 8 R$)-vallartanone B 6
Scheme 1.3 Arimoto synthesis of $(3 S, 4 S, 8 S)$-vallartanone B. 8
Scheme 2.1 Arimoto synthesis of ent-11. 15
Scheme 2.2 Paterson synthesis of 11. 16
Scheme 2.3 Ward synthesis of rac-11 17
Scheme 2.4 Reactions of rac-11 with enol borinate, lithium enolate and enamine of ketone $\mathbf{3 5}$ 20
Scheme 2.5 Relative configuration verifications on aldol adducts 22
Scheme 2.6 Synthesis of ketone 44 26
Scheme 2.7 Establishment of the relative configuration of aldol adduct 55. 27
Scheme 2.8 Aldol reaction with kinetic resolution. 29
Scheme 2.9 Completion of the total synthesis of ($3 S, 4 S, 8 S$)-vallartanone A. 34
Scheme 2.10 Modulation of diastereoselectivity in the presence of a chelating Lewis acid 36
Scheme 2.11 Modulation of diastereoselectivity through titanium enolate. 37
Scheme 2.12 Rationalization of opposite diastereoface selectivity of enol borinates 48 and $\mathbf{6 2}$ 38
Scheme 2.13 Establishment of the relative configuration of aldol adduct 64 39
Scheme 2.14 Aldol reaction with kinetic resolution (sequal) 40
Scheme 2.15 Completion of the total synthesis of 8-epi-vallartanone A. 42

List of abbreviations

$[\alpha]_{\text {D }}$	specific rotation at the sodium D line (expressed without units; implied actual units are: ($\mathrm{deg} \cdot \mathrm{mL}) /(\mathrm{g} \cdot \mathrm{dm}))$ and/or (($\left.10^{-1} \cdot \mathrm{deg} \cdot \mathrm{cm}^{2}\right) / \mathrm{g}$)
[M] ${ }^{+}$	molecular ion (in mass spectrometry)
[0]	oxidation
$(c-\mathrm{Hex})_{2} \mathrm{BCl}$	chlorodicyclohexyl borane
${ }^{\circ} \mathrm{C}$	degrees Celsius
β	beta
V	gamma
δ	NMR chemical shift in parts per million downfield from tetramethylsilane
ε	molar absorptivity
μ	micro
$\mu \mathrm{m}$	micrometer(s); micron(s)
v	frequency
Å	angstrom(s)
${ }^{1} \mathrm{H}$ NMR	proton nuclear magnetic resonance
${ }^{13} \mathrm{C}$ NMR	carbon 13 nuclear magnetic resonance
AcMe	acetone
anti	antiperiplanar
ap	apparent (spectral)
aq	aqueous
$B n$	benzyl
br	broad (spectral)
c	concentration of the reported specific rotation (g/100 mL)
c-Hex	cyclohexyl
calcd	calculated

CD	circular dichroism
Cl	chemical ionization (ionization method in mass spectrometry)
cm	centimeter
cm^{-1}	wavenumber(s)
COSY	correlation spectroscopy
d	day(s); doublet (spectral); deci
d	density
D and L	absolute stereochemical configuration descriptors for carbohydrates and α-amino acids
deg	degrees Celsius
DEPT	distortionless enhancement by polarization transfer
dil.	dilute
DMP	Dess-Martin periodinane
DMPU	1,3-dimethyltetrahydropyrimidin-2(1H)-one
DMSO	dimethyl sulfoxide
dr	diastereomeric ratio
DRIFT	diffuse reflectance Fourier transform infrared
E and Z	configurational descriptors for alkenes. E denotes that the substituents of highest CIP (Cahn-Ingold-Prelog) priority at each end of the double bond are on opposite sides. If the pertinent substituents are on the same side, the descriptor is Z.
ee	enantiomeric excess
El	electron impact (ionization method in mass spectrometry)
ent	enantiomer of
epi	epimer of
equiv	equivalent(s)
er	enantiomeric ratio
ESI	electrospray ionization (ionization method in mass spectrometry)

Et	ethyl
$\mathrm{Et}_{2} \mathrm{BOMe}$	diethylmethoxy borane
$\mathrm{Et}_{2} \mathrm{O}$	diethyl ether
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EtCHO	propanal
EtNMe 2	N, N-dimethylethylamine
EtOAc	ethyl acetate
eV	electronvolt
$\mathrm{F}_{3} \mathrm{~B} \cdot \mathrm{OEt}_{2}$	boron trifluoride diethyl etherate
FCC	flash column chromatography
FID	free induction decay
FTIR	Fourier transform infrared spectroscopy
g	gram(s); prefix to NMR abbreviation denoting gradient-selected (e.g., gCOSY, gHSQC)
h	hour(s)
HMBC	heteronuclear multiple bond correlation
HPLC	high-performance liquid chromatography
HRMS	high resolution mass spectrometry
HSQC	heteronuclear single quantum correlation
Hz	Hertz
i.e.	id est
IBX	2-iodoxybenzoic acid
$1 \mathrm{Imd}_{2} \mathrm{CO}$	1,1'-carbonyldiimidazole
$i-\operatorname{Pr}$	isopropyl
$i-\mathrm{Pr}_{2} \mathrm{NEt}$	N, N-diisopropylethylamine
IR	infrared
J	coupling constant (spectral)

KHMDS	potassium hexamethyldisilazide
KR	kinetic resolution
L	liter(s)
LC-MS	liquid chromatography-mass spectroscopy
LDA	lithium diisopropylamide
LiHMDS	lithium hexamethyldisilazide
LRMS	low resolution mass spectroscopy
LTMP	lithium tetramethylpiperidide
m	multiplet (spectral); milli; meter(s)
M	molar
m / z	mass-to-charge ratio
max	maximum
Me	methyl
MeCN	acetonitrile
MeLi	methyl lithium
MeOH	methanol
$\mathrm{Mg}(\mathrm{OMe})_{2}$	magnesium methoxide
MHz	megahertz
min	minute(s); minimum
mL	milliliter(s)
mm	millimeter(s)
mmol	millimole(s)
mol	mole(s)
MOPAC	molecular orbital package
mp	melting point
MS	mass spectroscopy

n	normal (e.g., n-butane)
NaHMDS	sodium hexamethyldisilazide
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser enhancement
$p-\mathrm{TsOH}$	para-toluenesulfonic acid
Pd/C	palladium on carbon
Pg	protecting group
Ph	phenyl
$\mathrm{Ph}_{3} \mathrm{P}$	triphenylphosphine
PM3	parametric method 3
PPA	polyphosphoric acid
ppm	part(s) per million
pt	point
PTLC	preparative thin layer chromatography
Py	2-ethyl-3,5-dimethy-4-pyrone-6-yl
q	quartet (spectral)
R	alkyl
R and S	absolute stereochemical configuration descriptors in the CIP (Cahn-Ingold-Prelog) system
rac	racemic
RBF	round-bottom flask
ref.	reference
rel	relative
R_{f}	retention factor
rt	room temperature
s	singlet (spectral)

sat.	saturated
SiEt_{3}	triethylsilyl
$\mathrm{Sn}(\mathrm{OTf})_{2}$	tin (II) trifluoromethanesulfonate
syn	synperiplanar
t	triplet (spectral)
TBAF	tetra-n-butylammonium fluoride
TBDMSCI	chloro-tert-butyldimethylsilane
TBDPS	tert-butyldiphenylsilyl
TBDPSCI	chloro-tert-butyldiphenylsilane
TBS	tert-butyldimethylsilyl
TBSOTf	tert-butyldimethylsilyl trifluoromethanesulfonate
tert	tertiary
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TfOH	trifluoromethanesulfonic acid
$\mathrm{TfOSiEt}_{3}$	triethylsilyl trifluoromethanesulfonate
THF	tetrahydrofuran
$\mathrm{Ti}(\mathrm{OiPr})_{4}$	titanium (IV) isopropoxide
TLC	thin layer chromatography
TMS	trimethylsilyl
v/v	volume-to-volume ratio
wt.	weight

1. INTRODUCTION

1.1 Isolation of vallartanones A and B

Vallartanones A (1) and B(2) are metabolites isolated from the marine mollusc, Siphonaria maura, collected near Puerto Vallarta, Mexico. Their structures were reported by Faulkner and Manker in 1989 (Figure 1.1). ${ }^{1}$ Neither of these compounds was crystalline and the assignment of relative and absolute configurations of vallartanone A was based on spectral and conformational analyses.

vallartanone $A, 1, R=M e$
vallartanone $\mathrm{B}, 2, \mathrm{R}=\mathrm{H}$
Proposed Absolute Configuration: $(3 R, 4 R, 8 R)$

Figure 1.1 Metabolites isolated from Siphonaria maura.

1.2 Elucidation of relative and absolute configurations of vallartanone A

Because HC-3 and HC-4 in 1 are adjacent to each other in a six-membered ring, their trans relationship could be confidently assigned on the basis of their large vicinal coupling constant $\left(J_{3,4}=13\right.$ $\mathrm{Hz})$. Determination of the relative configuration of $\mathrm{C}-8$ was not straightforward. Thus, 1 was subjected to Pd-catalyzed hydrogenation and the corresponding derivative, 6,7-dihydrovallartanone A (3), was investigated (Scheme 1.1). The observed large coupling constant between HC-3 and HC-4 ($\left.J_{3,4}=10.5 \mathrm{~Hz}\right)$ in 3 suggested the trans relationship in 1 was retained in the dihydrohydro derivative 3. The newly added HC-6 and HC-7 were also in a trans relationship as evidenced by their large vicinal coupling constant $\left(J_{6,7}=10 \mathrm{~Hz}\right)$ implying that isomerization at $\mathrm{C}-6$ had occurred under the reaction conditions, presumably giving the thermodynamically more stable epimer via keto-enol tautomerism. These large J values together with the observation of a positive nOe between $\mathrm{HC}-3$ and $\mathrm{HC}-7$, led to the assignment of the relative configuration of 3 as $\left(3 S^{*}, 4 S^{*}, 6 R^{*}, 7 R^{*}\right)$. Because all the substituents on the six-membered tetrahydropyran ring in 3 were in equatorial orientations, a single chair conformer would dominate. Faulkner hypothesized that the preferred torsion of the C-7-C-8 single bond would be strongly biased by steric repulsion between $\mathrm{H}_{3} \mathrm{C}-18$ and $\mathrm{H}_{3} \mathrm{C}-19$. Consequently, the $\mathrm{H}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{H}$ torsion angles for the $\left(7 R^{*}, 8 S^{*}\right)$ and $\left(7 R^{*}, 8 R^{*}\right)$ isomers were predicted to be 60° and 180°, respectively. The observed small coupling constant $\left(J_{7,8}=4 \mathrm{~Hz}\right)$ supported the $7 R^{*}, 8 S^{*}$ relative configuration and $\mathbf{3}$ was assigned (3S*, $\left.4 S^{*}, 6 R^{*}, 7 R^{*}, 8 S^{*}\right)$.

Scheme 1.1 Faulkner's analysis of the relative configuration at C-8 for vallartanone A.

(a) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$; (b) NaOH

To further validate the above assignment, 1 was epimerized by treatment with sodium hydroxide to give a mixture of 1 and 8-epi-1. Hydrogenation of the latter produced 4 that was analyzed by ${ }^{1} \mathrm{H}$ NMR (Scheme 1.1). Unlike 3, HC-6 and HC-7 in 4 were in a cis relationship as indicated by the small coupling constant between HC-6 and HC-7 ($J_{6,7}=2 \mathrm{~Hz}$), while the trans relationship between HC-3 and HC-4 ($J_{3,4}=11 \mathrm{~Hz}$) was maintained. Nuclear Overhauser enhancement was observed between HC-3 and HC-7 in 4 and a $\left(3 S^{*}, 4 S^{*}, 6 S^{*}, 7 R^{*}\right)$ relative configuration was assigned. Similar to the analysis of 3 described above, the authors concluded that having three large groups in equatorial orientations would result in a predominant chair conformer where the C-7-C-8 torsion would be governed by minimization of the steric interaction between $\mathrm{H}_{3} \mathrm{C}-18$ and $\mathrm{H}_{3} \mathrm{C}-19$. Thus the predicted $\mathrm{H}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{H}$ torsion angles for the $\left(7 R^{*}, 8 S^{*}\right)$ and $\left(7 R^{*}, 8 R^{*}\right)$ isomers were 60° and 180°, respectively. The large $\mathrm{HC}-7$ and $\mathrm{HC}-8$ coupling constant $\left(J_{7,8}=10 \mathrm{~Hz}\right)$ observed in 4 supported the assignment of the ($3 S^{*}, 4 S^{*}, 6 S^{*}, 7 R^{*}, 8 R^{*}$) relative configuration.

The absolute configuration of C-8 was assigned through circular dichroism (CD) spectroscopy where a negative split Cotton effect - a sharp negative absorption followed by a rapid change in the
opposite direction - was observed (Figure 1.2). This observation was in accordance with the two pyrone rings oriented with a left-handed helicity. In order to minimize steric interaction between $\mathrm{H}_{3} \mathrm{C}-18$ and $\mathrm{H}_{3} \mathrm{C}-19,1$ was presumed to adopt a conformation where $\mathrm{C}-18$ and $\mathrm{C}-19$ were opposite of each other. The resulting torsion between $\mathrm{C}-7$ and $\mathrm{C}-8$ was expected to produce a left-handed helicity between the pyrone rings if the absolute configuration at $\mathrm{C}-8$ was (R). Consequently, vallartanone A was assigned the $(8 R)$ absolute configuration.

Figure 1.2 Negative split Cotton effect exhibited by 1. Adapted with permission from Manker, D. C.; Faulkner, D. J. Vallartanone A and B, polypropionate metabolites of Siphonaria maura from Mexico. J. Org. Chem. 1989, 54, 5374-5377. Copyright 1989 American Chemical Society.

In conclusion, the relative configuration of 1 was assigned from spectral and conformational analyses of $\mathbf{1 , 3}$ and $\mathbf{4}$. The absolute configuration of $\mathbf{1}$ was assigned ($3 R, 4 R, 8 R$) through CD spectroscopy. Because the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR data and the specific rotation of $\mathbf{2}$ closely resembled those of $\mathbf{1}$, the absolute configuration of $\mathbf{2}$ was presumed to also be ($3 R, 4 R, 8 R$).

Unfortunately, all of the structural drawings in Faulkner's paper illustrated $\mathbf{1}$ and $\mathbf{2}$ with $(3 S, 4 S, 8 R)$ absolute configurations. This anomaly raised some uncertainty about the proposed absolute configurations of the natural products $\mathbf{1}$ and $\mathbf{2}$ because the text ($3 R, 4 R, 8 R$) did not match the structure drawings ($3 S, 4 S, 8 R$).

1.3 Arimoto synthesis of ($3 S, 4 S, 8 R$)-vallartanone B

In 1996, Arimoto and coworkers reported syntheses of $\mathbf{2}$ and its C-8 epimer and concluded that the absolute configuration of vallartanone B should be revised to ($3 S, 4 S, 8 S$) (Scheme 1.2). ${ }^{2}$ Apparently Arimoto et al. presumed that the structure of vallartanone B proposed by Faulkner was $(3 S, 4 S, 8 R)$. Thus, the Arimoto group initially focused their efforts on the preparation of ($3 S, 4 S, 8 R$)-vallartanone B.

Scheme 1.2 Arimoto synthesis of ($3 S, 4 S, 8 R$)-vallartanone B.

The synthesis of ($8 R$)-vallartanone B began with commercially available methyl (R)-3-hydroxy-2-
methylpropionate (5). After protection of the alcohol group in 5 and hydrolysis of the ester, the resulting carboxylic acid 7 was converted to the triketone 8 by reaction of the in situ generated mixed anhydride
with the dilithium dienolate of 4-methyl-hepta-3,5-dione. Under their optimized conditions, 8 was transformed into the γ-pyrone $\mathbf{9}$ without loss of enantiopurity. Deprotection of $\mathbf{9}$ gave the alcohol $\mathbf{1 0}$ that was oxidized with DMP to afford the aldehyde $\mathbf{1 1}$ in moderate yield. This aldehyde was found to be configurationally unstable and, without purification or characterization, it was immediately subjected to a tin-mediated aldol reaction with the known ketone 14^{3} to give 15 as an unspecified mixture of diastereomers in modest yield. The mixture of diastereomers $\mathbf{1 5}$ was oxidized to give the diketones $\mathbf{1 6}$ that were subjected to excess TFA to obtain a 8:1 mixture of ($8 R$)-2 and its C-8 epimer. The origin of the C-8 epimer could hypothetically come from several places during the synthesis: 1) racemization of aldehyde $\mathbf{1 1}$ before or during the tin-mediated aldol reaction, 2) isomerization at C-8 in $\mathbf{1 6}$ or $\mathbf{2}$ during the TFA-mediated cyclization and 3) isomerization at C-4 in the product resulting from the minor diastereomer of 14. Among the mixture of epimers in the final product, the spectral data corresponding to the minor isomer ((8S)-2) matched with those reported for isolated 2.

1.4 Arimoto synthesis of ($3 S, 4 S, 8 S$)-vallartanone B

The preparation of $(3 S, 4 S, 8 S)$-vallartanone B was accomplished in a similar fashion to that used for the $(3 S, 4 S, 8 R)$ diastereomer by starting with ent-5 with slight changes in the reaction conditions of the tin-mediated aldol reaction (N-ethylpiperidine vs triethylamine) and the overall yield (Scheme 1.3). ${ }^{2}$ The diastereoselectivity of the aldol reaction of 14 with ent-5 was again not reported and the final product was also obtained as a mixture with its $C-8$ epimer. ($8 S$)-Vallartanone B was obtained free from its $(8 R)$-epimer by chiral HPLC and was found to match all the physical data reported for the vallartanone B isolated by Faulkner and Manker.

Scheme 1.3 Arimoto synthesis of ($3 S, 4 S, 8 S$)-vallartanone B.

1.5 Revision of absolute configuration of vallartanone B

Arimoto proposed that the discrepancy in absolute configuration assignment could arise from Faulkner's assumption that the conformation of $\mathbf{1}$ was solely governed by the configuration of $\mathrm{C}-8$, but in fact it should be influenced by C-3 and C-4 as well. To further elaborate this hypothesis, theoretical calculations on the two C-8 epimers of vallartanone A were made via the MOPAC program, an eigenvector following method under the PM3 Hamiltonian. Results showed that the conformation of ($8 R$) $\mathbf{- 1}$ was different from that proposed by Faulkner and Manker and suggested the configurations at C 3 and C-4 also influence the conformation (Figure 1.3). Because the calculated models of the epimers looked alike but were different from those proposed by Faulkner, Arimoto concluded that it was unreliable to assign the absolute configuration through CD spectra.

Figure 1.3 Calculated energy minima of ($8 R$)-vallartanone A (left) and ($8 S$)-vallartanone A (right); an ethyl group adjacent to $\mathrm{C}-13$ was changed to a methyl for simplification. Adapted from Tetrahedron, 52, Arimoto H., Yokoyama, R., Nakamura, K., Okumura, Y., Uemura, D., Vallartanone B: Synthesis and Related Studies, 13901-13908, Copyright (1996), with permission from Elsevier.

Arimoto also explained why the relative configuration should be revised - presuming that Faulkner had proposed the ($3 S^{*}, 4 S^{*}, 8 R^{*}$) configuration - through investigating the C-8 epimers of 6,7dihydrovallartanone A ($\mathbf{3}$ and 4). The two most stable conformers of each epimer were obtained through
identical computational parameters as mentioned above and their dihedral angles between $\mathrm{HC}-7$ and HC-8 were translated to coupling constants. Because the relationship between the three stereocenters were based on the coupling constants between $\mathrm{HC}-7$ and $\mathrm{HC}-8$ in $\mathbf{3}$ and $\mathbf{4}$, coupling constants based on dihedral angles of the computed models were compared with the reported values. The calculated coupling constants were $3.3 \mathrm{~Hz}(8 S)$ and $10.1 \mathrm{~Hz}(8 R)$ (Figure 1.4) were in good agreement with the experimental values of 4.0 Hz and 9.8 Hz (Figure 1.4) respectively for $\mathbf{3}$ and $\mathbf{4}$. Given that the data for the synthetic (85)-vallartanone B matched with those for the natural product, Arimoto concluded the absolute configuration of vallartanone B was $(3 S, 4 S, 8 S)$. As noted above, Faulkner and Manker also proposed this relative configuration for vallartanone $\mathrm{B}(3 R, 4 R, 8 R)$.

Figure 1.4 Calculated energy minima of (8S)-3 (left) and (8R)-4 (right); an ethyl group adjacent to C-13 was changed to a methyl for simplification. Adapted from Tetrahedron, 52, Arimoto H., Yokoyama, R., Nakamura, K., Okumura, Y., Uemura, D., Vallartanone B: Synthesis and Related Studies, 13901-13908, Copyright (1996), with permission from Elsevier.

It should be noted that a better way to determine the relative configurations of $\mathbf{3}$ and $\mathbf{4}$ was through securing the 3D spatial arrangement of $\mathrm{C}-18$ via nOe experiments. Because the $\mathrm{C}-7-\mathrm{C}-8$ torsion is expected to be governed by minimization of the steric interactions particularly avoidance of synpentane interactions between $\mathrm{C}-18$ and $\mathrm{C}-19$, the predominant conformer of $\mathbf{3}$ will have HC-8 synperiplanar with $\mathrm{C}-19$ regardless of the absolute configuration of $\mathrm{C}-8$ (Figure 1.5).

Figure 1.5 Energy minima of $\mathbf{3}$ and $\mathbf{4}$ based on avoidance of syn-pentane interactions.

Similarly, due to avoidance of syn-pentane interactions between C-18 and C-19, the predominant conformer of 4 will have HC-6 synperiplanar with C-18 regardless of the absolute configuration of C-8 (Figure 1.5). In 3, a positive nOe observation between $\mathrm{HC}-8$ and $\mathrm{C}-19$ would suggest the $\left(3 S^{*}, 4 S^{*}, 8 S^{*}\right)$ relative configuration. In contrast, the observation of a positive nOe between $\mathrm{HC}-8$ and C-19 in $\mathbf{4}$ would suggest a $\left(3 S^{*}, 4 S^{*}, 8 R^{*}\right)$ relative configuration.

1.6 Conclusion

The configuration of vallartanone A (1) was proposed to be $(3 R, 4 R, 8 R)$ based on analyses of CD and NMR spectra and those of two dihydro derivatives. The same configuration was assigned to vallartanone $\mathrm{B}(\mathbf{2})$ based on the close correspondence of its spectral data and specific rotation with those of 1. Unfortunately, there is some discrepancy about the proposed configurations of $\mathbf{1}$ and $\mathbf{2}$ because structural drawings in the paper illustrates a ($3 S, 4 S, 8 R$) configuration and while the text discusses a ($3 R, 4 R, 8 R$) configuration. Through total synthesis, Arimoto established that the absolute configuration of $\mathbf{2}$ is $(3 S, 4 S, 8 S)$. Consequently, it is plausible that $\mathbf{1}$ also possesses the $(3 S, 4 S, 8 S)$ configuration (Figure 1.6).

Figure 1.6 Vallartanone A initiative.

2. RESULTS AND DISCUSSION

2.1 Research Objectives

The objective of this research project was to achieve the first total enantioselective syntheses of $(3 S, 4 S, 8 S) \mathbf{- 1}$ and $(3 S, 4 S, 8 R) \mathbf{- 1}$ epimer thereby establishing the relative and absolute configurations of vallartanone A. Retrosynthetic analysis of $(3 S, 4 S, 8 S)-\mathbf{1}$ is illustrated in Figure 2.1. Thus, retrosynthetic hydration of the dihydropyrone ring in 1 produces hemi-acetal 19 that can undergo ring-chain tautomerization to give the linear form 20. The β-diketone moiety in $\mathbf{2 0}$ could be derived by oxidation of a beta-hydroxy-ketone 21. Because the configurations of C-6 and C-7 in $\mathbf{2 1}$ are irrelevant to the final product, control of the configuration of $\mathrm{C}-8$ in $\mathbf{2 1}$ was considered the key to this synthetic project.

Figure 2.1 Retrosynthetic analysis of ($3 S, 4 S, 8 S$)-vallartanone A.

Arimoto obtained ($3 S, 4 S, 8 S$)-2 and ($3 S, 4 S, 8 R$)-2 in separate synthetic sequences starting with the two enantiomers of methyl 3-hydroxy-2-methylpropionate (5) and chiral ketone 14 (Figure 2.2).

5

14

Figure 2.2 Starting materials of Arimoto syntheses of vallartanone B's.

However, the same outcome might be accomplished if an enantiopure fragment was coupled with a racemic fragment with kinetic resolution. Kinetic resolution takes advantage of the fact that the two enantiomers possess different reactivity in a chiral environment thereby allowing the preferential reaction of one enantiomer in the presence of both. One way to form the beta-hydroxy-ketone functional group in $\mathbf{2 1}$ is through an aldol reaction. Recent research in the Ward group has involved the design and application of aldol reactions that proceed via kinetic resolution. Coupling chiral fragments using the concept of kinetic resolution allows the use of an enantiopure fragment and a racemic fragment which is advantageous in a total synthesis that follows a convergent pathway. According to the multiplicativity rule, ${ }^{4}$ an aldol reaction proceeding with kinetic resolution is expected when the three stereocontrol elements are highly biased; i.e., the relative topicity of the reaction and the diastereoface selectivities of the enolate and aldehyde. Even though the configurations of C-6 and C-7 in $\mathbf{2 1}$ are not present in the final product, they will be used to control the C-8 configuration. Once the diastereoface selectivities for additions to aldehyde rac-11 and the enolate derived from ketone $\mathbf{2 2}$ have been firmly established, an aldol reaction can be designed with the required relative topicity to afford the ($8 S$) configuration.

2.2 Syntheses of aldehyde 11

2.2.1 Previous protocols

The synthesis of enantiomerically enriched 11 has been reported previously (discussed in Section 1.3 and 1.4); however, 11 has never been characterized. Arimoto and coworkers prepared both 11 and ent-11 in seven steps starting with 5 and ent-5, respectively (Scheme 2.1). ${ }^{2}$

Scheme 2.1 Arimoto synthesis of ent-11.

Paterson and coworkers reported the synthesis of the 11 in their total synthesis of baconipyrone C (Scheme 2.2). ${ }^{5}$ The only difference from Arimoto's approach was how the tri-ketone 31 was constructed. Instead of coupling 4-methylhepta-3,5-dione with carboxylic acid 7, Paterson used a total of eight steps to obtain the analogous precursor 31 from 23, 3-pentanone, and propanal.

Scheme 2.2 Paterson synthesis of 11.

(a) $\mathrm{Cl}_{3} \mathrm{CC}(=\mathrm{NH}) \mathrm{OBn}, \mathrm{TfOH}$; (b) LiAlH_{4}; (c) Swern [O]; (d) $\mathrm{Et}_{2} \mathrm{CO}, \mathrm{TiCl}_{4}, i-\mathrm{Pr}_{2} \mathrm{NEt}$; (e) TBSOTf, 2,6-lutidine;
(f) $\mathrm{TiCl}_{4}, i-\mathrm{Pr}_{2} \mathrm{NEt}$, EtCHO; (g) HF; (h) Dess-Martin periodinane; (i) $(\mathrm{COCl})_{2}$, DMSO; (j) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$

2.2.2 Ward protocol

The aldehyde rac-11 was accessed in three simple steps. Four molecules of propanoic acid condense to produce 2,6-diethyl-3,5-dimethylpyrone in the presence of polyphosphoric acid at $200{ }^{\circ} \mathrm{C}$ (Scheme 2.3). This procedure was adapted from the known protocol developed by Mullock and Suschitzky ${ }^{6}$ by modifying the extraction procedure where dichloromethane was used instead of chloroform. Pyrone 34 was deprotonated by NaHMDS and reacted with paraformaldehyde to afford the chiral primary alcohol rac-10. The deprotonation of 34 was developed by Sengoku and co-workers and the optimal base was found to be NaHMDS (cf. LDA, LTMP, LiHMDS and KHMDS) at $-78{ }^{\circ} \mathrm{C} .{ }^{7}$ These authors also studied reaction of the resulting anion with several alkyl and aryl aldehydes (but not paraformaldehyde), obtaining adducts with low stereoselectivity. After optimizing Sengoku's conditions, the anion of 34 reacted with paraformaldehyde at $0^{\circ} \mathrm{C}$ to afford rac-10 in modest yield. Oxidation of rac10 with IBX gave aldehyde rac-11.

Scheme 2.3 Ward synthesis of rac-11.

It has been reported that aldehyde 11 is easily racemized even in the presence of silica gel. Because the enantiopurity of the aldehyde was crucial to the syntheses of vallartanone B^{2} and baconipyrone $C,{ }^{5}$ it was prepared by oxidation of enantiopure 10 with Dess-Martin periodinane and used immediately without characterization.

This synthesis of aldehyde rac-11 has numerous advantages (Scheme 2.3). The approach took fewer steps compared to all known precedents and price difference between the starting materials is over 300 -fold. Additionally, the aforementioned configurational instability is not a concern because the racemic aldehyde would be used.

2.3 Establishment of the diastereoface selectivity of rac-11

To determine the diastereoface selectivity of aldehyde rac-11, aldol reactions with the enol dicyclohexylborinate and amine-free lithium enolate ${ }^{8}$ of ketone $\mathbf{3 5}$ were attempted. In both cases, only one aldol adduct diastereomer (39b) was observed in the ${ }^{1} \mathrm{H}$ NMR spectra of the crude products. Adduct 39b was found to have the relative configuration of $\left(6 S^{*}, 7 S^{*}, 8 S^{*}\right)$ (the structure elucidation of 39b is described in the following section). Proline-catalyzed aldol reaction between rac-11 and $\mathbf{3 5}$ was also attempted but low diastereoselectivity was observed (Scheme 2.4). The anti relative configuration of C-6 and C-7 in 39b is rationalized by a chair-like Zimmermen-Traxler transition state. ${ }^{9}$ The syn relative configuration between C-7 and C-8 can be explained by the Felkin-Anh model. ${ }^{10}$ The highly stereoselective formation of $\mathbf{3 9 b}$ from reaction of rac-11 with the enol borinate and the lithium enolate of thiopyran ketone $\mathbf{3 5}$ suggests the diastereoface bias for aldol addition to rac-11 is highly Felkinselective.

Scheme 2.4 Reactions of rac-11 with enol borinate, lithium enolate and enamine of ketone $\mathbf{3 5}$.

(a) $(\mathrm{c}-\mathrm{Hex})_{2} \mathrm{BCl}, \mathrm{Et}_{3} \mathrm{~N}$; (b) MeLi; (c) L-Proline, $\mathrm{H}_{2} \mathrm{O}$

2.4 Characterizations of aldol adducts

2.4.1 Structural elucidations

Model studies were carried out in order to unambiguously assign the relative configuration of the aldol adducts 39a-d (Scheme 2.5). Given that the reactions of rac-11 with $\mathbf{3 5}$ and $\mathbf{3 6}$ each gave a single adduct (39b), an alternate route was undertaken to obtain all four possible diastereomers (Scheme 2.5). Deprotonation of pyrone $\mathbf{3 4}$ with NaHMDS followed by addition of aldehyde $\mathbf{3 7}$ to gave a $5.5: 1: 2.2: 7.7$ mixture of the four possible adducts $\mathbf{3 8 a}, \mathbf{3 8 b}, \mathbf{3 8}$ c, and $\mathbf{3 8 d}$, respectively. Separate treatment of 38a, 38b and $\mathbf{3 8 d}$ with $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ resulted in hydrolysis of the ketal moieties to give $\mathbf{3 9 a}$, 39b, and 39d, respectively. ${ }^{11}$ The fourth diastereomer, 39c, was obtained from 39d by isomerization (vide infra). ${ }^{12}$

Structural analysis began by transforming the diastereomers 39b and 39c into their respective syn 1,3-diols via a well-established protocol $\left(\mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{NaBH}_{4}\right)^{13}$ followed by conversion into the corresponding acetonides 40 and 41 , respectively. Both 40 and 41 had two characteristic peaks in the ${ }^{13}$ C NMR spectra corresponding to the methyl groups of an acetonide from a syn 1,3-diol (i.e., at ca. 20 and 30 ppm$).{ }^{14}$ Because the acetonides are conformationally rigid, the relative configurations at $\mathrm{C}-5, \mathrm{C}-6$ and C-7 in 40 and $\mathbf{4 1}$ could be established by ${ }^{1} \mathrm{H}$ NMR through the analysis of coupling constants. Large vicinal coupling constants between $\mathrm{H}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{H}$ and $\mathrm{H}-\mathrm{C} 6-\mathrm{C} 7-\mathrm{H}$ observed both in 40 (10.5 and 10 Hz) and in 41 (10.5 and 10.5 Hz) suggested anti relationships and supported the assignment of ($5 R^{*}, 6 R^{*}, 7 S^{*}$) relative configurations.

Scheme 2.5 Relative configuration verifications on aldol adducts.
 a
75% $\downarrow \mathrm{dr}=5.5: 1: 2.2: 7.7$

38c
38d

(a) NaHMDS ; (b) $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; (c) imidazole; (d) $\mathrm{Et}_{2} \mathrm{BOMe}^{2} \mathrm{NaBH}_{4}$; (e) 2,2-dimethoxypropane, p - TsOH ; (f) Raney Ni

Assignments of the relative configurations of C-8 in $\mathbf{4 0}$ and $\mathbf{4 1}$ were based on nOe experiments. The hypothesis was that the C-7-C-8 torsion angle would be governed by minimization of steric interactions particularly avoidance of syn-pentane interactions between $\mathrm{C}-18$ and $\mathrm{H}_{2} \mathrm{C}-19$. Thus, the
predominant conformer should have the $\mathrm{HC}-8$ synperiplanar with $\mathrm{H}_{2} \mathrm{C}-19$ and this assumption was supported by the observation of small $\mathrm{H}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{H}$ coupling constants (4 Hz for $\mathbf{4 0}, 3 \mathrm{~Hz}$ for $\mathbf{4 1}$) and positive nOe's between $\mathrm{HC}-8$ and $\mathrm{H}_{2} \mathrm{C}-19$ in both 40 and 41 . In 40 , the positive nOe observed between HC-6 and $\mathrm{H}_{3} \mathrm{C}-18$ suggests the $\left(5 R^{*}, 6 R^{*}, 7 S^{*}, 8 S^{*}\right)$ relative configuration. In contrast, the observation of a positive nOe between $\mathrm{HC}-7$ and $\mathrm{H}_{3} \mathrm{C}-18$ in 41 suggests a $\left(5 R^{*}, 6 R^{*}, 7 S^{*}, 8 R^{*}\right)$ relative configuration. Through the above analysis, a $\left(6 S^{*}, 7 S^{*}, 8 S^{*}\right)$ relative configuration can be assigned to $\mathbf{3 9 b}$ thereby establishing that the addition of the enol borinate and lithium enolate of thiopyran ketone $\mathbf{3 7}$ to rac-11 is Felkin-selective (discussed in Section 2.3).

Structures 39a and 39d are the C-6 epimers of 39b and 39c, respectively, and these relationships were established by isomerization reactions starting with $\mathbf{3 9 b}$ and 39 c , respectively. Based on previous work of Ward group, ${ }^{12}$ aldol adducts that are derived from thiopyran ketones can undergo syn-anti isomerization in the presence of imidazole via keto-enol tautomerism. Separate treatment of aldol adducts 39b and 39d with imidazole afforded 39a and 39c, respectively, thereby establishing the epimeric relationship at C-6 between 39 and 39 as well as $\mathbf{3 9}$ a and $\mathbf{3 9 d}$. The results of the isomerization reactions allowed 39a and 39d to be assigned the relative configuration ($6 R^{*}, 7 S^{*}, 8 S^{*}$) and $\left(6 R^{*}, 7 S^{*}, 8 R^{*}\right)$, respectively. After the unambiguous assignments of the relative configurations of 39a-d, each was subjected to desulfurization to afford 42a-d, respectively. Due to difficulty of separation, compounds 42b-d were characterized as a mixture of diastereomers (see experimental section for details).

2.4.2 Correlation between structural features and spectral data

The NMR data for 39a-d and 42a-d were collected and analyzed to identify trends that might be used to assign the relative configurations of related aldol adducts. The discussion will begin with 39a-d (Table 2.1). Structures that have a syn relative configuration between C-7 and C-8 (39a, 39b) consistently have a $\mathrm{H}_{3} \mathrm{C}-18{ }^{1} \mathrm{H}$ NMR chemical shift that is $\geq 1.35 \mathrm{ppm}$. In contrast, structures that have an anti relative configuration between $\mathrm{C}-7$ and $\mathrm{C}-8(39 \mathrm{c}, 39 \mathrm{~d})$ have a ${ }^{1} \mathrm{H}$ NMR chemical shift of $\mathrm{H}_{3} \mathrm{C}-18$ that is $\leq 1.20 \mathrm{ppm}$. Three carbon nuclei ($\mathrm{C}-8, \mathrm{C}-7$ and $\mathrm{C}-19$) have chemical shifts that consistently change with the relative configuration between $\mathrm{C}-6$ and $\mathrm{C}-7$. Structures that have a syn relative configuration between $\mathrm{C}-6$ and C 7 (39a, 39d) consistently possess the ${ }^{13} \mathrm{C}$ NMR chemical shifts $\leq 37.8 \mathrm{ppm}, \leq 71.1 \mathrm{ppm}$ and $\leq 30.3 \mathrm{ppm}$ for $\mathrm{C}-8, \mathrm{C}-7$ and $\mathrm{C}-19$, respectively. On the other hand, structures that have an anti relative configuration between C-6 and C-7 (39b, 39c) consistently possess the ${ }^{13} \mathrm{C}$ NMR chemical shifts $\geq 39.7 \mathrm{ppm}, \geq 76.5$ ppm and ≥ 35.7 ppm for C-8, C-7 and C-19, respectively.

Table 2.1 Unique characteristic NMR features of 39a-d with corresponding structural features.

Relative configuration	C-6-C-7	syn	anti	anti	syn
	C-7-C-8	syn	syn	anti	anti
Chemical shift (ppm)	$\delta_{\mathrm{H}}, \mathrm{C}-18$	1.35	1.36	1.20	1.16
	$\delta_{C}, \mathrm{C}-8$	37.8	40.4	39.7	37.5
	$\delta_{C}, \mathrm{C}-7$	71.0	76.5	76.7	71.1
	$\delta_{C}, \mathrm{C}-19$	30.3	35.7	35.7	29.7

The spectral features that correspond to the relative configuration of structures 42a-d are identical with those of 39a-d (Table 2.2). Structures that have a syn relative configuration between C-7 and $\mathrm{C}-8(\mathbf{4 2 a}, \mathbf{4 2 b})$ consistently have a $\mathrm{H}_{3} \mathrm{C}-18{ }^{1} \mathrm{H}$ NMR chemical shift that is $\geq 1.32 \mathrm{ppm}$. In contrast, structures that have an anti relative configuration between C-7 and C-8 (42c, 42d) displays constantly with a ${ }^{1} \mathrm{H}$ NMR chemical shift of $\mathrm{H}_{3} \mathrm{C}-18$ that is $\leq 1.23 \mathrm{ppm}$. Three carbon nuclei ($\mathrm{C}-8, \mathrm{C}-7$ and $\mathrm{C}-19$) have chemical shifts that consistently vary with the relative configuration between $\mathrm{C}-6$ and $\mathrm{C}-7$. Structures that have a syn relative configuration between C-6 and C-7 (42a, 42d) consistently possess the ${ }^{13}$ C NMR chemical shifts $\leq 38.8 \mathrm{ppm}, \leq 72.5 \mathrm{ppm}$ and $\leq 10.0 \mathrm{ppm}$ for $\mathrm{C}-8, \mathrm{C}-7$ and $\mathrm{C}-19$, respectively. On the other hand, structures that have an anti relative configuration between C-6 and C-7 (42b, 42c) consistently possess the ${ }^{13} \mathrm{C}$ NMR chemical shifts $\geq 40.0 \mathrm{ppm}, \geq 77.0 \mathrm{ppm}$ and $\geq 15.9 \mathrm{ppm}$ for $\mathrm{C}-8, \mathrm{C}-7$ and $\mathrm{C}-19$, respectively.

Table 2.2 Unique characteristic NMR features of 42a-d with corresponding structural features.

Relative configuration	C-6-C-7	syn	anti	anti	syn
	C-7-C-8	syn	syn	anti	anti
Chemical shift (ppm)	$\delta_{\mathrm{H}}, \mathrm{C}-18$	1.33	1.32	1.23	1.13
	$\delta_{C}, \mathrm{C}-8$	38.8	40.5	40.0	38.2
	$\delta_{c}, \mathrm{C}-7$	72.4	77.0	77.6	72.5
	$\delta_{c}, \mathrm{C}-19$	10.0	15.9	15.9	9.3

2.5 Synthesis of ketone 44

2.5.1 Enantioselective proline-catalyzed intermolecular aldol reaction

It has been established that the enol dicyclohexylborinate of thiopyran ketone $\mathbf{3 5}$ adds to rac-11 with high Felkin selectivity and anti-selective relative topicity (discussed in Section 2.3). According to the multiplicativity rule, reaction of rac-11 with an enol dicyclohexylborinate that possesses high biased diastereoface selectivity should proceed via kinetic resolution with synthetically useful selectivity. Based on previous work of Ward group ${ }^{15}$, aldol reactions of enol dicyclohexylborinates derived from thiopyran ketones show high levels of anti relative topicity and trans ketone enol(ate) face selectivity. Consequently, ketone 44 emerged as a viable candidate for reaction with rac-11. Enantioenriched ketone 44 was synthesized in two steps starting with aldehyde 42 and ketone 35, a readily available material in the Ward group that is also available commercially (Scheme 2.6). The first reaction was a proline-catalyzed intermolecular aldol reaction that was previously optimized with ketone $\mathbf{3 5}$ in excess to afford aldol adduct 43 in $\mathrm{dr}>20$ and $>98 \%$ ee. ${ }^{16}$ For this work, aldehyde 42 was used in excess and the resulting aldol adduct 43 was obtained in $d r>20$ (by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture) and with slightly lower enantiopurity (92% ee by optical rotation) for unknown reasons. Aldol adduct 43 was protected as a triethylsilyl ether to afford 44.

Scheme 2.6 Synthesis of ketone 44.

(a) L-proline ($50 \mathrm{~mol} \%$); (b) $\mathrm{TfOSiEt}_{3}, 2,6$-lutidine

2.5.2 Establishment of the diastereoface selectivity of enol(ate) of ketone 44

In order to establish the diastereoface selectivity of 44, aldol reaction with isobutyraldehyde 42 was investigated (Scheme 2.7). Reaction of 44 with chlorodicyclohexylborane and triethylamine followed by the addition of 42 afforded adduct 45 (dr >20 by ${ }^{1} \mathrm{H} N M R$ of the crude reaction mixture). In order to determine its relative configuration, 45 was desilylated to afford diol 46 . The ${ }^{13} \mathrm{C}$ spectrum of 46 had seven signals suggesting a structure with either C_{S} (cis-anti relative configuration) or C_{2} (trans-anti relative configuration) symmetry. Reduction of 46 gave unsymmetric triol 47 in quantitative yield (thirteen signals in the ${ }^{13} \mathrm{C}$ NMR spectrum) thereby establishing that 46 was C_{2} symmetric. Because ketone 44 has the $(3 S, 4 S)$ absolute configuration, an absolute configuration of $(3 S, 4 S, 6 S, 7 S)$ can be assigned to 45. The exclusive formation of 45 from reaction of isobutyraldehyde with enol borinate of 44 suggests the diastereoface bias of 44 for addition to aldehyde is highly trans-selective.

Scheme 2.7 Establishment of the relative configuration of aldol adduct 45.

(a) $(c-\mathrm{Hex})_{2} \mathrm{BCl}, \mathrm{Et}_{3} \mathrm{~N}$; (b) 10 wt. \% HF; (c) NaBH_{4}

2.6 Total synthesis of (3S,4S,8S)-vallartanone A

2.6.1 Aldol reaction with kinetic resolution

It has been established that the enol borinate of thiopyran ketone $\mathbf{3 5}$ adds to rac-11 with high Felkin selectivity and anti-selective relative topicity (discussed in Section 2.3). The enol borinate of chiral ketone 44 undergoes aldol reaction with trans diastereoface selectivity and anti-selective relative topicity (discussed in Section 2.5.2). Based on previous work of the Ward group, ${ }^{16}$ it is expected that the reaction of enol borinate of $\mathbf{4 4}$ with rac-11 will afford $\mathbf{4 9}$, a synthetic precursor of vallartanone A , that has the required absolute configuration $(3 S, 4 S, 8 S)$ and the configurations at $\mathrm{C}-6(6 S)$ and $\mathrm{C}-7$ (7S) set to aid the desired aldol coupling (Figure 2.3).

49

Figure 2.3 A synthetic precursor that can be transformed into ($35,4 S, 8 S$)-vallartanone A.

Reaction of 44 with chlorodicyclohexylborane and triethylamine followed by the addition of three equivalents of rac-11 afforded adduct 49 ($\mathrm{dr}=10$ by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture) (Scheme 2.8). Generally in a kinetic resolution, the enantiomeric ratio of an initially racemic reactant increases with conversion and the ratio of stereoisomeric products decreases. ${ }^{17}$ In order to preserve both yield and selectivity of product, an excess amount of rac-11 was used in the reaction between enol borinate 48 and aldehyde rac-11. The relative configuration of 49 was analyzed through conformational and spectral analyses.

Scheme 2.8 Aldol reaction with kinetic resolution.

2.6.2 Structural elucidation of aldol adduct 49

If 49 is a cis-1,3-substituted tetrahydropyran ring (50), substituents R^{1} and R^{2} would both be in equatorial orientations (Figure 2.4). Consequently a single chair conformer would dominate and the expected coupling constants for $\mathrm{H}-\mathrm{C} 4-\mathrm{C} 20-\mathrm{H}_{2}$ are $0-5 / 6-14 \mathrm{~Hz}$ and $0-5 / 6-14 \mathrm{~Hz}$ for $\mathrm{H}-\mathrm{C} 6-\mathrm{C} 19-\mathrm{H}_{2}$ (Table 2.3). If 49 is a trans- 1,3 -substituted tetrahydropyran ring, two chair conformers are possible, 51a and 51b, that will differ in energy according to the difference in conformational energies of the two substituents, R^{1} and R^{2}. The expected coupling constants in 51 a for $\mathrm{H}-\mathrm{C} 4-\mathrm{C} 20-\mathrm{H}_{2}$ are $0-5 / 0-5 \mathrm{~Hz}$ and $0-$ 5/6-14 Hz for $\mathrm{H}-\mathrm{C} 6-\mathrm{C} 19-\mathrm{H}_{2}$ (Table 2.3). In 51b, the expected coupling constants for $\mathrm{H}-\mathrm{C} 4-\mathrm{C} 20-\mathrm{H}_{2}$ are $0-$ $5 / 6-14 \mathrm{~Hz}$ and $0-5 / 0-5 \mathrm{~Hz}$ for $\mathrm{H}-\mathrm{C} 6-\mathrm{C} 19-\mathrm{H}_{2}$, respectively. The observed coupling constants of $\mathrm{H}-\mathrm{C} 4-\mathrm{C} 2 \mathrm{O}-$ H_{2} and $\mathrm{H}-\mathrm{C} 6-\mathrm{C} 19-\mathrm{H}_{2}$ are $5 / 10.5 \mathrm{~Hz}$ and $5 / 6 \mathrm{~Hz}$, respectively, thereby establishing 49 has a trans relative configuration between C-4 and C-6 with 51a as the predominant conformer.

Table 2.3 Proton spin-coupling constants comparison of 49-51.

	$\mathbf{5 0}$	$\mathbf{5 1 a}$	51b	49
	Coupling constants (Hz)			
	Expected	Expected	Expected	Observed
	$0-5,6-14$	$0-5,6-14$	$0-5,0-5$	$5,10.5$
$\mathrm{C}-6-\mathrm{C}-19$	$0-5,6-14$	$0-5,0-5$	$0-5,6-14$	5,6

50

51

51a

Figure 2.4 Conformational analyses of 50 and 51.

The NMR data of 39a-d was used to assign the remaining relative configurations of 49. Aldol adduct 49 was assigned a syn relative configuration between $\mathrm{C}-7$ and $\mathrm{C}-8$ based on its observed $\mathrm{H}_{3} \mathrm{C}-18$ ${ }^{1} \mathrm{H}$ NMR chemical shift, 1.29 ppm (Table 2.4). The anti relative configuration between $\mathrm{C}-6$ and $\mathrm{C}-7$ was assigned based on the observed ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathrm{C}-8$ (39.4 ppm) and $\mathrm{C}-7$ (74.8 ppm). To further validate the above assignment, 49 was desulfurized and the corresponding acyclic aldol adduct 52, was investigated.

Table 2.4 Comparison of chemical shifts between 39a-d and 49.

 39a-d					
Relative configuration					Observed chemical shift (ppm)
C-6-C-7	syn	anti	anti	syn	
$\mathrm{C}-7-\mathrm{C}-8$	syn	syn	anti	anti	
Chemical shift (ppm)					
$\delta_{H}, \mathrm{C}-18$	1.35	1.36	1.20	1.16	1.29
$\delta_{\text {c }}$, C-8	37.8	40.4	39.7	37.5	39.4
$\delta_{\text {c, }}$ C-7	71.0	76.5	76.7	71.1	74.8
$\delta_{\text {c, }}$ C-19	30.3	35.7	35.7	29.7	30.8

The relative configuration of aldol adduct $\mathbf{5 2}$ was assigned by the comparison of its NMR data with those of 42a-d. The syn relative configuration between C-7 and C-8 was assigned based on the observed $\mathrm{H}_{3} \mathrm{C}-18{ }^{1} \mathrm{H}$ NMR chemical shift (1.36 ppm) of 52 (Table 2.5). The anti relative configuration between C-6 and C-7 was assigned based on the observed ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathrm{C}-8(40.0 \mathrm{ppm}), \mathrm{C}-$ 7 (76.1 ppm) and C-19 (14.7 ppm) in 52. In conclusion, the relative configuration of 49 was assigned trans ($\mathrm{C}-4-\mathrm{C}-6$), anti ($\mathrm{C}-6-\mathrm{C}-7$) and syn ($\mathrm{C}-7-\mathrm{C}-8$) based on the conformational analysis of 49 and the spectral analyses of 49 and 52 . Because the starting ketone 44 has the $(3 S, 4 S)$ absolute configuration, a ($3 S, 4 S, 6 S, 7 S, 8 S$) absolute configuration can be assigned to 49.

Table 2.5 Comparison of chemical shifts between 42a-d and 52.

Relative configuration					Observed chemical shift (ppm)
C-6-C-7	syn	anti	anti	syn	
C-7-C-8	syn	syn	anti	anti	
Chemical shift (ppm)					
$\delta_{\text {H }}, \mathrm{C}-18$	1.33	1.32	1.23	1.13	1.36
$\delta_{C}, \mathrm{C}-8$	38.8	40.5	40.0	38.2	40.0
$\delta_{c}, \mathrm{C}-7$	72.4	77.0	77.6	72.5	76.1
$\delta_{c}, \mathrm{C}-19$	10.0	15.9	15.9	9.3	14.7

2.6.3 Endgame

Aldol adduct 52 was oxidized with IBX in DMSO at room temperature and without characterization, the oxidized products were treated with $10 \mathrm{wt} . \% \mathrm{HF}$ to afford $(3 S, 4 S, 8 S)$-vallartanone A as a single compound suggesting that no epimerization had occurred throughout those two transformations. Due to difficulty of separation after the aldol reaction, a telescoped procedure was also developed starting with ketone 44 and rac-11(Scheme 2.9).

Scheme 2.9 Completion of the total synthesis of $(3 S, 4 S, 8 S)$-vallartanone A.

(a) $c-(\mathrm{Hex})_{2} \mathrm{BCl}, \mathrm{Et}_{3} \mathrm{~N}$; (b) Raney Ni; (c) IBX; (d) $10 \mathrm{wt} . \% \mathrm{HF}$

2.7 Total synthesis of 8-epi-vallartanone A

2.7.1 Strategic switch of one stereocontrol element

Similar to the efficient total synthesis of ($3 S, 4 S, 8 S$)-vallartanone A, synthetic precursors of 8-epivallartanone $A(54-57)$ can also be assembled through an aldol reaction that proceeds via kinetic resolution (Figure 2.5). The precursors 54,55 , and 56 emerge by inverting the $\mathrm{C}-4-\mathrm{C}-6, \mathrm{C}-6-\mathrm{C}-7$, or $\mathrm{C}-7-$ $\mathrm{C}-8$ relative configuration of 49 , respectively (Table 2.6). Precursor 57 arises by inverting the C-4-C-6, C-$6-\mathrm{C}-7$, and $\mathrm{C}-7-\mathrm{C}-8$ relative configurations of 49 . The key to switch the enantioselectivity of the reaction is to selectively reverse one or all of the three stereocontrol elements by modification of the reaction conditions.

Figure 2.5 Possible synthetic precursors (54-57) for 8-epi-vallartanone A.

Table 2.6 Configurational relationship between 49 and 54-57.

	$(8 S)-49$	$(8 R)-54$	$(8 R)-55$	$(8 R)-56$	$(8 R)-57$
$\mathrm{C}-4-\mathrm{C}-6^{a}$	trans	Relative configuration			
$\mathrm{C}-6-\mathrm{C}-7^{b}$	anti	cis	trans	trans	cis
$\mathrm{C}-7-\mathrm{C}-8^{c}$	syn	syn	syn	anti	syn

Controlled by ${ }^{a}$ diastereoface selectivity of enolate, ${ }^{b}$ relative topicity of reaction and ${ }^{c}$ diastereoface selectivity of aldehyde.

Based on previous work of Ward group, ${ }^{18}$ the diastereoface selectivity of an aldehyde can be modulated in the presence of a chelating Lewis acid, leading to non-Felkin addition to the aldehyde. Attempting to reverse the diastereoface selectivity of rac-11, it was allowed to react with enolsilane 36 in the presence of $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ (Scheme 2.10). After purification, a mixture of four diastereomers was isolated in low yield.

Scheme 2.10 Modulation of diastereoselectivity in the presence of a chelating Lewis acid.

Based on previous work of Ward group ${ }^{16}$, aldol reactions of thiopyran ketones show high levels of anti and syn relative topicities using enol borinates and titanium enolates, respectively. Thus, an aldol reaction between the in situ generated titanium enolate of ketone $\mathbf{4 4}$ and rac-11 was attempted in an effort to obtain syn relative topicity (Scheme 2.11). After purification, a mixture of two diastereomers ($\mathrm{dr}=1.4$ by ${ }^{1} \mathrm{H}$ NMR in favor of 49) was obtained in low yield.

Scheme 2.11 Modulation of diastereoselectivity through titanium enolate.

${ }^{a}$ Utilizing the NMR data of 39a-d, aldol adduct $58 / 59$ was assigned a syn relative configuration between $\mathrm{C}-7$ and $\mathrm{C}-8$ based on its observed $\mathrm{H}_{3} \mathrm{C}-18{ }^{1} \mathrm{H}$ NMR chemical shift, 1.31 ppm . The syn relative configuration between $\mathrm{C}-6$ and $\mathrm{C}-7$ was assigned based on the observed ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathrm{C}-8$ (38.0 ppm), C-7 (71.0) and C-19 (29.9 ppm).

The diastereoface selectivity of enol borinate 48 was rationalized through conformational analysis (Scheme 2.12). The diastereoface selectivity of aldol reactions of chiral ethyl ketones is influenced by the geometry of the enolate as well as the preferred torsion angle C4-C5. Enol borinate 48 is a six-membered ring with limited C4-C5 rotation; moreover, only an (E)-enol borinate can be formed. As a result, the most stable conformer of 48 will have the R substituent in an equatorial orientation (48b) when the aldehyde undergoes a pseudo-axial attack. On the other hand, torsion C4-C5 will be influenced by minimization of 1,3-allylic strain in (E)-enol borinate 62, now that it lacks the cyclic sulfide. The most stable conformer of 62 will have H-C4 eclipsing with the vinyl methyl group (62c) with the diastereotopic faces differentiated by methyl and R groups. The aldehyde should approach on the rear face of 62 to afford 4,6-syn-63 due to steric effect, hence reversing the diastereoface selectivity of the ketone enol(ate).

Scheme 2.12 Rationalization of opposite diastereoface selectivity of enol borinates $\mathbf{4 8}$ and 62.

Thus, ketone 44 was desulfurized to afford the acyclic analogue, 61 (Scheme 2.12), and the aforementioned hypothesis was tested by reacting the (E)-enol borinate of ketone $\mathbf{6 1}$ and aldehyde $\mathbf{4 2}$ (Scheme 2.13). The reaction afforded one aldol adduct, 64, after purification ($\mathrm{dr}>20$ by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture). In order to determine its relative configuration, 64 was reduced to afford one diol 65. Desilylation of 65 gave symmetric triol 66 (seven signals in the ${ }^{13} \mathrm{C}$ NMR spectrum) thereby establishing its C_{S} symmetry. Because ketone $\mathbf{6 1}$ has the $(3 S, 4 S)$ absolute configuration, an absolute configuration of $(3 S, 4 S, 6 R, 7 R)$ can be assigned to 64 . The exclusive formation of $\mathbf{6 4}$ from reaction of isobutyraldehyde with enol borinate of 61 suggests it undergoes aldol reaction with 4,6-syn diastereoface selectivity and anti-selective relative topicity.

Scheme 2.13 Establishment of the relative configuration of aldol adduct 64.

(a) $(c-\mathrm{Hex})_{2} \mathrm{BCl}, \mathrm{EtNMe}_{2}$; (b) $\mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{NaBH}_{4}$; (c) 10 wt. \% HF

2.7.2 Aldol reaction with kinetic resolution (sequel)

Similar to the aldol reaction between aldehyde rac-11 and enol borinate 48, it is expected the reaction of rac-11 and enol borinate $\mathbf{6 2}$ will also proceed with kinetic resolution. As a result, a synthetic precursor of 8-epi-vallartanone $A(67)$ would be assembled that has the required absolute configuration $(3 S, 4 S, 8 R)$, and the configuration at $\mathrm{C}-6(6 R)$ and $\mathrm{C}-7(7 R)$ set to aid the desired aldol coupling (Figure 2.6).

67

Figure 2.6 A synthetic precursor that can be transformed into 8-epi-vallartanone A.

Reaction of 61 with chlorodicyclohexylborane and N, N-dimethylethylamine followed by the addition of three equivalents of rac-11 afforded adduct 67 ($\mathrm{dr}=10$ by ${ }^{13} \mathrm{C}$ NMR of the crude reaction mixture) (Scheme 2.14). The relative configuration of 67 was assigned through spectral analyses.

Scheme 2.14 Aldol reaction with kinetic resolution (sequel).

2.7.3 Structural elucidation of aldol adduct 67

The relative configuration of 67 was assigned by comparison of its NMR data with those of 42a-d. Aldol adduct 67 was assigned with syn relative configuration between C-7 and C-8 based on the observed $\mathrm{H}_{3} \mathrm{C}-18{ }^{1} \mathrm{H}$ NMR chemical shift, 1.28 ppm (Table 2.7). The anti relative configuration between C-6 and C-7 was assigned based on the observed ${ }^{13} \mathrm{C}$ NMR chemical shifts of $\mathrm{C}-8(38.9 \mathrm{ppm}), \mathrm{C}-7(76.0$ $\mathrm{ppm})$ and C-19 (14.7 ppm) in 67 . The NMR data of 67 are different from those of 52 ; however, the relative configurations at $\mathrm{C}-6-\mathrm{C}-7$ and $\mathrm{C}-7-\mathrm{C}-8$ in 67 are identical to those of 52. Because, the 4,6-anti relative configuration was assigned in aldol adduct 67 based on NMR analysis of the precursor 49, the 4,6-syn relative configuration was assigned to 67 . In conclusion, the relative configuration of 67 was assigned syn (C-4-C-6), anti (C-6-C-7) and syn (C-7-C-8) based on spectral analysis of 67. Because the starting ketone 61 has the $(3 S, 4 S)$ absolute configuration, a $(3 S, 4 S, 6 R, 7 R, 8 R)$ absolute configuration can be assigned to 67.

Table 2.7 Comparison of chemical shifts between 42a-d and 67.

Relative configuration					Observed chemical shift (ppm)
C-6-C-7	syn	anti	anti	syn	
C-7-C-8	syn	syn	anti	anti	
Chemical shift (ppm)					
$\delta_{H}, \mathrm{C}-18$	1.33	1.32	1.23	1.13	1.28
$\delta_{C}, \mathrm{C}-8$	38.8	40.5	40.0	38.2	38.9
$\delta_{c}, \mathrm{C}-7$	72.4	77.0	77.6	72.5	76.0
$\delta_{c}, \mathrm{C}-19$	10.0	15.9	15.9	9.3	14.7

2.7.4 Endgame

Aldol adduct 67 was oxidized with IBX in DMSO at room temperature and without characterization, the oxidized products were treated with $10 \mathrm{wt} . \% \mathrm{HF}$ to afford a mixture of 8-epi-1 and 1 ($\mathrm{dr}=15$ by ${ }^{1} \mathrm{H} \mathrm{NMR}$) suggesting epimerization had occurred throughout those two transformations. Even though 1 was obtained free of its $\mathrm{C}-8$ epimer under identical condition, the origin of epimerization for the formation of 8-epi-1 was unknown. Due to difficulty of separation after the aldol reaction, a telescoped procedure was also developed starting with ketone 61 (Scheme 2.15).

Scheme 2.15 Completion of the total synthesis of 8-epi-vallartanone A.

(a) $c-(\mathrm{Hex})_{2} \mathrm{BCl}, \mathrm{EtNMe}_{2}$; (b) IBX; (c) $10 \mathrm{wt} . \% \mathrm{HF}$

2.8 Explanation of stereochemical outcome of aldol reactions

The diastereoface selectivities of the enol borinates 48 and 62 (trans and syn, respectively) were governed by steric effects (discussed in Section 2.7.1). The diastereoface selectivity of aldehyde rac-11 can be rationalized using the Felkin-Anh model. ${ }^{10}$ The anti relative topicity of the aldol reactions originate from (E)-enol borinates (48 and 62) that react with rac-11 via chair-like Zimmerman-Traxler transition states. ${ }^{9}$ The relative configurations of aldol adducts 49 and 67 essentially arise from the simultaneous cooperation of the three stereocontrol elements: 1) diastereoface selectivity of the ketone enol(ate), 2) relative topicity of the reaction and 3) diastereoface selectivity of the aldehyde (Figure 2.7).

49

67

Figure 2.7 Aldol adducts 49 and 67.

In the presence of both enantiomers of 11, enol borinates $\mathbf{4 8}$ and $\mathbf{6 2}$ preferentially reacted with $(R)-\mathbf{1 1}$ and $(S)-\mathbf{1 1}$, respectively. This enantiomer selective reaction can be rationalized through the conformational analyses of their respective chair-like transition states (Figure 2.8). The hypothesis was that the C-7-C-8 torsion in 69 would be governed by minimization of steric interactions particularly avoidance of syn-pentane interactions between $\mathrm{C}-18$ and $\mathrm{C}-19$. Assuming the pyrone group of $(R)-\mathbf{1 1}$ resembles a phenyl group, the lowest energy transition state should have $\mathrm{HC}-8$ synperiplanar with $\mathrm{H}_{2} \mathrm{C}$ 19, at the same time, $\mathrm{C}-18$ synperiplanar with $\mathrm{HC}-6$.

Figure 2.8 Proposed transition state for aldol reaction between 48 and $(R)-\mathbf{1 1}$.

Similarly, the preferred C-7-C-8 torsion in transition state $\mathbf{7 0}$ would be strongly biased by steric repulsion between $\mathrm{C}-18$ and C -19 (Figure 2.9). With the assumption that the pyrone group of (S) - $\mathbf{1 1}$ resembles a phenyl group, the lowest energy transition state should have $\mathrm{HC}-8$ synperiplanar with $\mathrm{H}_{3} \mathrm{C}-$ 19 , and C-18 synperiplanar with HC-6.

Figure 2.9 Proposed transition state for aldol reaction between 62 and (S)-11.

2.9 Comparison of physical data

Synthetic $(3 S, 4 S, 8 S)-1\left([\alpha]_{D}=-180\left(c \quad 0.50, \mathrm{CHCl}_{3}\right)\right.$ gave spectroscopic data (MS and ${ }^{1} \mathrm{H}$) that matched with those reported ${ }^{1}$ for isolated $\mathbf{1}\left([\alpha]_{\mathrm{D}}=-176\left(c 0.68, \mathrm{CHCl}_{3}\right)\right)($ Table 2.8 $)$.

Table 2.8 Comparison of ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ between natural $\mathbf{1}$ and synthetic ($3 \mathrm{~S}, 4 \mathrm{~S}, 8 \mathrm{~S}$)-1.

		assignment ${ }^{\text {a }}$		
$\delta_{\text {H }}(360 \mathrm{MHz})$	multiplicity (J 's in Hz)		$\delta_{\text {H }}(500 \mathrm{MHz})$	multiplicity (J 's in Hz)
4.17	q (7.1)	C-8	4.17	$\mathrm{q}(7)$
3.79	dd (2.6, 12.9)	C-3	3.78	dd (2.5, 13)
2.62	q (7.6)	C-14	2.68-2.56	m
2.38	dq (12.9, 6.8)	C-4	2.38	dq $(13,7)$
1.96	s	C-16	1.95	s
1.94	s	C-17	1.94	s
$1.85{ }^{\text {b }}$	m	C-2	1.99-1.95	m
1.75	s	C-19	1.74	s
1.47	d (7.1)	C-18	1.46	d (7)
1.23	t (7.6)	C-15	1.22	t (7.5)
1.08	d (6.8)	C-1	1.08	d (7)
1.07	d (6.8)	C-20	1.06	d (7)
0.84	d (6.8)	C-21	0.83	d (7)

${ }^{a}$ Data and assignment according to Faulkner (ref. 1). ${ }^{b}$ Discrepancy was assumed to be caused by artifact during isolation, based on matching data (${ }^{13} \mathrm{C}$ NMR, specific rotation and circular dichroism) between isolated $\mathbf{1}$ and synthetic $\mathbf{1}$.

Because Faulkner used a $2 \mathrm{D}{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSC experiment to assign the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$, signals that correspond to the quaternary carbons were assigned based on chemical shift and were considered interchangeable (Table 2.9). ${ }^{1}$ In this work, all ${ }^{13} \mathrm{C}$ NMR spectra were assigned and confirmed by gHSQC and gHMBC experiments. ${ }^{13} \mathrm{C}$ Chemical shifts for synthetic $\mathbf{1}$ are consistently higher (average $=0.14 \mathrm{ppm}$)
than those reported for the natural 1, except for C-10, presumably due to a different reference standard; this work used $\delta_{\mathrm{C}} \mathrm{CDCl}_{3}=77.23 \mathrm{ppm}$.

Table 2.9 Comparison of ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ between natural $\mathbf{1}$ and synthetic ($3 S, 4 \mathrm{~S}, 8 \mathrm{~S}$)-1.

	assignment ${ }^{\text {a }}$	
natural ${ }^{a}$		synthetic
$\delta_{\mathrm{C}}(50 \mathrm{MHz})$		$\delta_{\mathrm{C}}(125 \mathrm{MHz})$
195.2	C-5	195.7
179.4	C-11	179.8
$168.4{ }^{\text {b,d }}$	C-7	168.8
$164.4^{b, e}$	C-13	164.7
160.8^{f}	C-9	161.0
$119.4{ }^{\text {c }}$	C-10	119.1
$118.3^{\text {c }}$	C-12	118.5
108.7	C-6	108.8
87.4	C-3	87.4
41.0	C-4	41.1
38.8	C-8	38.9
28.9	C-2	29.0
24.8	C-14	25.0
19.6	C-1	19.8
14.6	C-21	14.7
14.2	C-18	14.5
11.2	C-15	11.6
10.1	C-20	10.2
9.4	C-16	9.8
9.2	C-17	9.5
8.9	C-19	9.3

${ }^{a}$ Data and assignment according to Faulkner (ref. 1). ${ }^{b, c}$ Signals maybe interchanged (ref. 1). ${ }^{d}$ Originally assigned as $\mathrm{C}-13$ (ref. 1). ${ }^{e}$ Originally assigned as $\mathrm{C}-9$ (ref. 1). ${ }^{f}$ Originally assigned as $\mathrm{C}-7$ (ref. 1).

Although the ${ }^{1} \mathrm{H}$ NMR spectrum of 8-epi-1 was the only physical data provided by Faulkner, the
${ }^{1} \mathrm{H}$ NMR spectrum of synthetic $(3 S, 4 S, 8 R)-\mathbf{1}\left([\alpha]_{\mathrm{D}}=-100\left(c 0.30, \mathrm{CHCl}_{3}\right)\right)$ matched with those reported ${ }^{1}$ for 8-epi-1 (Table 2.10).

Table 2.10 Comparison of ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ between isolated 8-epi-1 and synthetic $(3 S, 4 \mathrm{~S}, 8 \mathrm{R})$-1.

		assignment ${ }^{a}$		
isolated $^{\text {a }}$			synthetic	
$\delta_{\mathrm{H}}(360 \mathrm{MHz})$	multiplicity (J's in Hz)		$\delta_{\text {H }}(500 \mathrm{MHz})$	multiplicity (J's in Hz)
4.14	$\mathrm{q}(7.0)$	C-8	4.14	q (7)
3.71	dd (2.8, 12.8)	C-3	3.71	dd (2, 13)
2.61	$\mathrm{q}(7.7)$	C-14	2.67-2.54	m
2.45	dq (12.8, 6.9)	C-4	2.45	dq $(13,7)$
2.00	m	C-2	1.99-1.91	m
1.95	S	C-16	1.95	S
1.94	S	C-17	1.94	S
1.73	S	C-19	1.73	S
1.49	d (7.0)	C-18	1.49	d (7)
1.23	t (7.7)	C-15	1.22	t (7.5)
1.07	d (6.9)	C-20	1.06	d (7)
0.96	d (6.9)	C-1	0.96	d (7)
0.95	d (6.9)	C-21	0.95	d (7)

${ }^{a}$ Data and assignment according to Faulkner (ref. 1).

The circular dichroism spectra of $(3 S, 4 S, 8 S)-\mathbf{1}$ and $(3 S, 4 S, 8 R)$-1 were acquired for further structural validation (Figure 2.10). The negative split Cotton effect exhibited by (3S,4S,8S)-1 (max @ 235 $n m$ and min @ 276 nm) matched with those reported ${ }^{1}$ for 1 (max @ 237 nm and $\min @ 274 \mathrm{~nm}$).

Figure 2.10 Circular dichorism spectra of isolated $\mathbf{1}$ (left), ($3 S, 4 S, 8 S$)-1 (red), and ($3 S, 4 S, 8 R$)-1 (blue). Copied with permission from Manker, D. C.; Faulkner, D. J. Vallartanone A and B, polypropionate metabolites of Siphonaria maura from Mexico. J. Org. Chem. 1989, 54, 5374-5377. Copyright 1989 American Chemical Society.

2.10 Conclusion

The first total syntheses of $(3 S, 4 S, 8 S)-1$ and its C-8 epimer were accomplished starting with commercially available materials: ketone 35, isobutyraldehyde and propanoic acid (Figure 2.11). The syntheses of 49 and 67 , the synthetic precursors for $(3 S, 4 S, 8 S)-1$ and $(3 S, 4 S, 8 R)$-1, respectively, were achieved by coupling rac-11 with specific enantioenriched ketones via aldol reactions designed to proceed with kinetic resolution but with opposite enantioselectivity. In the presence of rac-11, the enol borinate of $\mathbf{4 4}$ reacted preferentially with (R)-11 (i.e., enantiomer selective) in a highly diastereoselective manner (trans ketone enol(ate) diastereoface selectivity, anti relative topicity and Felkin aldehyde diastereoface selectivity) to afford ($3 S, 4 S, 6 S, 7 S, 8 S$)-49 ($\mathrm{dr}=10$). The enantioselectivity of the reaction was switched by a tactical change of the ketone enol(ate) diastereoface selectivity (trans to syn) through the usage of ketone $\mathbf{6 1}$, the desulfurized analogue of $\mathbf{4 4}$. In the presence of rac-11, the enol borinate of $\mathbf{6 1}$ reacted preferentially with (S)-11 in a highly diastereoselective manner (syn ketone enol(ate) diastereoface selectivity, anti relative topicity and Felkin aldehyde diastereoface selectivity) to afford $(3 S, 4 S, 6 R, 7 R, 8 R)-67$ ($\mathrm{dr}=10$). Both aldol adducts, 49 and 67 , were individually transformed into $(3 S, 4 S, 8 S)-\mathbf{1}$ and $(3 S, 4 S, 8 R)-\mathbf{1}$, respectively. Physical data (MS, CD, NMR, $\left.[\alpha]_{\mathrm{D}}\right)$ of $(3 S, 4 S, 8 S)-\mathbf{1}$ and ${ }^{1} \mathrm{H}$ NMR of ($3 S, 4 S, 8 R$)-1 was found to matched with those reported ${ }^{1}$ for naturally occurring $\mathbf{1}$ and 8 -epi-1, respectively. Base on the unambiguous configurational assignments of 49 and 67, the absolute configuration of vallartanone A should be revised from $(3 R, 4 R, 8 R)$ to $(3 S, 4 S, 8 S)$.

35 42 $\left.\right|_{V} \underbrace{}_{\mathrm{H}}$

Figure 2.11 Summary of total syntheses of vallartanone A and 8-epi-vallartanone A.

3. EXPERIMENTAL

3.1 General Methods

Anhydrous solvents were distilled under argon atmosphere as follows: tetrahydrofuran (THF) from benzophenone sodium ketyl; $\mathrm{Et}_{2} \mathrm{O}$ from benzophenone sodium ketyl; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from $\mathrm{CaH}_{2} ; \mathrm{DMSO}$ from CaH_{2} at reduced pressure (stored over $4 \AA$ molecular sieves); MeOH from $\mathrm{Mg}(\mathrm{OMe})_{2}$. Unless otherwise noted, all experiments involving air- and/or moisture-sensitive compounds were conducted in an oven dried round-bottom flask (RBF) capped with a rubber septum, and attached via a needle and connecting tubing to an argon manifold equipped with mercury bubbler (ca. 5 mm positive pressure of argon). Low temperature baths were: ice/water $\left(0^{\circ} \mathrm{C}\right), \mathrm{CO}_{2(\mathrm{~s})} / \mathrm{MeCN}\left(-50^{\circ} \mathrm{C}\right)$, and $\mathrm{CO}_{2(\mathrm{~s})} / \mathrm{AcMe}\left(-78{ }^{\circ} \mathrm{C}\right)$. Unless otherwise noted, reaction temperatures refer to that of the bath.

Concentration refers to removal of volatiles at water aspirator pressure on a rotary evaporator. Preparative TLC (PTLC) was carried out on glass plates $(20 \times 20 \mathrm{~cm})$ pre-coated $(0.25 \mathrm{~mm})$ with silica gel $60 \mathrm{~F}_{254}$. Materials were detected by visualization under an ultraviolet lamp (254 nm) and/or by treating a 1 cm vertical strip removed from the plate with a solution of phosphomolybdic acid (5\%) containing a trace of ceric sulphate in aqueous sulfuric acid ($5 \% \mathrm{v} / \mathrm{v}$) followed by charring on a hot plate. Flash column chromatography (FCC) was performed according to Still et al. ${ }^{19}$ with silica gel $60(40-63 \mu \mathrm{~m})$. All mixed solvent eluents were reported as v / v solutions. Unless otherwise noted, all reported compounds were homogeneous by thin layer chromatography (TLC) and by ${ }^{1} \mathrm{H}$ NMR.

3.2 Spectral data

High resolution mass spectra (HRMS) and low resolution mass spectra (LRMS) were obtained on a double focussing high resolution spectrometer; only partial data are reported. Electron impact (EI) ionization was accomplished at 70 eV , chemical ionization (CI) at 50 eV with ammonia as the reagent gas; only partial data are reported. Alternatively, HRMS were obtained on an LC-MS/MS time-of-flight high resolution spectrometer with electrospray ionization (ESI) from acetonitrile solution. Infrared (IR) spectra were recorded on a Fourier transform interferometer using a diffuse reflectance cell (DRIFT); only diagnostic and/or intense peaks are reported. Unless otherwise noted, NMR spectra were measured in CDCl_{3} solution at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$. Signals due to the solvent $\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ or residual protonated solvent (${ }^{1} \mathrm{H} N M R$) served as the internal standard: $\mathrm{CDCl}_{3}\left(7.26 \delta_{\mathrm{H}}, 77.23 \delta_{\mathrm{C}}\right) ; \mathrm{C}_{6} \mathrm{D}_{6}$ (7.16 $\delta_{H}, 128.39 \delta_{C}$). The ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants were determined assuming first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad), ap (apparent); the list of couplings constants (J) corresponds to the order of the multiplicity assignment. Coupling constants are reported to the nearest 0.5 Hz (i.e. $\pm 0.25 \mathrm{~Hz}$ as consistent with the digital resolution $0.2 \mathrm{~Hz} / \mathrm{pt}$). The ${ }^{1} \mathrm{H}$ NMR assignments were made on the basis of chemical shift, multiplicity and were confirmed by homonuclear decoupling and/or two-dimensional correlation experiments (gCOSY, gHSQC, gHMBC). ${ }^{20}$ The multiplicity of ${ }^{13} \mathrm{C}$ NMR signals refers to the number of attached H 's (i.e., $\mathrm{s}=\mathrm{C}, \mathrm{d}=\mathrm{CH}, \mathrm{t}=\mathrm{CH}_{2}, \mathrm{q}=\mathrm{CH}_{3}$). The ${ }^{13} \mathrm{C}$ assignments were made on the basis of chemical shift and multiplicity (as determined by gHSQC) and confirmed by twodimensional ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ correlation experiments (gHSQC and gHMBC$) .{ }^{20}$ Specific rotations $\left([\alpha]_{\mathrm{D}}\right)$ were the average of five determinations at ambient temperature using a 1 mL , 10 dm cell; the units are (deg. mL)/(g.dm) and/or $\left.\left(10^{-1} \cdot \mathrm{deg} \cdot \mathrm{cm}^{2}\right) / \mathrm{g}\right)$, and the concentrations (c) are reported in $\mathrm{g} / 100 \mathrm{~mL}$, and the values were rounded to reflect the accuracy of the measured concentrations (the major source of error).

3.3 Materials

The following compounds and reagents were prepared as described previously: 35, ${ }^{21} 36,{ }^{21} 37,{ }^{22}$ $43,{ }^{16} \mathrm{~W}-2$ Raney nickel, ${ }^{23} \mathrm{IBX}{ }^{24}$ and $(\mathrm{c}-\mathrm{Hex})_{2} \mathrm{BCl}^{25}$ 2,6-Lutidine and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled from CaH_{2} under argon and stored over KOH under argon. Isobutyraldehyde was distilled from anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and stored under argon. All other reagents were commercially available and unless otherwise noted, were used as received.

3.4 General experimental procedures

3.4.1 General procedure for desulfurization of aldol adducts ${ }^{26}$

A suspension of Raney $\mathrm{Ni}(\mathrm{W}-2)^{23}$ (ca. 1 mL settled volume/50 mg of substrate) in ethanol was added in one portion to a stirred solution of substrate in ethanol $(0.01 \mathrm{M})$ and the reaction mixture was heated under reflux. The reaction was monitored by TLC and when complete, the mixture was decanted and the solid was suspended in ethanol and heated under reflux with vigorous stirring for several min. The above washing procedure was repeated with ethyl acetate and with acetone. The supernatants were filtered through a pad of Celite ${ }^{\circledR}$ and the combined filtrates were concentrated to give the crude product.

3.5 Experimental procedures and spectral data for compounds

2-Ethyl-6-((S)-1-((2S,3S)-2-isopropyl-3,5-dimethyl-4-oxo-3,4-dihydro-2H-pyran-6-yl)ethyl)-3,5-dimethyl-4H-pyran-4-one (vallartanone A) (1).

(1)

Aldol reaction of $44(101 \mathrm{mg}, 0.33 \mathrm{mmol})$ with rac-11 ($220 \mathrm{mg}, 1.1 \mathrm{mmol}$) according to the procedure described for the preparation of 49 gave a crude product whose ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of a $10: 1$ mixture of diastereoisomeric aldol adducts. The crude was fractionated by SCC (packed and loaded with PhMe , eluted with $30 \% \mathrm{Et}_{2} \mathrm{O}$ in PhMe) to give a $2.6: 1$ mixture of 49 and 72, respectively (107 mg ; ca. 55% yield of 49). Reaction of the above mixture (107.5 mg) with Raney $\mathrm{Ni}(1.5$ mL settled volume) in THF (3 mL) for 30 minutes according to the general procedure gave, after work up, the crude desulfurization product (107 mg , complete conversion by ${ }^{1} \mathrm{H} \mathrm{NMR}$). IBX ($125.5 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a stirred solution of the above crude ketone (107 mg) in DMSO (2.2 mL) at ambient temperature. After 14 h , the reaction was quenched by addition of sat. aqueous NaHCO_{3}. The mixture was diluted with ethyl acetate, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (30% EtOAc in hexanes) to give the crude dione (49.5 mg) as mixture of keto-enol tautomers by ${ }^{1} \mathrm{H}$ NMR. Aqueous HF ($\left.20 \%(\mathrm{w} / \mathrm{w}) ; 0.5 \mathrm{~mL}\right)$ was added to a stirred solution of the crude diketone (49.5 mg) in $\mathrm{MeCN}(1 \mathrm{~mL})$ at ambient temperature. After 14 h , the reaction was quenched by addition of sat. aqueous NaHCO_{3}. The mixture was diluted with ethyl acetate, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to give the title compound ($36 \mathrm{mg}, 31 \%$ over 4 steps; dr >19:1).
white amorphous solid, $\mathrm{TLC}_{f}=0.38$ (50\% ethyl acetate in hexane, developed thrice), $[\alpha]_{\mathrm{D}}-170$ (c 0.5, CHCl_{3}) (lit. ${ }^{1}-176 ;$ c $0.68, \mathrm{CHCl}_{3}$)

IR (DRIFT) $v_{\text {max }} 1655,1616 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.17(1 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{HC}-8), 3.78(1 \mathrm{H}, \mathrm{dd}, J=2.5,13 \mathrm{~Hz}, \mathrm{HC}-3), 2.63(2 \mathrm{H}, \mathrm{dq}, \mathrm{J}$ $=15,7.5 \mathrm{~Hz}, \mathrm{HC}-14), 2.60(1 \mathrm{H}, \mathrm{dq}, J=15,7.5 \mathrm{~Hz}, \mathrm{HC}-14), 2.38(1 \mathrm{H}, \mathrm{dq}, J=13,7 \mathrm{~Hz}, \mathrm{HC}-4), 1.99-1.92(1 \mathrm{H}$, m, HC-2), $1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-12\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-10\right), 1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-6\right), 1.46\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-8\right)$,
$1.22\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-15\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 0.83(3 \mathrm{H}, \mathrm{d}, J=$ $\left.7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl 3) $\delta 195.7$ ($\mathrm{s}, \mathrm{C}-5$), 179.8 ($\mathrm{s}, \mathrm{C}-11$), 168.8 ($\mathrm{s}, \mathrm{C}-7$), 164.7 ($\mathrm{s}, \mathrm{C}-13$), 161.0 ($\mathrm{s}, \mathrm{C}-9$), 119.1 (s, C-10), 118.5 (s, C-12), 108.8 ($s, C-6$), 87.4 (d, C-3), 41.1 (d, C-4), 38.9 (d, C-8), 29.0 (d, C-2), 25.0 (t, C-14), 19.8 ($q, C-1$), 14.7 ($q, C-1$ '), 14.5 ($q, \mathrm{CH}_{3} \mathrm{C}-8$), 11.6 ($\mathrm{q}, \mathrm{C}-15$), 10.2 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$), 9.8 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-12$), 9.5 ($q, \mathrm{CH}_{3} \mathrm{C}-10$), 9.3 ($q, \mathrm{CH}_{3} \mathrm{C}-6$).

LRMS (EI), m/z (relative intensity): 346 ([M] ${ }^{+}, 100$), 317 (12), 263 (44), 234 (12), 206 (19), 180 (64).
HRMS m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4} 346.2144$, found 346.2146 (EI).

2-Ethyl-6-((R)-1-((2S,3S)-2-isopropyl-3,5-dimethyl-4-oxo-3,4-dihydro-2H-pyran-6-yl)ethyl)-3,5-dimethyl-4H-pyran-4-one (8-epi-vallartanone A) (8-epi-1).

From 67. IBX ($15 \mathrm{mg}, 0.054 \mathrm{mmol})$ was added to a stirred solution of $67(12 \mathrm{mg}, 0.025 \mathrm{mmol})$ in DMSO (0.3 mL) at room temperature. After 48 hours, the mixture was diluted with ethyl acetate and washed sequentially with NaHCO_{3}, water, and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (30\% ethyl acetate in hexanes) to give 68 ($9 \mathrm{mg}, 75 \%$) as a mixture of keto-enol tautomers (by ${ }^{1} \mathrm{H}$ NMR). 10% aqueous $\mathrm{HF}(0.2 \mathrm{~mL}$) was added to a stirred solution of the above $68(8 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeCN}(0.4 \mathrm{~mL})$ at room temperature. After 51 hours, the reaction mixture was diluted with ethyl acetate and washed sequentially with NaHCO_{3}, water, and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PLTC $(30 \%$ ethyl acetate in hexane, multiple developments) to give the title compound ($4 \mathrm{mg}, 70 \%$). From 61 . (c-Hex) $\mathrm{BCl}(1.0 \mathrm{M}$ in hexane; $0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}$) and $\mathrm{Me}_{2} \mathrm{NEt}(40 \mu \mathrm{~L}, 27 \mathrm{mg}, 0.37 \mathrm{mmol})$ were added to a stirred solution of $61(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.45 \mathrm{~mL})$ at room temperature. After 3 h , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$ and a solution of rac-11 (94 mg, 0.45 mmol$)$ in $\mathrm{Et}_{2} \mathrm{O}(0.75 \mathrm{~mL})$ was added. After 1 day, the reaction was quenched by sequential addition of phosphate buffer ($\mathrm{pH}=7 ; 1 \mathrm{~mL}$), $\mathrm{MeOH}(1 \mathrm{~mL})$ and $30 \% \mathrm{aq}_{2} \mathrm{H}_{2}$ (0.5 mL) with vigorous stirring. After stirring at $0^{\circ} \mathrm{C}$ for 15 min , sat. aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (30% ethyl acetate in hexane) to give a 3:1 mixture of 67
and 72, respectively (28 mg ; ca. 35% of 67). IBX ($31 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added to a stirred solution of the above mixture (28 mg) in DMSO (0.60 mL)at room temperature. After 14 h , the reaction was quenched by addition of sat. aqueous NaHCO_{3}. The resulting suspension was diluted with ethyl acetate and washed with water and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a crude (23 mg) that was taken up in in $\mathrm{MeCN}(0.50 \mathrm{~mL})$ and $20 \% \mathrm{HF}$ in $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ was added with stirring. After 36 h , the reaction was quenched buy addition of sat. aqueous NaHCO_{3}. The mixture was diluted with ethyl acetate and washed with water and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (40% ethyl acetate in hexane) to give the title compound (10 mg, 19\% over 3 steps; dr 17:1).
colorless oil, $\operatorname{TLC~}_{f}=0.23$ (30% ethyl acetate in hexane), $[\alpha]_{\mathrm{D}}-100\left(c 0.4 \mathrm{CHCl}_{3}\right)$
IR (DRIFT) $v_{\max } 1657,1616 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.13(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{HC}-8), 3.70(1 \mathrm{H}, \mathrm{dd}, J=2.5,13 \mathrm{~Hz}, \mathrm{HC}-3), 2.62(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}$ $=15,7.5 \mathrm{~Hz}, \mathrm{HC}-14), 2.59(1 \mathrm{H}, \mathrm{dq}, J=15,7.5 \mathrm{~Hz}, \mathrm{HC}-14), 2.44(1 \mathrm{H}, \mathrm{dq}, J=13,7 \mathrm{~Hz}, \mathrm{HC}-4), 1.99-1.91(1 \mathrm{H}$, m, HC-2), 1.945 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-10$ or $\mathrm{H}_{3} \mathrm{CC}-12$), 1.937 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-10$ or $\mathrm{H}_{3} \mathrm{CC}-12$), 1.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-6$), 1.48 $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-8\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-15\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 0.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{C}-1\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right)$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 195.7$ ($\mathrm{s}, \mathrm{C}-5$), 179.8 ($\mathrm{s}, \mathrm{C}-11$), 168.9 ($\mathrm{s}, \mathrm{C}-7$), 164.7 ($\mathrm{s}, \mathrm{C}-13$), 161.3 ($\mathrm{s}, \mathrm{C}-9$), 118.9 (s, C-10), 118.5 ($\mathrm{s}, \mathrm{C}-12$), 109.1 ($\mathrm{s}, \mathrm{C}-6$), 87.2 (d, C-3), 41.1 (d, C-4), 39.0 (d, C-8), 28.9 (d, C-2), 25.1 (t, C-14), 19.6 ($q, C-1$), 14.9 ($q, C-1$ '), 14.6 ($q, \mathrm{CH}_{3} \mathrm{C}-8$), 11.7 ($q, \mathrm{C}-15$), 10.3 ($q, \mathrm{CH}_{3} \mathrm{C}-4$), 9.7 ($q, \mathrm{CH}_{3} \mathrm{C}-12$), 9.5 ($q, \mathrm{CH}_{3} \mathrm{C}-10$), 9.1 ($q, \mathrm{CH}_{3} \mathrm{C}-6$).

LRMS (EI), m / z (relative intensity): 346 ([M] ${ }^{+}, 78$), 263 (36), 180 (73).
HRMS m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4} 346.2144$, found 346.2149 (EI).

2-Ethyl-6-(1-hydroxypropan-2-yl)-3,5-dimethyl-4H-pyran-4-one (10).

(10)

Adapting the procedure of Kigoshi, ${ }^{7 \mathrm{a}}$ NaHMDS (1.0 M in THF; 7.1 mL , 7.1 mmol) was added to a stirred solution of pyrone 34 (1.061g, 5.89 mmol$)$ in THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. After 1 min, solid paraformaldehyde (360 mg ; 2 equiv of $\mathrm{CH}_{2} \mathrm{O}$) was added. After 7 min , the reaction was quenched by addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with ethyl acetate, washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (ethyl acetate) to give the title compound ($727 \mathrm{mg} 59 \%$). NMR data for 10 were consistent with those previously reported. ${ }^{2,5 b}$
white amorphous solid, $\operatorname{TLC} \mathrm{R}_{f}=0.24$ (100\% ethyl acetate)
IR (DRIFT) $v_{\max }$ 2974, 2940, 2878, 1656, 1614, $1590 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.83$ (1, m, HC-1'), 3.72 (1, m, HC-1'), 3.23 (1, m, HC-2'), 2.61 (2, dq, J=2.5, $\left.7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-2\right), 1.98\left(3, \mathrm{~s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.93\left(3, \mathrm{~s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.83(1, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{HO}), 1.22\left(3, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-\right.$ 2), 1.21 ($3, d, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3$ ').
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta 180.0$ ($\mathrm{s}, \mathrm{C}-4$), 164.4 ($\mathrm{s}, \mathrm{C}-2$), 163.7 (s, C-6), 119.6 ($\mathrm{s}, \mathrm{C}-5$), 118.2 ($\mathrm{s}, \mathrm{C}-3$), 65.6 (t, C-1'), 38.5 (d, C-2'), $25.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-2\right.$), $14.5\left(\mathrm{q}, \mathrm{C}-3\right.$ '), $11.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2\right), 9.7\left(\mathrm{q} \times 2, \mathrm{CH}_{3} \mathrm{C}-3, \mathrm{CH}_{3} \mathrm{C}-5\right)$.

LRMS (EI), m/z (relative intensity): 210 ([M] ${ }^{+}, 48$), 193 (100), 179 (57), 166 (12).
HRMS m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}$ 210.1256, found 210.1256.

2-(6-Ethyl-3,5-dimethyl-4-oxo-4H-pyran-2-yl)propanal (11).

(11)

IBX ($600 \mathrm{mg}, 2.14 \mathrm{mmol})$ was added to a solution of $\mathbf{1 0}(224 \mathrm{mg}, 1.07 \mathrm{mmol})$ in $\mathrm{MeCN}(3.6 \mathrm{~mL})$ and the mixture was heated under reflux until TLC analysis indicated complete consumption of $\mathbf{1 0}$ (ca. 1 h). The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and then filtered through a sintered glass funnel with the aid of ethyl acetate. The combined filtrate and washings were washed with saturated aq NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (60% ethyl acetate in hexane) to give the title compound ($180 \mathrm{mg}, 81 \%$).
colorless liquid, $\mathrm{TLC}_{\mathrm{f}}=0.27$ (60% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 1737,1658,1419 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71(1, \mathrm{~s}, \mathrm{HC}-1), 3.79(1, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{HC}-2), 2.60\left(2, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-6^{\prime}\right)$, $1.99\left(3, \mathrm{~s}, \mathrm{H}_{3} \mathrm{CC}-3^{\prime}\right), 1.95\left(3, \mathrm{~s}, \mathrm{H}_{3} \mathrm{CC}-5^{\prime}\right), 1.45\left(3, \mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3\right), 1.19\left(3, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7$ (d, C-1), 179.7 ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 165.2 ($\left.\mathrm{s}, \mathrm{C}-6^{\prime}\right), 158.9$ ($\left.\mathrm{s}, \mathrm{C}-2^{\prime}\right), 121.0\left(\mathrm{~s}, \mathrm{C}-\mathrm{3}^{\prime}\right)$, 118.7 ($\mathrm{s}, \mathrm{C}-5^{\prime}$), 49.1 ($\mathrm{d}, \mathrm{C}-2$), 25.0 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-6^{\prime}$), 11.7 ($\mathrm{q}, \mathrm{C}-3^{\prime}$), 11.4 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6^{\prime}$), 9.9 (q$), 9.7$ (q).

LRMS (EI), m / z (relative intensity): 208 ([M] ${ }^{+}, 42$), 179 (100), 151 (25).
HRMS m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ 208.1099, found 208.1092 .

2,6-Diethyl-3,5-dimethyl-4H-pyran-4-one (34).

(34)

Adapting the procedure of Mullock, ${ }^{6 \mathrm{a}}$ a mixture of propanoic acid (30 g) and polyphosphoric acid $(150 \mathrm{~g})$ were heated under reflux (bath temperature, $200^{\circ} \mathrm{C}$). After 3 h , the mixture was removed from the heating bath and the reaction was quenched by slow addition of ice. The mixture was diluted with
water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was distilled ($150^{\circ} \mathrm{C}, 0.5 \mathrm{mbar}$) to give the title compound ($9.3 \mathrm{~g}, 52 \%$).
yellow crystalline solid, $\operatorname{TLC}_{f}=0.54$ (60% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 1664,1626,1611 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.59\left(4 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-2, \mathrm{H}_{2} \mathrm{CC}-6\right), 1.94\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3 \mathrm{H}_{3} \mathrm{CC}-5\right), 1.21$ ($6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2, \mathrm{H}_{3} \mathrm{CCC}-6$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta 180.1$ ($\mathrm{s}, \mathrm{C}-4$), 164.6 ($\mathrm{s} \times 2, \mathrm{C}-2, \mathrm{C}-6$), $118.0(\mathrm{~s} \times 2, \mathrm{C}-3, \mathrm{C}-5), 25.0(\mathrm{t} \times 2, \mathrm{CH} 2 \mathrm{C}-$
2, $\mathrm{CH}_{2} \mathrm{C}-6$), $11.6\left(\mathrm{q} \times 2, \mathrm{CH}_{3} \mathrm{CC}-2, \mathrm{CH}_{3} \mathrm{CC}-6\right)$, $9.7\left(\mathrm{q} \times 2, \mathrm{CH}_{3} \mathrm{C}-3, \mathrm{CH}_{3} \mathrm{C}-5\right)$.

LRMS (EI), m/z (relative intensity): 180 ([M] ${ }^{+}$, 69), 179 (100), 137 (13), 113 (15), 57 (15).
HRMS m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} 180.1150$, found 180.1128 (EI).

2-Ethyl-6-(1-hydroxy-1-(1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-4H-pyran-4-one (38a-d).

(38a-d)
Adapting the procedure of Kigoshi, ${ }^{7 a}$ NaHMDS (1.0 M in THF; $0.85 \mathrm{~mL}, 0.85 \mathrm{mmol}$) was added to a stirred solution of pyrone $34(177 \mathrm{mg}, 0.98 \mathrm{mmol})$ in THF (1.2 mL) at $0^{\circ} \mathrm{C}$ under Ar. After 10 min , the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of aldehyde 37 ($106 \mathrm{mg}, 0.56 \mathrm{mmol}$) in THF (0.5 mL +0.5 mL rinse) was added via a syringe over 3 min . After 3 h , the reaction was quenched by addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The suspension was diluted with ethyl acetate and washed sequentially with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the crude product that contained 34 and $\mathbf{3 7}$ and a 1.7:1.3:1 mixture of adducts $\mathbf{3 8 d}$, $\mathbf{3 8}$ a, and ($\mathbf{3 8 b}+$ 38c), respectively. Fractionation of the crude by FCC (70\% ethyl acetate in hexanes) gave recovered 34 ($94 \mathrm{mg}, 53 \%$), 37 ($25 \mathrm{mg}, 24 \%$), 38a ($52 \mathrm{mg}, 25 \%$), and a 7.7:2.2:1 mixture of 38 d , 38c, and 38b, respectively ($102 \mathrm{mg}, 50 \%$). The mixture (69 mg) was further fractionated by PTLC (50% PhMe in ethyl acetate; multiple development) to give 38d ($36 \mathrm{mg}, 26 \%$), $\mathbf{3 8 c}$ ($6 \mathrm{mg}, 4.3 \%$) and 38b ($3 \mathrm{mg}, 2.2 \%$).

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-4H-pyran-4-one (38a).

(38a)
pale yellow foam, $\mathrm{TLC}_{f}=0.21$ (60% ethyl acetate in hexane)
IR (DRIFT) $v_{\max } 1657,1607 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.39\left(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 4.11-3.92\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-2^{\prime \prime}, \mathrm{H}_{2} \mathrm{C}-3^{\prime \prime}\right), 3.19(1 \mathrm{H}$, s, HO), $3.08\left(1 \mathrm{H}, \mathrm{dq}, J=10,6.5 \mathrm{~Hz}, \mathrm{HC}-2\right.$ '), $3.03\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,14 \mathrm{~Hz}, \mathrm{HC}-7{ }^{\prime}\right), 2.77$ ($1 \mathrm{H}, \mathrm{ddd}, J=2.5$, $\left.12.5,13.5 \mathrm{~Hz}, \mathrm{HC}-9{ }^{\prime \prime}\right)$, 2.67-2.43 (4H, m, H2CC-2, HC-7", HC-9"), 2.10 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3,4,14 \mathrm{~Hz}, \mathrm{HC}-10^{\prime \prime}$), $1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{C}-5\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{C}-5\right), 1.71\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.5,11.5 \mathrm{~Hz}, \mathrm{HC}-6{ }^{\prime \prime}\right), 1.61(1 \mathrm{H}$, ddd, J = 3.5, 12.5, $\left.14 \mathrm{~Hz}, \mathrm{HC}-10^{\prime \prime}\right), 1.33\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime \prime}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right)$.
${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9,164.7,163.8,119.0,118.0,110.3,70.9,64.8,64.3,47.1,38.9,36.0$, 26.6, 26.1, 24.9, 15.7, 11.2, 9.8, 9.7.

LRMS (EI), m / z (relative intensity): 368 ([M] ${ }^{+}, 1$), 237 (3), 209 (5), 189 (5), 180 (100), 99 (20).
HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S} 368.1657$, found 368.1650 (EI).

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-4H-pyran-4-one (38b).

(38b)
pale yellow foam, $\operatorname{TLC}_{f}=0.09$ (60% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3489,1653,1605 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.26\left(1 \mathrm{H}\right.$, ap $\left.\mathrm{t}, \mathrm{J}=5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 4.20-3.96\left(5 \mathrm{H}, \mathrm{m}, \mathrm{HO}, \mathrm{H}_{2} \mathrm{C}-2^{\prime \prime} . \mathrm{H}_{2} \mathrm{C}-3^{\prime \prime}\right), 3.26$ ($1 \mathrm{H}, \mathrm{dq}, J=5,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}$), 2.91 ($1 \mathrm{H}, \mathrm{dd}, J=2.5,14 \mathrm{~Hz}, \mathrm{HC}-7{ }^{\prime \prime}$), 2.76 ($1 \mathrm{H}, \mathrm{ddd}, J=3,8.5,13.5 \mathrm{~Hz}, \mathrm{HC}-9{ }^{\prime \prime}$),
2.73-2.65 (2H, m, HC-7', HC-9'), 2.62 ($2 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-2$), $2.16(1 \mathrm{H}, \mathrm{m}, J=3.5,9,13.5 \mathrm{~Hz}, \mathrm{HC}-$ $\left.10^{\prime \prime}\right)$, 2.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3$ or $\mathrm{H}_{3} \mathrm{CC}-5$), 1.99-1.92 (1H, m, HC-6'), 1.94 (3H, s, $\mathrm{H}_{3} \mathrm{CC}-3$ or $\mathrm{H}_{3} \mathrm{CC}-5$), 1.79 (1H, ddd, J = 3.5, 7, 13.5 Hz, HC-10' $), 1.27\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.2,165.1,164.6,118.6,118.1,110.6,73.4,64.8,64.1,46.5,38.4,34.7$, $30.2,26.9,25.0,11.5,11.0,9.8,9.8$.

LRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ (relative intensity): 369 ([M+1] ${ }^{+}, 99$), 209 (10), 189 (10), 180 (100), 99 (19).
HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H} 369.1736$, found 369.1728 ($\mathrm{Cl}, \mathrm{NH}_{3}$).

2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-4H-pyran-4-one (38c).

(38c)
pale yellow foam, $\mathrm{TLC} \mathrm{R}_{f}=0.09$ (60% ethyl acetate in hexane)

IR (DRIFT) $v_{\text {max }} 3489,1656,1606 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.11$ ($1 \mathrm{H}, \mathrm{ddd}, J=5.5,7,7 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}$), 4.04-3.95 (4H, m, H2C-2', HC-3'), 3.89 (1H, d, J = 5.5 Hz, HO), $3.34\left(1 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 2.84\left(1 \mathrm{H}, \mathrm{dd}, J=3,14 \mathrm{~Hz}, \mathrm{HC}-7{ }^{\prime}\right), 2.77(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.8,14 \mathrm{~Hz}, \mathrm{HC}-7^{\prime \prime}\right)$, 2.74-2.66 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-9^{\prime \prime}$), 2.61 ($2 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-2$), 2.23-2.16 (1H, m, HC-10'), $2.04\left(1 \mathrm{H}, \mathrm{ddd}, J=4,7,8 \mathrm{~Hz}, \mathrm{HC}-6^{\prime \prime}\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-5\right)$, $1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-5\right)$, 1.81$1.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-10^{\prime}\right)$, $1.29\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.0,165.0,164.5,119.4,118.1,111.0,76.0,64.4,64.0,45.2,39.9,35.1$, 31.1, 26.7, 25.0, 15.3, 11.5, 10.1, 9.7.

LRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ (relative intensity): 369 ([M+1] ${ }^{+}, 100$), 209 (6), 189 (10), 180 (94), 99 (19).
HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H} 369.1736$, found 369.1725 ($\mathrm{Cl}, \mathrm{NH}_{3}$).

2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-4H-pyran-4-one (38d).

(38d)
pale yellow foam, $\operatorname{TLC}_{f}=0.09$ (60% ethyl acetate in hexane)
IR (DRIFT) $v_{\max } 3416,1657,1605 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 4.15-3.97\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-2^{\prime \prime} . \mathrm{H}_{2} \mathrm{C}-3^{\prime \prime}\right), 3.19(1 \mathrm{H}, \mathrm{s}$, HO), 3.09 ($1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}$), 3.07 ($1 \mathrm{H}, \mathrm{dd}, J=12,13.5 \mathrm{~Hz}, \mathrm{HC}-7{ }^{\prime}$), 2.84 ($1 \mathrm{H}, \mathrm{ddd}, J=2.5,12.5$, $\left.13.5 \mathrm{~Hz}, \mathrm{HC}-99^{\prime \prime}\right), 2.65-2.55$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-2, \mathrm{HC}-7^{\prime \prime}$), 2.51 ($\left.1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=2.5,3.5,3.513 .5 \mathrm{~Hz}, \mathrm{HC}-9{ }^{\prime \prime}\right)$, 2.19$2.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-6{ }^{\prime}, \mathrm{HC}-10 \mathrm{C}\right)$, $1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-5\right), 1.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-5\right), 1.75(1 \mathrm{H}$, ddd, $\left.J=3.5,12.5,14 \mathrm{~Hz}, \mathrm{HC}-10^{\prime \prime}\right), 1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime}\right)$.
${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9,164.5,164.1,119.5,118.0,110.5,71.0,65.1,64.3,46.3,38.3,36.6$, 26.6, 25.2, 24.9, 14.6, 11.4, 9.8, 9.7.

LRMS (CI, NH_{3}), m/z (relative intensity): 369 ([M+1] ${ }^{+}, 100$), 189 (10), 180 (79), 99 (17).
HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H} 369.1736$, found $369.1727\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$.

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((R)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-

 4H-pyran-4-one (39a).
(39a)
From 39b. A solution of 39b ($12 \mathrm{mg}, 0.037 \mathrm{mmol}$) and imidazole ($28 \mathrm{mg}, 0.41 \mathrm{mmol}$) in CDCl_{3} (1 mL). After $4 \mathrm{~d},{ }^{1} \mathrm{H}$ NMR suggested the presence of a 1.6:1 equilibrium mixture of 39a and 39b, respectively. The mixture was diluted with ethyl acetate, washed with aq citric acid (0.1 M), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (70% ether in benzene; multiple development) to give $\mathbf{3 9 b}(4 \mathrm{mg} 33 \%)$ and the title compound ($5 \mathrm{mg} 42 \%$). From 38a. $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.50 \mathrm{M}$ in acetone; 0.60 mL ,
0.30 mmol) was added to a solution of 38 a ($32 \mathrm{mg}, 0.086 \mathrm{mmol}$) in acetone (0.6 mL) and the mixture was heated under reflux. After 1 h , the mixture was diluted with ethyl acetate, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by $\mathrm{FCC}(60 \%$ ethyl acetate in hexane) to give the title compound ($21 \mathrm{mg} 75 \%$).
amorphous white solid, $\operatorname{TLC} \mathrm{R}_{f}=0.44$ (90% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3385,2929,1706,1651,1590 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.55$ ($1 \mathrm{H}, \mathrm{ddd}, J=2.5,4,9 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}$), 3.07 ($1 \mathrm{H}, \mathrm{dd}, J=11.5,13.5 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}$), $3.05\left(1 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{HC}-2{ }^{\prime}\right), 2.96\left(1 \mathrm{H}, \mathrm{ddd}, J=3.5,11.5,13.5 \mathrm{~Hz}, \mathrm{HC}-6{ }^{\prime}\right), 2.89(1 \mathrm{H}, \mathrm{dddd}, J=2.5,5$, 4.5, 13.5 Hz, HC-6'), 2.83 (1H, ddd, J = 2.5, 4.5, 13.5 Hz, HC-2'), 2.73 (1H, ddd, J = 3,5, 4.5, 13.5 Hz, HC$\left.5^{\prime \prime}\right), 2.67$ (1H, m, J = 5, 11.5, 13.5 Hz, HC-5'), $2.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{HO}), 2.62-2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-2\right), 2.51$ ($\left.1 \mathrm{H}, \mathrm{ddd}, J=2.5,4.5,11.5 \mathrm{~Hz}, \mathrm{HC}-3^{\prime \prime}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.35\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-\right.$ $\left.3^{\prime}\right), 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta 211.3$ ($\mathrm{s}, \mathrm{C}-4{ }^{\prime \prime}$), 179.9 ($\mathrm{s}, \mathrm{C}-4$), 164.6 ($\mathrm{s}, \mathrm{C}-2$), 163.4 ($\mathrm{s}, \mathrm{C}-6$), 119.1 ($\mathrm{s}, \mathrm{C}-5$), 118.5 ($\mathrm{s}, \mathrm{C}-3$), 71.0 ($\mathrm{d}, \mathrm{C}-1^{\prime}$), 55.9 ($\mathrm{d}, \mathrm{C}-3^{\prime \prime}$), 45.0 (t, C-5"), 37.8 ($\mathrm{d}, \mathrm{C}-2^{\prime}$), 30.8 (t, C-6"), 30.3 (t, C-2"), 24.9 (t, $\mathrm{CH}_{2} \mathrm{C}-2$), 15.5 ($\mathrm{q}, \mathrm{C}-3$ '), 11.5 ($q, \mathrm{CH}_{3} \mathrm{CC}-2$), 10.0 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-5$), 9.8 ($q, \mathrm{CH}_{3} \mathrm{C}-3$).

LRMS (EI), m/z (relative intensity): 324 ([M] ${ }^{+}, 14$), 209 (11), 180 (100), 151 (6), 89 (6), 57 (14).

HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$: 324.1395 ; found: 324.1399 (EI).

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((S)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-4H-pyran-4-one (39b).

(39b)
From 38b. A solution of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(19 \mathrm{mg}, 0.070 \mathrm{mmol})$ and $38 \mathrm{~b}(7.3 \mathrm{mg}, 0.020 \mathrm{mmol})$ in acetone (0.60 mL) was heated under reflux for 0.75 h . The mixture was diluted with ethyl acetate, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (ethyl acetate) to give the title compound ($3 \mathrm{mg} 46 \%$). From 35. The "amine free" Li enolate of tetrahydro- $4 H$-thiopyran-4-one was prepared by reaction of the corresponding TMS enol ether ($157.5 \mathrm{mg}, 0.84 \mathrm{mmol}$) in ether (2 mL)
with $\mathrm{MeLi}(1.6 \mathrm{M}$ in ether; $0.45 \mathrm{~mL}, 0.72 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ to room temperature under argon, as previously described. ${ }^{8}$ After 1 h , THF (2 mL) was added to the lithium enolate suspension and the resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of pyrone aldehyde rac-11 ($104 \mathrm{mg}, 0.50 \mathrm{mmol}$) in THF (0.5 mL) was added via syringe and, after 5 min , the reaction was quenched by addition of a solution of $\mathrm{AcOH}(0.06$ $\mathrm{mL}, 1 \mathrm{mmol}$) in THF (0.20 mL). The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aq NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (60\% ethyl acetate in hexane) to give the title compound ($97 \mathrm{mg}, 60 \%$).
amorphorus white solid, $\mathrm{TLC}_{\mathrm{f}}=0.1$ (40\% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3399,1711,1650,1591 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.66\left(1 \mathrm{H}, \mathrm{ddd}, J=2.5,10,11.5 \mathrm{~Hz}, \mathrm{HC}-1{ }^{\prime}\right), 3.37\left(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right)$, $3.22\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,13.5 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}\right), 3.00(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}, \mathrm{HO}), 2.97(1 \mathrm{H}, \mathrm{ddd}, J=3,11.5,13.5 \mathrm{~Hz}, \mathrm{HC}-$ $\left.6^{\prime \prime}\right), 2.93-2.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-6^{\prime \prime}\right), 2.83$ (1H, ddd, $\left.J=2.5,4.5,13.5 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}\right), 2.69(1 \mathrm{H}, \mathrm{ddd}, J=3.5,4,13.5$ $\mathrm{Hz}, \mathrm{HC}-5^{\prime \prime}$), 2.56-2.66 (4H, m, H2CC-2, HC-3', HC-5' $)$), 1.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3$), 1.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5$), 1.36 (3 H , $\left.d, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3 '\right), 1.20\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta 212.9$ ($\mathrm{s}, \mathrm{C}-4{ }^{\prime \prime}$), 179.8 ($\mathrm{s}, \mathrm{C}-4$), 164.5 ($\mathrm{s}, \mathrm{C}-2$), 163.7 ($\mathrm{s}, \mathrm{C}-6$), 119.2 ($\mathrm{s}, \mathrm{C}-5$), 118.4 ($\mathrm{s}, \mathrm{C}-3$), 76.5 (d, C-1'), 55.1 (d, C-3'), 45.7 (t, C-5'), 40.4 (d, C-2'), 35.7 (t, C-2'), 31.4 (t, C-6'), 24.9 (t, $\mathrm{CH}_{2} \mathrm{C}-2$), 15.2 ($q, \mathrm{C}-3^{\prime}$), 11.5 ($q, \mathrm{CH}_{3} \mathrm{CC}-2$), 9.72 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 9.70 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$).

LRMS (EI), m/z (relative intensity): 324 ([M] ${ }^{+}, 3$), 235 (1), 208 (7), 180 (100), 149 (10), 89 (8), 57 (14). HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$: 324.1395 ; found: 324.1394 (EI).

2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((R)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-4H-pyran-4-one (39c).

(39c)
From 39d. A solution of 39d ($33.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) and imidazole ($163 \mathrm{mg}, 2.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.4 \mathrm{~mL})$ was allowed to stand at room temperature in a stoppered flask. After 2 days, the mixture was diluted with aq citric acid (0.1 M) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product as a $2: 1$ mixture of 39 d and $\mathbf{3 9}$ c, respectively (by ${ }^{1} \mathrm{H} N \mathrm{NR}$). The crude was fractionated by PTLC (70% ether in benzene; multiple developments) to give 39d ($3 \mathrm{mg} 9 \%$), a 9:1 mixture of $\mathbf{3 9 d}$ and $\mathbf{3 9 c}$ ($19 \mathrm{mg}, 57 \%$), respectively, and the title compound (5 mg 15\%).
amorphous white solid, $\mathrm{TLC} \mathrm{R}_{f}=0.1$ (50% ethyl acetate in hexane)
IR (DRIFT) $v_{\max } 3389,1709,1655,1589 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.78(1 \mathrm{H}, \mathrm{ddd}, J=2.5,8.5,10.5 \mathrm{~Hz}, \mathrm{HC}-1 '), 3.42\left(1 \mathrm{H}, \mathrm{dq}, J=8.5,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right)$, $3.21\left(1 \mathrm{H}, \mathrm{ap} \mathrm{dd}, J=11.5,15 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}\right), 3.02(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{HO}), 3.06-2.93\left(4 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2^{\prime \prime}, \mathrm{HC}-3^{\prime \prime}\right.$, $\mathrm{H}_{2} \mathrm{C}-6^{\prime \prime}$), 2.79-2.74 (2H, m, $\mathrm{H}_{2} \mathrm{C}-5^{\prime \prime}$), 2.65-2,57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-2$), 2.00 (3, s, $\mathrm{H}_{3} \mathrm{CC}-5$), 1.94 (3, s, $\mathrm{H}_{3} \mathrm{CC}-3$), 1.22 (3, t, J = 7.5 Hz, H3CC-2), 1.20 (3, d, J = $7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.3$ (s, C-4'), 180.0 (s, C-4), 164.4 (s, C-2), 163.6 (s, C-6), 119.8 (s, C-5), 118.2 (s, C-3), 76.7 (d, C-1'), 54.5 (d, C-3'), 45.8 (t, C-5'), 39.7 (d, C-2'), 35.7 (t, C-2'), 31.4 (t, C-6'), 25.0 (t, CH ${ }_{2} \mathrm{C}-2$), 15.6 ($q, \mathrm{C}-3$ '), 11.5 ($q, \mathrm{CH}_{3} \mathrm{CC}-2$), 10.0 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-5$), 9.7 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$).

LRMS (EI), m/z (relative intensity): 324 ([M] ${ }^{+}, 2$), 208 (14), 180 (100), 116 (12).

HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$: 324.1395 ; found: 324.1402 (EI).

2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((S)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-4H-pyran-4-one (39d).

(39d)
A solution of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(102 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $38 \mathrm{~d}(39 \mathrm{mg}, 0.11 \mathrm{mmol})$ in acetone $(1.6 \mathrm{~mL})$ was heated under reflux for 1 h . The mixture was diluted with EtOAc, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (ethyl acetate) to give the title compound ($24 \mathrm{mg} 68 \%$). amorphorus white solid, $\operatorname{TLC~}_{f}=0.47$ (ethyl acetate)

IR (DRIFT) $v_{\text {max }} 3385,1706,1653,1591 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.40\left(1 \mathrm{H}, \mathrm{ddd}, J=3.5,4.5,9 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 3.13\left(1 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 3.10$ $\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,13.5 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}\right), 3.00\left(1 \mathrm{H}, \mathrm{ap} \mathrm{dt}, J=4.5,13.5 \mathrm{~Hz}, \mathrm{HC}-6{ }^{\prime \prime}\right), 2.99(1 \mathrm{H}, \mathrm{dd}, J=4.5,13.5 \mathrm{~Hz}$, HC-2"), 2.96-2.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{HC}-6{ }^{\prime \prime}$), 2.83 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3.5,4.5,11.5 \mathrm{~Hz}, \mathrm{HC}-3^{\prime \prime}$), 2.79-2.70 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{C}-5^{\prime \prime}$), 2.65-2.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3} \mathrm{CC}-2$), $2.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{HO}), 1.92\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.20(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $\left.\mathrm{H}_{3} \mathrm{CCC}-2\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime}\right)$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.2$ ($\mathrm{s}, \mathrm{C}-4 \mathrm{4}$), 179.9 ($\mathrm{s}, \mathrm{C}-4$), 164.3 ($\mathrm{s}, \mathrm{C}-2$), 163.7 ($\mathrm{s}, \mathrm{C}-6$), 119.8 ($\mathrm{s}, \mathrm{C}-5$), 118.2 (s, C-3), 71.1 (d, C-1'), 55.2 (d, C-3"), 45.1 (t, C-5"), 37.5 (d, C-2'), 30.7 (t, C-6"), 29.7 (t, C-2"), 25.0 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-2$), 14.7 ($\mathrm{q}, \mathrm{C}-3^{\prime}$), 11.5 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2$), 9.9 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 9.7 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$).

LRMS (EI), m / z (relative intensity): 324 ([M] ${ }^{+}, 7$), 208 (12), 180 (100), 151 (6), 116 (9), 89 (6), 57 (9).
HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$: 324.1395 ; found: 324.1394 (EI).

2-((S)-rel-1-((4S,4aR,8aR)-2,2-Dimethylhexahydrothiopyrano[4,3-d][1,3]dioxin-4-yl)ethyl)-6-ethyl-3,5-dimethyl-4H-pyran-4-one (40).

(40)
$p-\mathrm{TsOH}(14 \mathrm{mg}, 0.074 \mathrm{mmol})$ was added to a stirred solution of $71(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ and 2,2dimethoxypropane ($0.10 \mathrm{~mL}, 0.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at ambient temperature. After 15 min (reaction complete by TLC analysis), the mixture was diluted with ethyl acetate, washed sequentially with saturated aq NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (60% ethyl acetate in hexane) to give the title compound ($30 \mathrm{mg}, 68 \%$) that was homogeneous by ${ }^{1} \mathrm{H}$ NMR.
amorphous white solid, $\operatorname{TLC}_{f}=0.53$ (ethyl acetate)
IR (DRIFT) $v_{\text {max }} 1655,1601 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72\left(1 \mathrm{H}, \mathrm{dd}, J=4,10 \mathrm{~Hz}, \mathrm{HC}-4{ }^{\prime \prime}\right), 3.51(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3.5,10.5,10.5 \mathrm{~Hz}, \mathrm{HC}-$ $\left.8^{\prime \prime} \mathrm{a}\right), 3.17\left(1 \mathrm{H}, \mathrm{dq}, J=4,7 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 2.82\left(1 \mathrm{H}, \mathrm{ddd}, J=2.5,12.5,14 \mathrm{~Hz}, \mathrm{HC}-7{ }^{\prime \prime}\right), 2.55-2.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-\right.$ $\left.6, ~ H C-7{ }^{\prime \prime}\right), 2.44\left(1 \mathrm{H}, \mathrm{ddd}, J=2.5,3,13.5 \mathrm{~Hz}, \mathrm{HC}-5^{\prime \prime} \mathrm{x}\right), 2.36\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,13.5 \mathrm{~Hz}, \mathrm{HC}-5^{\prime \prime} \mathrm{y}\right), 2.09(1 \mathrm{H}$,
dddd, J = 2.5, 3, 3.5, $13 \mathrm{~Hz}, \mathrm{HC}-8^{\prime \prime}$), 1.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3$), 1.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5$), 1.85-1.73 (2H, m, HC-8', HC-4a), $\left.1.34\left(6 \mathrm{H}, \mathrm{ap} \mathrm{s,} \mathrm{(} \mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{C}-2^{\prime \prime}\right), 1.27\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-2^{\prime}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta 180.1$ ($\mathrm{s}, \mathrm{C}-4$), 164.6 (s, C-2), 164.5 ($\mathrm{s}, \mathrm{C}-6$), 118.12 ($\mathrm{s}, \mathrm{C}-3$ or $\mathrm{C}-5$), 118.08 (s , C-3 or C-5), 98.6 (s, C-2'), 74.0 (d, C-4'), 72.8 (d, C-8a), 45.2 (d, C-4a), 37.5 (d, C-1'), 34.2 (t, C-8'), 30.1 ($q, \mathrm{CH}_{3} \mathrm{C}-2^{\prime \prime}$), 27.79 ($\mathrm{t}, \mathrm{C}-5^{\prime \prime}$ or $\mathrm{C}-7^{\prime \prime}$), 27.73 (t, C-5" or $\mathrm{C}-7^{\prime \prime}$), 24.9 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-6$), 19.7 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2^{\prime \prime}$), 11.6 (q, C2'), 11.4 ($q, \mathrm{CH}_{3} \mathrm{CC}-6$), 9.76 ($q, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 9.74 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$).

LRMS ($\mathrm{Cl}, \mathrm{NH}_{3}$), m/z (relative intensity): 367 ([M+1] ${ }^{+}, 100$), 351 (5), 180 (72), 129 (9), 101 (7).
HRMS m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}+\mathrm{H}: 367.1943$; found: $367.1935\left(\mathrm{Ci}, \mathrm{NH}_{3}\right)$.

2-((S)-rel-1-((4R,4aS,8aS)-2,2-Dimethylhexahydrothiopyrano[4,3-d][1,3]dioxin-4-yl)ethyl)-6-ethyl-3,5-dimethyl-4H-pyran-4-one (41).

(41)

Water ($35 \mu \mathrm{~L}, 35 \mathrm{mg}, 1.94 \mathrm{mmol}$) was added to a stirrred suspension of tetrahydro-4H-thiopyran-4-one (35) ($168 \mathrm{mg}, 1.45 \mathrm{mmol}$) and L-proline ($15 \mathrm{mg}, 0.13 \mathrm{mmol}$) in DMSO (0.30 mL) under argon at room temperature. After 2 h , the suspension was transferred via syringe to a vial containing aldehyde rac-11 (46 mg, 0.22 mmol$)$. After stirring for 5 days, the mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and fractionated by FCC (5$100 \%$ ethyl acetate in hexane) to provide a $6.2: 1$ mixture of 39 b and 39 a , respectively (28 mg ; ca. 34% $\%$), and a 3.2:1 mixture of 39c and 39a, respectively (8 mg ; ca. \%). The latter fraction was dissolved in ethanol (0.44 mL) and $\mathrm{NaBH}_{4}(6.6 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added to the stirred solution at room temperature. After 15 min , the reaction was quenched by slow addition of 10% aq HCl until effervescence ceased and then the mixture was basified by addition of aq $\mathrm{NaOH}(3 \mathrm{M}$). After stirring for 30 min , the mixture was diluted with brine and extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and the resulting crude product was fractionated by PTLC (ethyl acetate) to provide a mixture of diols $(7 \mathrm{mg})$. Without further purification, the mixure was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.37 \mathrm{~mL})$ and 2,2-dimethoxypropane ($15 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) and p - $\mathrm{TsOH}(6 \mathrm{mg}, 0.03 \mathrm{mmol})$ were added to the stirred solution. After 20 min , the mixture was diluted with ethyl acetate and washed
sequentially with saturated aq NaHCO_{3}, water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by PTLC (40\% ethyl acetate in hexane, multiple developments) to give the title compound as an amorphous white solid ($2.5 \mathrm{mg}, 3 \%$ over 3 steps).
amorphous white solid, $\operatorname{TLC}_{f}=0.64$ (ethyl acetate)
IR (DRIFT) $v_{\text {max }} 1654,1606 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 3.67(1 \mathrm{H}, \mathrm{dd}, J=3,10.5 \mathrm{~Hz}, \mathrm{HC}-4$ " $)$, $3.49(1 \mathrm{H}, \mathrm{ddd}, J=3.5,10.5,11 \mathrm{~Hz}, \mathrm{HC}-$ $8 \mathrm{a}), 3.18\left(1 \mathrm{H}, \mathrm{dq}, J=3,7 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 2.80\left(1 \mathrm{H}, \mathrm{ddd}, J=3,12.5,14 \mathrm{~Hz}, \mathrm{HC}-7^{\prime \prime}\right), 2.63-2.56\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-6\right.$, HC-7'), 2.43 ($1 \mathrm{H}, \mathrm{ddd}, J=2.5,3,13.5 \mathrm{~Hz}, \mathrm{HC}-5^{\prime \prime}$), 2.31 ($1 \mathrm{H}, \mathrm{dd}, J=11.5,13.5 \mathrm{~Hz}, \mathrm{HC}-5^{\prime \prime}$), 2.06 (1H, dddd, J $\left.=3,3.5,3.5,13 \mathrm{~Hz}, \mathrm{HC}-8^{\prime \prime} \mathrm{x}\right), 1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.71$ (1H, dddd, J = 3.5, 11, 12.5,
 $\left.2^{\prime \prime}\right), 1.32\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-2^{\prime}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta 180.1$ (s, C-4), 164.7 ($\mathrm{s}, \mathrm{C}-6$), 163.0 (s, C-2), 120.0 ($\mathrm{s}, \mathrm{C}-3$), 118.1 (s, C-5), 98.8
 (t, C-5"), 27.8 (t, C-7'), 25.0 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-6$), 19.5 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2$ "), 14.3 ($\mathrm{q}, \mathrm{C}-2$ '), 11.6 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CC}-6$), 10.3 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-$ 3), $9.8\left(q, \mathrm{CH}_{3} \mathrm{C}-5\right)$.

LRMS (CI, NH_{3}), m/z (relative intensity): 367 ([M+1] ${ }^{+}, 100$), 180 (73), 129 (9), 101 (8).
HRMS m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~S}: 366.1865$; found: 366.1856 (EI).

2-Ethyl-6-((2S,3S,4R)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42a).

(42a)
According to general procedure for desulfurization, reaction of 39 a ($183 \mathrm{mg}, 0.56 \mathrm{mmol}$) with Raney nickel (W2) in ethanol for 20 min followed by work up gave the title compound ($72 \mathrm{mg}, 44 \%$) that was homogeneous by ${ }^{1} \mathrm{H}$ NMR.
amorphous white solid, $\operatorname{TLC}_{f}=0.3$ (40% ethyl acetate in hexane)
IR (DRIFT) $\nu_{\text {max }} 3397,1712,1653,1592 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.18\left(1 \mathrm{H}, \mathrm{ddd}, J=2,2.5,9.5 \mathrm{~Hz}, \mathrm{HC}-3^{\prime}\right), 3.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{HO}), 3.00(1 \mathrm{H}$, $\left.\mathrm{dq}, J=9.5,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 2.57\left(2 \mathrm{H}, \mathrm{apq}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}-2\right), 2.49\left(1 \mathrm{H}, \mathrm{dq}, J=18,7 \mathrm{~Hz}, \mathrm{HC}-6{ }^{\prime}\right), 2.33(1 \mathrm{H}, \mathrm{dq}, J$ $\left.=18,7 \mathrm{~Hz}, \mathrm{HC}-6^{\prime}\right), 2.32\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=2,7 \mathrm{~Hz}, \mathrm{HC}-4^{\prime}\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right), 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-2\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4^{\prime}\right), 0.99\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-\mathrm{7}^{\prime}\right)$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.3$ ($\mathrm{s}, \mathrm{C}-5 \mathrm{~s}$), 180.0 ($\mathrm{s}, \mathrm{C}-4$), 164.6 ($\mathrm{s}, \mathrm{C}-2$), 163.9 ($\mathrm{s}, \mathrm{C}-6$), 119.0 ($\mathrm{s}, \mathrm{C}-5$), 118.3 (s, C-3), 72.4 (d, C-3'), 47.6 (d, C-4'), 38.8 (d, C-2'), 34.8 (t, C-6'), 24.9 (t, CH2C-2), 15.7 ($q, C-1$ '), 11.6 ($q, \mathrm{CH}_{3} \mathrm{CC}-2$), 10.0 ($q, \mathrm{CH}_{3} \mathrm{C}-4$ '), 9.9 ($q, \mathrm{CH}_{3} \mathrm{C}-5$), 9.7 ($q, \mathrm{CH}_{3} \mathrm{C}-3$), 7.8 ($\left.q, \mathrm{C}-7^{\prime}\right)$.

LRMS (EI), m / z (relative intensity): 294 ([M] ${ }^{+}, 1$), 237 (4), 209 (9), 180 (100), 57 (15).
HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$: 294.1831; found: 294.1820 (EI).

2-Ethyl-6-((2S,3S,4S)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42b).

(42b)
According to general procedure for desulfurization, reaction of $\mathbf{3 9 b}(61 \mathrm{mg}, 0.019 \mathrm{mmol}$) with Raney nickel (W2) in ethanol for 20 min gave the title compound ($33 \mathrm{mg}, 59 \%$) after work up and fractionation of the crude by FCC (60% ethyl acetate hexane).
amorphous white solid, TLC $=0.3$ (40% ethyl acetate in hexanes)
IR (DRIFT) $v_{\text {max }} 3375,1700,1652,1591 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68\left(1 \mathrm{H}, \mathrm{ddd}, J=3.5,8.5,10 \mathrm{~Hz}, \mathrm{HC}-3^{\prime}\right), 3.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{HO}), 3.04(1 \mathrm{H}$, $\left.\mathrm{dq}, J=8.5,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 2.58\left(2 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-2\right), 2.47\left(1 \mathrm{H}, \mathrm{dq}, J=3.5,7 \mathrm{~Hz}, \mathrm{HC}-4^{\prime}\right), 2.47(1 \mathrm{H}$, $\left.\mathrm{dq}, J=7,18.5 \mathrm{~Hz}, \mathrm{HC}-6^{\prime}\right), 2.21\left(1 \mathrm{H}, \mathrm{dq}, J=7,18.5 \mathrm{~Hz}, \mathrm{HC}-6^{\prime}\right), 1.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right)$, $1.32\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1\right.$ '), $1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right.$ '), $1.18\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right), 0.95(3 \mathrm{H}, \mathrm{t}$, $\left.J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-7^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 218.0\left(\mathrm{~s}, \mathrm{C}-5{ }^{\prime}\right), 179.8(\mathrm{~s}, \mathrm{C}-4), 164.53$ ($\mathrm{s}, \mathrm{C}-2$ or $\mathrm{C}-6$), 164.50 ($\mathrm{s}, \mathrm{C}-2$ or $\mathrm{C}-6$),

(q, $\mathrm{CH}_{3} \mathrm{C}-4^{\prime}$), 15.2 ($q, \mathrm{C}^{\prime} \mathbf{1}^{\prime}$), 11.5 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CC}-2$), 9.67 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 9.65 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 7.4 ($\mathrm{q}, \mathrm{C}-\mathrm{T}^{\prime}$).

LRMS (CI, NH_{3}), m / z (relative intensity): 295 ($[\mathrm{M}+1]^{+}, 48$), 209 (100), 180 (36).
HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{H}$: 295.1909; found: $295.1906\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$.

2-Ethyl-6-((2S,3R,4R)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42c).

(42c)
According to general procedure for desulfurization, reaction of $39 \mathrm{c}(3 \mathrm{mg}, 0.009 \mathrm{mmol})$ with Raney nickel (W2) in ethanol for 20 min gave the title compound ($2 \mathrm{mg}, 80 \%$) after work up and fractionation of the crude by PTLC (80% ethyl acetate hexane).
amorphous white solid, $\operatorname{TLC} \mathrm{R}_{f}=0.2$ (50% ethyl acetate in hexane)
IR (DRIFT) $v_{\max } 3378,1698,1654,1591 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.74(1 \mathrm{H}, \mathrm{ddd}, J=4,7.5,10 \mathrm{~Hz}, \mathrm{HC}-3 \mathrm{l}), 3.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{HO}), 3.12(1 \mathrm{H}$, $\left.\mathrm{dq}, J=7.5,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 2.78\left(1 \mathrm{H}, \mathrm{dq}, J=4,7 \mathrm{~Hz}, \mathrm{HC}-4{ }^{\prime}\right), 2.65-2.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-2, \mathrm{HC}-6\right.$ '), $2.40(1 \mathrm{H}, \mathrm{dq}, J$ $=18.5,7 \mathrm{~Hz}, \mathrm{HC}-6$ '), $\left.1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right)^{\prime}\right), 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right), 1.23\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-7^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.3$ ($\mathrm{s}, \mathrm{C}-5^{\prime}$), 179.9 ($\mathrm{s}, \mathrm{C}-4$), 164.5 ($\mathrm{s}, \mathrm{C}-2$), 164.1 ($\mathrm{s}, \mathrm{C}-6$), 119.5 ($\mathrm{s}, \mathrm{C}-5$), 118.2 (s, C-3), 77.6 (d, C-3'), 47.0 (d, C-4'), 40.0 (d, C-2'), 36.2 (t, C-6'), 25.0 (t, CH ${ }_{2} \mathrm{C}-2$), 15.9 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$ '), 15.5 ($q, C-1$ '), 11.5 ($q, \mathrm{CH}_{3} \mathrm{CC}-2$), 10.1 ($q, \mathrm{CH}_{3} \mathrm{C}-5$), 9.7 ($q, \mathrm{CH}_{3} \mathrm{C}-3$), 7.5 ($q, \mathrm{C}-7{ }^{\prime}$).

LRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ (relative intensity): 295 ([$\left.\mathrm{M}+1\right]^{+}, 34$), 277 (5), 209 (100), 180 (29), 151 (5).
HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{H}$: 295.1909; found: $295.1907\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$.

2-Ethyl-6-((2S,3R,4S)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42d).

(42d)
According to general procedure for desulfurization, reaction of $39 \mathrm{~d}(24 \mathrm{mg}, 0.074 \mathrm{mmol})$ with Raney nickel (W2) in ethanol for 20 min gave the title compound ($14 \mathrm{mg}, 64 \%$) after work up and fractionation of the crude by PTLC (80% ethyl acetate hexane).
amorphous white solid, $\mathrm{TLC}_{\mathrm{f}}=0.30$ (80% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3374,1713,1654,1591 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.20\left(1 \mathrm{H}, \mathrm{ddd}, J=2.5,3.5,9 \mathrm{~Hz}, \mathrm{HC}-3^{\prime}\right), 3.08\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=9,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 2.95$ $(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, \mathrm{HO}), 2.71\left(1 \mathrm{H}, \mathrm{dq}, J=2.5,7 \mathrm{~Hz}, \mathrm{HC}-\mathrm{C}^{\prime}\right), 2.68-2.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-2, \mathrm{HC}-6\right.$ '), $2.49(1 \mathrm{H}, \mathrm{dq}, J$ $\left.=18,7 \mathrm{~Hz}, \mathrm{HC}-6{ }^{\prime}\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4^{\prime}\right), 1.20(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-2\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right), 1.06\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-\mathrm{T}^{\prime}\right)$.
${ }^{13} \mathrm{C}^{2}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.3$ ($\mathrm{s}, \mathrm{C}-5^{\prime}$), 179.9 ($\mathrm{s}, \mathrm{C}-4$), 164.3 ($\mathrm{s}, \mathrm{C}-2$), 164.1 (s, C-6), 119.7 ($\mathrm{s}, \mathrm{C}-5$), 118.1 (s, C-3), 72.5 (d, C-3'), 46.8 (d, C-4'), 38.2 (d, C-2'), 34.9 (t, C-6'), 25.0 (t, CH ${ }_{2} \mathrm{C}-2$), 14.7 ($\mathrm{q}, \mathrm{C}-1$ '), 11.6 ($q, \mathrm{CH}_{3} \mathrm{CC}-2$), 9.8 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), $9.7\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3\right.$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 9.3 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$ '), $7.8\left(\mathrm{q}, \mathrm{C}-7^{\prime}\right)$.

LRMS (EI), m / z (relative intensity): 294 ([M] $]^{+}, 2$), 279 (1), 237 (5), 209 (7), 208 (6), 180 (100), 57 (27).
HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$: 294.1831; found: 294.1821 (EI).

(S)-3-((S)-2-Methyl-1-((triethylsilyl)oxy)propyl)dihydro-2H-thiopyran-4(3H)-one (44).

(44)

TESOTf ($1.5 \mathrm{~mL}, 6.7 \mathrm{mmol}$) and 2,6-lutidine ($0.89 \mathrm{~mL}, 7.7 \mathrm{mmol}$) were added sequentially to a stirred solution of aldol $43(1.027 \mathrm{~g}, 5.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 10 min , the reaction was quenched by addition of 10% aq HCl . The mixture was diluted with ethyl acetate, washed sequentially with 10% aq HCl , water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue
was filtered through a plug of silica (ca. 15 g) eluting with 5% ethyl acetate in hexane to give the title compound (1.545 g, 94 \%).
colorless liquid, $\operatorname{TLCR}_{f}=0.39$ (5% ethyl acetate in hexane), $[\alpha]_{\mathrm{D}}-99\left(c 5.2, \mathrm{CHCl}_{3}\right)$ IR (DRIFT) $v_{\text {max }} 1712 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.20\left(1 \mathrm{H}, \mathrm{dd}, J=4,6 \mathrm{~Hz}, \mathrm{HC}-1\right.$ '), 2.98-2.88(3H, m, HC-2, $\left.\mathrm{H}_{2} \mathrm{C}-6\right)$, 2.83-2.73 (3H, m, HC-2, HC-3, HC-5), $2.66(1 \mathrm{H}, \mathrm{ap} \mathrm{ddd}, J=5.5,8.5,14 \mathrm{~Hz}, \mathrm{HC}-5), 1.71(1 \mathrm{H}, \mathrm{dqq}, J=4,6.5,6.5 \mathrm{~Hz}$, $\left.\mathrm{HC}-2^{\prime}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3 '\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime}\right)$, $0.59\left(6 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 209.1$ (s, C-4), 74.9 (d, C-1'), 58.7 (d, C-3), 44.0 ($\mathrm{t}, \mathrm{C}-5$), 31.6 (t, C-2), 30.9 (d, C-2'), 30.5 (t, C-6), 20.6 ($q, C-3$ '), $17.0(q, C-3 '), 7.2\left(q \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 5.5(\mathrm{t} \times 3, \mathrm{CH} 2 \mathrm{Si})$.

LRMS (EI), m/z (relative intensity): 302 ([M] ${ }^{+}, 2$), 273 (100), 239 (21), 201 (39), 182 (29), 171 (31), 153 (30), 115 (34), 100 (52), 57 (84).

HRMS m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{SiS} 302.1736$, found 302.1730 (EI).

(3S,5S)-3-((S)-1-Hydroxy-2-methylpropyl)-5-((S)-2-methyl-1-((triethylsilyl)oxy)propyl)dihydro-2H-thiopyran-4(3H)-one (45).

This procedure was performed with Schlenk technique and under Ar using freshly distilled $\mathrm{Et}_{2} \mathrm{O}$ that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. Ketone 44 was dried by concentration from benzene solution immediately prior to use. (c-Hex) ${ }_{2} \mathrm{BCl}$ (1.0 M in hexane; $0.18 \mathrm{~mL}, 0.18 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.030 \mathrm{~mL}, 22 \mathrm{mg}, 0.22 \mathrm{mmol})$ were added to a stirred solution of 44 (37 $\mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 20 min , the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $i-\mathrm{PrCHO}$ ($0.045 \mathrm{~mL}, 35 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added. After 20 min , the reaction was quenched by sequential addition of phosphate buffer ($\mathrm{pH}=7$; 1 mL), $\mathrm{MeOH}(1 \mathrm{~mL})$ and 30% aq $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{~mL})$ with vigorous stirring. After stirring at $0{ }^{\circ} \mathrm{C}$ for 15 min , aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (10\% ethyl acetate in hexane) to give the title compound ($35 \mathrm{mg}, 78 \%$).
colorless oil, TLC $_{f}=0.40$ (10\% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3537,1699 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.13(1 \mathrm{H}, \mathrm{dd}, J=5,5 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{ddd}, J=5,5,7 \mathrm{~Hz}), 3.00-2.83(6 \mathrm{H}, \mathrm{m})$, 2.75-2.67 (1H, m), 1.84-1.74 (2H, m), 1.01 (3H, d, J = 7 Hz), $0.96\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSix} 3\right), 0.914(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7 \mathrm{~Hz}), 0.905(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 0.63\left(6 \mathrm{H}, \mathrm{ap} \mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} x 3\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 213.5,77.1,75.9,57.4,52.5,31.9,30.5,30.2,29.8,20.3,19.8,18.1,15.6$, 7.3, 5.6.

LRMS (CI, NH_{3}), m / z (relative intensity): 375 ([M+1] ${ }^{+}, 85$), 303 (74), 273 (100), 243 (33), 201 (55), 187 (86).

HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SSi}+\mathrm{H} 375.2389$, found $375.2378\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$.

(3S,5S)-3,5-Bis-((S)-1-Hydroxy-2-methylpropyl)dihydro-2H-thiopyran-4(3H)-one (46).

(46)

Aqueous HF ($10 \%(\mathrm{w} / \mathrm{w}) ; 0.10 \mathrm{~mL})$ was added to a stirred solution of 45 ($91 \mathrm{mg}, 0.24 \mathrm{mmol}$) in MeCN (2.4 mL) at room temperature. After 25 min , the reaction was quenched by addition of saturated aq NaHCO_{3} and the resulting mixutre was diluted with EtOAc. The organic phase was sequentially washed with water and brine, and the combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the titled compound (58 mg , 93\%).
colorless oil, TLC $_{\text {R }}=0.19$ (20% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3451,1699 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5,6.5 \mathrm{~Hz}), 3.00-2.80(6 \mathrm{H}, \mathrm{m}), 2.65(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.82(2 \mathrm{H}, \mathrm{dqq}, J$ $=5,7,7 \mathrm{~Hz}), 0.98(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 0.89(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.7,76.5,54.4,33.4,30.4,20.1,16.7$.

LRMS (EI), m / z (relative intensity): 260 ([M] ${ }^{+}, 20$), 242 (13), 217 (26), 199 (26), 187 (26), 170 (21), 145 (100).

HRMS m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S} 260.1446$, found 260.1449 (EI).

(3S,5S)-3,5-Bis((S)-1-Hydroxy-2-methylpropyl)tetrahydro-2H-thiopyran-4-ol (47).

(47)

Sodium borohydride ($18 \mathrm{mg}, 0.48 \mathrm{mmol}$) was added to a stirred solution of $46(56 \mathrm{mg}, 0.22$ mmol) in $\mathrm{EtOH}(2.2 \mathrm{~mL})$ at room temperature. After 20 min , aq $\mathrm{NaOH}(1.0 \mathrm{M} ; 3 \mathrm{~mL}, 3 \mathrm{mmol})$ was added and after 25 min , the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by $\mathrm{FCC}(40 \%$ ethyl acetate in hexane then 20% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound (58 mg , quantitative).
white foam, $\mathrm{TLC} \mathrm{R}_{f}=0.44$ (70% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3362 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.31(1 \mathrm{H}, \mathrm{brd}, J=3.5 \mathrm{~Hz}), 4.18(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.84(1 \mathrm{H}, \mathrm{dd}, J=2,9.5 \mathrm{~Hz}), 3.69$ $(1 \mathrm{H}, \mathrm{dd}, J=3.5,8 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{brd}, J=13 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=10.5,13 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{brd}, J=13.5 \mathrm{~Hz})$, $2.15(1 \mathrm{H}, \mathrm{dd}, J=5,13.5 \mathrm{~Hz}), 2.16-2.07(1 \mathrm{H}, \mathrm{m}), 2.02-1.95(1 \mathrm{H}, \mathrm{m}), 1.90-1.75(2 \mathrm{H}, \mathrm{m}), 1.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7$ $\mathrm{Hz}), 0.98(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 0.84(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$.
$\left.{ }^{13} \mathrm{CNMR}^{(125 ~ M H z}, \mathrm{CDCl}_{3}\right) \delta 76.7,75.8,69.8$ (br), 43.6, 40.0, 29.6, 28.9, 26.4, 25.8, 20.4, 20.2, 15.3, 14.0.
LRMS (EI), m / z (relative intensity): 262 ([M] ${ }^{+}, 64$), 244 (11), 219 (36), 201 (52), 183 (62).
HRMS m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S} 262.1603$, found 262.1593 (EI).

2-Ethyl-6-((1S,2S)-1-hydroxy-1-((3S,5S)-5-((S)-2-methyl-1-(triethylsilyloxy)propyl)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-4H-pyran-4-one (49).

(49)

This procedure was performed with Schlenk technique and under Ar using freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. Ketone 44 was dried by concentration from benzene solution immediately prior to use. ($c-\mathrm{Hex})_{2} \mathrm{BCl}(1.0 \mathrm{M}$ in hexane; $0.96 \mathrm{~mL}, 0.96 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.16 \mathrm{~mL}, 120 \mathrm{mg}, 1.2 \mathrm{mmol})$ were added to a stirred solution of $44(210 \mathrm{mg}, 0.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 20 min , the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of rac-11 ($432 \mathrm{mg}, 2.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added. After 20 min , the reaction was quenched by sequential addition of phosphate buffer ($\mathrm{pH}=7 ; 4 \mathrm{~mL}$), $\mathrm{MeOH}(4 \mathrm{~mL})$ and $30 \% \mathrm{aq}_{2} \mathrm{H}_{2}$ (2 mL) with vigorous stirring. After stirring at $0{ }^{\circ} \mathrm{C}$ for 15 min , sat. aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (40% ethyl acetate in hexane) to give a mixture of aldol adducts and cyclohexanol (329 mg). The cyclohexanol was removed by evaporation ($60^{\circ} \mathrm{C} @ 0.1$ torr) to give the aldol adducts (305 mg). A portion of the mixture (28 mg) was further fractionated by FCC (50% ethyl acetate in hexane) to give the titled compound ($21 \mathrm{mg}, 64 \%$).
white waxy solid, $\mathrm{TLC}_{\mathrm{f}}=0.32\left(35 \% \mathrm{Et}_{2} \mathrm{O}\right.$ in benzene), $[\alpha]_{\mathrm{D}}-38\left(c 0.20, \mathrm{CHCl}_{3}\right)$ IR (DRIFT) $v_{\text {max }} 3377,1713,1653,1594 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.08\left(1 \mathrm{H}, \mathrm{dd}, J=4.5,7.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 4.05\left(1 \mathrm{H}, \mathrm{ap} \mathrm{dd}, J=3,6 \mathrm{~Hz}, \mathrm{HC}-1^{\prime \prime}{ }^{\prime}\right), 3.25$ ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.5,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}$), 2.97 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5,13 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}$), 2.92-2.82 ($4 \mathrm{H}, \mathrm{m}, \mathrm{HC}-2^{\prime \prime}, \mathrm{HC}^{\prime \prime} \mathrm{S}^{\prime}, \mathrm{H}_{2} \mathrm{C}-6^{\prime \prime}$), $2.76(1 \mathrm{H}, \mathrm{ddd}, J=4.5,5.5,9 \mathrm{~Hz}, \mathrm{HC}-3 \mathrm{C}), 2.60\left(2 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-2\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-5\right)$, 1.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3$ or $\mathrm{H}_{3} \mathrm{CC}-5$), 1.65 ($1 \mathrm{H}, \mathrm{dqq}, \mathrm{J}=6,6.5,7 \mathrm{~Hz}, \mathrm{HC}-2{ }^{\prime \prime}$), 1.29 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3$ '), 1.20 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right), 0.94\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3{ }^{\prime} \mathrm{C}\right), 0.78(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime \prime}{ }^{\prime}\right), 0.60\left(6 \mathrm{H}, \mathrm{ap} \mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 4.25\left(1 \mathrm{H}, \mathrm{ddd}, J=6,6,6.5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime}\right), 4.16\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5,5 \mathrm{~Hz}, \mathrm{HC}-1^{\prime \prime}{ }^{\prime \prime}\right), 3.48$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{HO}$), $3.08\left(1 \mathrm{H}, \mathrm{ddd}, J=5,5,10.5 \mathrm{~Hz}, \mathrm{HC}-5{ }^{\prime}\right), 3.03\left(1 \mathrm{H}, \mathrm{dq}, J=6.5,7 \mathrm{~Hz}, \mathrm{HC}-2{ }^{\prime}\right), 2.75(1 \mathrm{H}$, $\left.\mathrm{m}, J=5,6,7 \mathrm{~Hz}, \mathrm{HC}-3^{\prime \prime}\right), 2.67\left(1 \mathrm{H}, \mathrm{ddd}, J=1.5,5,13.5 \mathrm{~Hz}, \mathrm{HC}-6^{\prime \prime}\right), 2.63\left(1 \mathrm{H}, \mathrm{dd}, J=5,13.5 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}\right)$,
2.55 (1H, dd, J = 10.5, 13.5 Hz, HC-6"), 2.46 (1H, dd, J = 1.5, 7, $13.5 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime}$), 2.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3$ or $\left.\mathrm{H}_{3} \mathrm{CC}-5\right), 2.12-2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-2\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right.$ or $\left.\mathrm{H}_{3} \mathrm{CC}-5\right), 1.57$ ($\left.1 \mathrm{H}, \mathrm{dqq}, J=5,7,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime \prime \prime}\right)$, $1.16\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3 '\right), 1.03\left(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime \prime \prime}\right), 0.87(3 \mathrm{H}, \mathrm{t}, J=$ 7.5 Hz, $\left.\mathrm{H}_{3} \mathrm{CCC}-2\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3^{\prime \prime}\right.$), 0.75-0.66 (6H, m, $\left.\mathrm{H}_{2} \mathrm{CSi} \times 3\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 211.3$ ($\mathrm{s}, \mathrm{C}-4{ }^{\prime \prime}$), 179.8 ($\mathrm{s}, \mathrm{C}-4$), 164.3 ($\mathrm{s}, \mathrm{C}-2$ or $\mathrm{C}-6$), 164.1 ($\mathrm{s}, \mathrm{C}-2$ or $\mathrm{C}-6$), 119.0 (s, C-5), 118.4 (s, C-3), 76.8 (d, C-1'"'), 74.8 (d, C-1'), 58.1 (d, C-5'), 52.4 (d, C-3''), 39.4 (d, C-2'), 32.0 (t, C-2'''), 30.8 (d, C-2'), 28.5 (t, C-6'), 24.9 (t, CH2C-2), 20.2 ($q, C-3^{\prime \prime \prime}$), 18.7 ($q, C-3^{\prime \prime \prime}$), 14.0 ($q, C-3^{\prime}$), 11.5 (q, $\mathrm{CH}_{3} \mathrm{CC}-2$), 9.7 (q, $\mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 9.6 ($q, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), $7.2\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right)$, $5.4\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 210.2$ (s, C-4'), 179.2 ($\mathrm{s}, \mathrm{C}-4$), 163.8 (s, C-2 or C-6), 163.6 ($\mathrm{s}, \mathrm{C}-2$ or C-6), 119.5 (s, C-3 or C-5), 118.7 (s, C-3 or C-5), 76.9 (d, C-1'"), 75.1 (d, C-1'), 58.5 (d, C-5'), 53.2 (d, C-3'), 39.5 (d, C2'), 32.1 (t, C-2"), 31.9 (d, C-2'"), 29.6 (t, C-6'), 24.9 (t, CH2C-2), 20.7 (q, C-3'"), 18.7 ($q, C-3 " '), 13.6$ ($q, C-$ 3^{\prime}), 11.6 ($q, \mathrm{CH}_{3} \mathrm{CC}-2$), 10.12 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 10.09 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 7.7 ($\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}$), 6.0 (t $\left.\times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$.

LRMS (EI), m/z (relative intensity): 510 ([M] ${ }^{+}, 3$), 481 (21), 467 (7), 409 (15), 273 (94), 209 (60), 201 (59), 187 (76), 180 (82), 179 (100).

HRMS m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{SSi} 510.2835$, found 510.2835 (EI).

2-Ethyl-6-((2S,3S,4S,6S,7S)-3-hydroxy-4,6,8-trimethyl-5-oxo-7-((triethylsilyl)oxy)nonan-2-yl)-3,5-dimethyl-4H-pyran-4-one (52).

(52)

Desulfurization of 49 ($18 \mathrm{mg}, 0.035 \mathrm{mmol}$) with Raney nickel ($\mathrm{W} 2,1.0 \mathrm{~mL}$ settled volume) in refluxing EtOH (2 mL) for 20 minutes according to the general procedure and fractionation of the crude product by PTLC (40% ethyl acetate in hexane) gave the title compound ($12.5 \mathrm{mg}, 74 \%$).
colorless liquid, $\operatorname{TLC~}_{f}=0.37$ (40% ethyl acetate in hexane), $[\alpha]_{\mathrm{D}}-25\left(c 0.25, \mathrm{CHCl}_{3}\right)$
IR (DRIFT) $v_{\text {max }} 3385,1715,1652,1596 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.83-3.78\left(2 \mathrm{H}, \mathrm{HC}-3 \mathrm{l}, \mathrm{HC}-7{ }^{\prime}\right), 3.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO}), 3.11(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=8,7 \mathrm{~Hz}$, HC-2'), $2.75\left(1 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{HC}-6^{\prime}\right), 2.60\left(2 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-2\right), 2.55(1 \mathrm{H}, \mathrm{dq}, J=4,7.5 \mathrm{~Hz}, \mathrm{HC}-$ $\left.4^{\prime}\right)$, $1.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.70\left(1 \mathrm{H}, \mathrm{dqq}, J=2.5,7,7 \mathrm{~Hz}, \mathrm{HC}-8^{\prime}\right), 1.33(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$, $\mathrm{H}_{3} \mathrm{C}-1$ '), $1.25\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4 '\right), 1.20\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right), 0.93\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right)$, $0.92\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9^{\prime}\right), 0.81\left(6 \mathrm{H}, \mathrm{ap} \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6{ }^{\prime}, \mathrm{H}_{3} \mathrm{C}-9{ }^{\prime}\right), 0.64\left(6 \mathrm{H}, \mathrm{q}, J=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 3.90-3.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-3 ', \mathrm{HC}-7{ }^{\prime}\right), 3.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{HO}), 3.00(1 \mathrm{H}, \mathrm{dq}, J=7.5$, $\left.7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}\right), 2.60\left(1 \mathrm{H}, \mathrm{dq}, J=8.5,7 \mathrm{~Hz}, \mathrm{HC}-6^{\prime}\right), 2.50\left(1 \mathrm{H}, \mathrm{dq}, J=4.5,7.5 \mathrm{~Hz}, \mathrm{HC}-4{ }^{\prime}\right), 2.09-1.94(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2} \mathrm{CC}-2\right), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.57-1.49(1 \mathrm{H}, \mathrm{dqq}, \mathrm{J}=2,7,7 \mathrm{~Hz}, \mathrm{HC}-8$) , $1.28(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4{ }^{\prime}\right), 1.05\left(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} x 3\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-\right.$ $\left.9^{\prime}\right), 0.82\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-2\right), 0.79\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9 '\right), 0.75-0.67\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CSi} x 3\right), 0.67(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 218.3$ ($\mathrm{s}, \mathrm{C}-5{ }^{\prime}$), 179.7 ($\mathrm{s}, \mathrm{C}-4$), 164.9 (s, C-6), 164.4 ($\mathrm{s}, \mathrm{C}-2$), 118.7 ($\mathrm{s}, \mathrm{C}-5$), 118.3 ($s, C-3$), 77.3 ($\left.d, C-7)^{\prime}\right), 76.1$ (d, C-3'), 50.0 (d, C-6'), 47.1 (d, C-4'), 40.0 (d, C-2'), 30.9 (d, C-8'), 24.9 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-2$), 20.1 ($\mathrm{q}, \mathrm{C}-9 '$), 16.0 ($\mathrm{q}, \mathrm{C}-9 '$), 15.1 ($\mathrm{q}, \mathrm{C}-1$ '), 14.7 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$ '), 14.1 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6$ '), 11.5 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CC}-$ 2), $9.8\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3\right.$ or $\left.\mathrm{CH}_{3} \mathrm{C}-5\right), 9.7\left(q, \mathrm{CH}_{3} \mathrm{C}-3\right.$ or $\left.\mathrm{CH}_{3} \mathrm{C}-5\right)$, $7.2\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 5.6\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 217.5$ (s, C-5), 179.1 ($\mathrm{s}, \mathrm{C}-4$), 164.5 ($\mathrm{s}, \mathrm{C}-6$), 163.7 ($\mathrm{s}, \mathrm{C}-2$), 119.1 ($\mathrm{s}, \mathrm{C}-5$), 118.6 ($\mathrm{s}, \mathrm{C}-3$), 77.8 ($\mathrm{d}, \mathrm{C}-7{ }^{\prime}$), 76.4 (d, C-3'), 50.7 (d, C-6'), 47.5 (d, C-4'), 40.3 (d, C-2'), 31.2 (d, C-8'), 24.9 (t, $\mathrm{CH}_{2} \mathrm{C}-2$), 20.6 ($\mathrm{q}, \mathrm{C}-9{ }^{\prime}$), 16.2 ($\mathrm{q}, \mathrm{C}-9{ }^{\prime}$), 15.0 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4$ '), 14.9 ($\mathrm{q}, \mathrm{C}-1$ '), 14.1 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6$ '), 11.6 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-2$), 10.2 (q, $\mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), 10.0 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3$ or $\mathrm{CH}_{3} \mathrm{C}-5$), $7.8\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 6.2\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$.

LRMS (EI), m/z (relative intensity): 480 ([M] ${ }^{+}, 6$), 451 (27), 379 (94), 243 (52), 199 (38), 187 (61), 180 (100), 179 (60), 171 (47), 115 (55).

HRMS m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si} 480.3271$, found 480.3258 (EI).
(4S,5S)-4,6-Dimethyl-5-((triethylsilyl)oxy)heptan-3-one (61).

(61)

A suspension of Raney nickel (W2; 5.0 mL settled volume) in EtOH (5 mL plus $2 \times 5 \mathrm{~mL}$ rinses) was added to 44 ($591 \mathrm{mg}, 1.96 \mathrm{mmol}$) and the resulting mixture was heated under reflux with vigorous
stirring. After for 20 min (reaction was complete by TLC analysis), the mixture was decanted and the solid was suspended in EtOH (15 mL) and heated under reflux with vigorous stirring for several min. This washing procedure was repeated with ethyl acetate and with acetone. The combined organic layers were filtered through Celite ${ }^{\circ}$, concentrated to give the title compound ($\left.518 \mathrm{mg}, 97 \%\right)^{27}$ that was homogeneous by ${ }^{1} \mathrm{H}$ NMR.
colorless liquid, $\mathrm{TLC} \mathrm{R}_{f}=0.22$ (20\% ethyl acetate in hexane), $[\alpha]_{\mathrm{D}}+11\left(c 9.1, \mathrm{CHCl}_{3}\right)$

IR (DRIFT) $v_{\text {max }} 1720 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.80(1 \mathrm{H}, \mathrm{dd}, J=3,8 \mathrm{~Hz}, \mathrm{HC}-5), 2.73(1 \mathrm{H}, \mathrm{dq}, J=8,7 \mathrm{~Hz}, \mathrm{HC}-4), 2.53(1 \mathrm{H}, \mathrm{dq}, J$ $=18.5,7, \mathrm{HC}-2), 2.45\left(!\mathrm{H}, \mathrm{dq}, J=18.5,7 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{C}-2\right), 1.72(1 \mathrm{H}, \mathrm{dqq}, J=3,7,7 \mathrm{~Hz}, \mathrm{HC}-6), 1.02(3 \mathrm{H}, \mathrm{t}, J=7$ $\left.\mathrm{Hz}, \mathrm{H}_{3} \mathrm{C}-1\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-7\right)$, $0.85\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-7\right), 0.56\left(6 \mathrm{H}, \mathrm{apq}, J=8 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CSi} \times 3\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl ${ }_{3}$) $\delta 214.7$ ($\mathrm{s}, \mathrm{C}-3$), $78.8(\mathrm{~d}, \mathrm{C}-5), 50.3(\mathrm{~d}, \mathrm{C}-4), 37.0(\mathrm{t}, \mathrm{C}-2), 30.9(\mathrm{~d}, \mathrm{C}-6), 20.2$ (q, $\mathrm{C}-7), 15.9$ ($q, C-7$), $14.1\left(q, \mathrm{CH}_{3} \mathrm{C}-4\right), 7.6(\mathrm{q}, \mathrm{C}-1), 7.2\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right), 5.5(\mathrm{t} \times 3, \mathrm{CH} 2 \mathrm{Si})$.

LRMS (CI, $\left.\mathrm{NH}_{3}\right), m / z$ (relative intensity): 273 ([M+1] $\left.{ }^{+}, 100\right), 243$ (42), 58 (40).

HRMS m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si} 273.2250$, found $273.2245\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$.

(3R,4R,6S,7S)-3-Hydroxy-2,4,6,8-tetramethyl-7-((triethylsilyl)oxy)nonan-5-one (64).

This procedure was performed with Schlenk technique and under Ar using freshly distilled $\mathrm{Et}_{2} \mathrm{O}$ that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. (c-Hex) ${ }_{2} \mathrm{BCl}(1.0 \mathrm{M}$ in hexane; $0.64 \mathrm{~mL}, 0.64 \mathrm{mmol})$ and $E t M e_{2} \mathrm{~N}(0.080 \mathrm{~mL}, 54 \mathrm{mg}, 0.74 \mathrm{mmol})$ were added to a stirred solution of $61(88 \mathrm{mg}, 0.32 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at rt. After 3 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and $i-\mathrm{PrCHO}(0.058 \mathrm{~mL}, 46 \mathrm{mg}, 0.64 \mathrm{mmol})$ was added. After 3 h , the reaction was quenched by sequential addition of phosphate buffer ($\mathrm{pH}=7 ; 2 \mathrm{~mL}$), $\mathrm{MeOH}(2 \mathrm{~mL})$ and 30% aq $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{~mL})$ with vigorous stirring. After stirring at $0{ }^{\circ} \mathrm{C}$ for 15 min , aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (5% ethyl acetate in hexane) to give the title compound ($67.5 \mathrm{mg}, 61 \%$).
colorless liquid, TLC $^{R_{f}}=0.5$ (10\% ethyl acetate in hexane)
IR (DRIFT) $v_{\max } 3454,1714 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.89(1 \mathrm{H}, \mathrm{dd}, J=2.5,8 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=3,8.5 \mathrm{~Hz}), 3.12(1 \mathrm{H}, \mathrm{dq}, J=8,7$ $\mathrm{Hz}), 2.82(1 \mathrm{H}, \mathrm{dq}, J=8.5,7 \mathrm{~Hz}), 1.83-1.75(2 \mathrm{H}, \mathrm{m}), 1.004(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 0.999(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 0.98(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 0.96(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 0.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 0.0904(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 0.0898(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})$, $0.62(6 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=8 \mathrm{~Hz})$.
${ }^{13}$ C NMR (125 MHz, CDCl_{3}) $\delta 219.1,79.2,78.2,51.0,50.1,31.5,29.6,20.4,19.7,17.3,14.5,13.8,13.7$, 7.2, 5.4.

LRMS (EI), m / z (relative intensity): 344 ([M] ${ }^{+}, 0.3$), 329 (0.6), 243 (100).
HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si} 344.2747$, found 344.2743 (EI).

($3 R, 4 R, 6 R, 7 S$)-2,4,6,8-Tetramethyl-7-((triethylsilyl)oxy)nonane-3,5-diol (65).

(65)
$\mathrm{Et}_{2} \mathrm{BOMe}(0.007 \mathrm{~mL}, 5 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added to stirred solution of 64 ($11 \mathrm{mg}, 0.032 \mathrm{mmol}$) in abs. $\mathrm{EtOH}(0.35 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon. The reaction vessel was removed from the cooling bath and after 15 min , powdered $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added at $-78^{\circ} \mathrm{C}$. The reaction vessel was removed from the cooling bath and after 2.5 h , the reaction mixture was concentrated. The residue was taken up in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and $30 \%(\mathrm{w} / \mathrm{w})$ aq $\mathrm{H}_{2} \mathrm{O}_{2}(0.05 \mathrm{~mL})$ and aq $\mathrm{NaOH}(1 \mathrm{M} ; 0.45 \mathrm{~mL})$ was added with vigorous stirring. After 10 min , the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over NaSO4, concentrated, and fractionated by PTLC (10% ethyl acetate in hexane) to give the title compound ($7 \mathrm{mg}, 63 \%$).
colorless liquid, TLC $_{f}=0.44$ (10\% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3396 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.50(1 \mathrm{H}, \mathrm{bs}), 3.76(1 \mathrm{H}, \mathrm{bs}), 3.49(1 \mathrm{H}, \mathrm{dd}, J=4.5,7.5 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J=3.5$, $8.5 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{dd}, J=4,6 \mathrm{~Hz}), 2.09(1 \mathrm{H}, \mathrm{ddq}, J=4,7.5,7 \mathrm{~Hz}), 1.93(1 \mathrm{H}, \mathrm{ddq}, J=6,8.5,7 \mathrm{~Hz}), 1.86-1.77$
$(2 \mathrm{H}, \mathrm{m}), 1.00(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 0.99(9 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.91$ $(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 0.67(6 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 85.2,82.0,79.8,39.4,38.5,34.0,30.4,20.7,19.5,18.93,18.90,17.3,15.2$, 7.1, 5.4 .

HRMS m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}^{+} 369.2795$, found 369.2808 (ESI).

(3R,4R,6S,7S)-2,4,6,8-TetramethyInonane-3,5,7-triol (66).

(66)

Aqueous HF ($10 \%(\mathrm{w} / \mathrm{w}) ; 0.05 \mathrm{~mL}$) was added to a stirred solution of 65 ($16.5 \mathrm{mg}, 0.048 \mathrm{mmol}$) in $\mathrm{MeCN}(0.48 \mathrm{~mL})$ at rt . After 5 min , the reaction was quenched by addition of saturated aq NaHCO_{3}. The mixture was diluted with ethyl acetate and washed sequentially with aq. NaHCO3, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the title compound ($10.5 \mathrm{mg}, 94 \%$) as flakey white solid.
white solid, $\operatorname{TLCR}_{f}=0.50$ (50% ethyl acetate in hexane)
IR (DRIFT) $v_{\text {max }} 3331 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{HC}-5), 3.53(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{HO} \times 3), 3.46(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,8.5$ $\mathrm{Hz}, \mathrm{HC}-3, \mathrm{HC}-5), 1.97$ (2H, ddq, J = 5.5, $8.5,7 \mathrm{~Hz}, \mathrm{HC}-4, \mathrm{HC}-6$), 1.89 ($2 \mathrm{H}, \mathrm{dqq}, J=3,7,7 \mathrm{~Hz}, \mathrm{HC}-2, \mathrm{HC}-8$), $0.98\left(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1, \mathrm{H}_{3} \mathrm{C}-9\right), 0.91\left(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4, \mathrm{H}_{3} \mathrm{CC}-6\right), 0.87\left(6 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-2\right.$, $\mathrm{H}_{3} \mathrm{CC}-8$).
${ }^{13}$ C NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 83.9,81.0(\times 2), 39.5(\times 2), 30.3(\times 2), 20.5(\times 2), 16.3(\times 2), 14.8(\times 2)$.
LRMS ($\mathrm{Cl}, \mathrm{NH}_{3}$), m/z (relative intensity): 233 ([M+1] $\left.{ }^{+}, 100\right), 215$ (6), 197 (25), 171 (6), 125 (8).

HRMS m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{3}+\mathrm{H} 233.2117$, found $233.2110\left(\mathrm{Cl}, \mathrm{NH}_{3}\right)$.

2-Ethyl-6-((2R,3R,4R,6S,7S)-3-hydroxy-4,6,8-trimethyl-5-oxo-7-((triethylsilyl)oxy)nonan-2-yl)-3,5-dimethyl-4H-pyran-4-one (67).

(67)

This procedure was performed with Schlenk technique and under Ar using freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. Ketone 61 was dried by concentration from benzene solution immediately prior to use. $(c-\mathrm{Hex})_{2} \mathrm{BCl}(1.0 \mathrm{M}$ in hexane; $0.51 \mathrm{~mL}, 0.51 \mathrm{mmol}$) and $\mathrm{Me}_{2} \mathrm{NEt}(66 \mu \mathrm{~L}, 45 \mathrm{mg}, 0.61 \mathrm{mmol}$) were added to a stirred solution of $61(46 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.7 \mathrm{~mL})$ at room temperature. After 24 h , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$ and a solution of rac- $\mathbf{1 1}(124 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added. After 20 min , the reaction was quenched by sequential addition of phosphate buffer ($\mathrm{pH}=7 ; 1 \mathrm{~mL}$), $\mathrm{MeOH}(1 \mathrm{~mL})$ and $30 \% \mathrm{aq}_{2} \mathrm{O}_{2}$ (0.5 mL) with vigorous stirring. After stirring at $0{ }^{\circ} \mathrm{C}$ for 15 min , sat. aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added and the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (30% ethyl acetate in hexane) to give a 2.5:1 mixture of 67 and 72, respectively (18 mg). Fractionation of the mixture by PTLC (4% methanol in toluene, multiple developments) gave the title compound ($12 \mathrm{mg}, 15 \%$).
amorphous white solid, $\operatorname{TLC~}_{f}=0.30$ (30% ethyl acetate in hexane), $[\alpha]_{D}+98\left(c 0.35, \mathrm{CHCl}_{3}\right)$
IR (DRIFT) $v_{\text {max }} 3389,1697,1651,1590 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.90-3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}-3\right.$ ', $\left.\mathrm{HC}-7 \mathrm{~T}^{\prime}\right), 3.39(1 \mathrm{H}, \mathrm{bs}, \mathrm{HO}), 3.11(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=5,7 \mathrm{~Hz}$, HC-2'), 2.98 ($1 \mathrm{H}, \mathrm{dq}, J=7.5,7 \mathrm{~Hz}, \mathrm{HC}-6$ '), $2.80\left(1 \mathrm{H}, \mathrm{dq}, J=7,7 \mathrm{~Hz}, \mathrm{HC}-4\right.$ '), 2.66-2.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CC}-2$), 1.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5$), $1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3\right), 1.72\left(1 \mathrm{H}, \mathrm{dqq}, \mathrm{J}=3,7,7 \mathrm{~Hz}, \mathrm{HC}-8\right.$), $1.28\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-1 \mathrm{i}^{\prime}\right)$, $\left.1.20\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-2\right), 1.11\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-4\right)^{\prime}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right.$), $0.91(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9^{\prime}\right), 0.91\left(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCSi} \times 3\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-9{ }^{\prime}\right), 0.57(6 \mathrm{H}, \mathrm{ap} \mathrm{q}, J=8 \mathrm{~Hz}$, $\mathrm{H}_{2} \mathrm{CSi} \times 3$).
 118.1 (s, C-3), 78.9 (d, C-7'), 76.0 (d, C-3'), 51.3 (d, C-6'), 49.2 (d, C-4'), 38.9 (d, C-2'), 31.5 (d, C-8'), 24.9 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-2$), 19.8 ($\mathrm{q}, \mathrm{C}-9^{\prime}$), 17.2 ($\mathrm{q}, \mathrm{C}-9^{\prime}$), 14.7 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-4^{\prime}$), 13.7 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6$ '), 12.1 ($\mathrm{q}, \mathrm{C}-1$ '), 11.5 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CC}-$ 2), $9.7\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3, \mathrm{CH}_{3} \mathrm{C}-5\right)$, $7.1\left(\mathrm{q} \times 3, \mathrm{CH}_{3} \mathrm{CSi}\right)$, $5.4\left(\mathrm{t} \times 3, \mathrm{CH}_{2} \mathrm{Si}\right)$.

LRMS (EI), m / z (relative intensity): 480 ([M] $\left.]^{+}, 5\right), 451$ (38), 379 (54), 209 (52), 199 (100), 180 (27).
HRMS m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si} 480.3271$, found 480.3257 (EI).

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((3R,4R)-4-hydroxytetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-4H-pyran-4-one (71).

(71)
$\mathrm{Et}_{2} \mathrm{BOMe}(0.030 \mathrm{~mL}, 23 \mathrm{mg}, 0.23 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 9 b}(53 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ in THF (4.1 mL) and $\mathrm{MeOH}(0.8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. The cloudy mixture became clear upon warming to ambient temperature. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(16 \mathrm{mg}, 0.43$ mmol) was added. After $1 \mathrm{~h}, \mathrm{MeOH}(1 \mathrm{~mL})$ was added and, after allowing the mixture to warm to ambient temperature, aq $\mathrm{NaOH}(1 \mathrm{M} ; 3 \mathrm{~mL})$ was added. After 1.5 hours, the suspension was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (ethyl acetate) to give the title compound ($40 \mathrm{mg}, 73 \%$).
amorphous white solid, TLC $\mathrm{R}_{f}=0.2$ (ethyl acetate)
IR (DRIFT) $v_{\text {max }} 3395,1692,1650,1597 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.88-3.84 (1, m, HOC-4', HC-1'), 3.69 (1 , ddd, J = 3.5, 9.5, 9.5 Hz, HC-4"), 3.32 ($1, \mathrm{dq}, \mathrm{J}=6.5,7 \mathrm{~Hz}, \mathrm{HC}-2^{\prime}$), 2.67-2.55 (4, m, $\mathrm{H}_{2} \mathrm{CC}-2, \mathrm{H}_{2} \mathrm{C}-6^{\prime \prime}$), 2.55-2.50 (2, m, $\mathrm{H}_{2} \mathrm{C}-2^{\prime \prime}$), 2.26 (1, ap dddd, $\left.J=3.5,3.5,4,13 \mathrm{~Hz}, \mathrm{HC}-5{ }^{\prime \prime}\right)$, 1.96 ($3, \mathrm{~s}, \mathrm{H}_{3} \mathrm{CC}-5$), 1.92 (3, s, H3CC-3), 1.80-1.71 (2, m, HC-3", HC-5"), $1.30\left(3, d, J=7 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{C}-3\right.$ '), $1.22\left(3, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CCC}-2\right)$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.2$ ($\mathrm{s}, \mathrm{C}-4$), 165.3 ($\mathrm{s}, \mathrm{C}-6$), 164.9 ($\mathrm{s}, \mathrm{C}-2$), 118.7 ($\mathrm{s}, \mathrm{C}-5$), 118.3 ($\mathrm{s}, \mathrm{C}-3$), 78.1 (d, C-1'), 72.4 (d, C-4"), 47.5 (d, C-3"), 40.0 (d, C-2'), 36.7 (t, C-5"), 30.7 (t, C-2"), 27.3 (t, C-6"), 25.0 (t, $\mathrm{CH}_{2} \mathrm{C}-2$), 12.4 ($\mathrm{q}, \mathrm{C}-3$) , 11.5 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{CC}-2$), 9.8 ($\mathrm{q} \times 2, \mathrm{CH}_{3} \mathrm{C}-3, \mathrm{CH}_{3} \mathrm{C}-5$).

LRMS (EI), m / z (relative intensity): 326 ([M] ${ }^{+}, 1$), 210 (16), 193 (30), 160 (100), 84 (27).
HRMS m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S} 326.1552$, found 326.1554 (EI).

2-Acetyl-6-ethyl-3,5-dimethyl-4H-pyran-4-one (72).

(72)

IBX ($107.5 \mathrm{mg}, 0.38 \mathrm{mmol}$) was added to a solution of $\mathbf{1 0}(\mathbf{4 0 . 5} \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ and the mixture was heated under reflux. After 15 h , the suspension was cooled to $0^{\circ} \mathrm{C}$ and filtered through a sintered glass funnel with the aid of ethyl acetate. The combined filtrate and washings were washed with saturated aq NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and fractionated by FCC (40% ethyl acetate in hexane) to give the title compound ($10 \mathrm{mg}, 27 \%$).

White amorphous solid, $\mathrm{mp} 79-81^{\circ} \mathrm{C}, \mathrm{TLC}_{\mathrm{f}}=0.53$ (60% ethyl acetate in hexane)
IR (DRIFT) $v_{\max } 1711,1638,1618 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.70\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{2} \mathrm{CC}-6\right), 2.53,\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{C}-1^{\prime}\right), 2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-3^{\prime}\right)$, $2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3} \mathrm{CC}-5^{\prime}\right), 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}_{3} \mathrm{CC}-6\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.3$ ($\mathrm{s}, \mathrm{C}-1$ '), 180.2 ($\mathrm{s}, \mathrm{C}-4$), 164.4 ($\mathrm{s}, \mathrm{C}-6$), 152.5 ($\mathrm{s}, \mathrm{C}-2$), 125.2 ($\mathrm{s}, \mathrm{C}-3$), 119.9 ($\mathrm{s}, \mathrm{C}-5$), 28.1 ($\mathrm{q}, \mathrm{C}-2$ '), $25.1\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{C}-6\right.$), 11.4 ($\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-6$), $10.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-5\right.$), $9.7\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{C}-3\right.$).

LRMS (EI), m / z (relative intensity): 194 ([M] ${ }^{+}, 100$), 165 (18), 151 (41).
HRMS m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} 194.0943$, found 194.0493 (EI).

4. REFERENCES

1. Manker, D. C.; Faulkner, D. J. Vallartanones A and B, Polypropionate Metabolites of Siphonaria maura from Mexico. Journal of Organic Chemistry 1989, 54, 5374-5377.
2. Arimoto H.; Yokoyama, R.; Nakamura, K.; Okumura, Y.; Uemura, D. Vallartanone B: Synthesis and Related Studies. Tetrahedron 1996, 52, 13901-13908.
3. Narasaka, K.; Miwa, T. Highly Enantioselective Synthesis of Anti(threo)-aldols by the Asymmetric Aldol Reaction Utilizing a Chiral Azaenolate. Chemistry Letters 1985, 1217-1220.
4. (a) Masamune S.; Choy, W.; Peterson, J. S.; Sita, L. R. Double Asymmetric Synthesis and a New Strategy for Stereochemical Control in Organic Syntheses. Angewandte Chemie, International Edition in English 1985, 24, 1-30. (b) Kolodiazhnyi, O. I. Multiple stereoselectivity and its application in organic synthesis. Tetrahedron 2003, 59, 5953-6018.
5. (a) Kawabata, T.; Kimura, Y.; Ito, Y.; Terashima, S. A Novel and Efficient Synthesis of the Key Intermediated of 1β-methylcarbapenem Antibiotics Employing [2 + 2]-Cycloaddition Reaction of Diketone with a Chiral Imine. Tetrahedron 1988, 44, 2149-2165. (b) Paterson, I.; Chen, D. Y.-K.; Aceña, J. L.; Franklin, A. S. Studies in Marine Polypropionate Synthesis: Total Synthesis of (-)Baconipyrone C. Organic Letters 2000, 2, 1513-1516.
6. (a) Mullock, E. B.; Suschitzky, H. A Simple Preparation of γ-Pyrones. Journal of the Chemical Society (C): Organic 1967, 828-830. (b) Mikusch-Buchberg, J. D. v. Alkylierte und arylierte Pyrone aus Carbonsäuren, Ketonen und Anhydriden. Angewandte Chemie 1959, 71, 311-312.
7. (a) Sengoku, T.; Takemura, T.; Fukasawa, E.; Hayakawa, I.; Kigoshi, H. Aldol-type reaction of a 4pyrone: a straightforward approach to 4-pyrone-containing natural products. Tetrahedron

Letters 2009, 50, 325-328. (b) Hayakawa, I.; Takemura, T.; Fukasawa, E.; Ebihara, Y.; Sato, N.; Nakamura, T.; Suenaga, K.; Kigoshi, H. Total Synthesis of Auripyrones A and B and Determination of the Absolute Configuration of Auripyrone B. Angewandte Chemie International Edition 2010, 49, 2401-2405. (c) Takemura, T.; Hayakawa, I.; Fukasawa, E.; Sengoku, T.; Kigoshi, H. Toward the synthesis of γ-pyrone-containing natural products: diastereoselective aldol-type reaction of a γ pyrone. Tetrahedron Letters 2012, 68, 6477-6484.
8. Ward, D. E.; Sales, M.; Man, C. C.; Shen, J.; Sasmal, P. K.; Guo, C. Influence of the β-Alkoxy Group on the Diastereoselectivity of Aldol Reactions of Tetrahydro-4H-thiopyran-4-one with 4-Alkoxytetrahydro-2H-thiopyran-3-carboxaldehydes. Journal of Organic Chemistry 2002, 67, 1618-1629.
9. Zimmerman, H. E.; Traxler, M. D. The Stereochemistry of the Ivanov and Reformatsky Reactions. I. Journal of American Chemical Society 1957, 49, 1920-1923.
10. (a) Chérest, M.; Felkin, H.; Prudent, N. Torsional Strain Involving Partial Bonds. The Stereochemistry of the Lithium Aluminium Hydride Reduction of Some Simple Open-Chain Ketones. Tetrahedron Letters 1968, 18, 2199-2204. (b) Anh, N. T.; Eisenstein, O. Theoretical Interpretation of 1-2 Asymmetric Induction. The Importance of Antiperiplanarity. Nouveau Journal De Chimie 1977, 1, 61-70.
11. Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing, G. J.; Magarth, J. Ferric Chloride Hexahydrate: A Mild Hydrolytic Agent for the Deprotection of Acetals. Journal of Organic Chemistry 1997, 62, 66846686.
12. Ward, D. E.; Sales, M.; Sasmal, P. K. Syn-anti Isomerization of Aldols by Enolization. Organic Letters 2004, 69, 4808-4815.
13. Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repič, O.; Shapiro, M. J. 1,3-Syn Diastereoselective Reduction of β-Hydroxyketones Utilizing Alkoxydialkylboranes. Tetrahedron Letters 1987, 28, 155-158.
14. Rychnovsky, S. D.; Rogers, B.; Yang, G. Analysis of Two ${ }^{13} \mathrm{C}$ NMR Correlations for Determining the Stereochemistry of 1,3-Diol Acetonides. Journal of Organic Chemistry 1993, 58, 3511-3515.
15. Ward, D. E.; Becerril-Jiménez, F.; Zahedi, M. M. Rational Design of Aldol Reactions that Proceed via Kinetic Resolution with Switchable Enantioselectivity. Journal of Organic Chemistry 2009, 74, 4447-4454.
16. Ward, D. E.; Jheengut, V. Proline-catalyzed Asymmetric Aldol Reactions of Tetrahydro-4H-thiopyran-4-one with Aldehydes. Tetrahedron Letters 2004, 45, 8347-8350.
17. Kagan, H. B.; Fiaud, J. C. Kinetic Resolution. Topics in Stereochemistry 1988, 18, 249-330.
18. Theaker, N. E. M.Sc. Thesis. University of Saskatchewan Saskatoon, Saskatchewan, 2009.
19. Still, W.C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. Journal of Organic Chemistry 1978, 43, 2923-2925.
20. Reynolds, W. F.; Enríquez, R. G. Choosing the Best Pulse Sequences, Acquisition Parameters, Postacquisition Processing Strategies, and Probes for Natural Product Structure Elucidation by NMR Spectroscopy. Journal of Natural Products 2002, 65, 221-244.
21. Ward, D. E.; Rasheed, M. A.; Gillis, H. M.; Beye, G. E.; Jheengut, V.; Achonduh, G. T. Simple and Efficient Preparation of Reagents for Thiopyran Introduction: Methyl Tetrahydro-4-oxo-2H-thiopyran-3-carboxylate, Tetrahydro-4H-thiopyran-4-one, and 3,6-Dihydro-4-trimethylsilyloxy-2H-thiopyran. Synthesis 2007, 10, 1584-1586.
22. Ward, D. E.; Jheengut, V.; Beye, G. E.; Gillis, H. M.; Karagiannis, A. Enantioselective Direct Aldol Reactions of Achiral Ketones with Racemic Enolizable α-Substituted Aldehydes: Scope and Limitations. Synlett 2011, 508-512.
23. Mozingo, R. Catalyst, Raney Nickel, W-2. Organic Syntheses 1941, 21, 15-17.
24. Frigerio, M.; Santagostino, M.; Sputore, S. A User-Friendly Entry to 2-lodoxybenzoic Acid (IBX). Journal of Organic Chemistry 1999, 64, 4537-4538.
25. Brown, H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. Enolboration. 1. Dicyclohexylchloroborane/Triethylamine as a Convenient Reagent for Enolboration of Ketones and Other Carbonyl Derivatives. Journal of Organic Chemistry 1992, 57, 499-504.
26. Ward, D. E.; Kazemeini, A. Aldol Reactions with Kinetic Reaction: Scope and Limitations of Ketaland Dithioketal-protected β-Ketoaldehydes. Journal of Organic Chemistry 2012, 77, 1078910803.
27. Evans, D. A.; Ripin, D. H. B.; Johnson, J. S.; Shaughnessy, E. A. A New Strategy for Extending Nacyl Imides as Chiral Auxiliaries for Aldol and Diels-Alder Reactions: Application to an Enantioselective Synthesis of α-Himachalene. Angewandte Chemie, International Edition in English 1997, 36, 2119-2121.

