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Abstract 

Vallartanones A (1) and B (2) are polypropionates isolated from Siphonaria maura. Their 

structures were reported by Faulkner and Manker in 1989.1 The only structural difference between 1 

and 2 is an extra methyl group in the peripheral region of the molecule and thus both natural products 

share similar 1H NMR and 13C NMR properties. Vallartanone A (1) was assigned the (3R,4R,8R) relative 

configuration through 1H NMR  and conformational analyses of 1 and 8-epi-1 along with their respective 

6,7-dihydro derivatives; the absolute configuration was assigned on the basis of circular dichroism. The 

same (3R,4R,8R) absolute configuration was assigned for vallartanone B based on the close similarity of 

its spectroscopic properties with those reported for 1. 

 

Arimoto and co-workers reported the syntheses of (3S,4S,8R)-vallartanone B and its C-8 epimer 

in 1996 and concluded that the structure of vallartanone B should be revised to the (3S,4S,8S) absolute 

configuration.2 Consequently, it is likely that 1 also possesses the (3S,4S,8S) configuration; however, this 

has not been proven and there have been no previous synthetic studies reported. 

The research presented herein describes the first enantioselective total syntheses of 

vallartanone A and its (8R) epimer both starting with propanoic acid and isobutyraldehyde. The key 

steps involved a proline-catalyzed intermolecular aldol reaction and a second aldol reaction that 
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proceeded with kinetic resolution. It is concluded that the absolute configuration of vallartanone A 

should be revised to (3S,4S,8S). 
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1. INTRODUCTION 

1.1 Isolation of vallartanones A and B 

 Vallartanones A (1) and B (2) are metabolites isolated from the marine mollusc, Siphonaria 

maura, collected near Puerto Vallarta, Mexico. Their structures were reported by Faulkner and Manker 

in 1989 (Figure 1.1).1 Neither of these compounds was crystalline and the assignment of relative and 

absolute configurations of vallartanone A was based on spectral and conformational analyses. 

 

Figure 1.1 Metabolites isolated from Siphonaria maura. 
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1.2 Elucidation of relative and absolute configurations of vallartanone A 

Because HC-3 and HC-4 in 1 are adjacent to each other in a six-membered ring, their trans 

relationship could be confidently assigned on the basis of their large vicinal coupling constant (J3,4 = 13 

Hz). Determination of the relative configuration of C-8 was not straightforward. Thus, 1 was subjected to 

Pd-catalyzed hydrogenation and the corresponding derivative, 6,7-dihydrovallartanone A (3), was 

investigated (Scheme 1.1). The observed large coupling constant between HC-3 and HC-4 (J3,4 = 10.5 Hz) 

in 3 suggested the trans relationship in 1 was retained in the dihydrohydro derivative 3. The newly 

added HC-6 and HC-7 were also in a trans relationship as evidenced by their large vicinal coupling 

constant (J6,7 = 10 Hz) implying that isomerization at C-6 had occurred under the reaction conditions, 

presumably giving the thermodynamically more stable epimer via keto-enol tautomerism. These large J 

values together with the observation of a positive nOe between HC-3 and HC-7, led to the assignment of 

the relative configuration of 3 as (3S*,4S*,6R*,7R*). Because all the substituents on the six-membered 

tetrahydropyran ring in 3 were in equatorial orientations, a single chair conformer would dominate. 

Faulkner hypothesized that the preferred torsion of the C-7–C-8 single bond would be strongly biased by 

steric repulsion between H3C-18 and H3C-19. Consequently, the H-C7–C8-H torsion angles for the 

(7R*,8S*) and (7R*,8R*) isomers were predicted to be 60° and 180°, respectively. The observed small 

coupling constant (J7,8 = 4 Hz) supported the 7R*,8S* relative configuration and 3 was assigned 

(3S*,4S*,6R*,7R*,8S*). 
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Scheme 1.1 Faulkner’s analysis of the relative configuration at C-8 for vallartanone A. 

 

To further validate the above assignment, 1 was epimerized by treatment with sodium 

hydroxide to give a mixture of 1 and 8-epi-1. Hydrogenation of the latter produced 4 that was analyzed 

by 1H NMR (Scheme 1.1). Unlike 3, HC-6 and HC-7 in 4 were in a cis relationship as indicated by the small 

coupling constant between HC-6 and HC-7 (J6,7 = 2 Hz), while the trans relationship between HC-3 and 

HC-4 (J3,4 = 11 Hz) was maintained. Nuclear Overhauser enhancement was observed between HC-3 and 

HC-7 in 4 and a (3S*,4S*,6S*,7R*) relative configuration was assigned. Similar to the analysis of 3 

described above, the authors concluded that having three large groups in equatorial orientations would 

result in a predominant chair conformer where the C-7–C-8 torsion would be governed by minimization 

of the steric interaction between H3C-18 and H3C-19. Thus the predicted H-C7–C8-H torsion angles for 

the (7R*,8S*) and (7R*,8R*) isomers were 60° and 180°, respectively. The large HC-7 and HC-8 coupling 

constant (J7,8 = 10 Hz) observed in 4 supported the assignment of the (3S*,4S*,6S*,7R*,8R*) relative 

configuration. 

The absolute configuration of C-8 was assigned through circular dichroism (CD) spectroscopy 

where a negative split Cotton effect – a sharp negative absorption followed by a rapid change in the 
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opposite direction – was observed (Figure 1.2). This observation was in accordance with the two pyrone 

rings oriented with a left-handed helicity. In order to minimize steric interaction between H3C-18 and 

H3C-19, 1 was presumed to adopt a conformation where C-18 and C-19 were opposite of each other. 

The resulting torsion between C-7 and C-8 was expected to produce a left-handed helicity between the 

pyrone rings if the absolute configuration at C-8 was (R). Consequently, vallartanone A was assigned the 

(8R) absolute configuration. 

  

Figure 1.2 Negative split Cotton effect exhibited by 1. Adapted with permission from Manker, D. C.; 
Faulkner, D. J. Vallartanone A and B, polypropionate metabolites of Siphonaria maura from Mexico. J. 
Org. Chem. 1989, 54, 5374-5377. Copyright 1989 American Chemical Society. 

In conclusion, the relative configuration of 1 was assigned from spectral and conformational 

analyses of 1, 3 and 4. The absolute configuration of 1 was assigned (3R,4R,8R) through CD spectroscopy. 

Because the 1H NMR, 13C NMR data and the specific rotation of 2 closely resembled those of 1, the 

absolute configuration of 2 was presumed to also be (3R,4R,8R). 
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Unfortunately, all of the structural drawings in Faulkner’s paper illustrated 1 and 2 with 

(3S,4S,8R) absolute configurations. This anomaly raised some uncertainty about the proposed absolute 

configurations of the natural products 1 and 2 because the text (3R,4R,8R) did not match the structure 

drawings (3S,4S,8R). 
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1.3 Arimoto synthesis of (3S,4S,8R)-vallartanone B 

In 1996, Arimoto and coworkers reported syntheses of 2 and its C-8 epimer and concluded that 

the absolute configuration of vallartanone B should be revised to (3S,4S,8S) (Scheme 1.2).2 Apparently 

Arimoto et al. presumed that the structure of vallartanone B proposed by Faulkner was (3S,4S,8R). Thus, 

the Arimoto group initially focused their efforts on the preparation of (3S,4S,8R)-vallartanone B. 

Scheme 1.2 Arimoto synthesis of (3S,4S,8R)-vallartanone B. 

 

The synthesis of (8R)-vallartanone B began with commercially available methyl (R)-3-hydroxy-2-

methylpropionate (5). After protection of the alcohol group in 5 and hydrolysis of the ester, the resulting 

carboxylic acid 7 was converted to the triketone 8 by reaction of the in situ generated mixed anhydride 
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with the dilithium dienolate of 4-methyl-hepta-3,5-dione. Under their optimized conditions, 8 was 

transformed into the γ-pyrone 9 without loss of enantiopurity. Deprotection of 9 gave the alcohol 10 

that was oxidized with DMP to afford the aldehyde 11 in moderate yield. This aldehyde was found to be 

configurationally unstable and, without purification or characterization, it was immediately subjected to 

a tin-mediated aldol reaction with the known ketone 143 to give 15 as an unspecified mixture of 

diastereomers in modest yield. The mixture of diastereomers 15 was oxidized to give the diketones 16 

that were subjected to excess TFA to obtain a 8:1 mixture of (8R)-2 and its C-8 epimer. The origin of the 

C-8 epimer could hypothetically come from several places during the synthesis: 1) racemization of 

aldehyde 11 before or during the tin-mediated aldol reaction, 2) isomerization at C-8 in 16 or 2 during 

the TFA-mediated cyclization and 3) isomerization at C-4 in the product resulting from the minor 

diastereomer of 14. Among the mixture of epimers in the final product, the spectral data corresponding 

to the minor isomer ((8S)-2) matched with those reported for isolated 2. 
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1.4 Arimoto synthesis of (3S,4S,8S)-vallartanone B 

 The preparation of (3S,4S,8S)-vallartanone B was accomplished in a similar fashion to that used 

for the (3S,4S,8R) diastereomer by starting with ent-5 with slight changes in the reaction conditions of 

the tin-mediated aldol reaction (N-ethylpiperidine vs triethylamine) and the overall yield (Scheme 1.3).2 

The diastereoselectivity of the aldol reaction of 14 with ent-5 was again not reported and the final 

product was also obtained as a mixture with its C-8 epimer. (8S)-Vallartanone B was obtained free from 

its (8R)-epimer by chiral HPLC and was found to match all the physical data reported for the vallartanone 

B isolated by Faulkner and Manker. 

Scheme 1.3 Arimoto synthesis of (3S,4S,8S)-vallartanone B. 
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1.5 Revision of absolute configuration of vallartanone B 

 Arimoto proposed that the discrepancy in absolute configuration assignment could arise from 

Faulkner’s assumption that the conformation of 1 was solely governed by the configuration of C-8, but in 

fact it should be influenced by C-3 and C-4 as well. To further elaborate this hypothesis, theoretical 

calculations on the two C-8 epimers of vallartanone A were made via the MOPAC program, an 

eigenvector following method under the PM3 Hamiltonian. Results showed that the conformation of 

(8R)-1 was different from that proposed by Faulkner and Manker and suggested the configurations at C-

3 and C-4 also influence the conformation (Figure 1.3). Because the calculated models of the epimers 

looked alike but were different from those proposed by Faulkner, Arimoto concluded that it was 

unreliable to assign the absolute configuration through CD spectra. 

 

Figure 1.3 Calculated energy minima of (8R)-vallartanone A (left) and (8S)-vallartanone A (right); an ethyl 
group adjacent to C-13 was changed to a methyl for simplification. Adapted from Tetrahedron, 52, 
Arimoto H., Yokoyama, R., Nakamura, K., Okumura, Y., Uemura, D., Vallartanone B: Synthesis and 
Related Studies, 13901-13908, Copyright (1996), with permission from Elsevier. 

Arimoto also explained why the relative configuration should be revised – presuming that 

Faulkner had proposed the (3S*,4S*,8R*) configuration – through investigating the C-8 epimers of 6,7-

dihydrovallartanone A (3 and 4). The two most stable conformers of each epimer were obtained through 
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identical computational parameters as mentioned above and their dihedral angles between HC-7 and 

HC-8 were translated to coupling constants. Because the relationship between the three stereocenters 

were based on the coupling constants between HC-7 and HC-8 in 3 and 4, coupling constants based on 

dihedral angles of the computed models were compared with the reported values. The calculated 

coupling constants were 3.3 Hz (8S) and 10.1 Hz (8R) (Figure 1.4) were in good agreement with the 

experimental values of 4.0 Hz and 9.8 Hz (Figure 1.4) respectively for 3 and 4. Given that the data for the 

synthetic (8S)-vallartanone B matched with those for the natural product, Arimoto concluded the 

absolute configuration of vallartanone B was (3S,4S,8S). As noted above, Faulkner and Manker also 

proposed this relative configuration for vallartanone B (3R,4R,8R). 

 

Figure 1.4 Calculated energy minima of (8S)-3 (left) and (8R)-4 (right); an ethyl group adjacent to C-13 
was changed to a methyl for simplification. Adapted from Tetrahedron, 52, Arimoto H., Yokoyama, R., 
Nakamura, K., Okumura, Y., Uemura, D., Vallartanone B: Synthesis and Related Studies, 13901-13908, 
Copyright (1996), with permission from Elsevier. 

It should be noted that a better way to determine the relative configurations of 3 and 4 was 

through securing the 3D spatial arrangement of C-18 via nOe experiments. Because the C-7–C-8 torsion 

is expected to be governed by minimization of the steric interactions particularly avoidance of syn-

pentane interactions between C-18 and C-19, the predominant conformer of 3 will have HC-8 

synperiplanar with C-19 regardless of the absolute configuration of C-8 (Figure 1.5). 



 

11 
 

 

Figure 1.5 Energy minima of 3 and 4 based on avoidance of syn-pentane interactions. 

Similarly, due to avoidance of syn-pentane interactions between C-18 and C-19, the 

predominant conformer of 4 will have HC-6 synperiplanar with C-18 regardless of the absolute 

configuration of C-8 (Figure 1.5). In 3, a positive nOe observation between HC-8 and C-19 would suggest 

the (3S*,4S*,8S*) relative configuration. In contrast, the observation of a positive nOe between HC-8 

and C-19 in 4 would suggest a (3S*,4S*,8R*) relative configuration. 
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1.6 Conclusion 

The configuration of vallartanone A (1) was proposed to be (3R,4R,8R) based on analyses of CD 

and NMR spectra and those of two dihydro derivatives. The same configuration was assigned to 

vallartanone B (2) based on the close correspondence of its spectral data and specific rotation with 

those of 1. Unfortunately, there is some discrepancy about the proposed configurations of 1 and 2 

because structural drawings in the paper illustrates a (3S,4S,8R)  configuration and while the text 

discusses a (3R,4R,8R) configuration. Through total synthesis, Arimoto established that the absolute 

configuration of 2 is (3S,4S,8S). Consequently, it is plausible that 1 also possesses the (3S,4S,8S) 

configuration (Figure 1.6). 

 

Figure 1.6 Vallartanone A initiative. 

 



 

13 
 

2. RESULTS AND DISCUSSION 

2.1 Research Objectives 

The objective of this research project was to achieve the first total enantioselective syntheses of 

(3S,4S,8S)-1 and (3S,4S,8R)-1 epimer thereby establishing the relative and absolute configurations of 

vallartanone A. Retrosynthetic analysis of (3S,4S,8S)-1 is illustrated in Figure 2.1. Thus, retrosynthetic 

hydration of the dihydropyrone ring in 1 produces hemi-acetal 19 that can undergo ring-chain 

tautomerization to give the linear form 20. The β-diketone moiety in 20 could be derived by oxidation of 

a beta-hydroxy-ketone 21. Because the configurations of C-6 and C-7 in 21 are irrelevant to the final 

product, control of the configuration of C-8 in 21 was considered the key to this synthetic project. 

 

Figure 2.1 Retrosynthetic analysis of (3S,4S,8S)-vallartanone A. 

Arimoto obtained (3S,4S,8S)-2 and (3S,4S,8R)-2 in separate synthetic sequences starting with the 

two enantiomers of methyl 3-hydroxy-2-methylpropionate (5) and chiral ketone 14 (Figure 2.2). 



 

14 
 

 

Figure 2.2 Starting materials of Arimoto syntheses of vallartanone B’s. 

However, the same outcome might be accomplished if an enantiopure fragment was coupled 

with a racemic fragment with kinetic resolution. Kinetic resolution takes advantage of the fact that the 

two enantiomers possess different reactivity in a chiral environment thereby allowing the preferential 

reaction of one enantiomer in the presence of both. One way to form the beta-hydroxy-ketone 

functional group in 21 is through an aldol reaction. Recent research in the Ward group has involved the 

design and application of aldol reactions that proceed via kinetic resolution. Coupling chiral fragments 

using the concept of kinetic resolution allows the use of an enantiopure fragment and a racemic 

fragment which is advantageous in a total synthesis that follows a convergent pathway. According to the 

multiplicativity rule,4 an aldol reaction proceeding with kinetic resolution is expected when the three 

stereocontrol elements are highly biased; i.e., the relative topicity of the reaction and the diastereoface 

selectivities of the enolate and aldehyde. Even though the configurations of C-6 and C-7 in 21 are not 

present in the final product, they will be used to control the C-8 configuration. Once the diastereoface 

selectivities for additions to aldehyde rac-11 and the enolate derived from ketone 22 have been firmly 

established, an aldol reaction can be designed with the required relative topicity to afford the (8S) 

configuration. 
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2.2 Syntheses of aldehyde 11 

2.2.1 Previous protocols 

The synthesis of enantiomerically enriched 11 has been reported previously (discussed in 

Section 1.3 and 1.4); however, 11 has never been characterized. Arimoto and coworkers prepared both 

11 and ent-11 in seven steps starting with 5 and ent-5, respectively (Scheme 2.1).2  

Scheme 2.1 Arimoto synthesis of ent-11. 

 

Paterson and coworkers reported the synthesis of the 11 in their total synthesis of baconipyrone 

C (Scheme 2.2).5 The only difference from Arimoto’s approach was how the tri-ketone 31 was 

constructed. Instead of coupling 4-methylhepta-3,5-dione with carboxylic acid 7, Paterson used a total 

of eight steps to obtain the analogous precursor 31 from 23, 3-pentanone, and propanal. 
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Scheme 2.2 Paterson synthesis of 11. 
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2.2.2 Ward protocol 

The aldehyde rac-11 was accessed in three simple steps. Four molecules of propanoic acid 

condense to produce 2,6-diethyl-3,5-dimethylpyrone in the presence of polyphosphoric acid at 200 °C 

(Scheme 2.3). This procedure was adapted from the known protocol developed by Mullock and 

Suschitzky6 by modifying the extraction procedure where dichloromethane was used instead of 

chloroform. Pyrone 34 was deprotonated by NaHMDS and reacted with paraformaldehyde to afford the 

chiral primary alcohol rac-10. The deprotonation of 34 was developed by Sengoku and co-workers and 

the optimal base was found to be NaHMDS (cf. LDA, LTMP, LiHMDS and KHMDS) at -78 °C.7 These 

authors also studied reaction of the resulting anion with several alkyl and aryl aldehydes (but not 

paraformaldehyde), obtaining adducts with low stereoselectivity. After optimizing Sengoku’s conditions, 

the anion of 34 reacted with paraformaldehyde at 0 °C to afford rac-10 in modest yield. Oxidation of rac-

10 with IBX gave aldehyde rac-11. 

Scheme 2.3 Ward synthesis of rac-11. 

 

It has been reported that aldehyde 11 is easily racemized even in the presence of silica gel. 

Because the enantiopurity of the aldehyde was crucial to the syntheses of vallartanone B2 and 

baconipyrone C,5 it was prepared by oxidation of enantiopure 10 with Dess-Martin periodinane and 

used immediately without characterization. 
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This synthesis of aldehyde rac-11 has numerous advantages (Scheme 2.3). The approach took 

fewer steps compared to all known precedents and price difference between the starting materials is 

over 300-fold. Additionally, the aforementioned configurational instability is not a concern because the 

racemic aldehyde would be used. 
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2.3 Establishment of the diastereoface selectivity of rac-11 

 To determine the diastereoface selectivity of aldehyde rac-11, aldol reactions with the enol 

dicyclohexylborinate and amine-free lithium enolate8 of ketone 35 were attempted. In both cases, only 

one aldol adduct diastereomer (39b) was observed in the 1H NMR spectra of the crude products. Adduct 

39b was found to have the relative configuration of (6S*,7S*,8S*) (the structure elucidation of 39b is 

described in the following section). Proline-catalyzed aldol reaction between rac-11 and 35 was also 

attempted but low diastereoselectivity was observed (Scheme 2.4). The anti relative configuration of C-6 

and C-7 in 39b is rationalized by a chair-like Zimmermen-Traxler transition state.9 The syn relative 

configuration between C-7 and C-8 can be explained by the Felkin-Anh model.10 The highly 

stereoselective formation of 39b from reaction of rac-11 with the enol borinate and the lithium enolate 

of thiopyran ketone 35 suggests the diastereoface bias for aldol addition to rac-11 is highly Felkin-

selective. 

 

 

 

 

 

 

 

 



 

20 
 

Scheme 2.4 Reactions of rac-11 with enol borinate, lithium enolate and enamine of ketone 35. 
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2.4 Characterizations of aldol adducts 

2.4.1 Structural elucidations 

 Model studies were carried out in order to unambiguously assign the relative configuration of 

the aldol adducts 39a-d (Scheme 2.5). Given that the reactions of rac-11 with 35 and 36 each gave a 

single adduct (39b), an alternate route was undertaken to obtain all four possible diastereomers 

(Scheme 2.5). Deprotonation of pyrone 34 with NaHMDS followed by addition of aldehyde 37 to gave a 

5.5 : 1 : 2.2 : 7.7 mixture of the four possible adducts 38a, 38b, 38c, and 38d, respectively. Separate 

treatment of 38a, 38b and 38d with FeCl3·6H2O resulted in hydrolysis of the ketal moieties to give 39a, 

39b, and 39d, respectively.11 The fourth diastereomer, 39c, was obtained from 39d by isomerization 

(vide infra).12 

Structural analysis began by transforming the diastereomers 39b and 39c into their respective 

syn 1,3-diols via a well-established protocol (Et2BOMe, NaBH4)
13 followed by conversion into the 

corresponding acetonides 40 and 41, respectively. Both 40 and 41 had two characteristic peaks in the 

13C NMR spectra corresponding to the methyl groups of an acetonide from a syn 1,3-diol (i.e., at ca. 20 

and 30 ppm).14 Because the acetonides are conformationally rigid, the relative configurations at C-5, C-6 

and C-7 in 40 and 41 could be established by 1H NMR through the analysis of coupling constants. Large 

vicinal coupling constants between H-C5–C6-H and H-C6–C7-H observed both in 40 (10.5 and 10 Hz) and 

in 41 (10.5 and 10.5 Hz) suggested anti relationships and supported the assignment of (5R*,6R*,7S*) 

relative configurations. 
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Scheme 2.5 Relative configuration verifications on aldol adducts. 

 

Assignments of the relative configurations of C-8 in 40 and 41 were based on nOe experiments. 

The hypothesis was that the C-7–C-8 torsion angle would be governed by minimization of steric 

interactions particularly avoidance of syn-pentane interactions between C-18 and H2C-19. Thus, the 
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predominant conformer should have the HC-8 synperiplanar with H2C-19 and this assumption was 

supported by the observation of small H-C7–C8-H coupling constants (4 Hz for 40, 3 Hz for 41) and 

positive nOe’s between HC-8 and H2C-19 in both 40 and 41. In 40, the positive nOe observed between 

HC-6 and H3C-18 suggests the (5R*,6R*,7S*,8S*) relative configuration. In contrast, the observation of a 

positive nOe between HC-7 and H3C-18 in 41 suggests a (5R*,6R*,7S*,8R*) relative configuration. 

Through the above analysis, a (6S*,7S*,8S*) relative configuration can be assigned to 39b thereby 

establishing that the addition of the enol borinate and lithium enolate of thiopyran ketone 37 to rac-11 

is Felkin-selective (discussed in Section 2.3). 

Structures 39a and 39d are the C-6 epimers of 39b and 39c, respectively, and these relationships 

were established by isomerization reactions starting with 39b and 39c, respectively. Based on previous 

work of Ward group,12 aldol adducts that are derived from thiopyran ketones can undergo syn-anti 

isomerization in the presence of imidazole via keto-enol tautomerism. Separate treatment of aldol 

adducts 39b and 39d with imidazole afforded 39a and 39c, respectively, thereby establishing the 

epimeric relationship at C-6 between 39a and 39b as well as 39c and 39d. The results of the 

isomerization reactions allowed 39a and 39d to be assigned the relative configuration (6R*,7S*,8S*) and 

(6R*,7S*,8R*), respectively. After the unambiguous assignments of the relative configurations of 39a-d, 

each was subjected to desulfurization to afford 42a-d, respectively. Due to difficulty of separation, 

compounds 42b-d were characterized as a mixture of diastereomers (see experimental section for 

details). 
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2.4.2 Correlation between structural features and spectral data 

 The NMR data for 39a-d and 42a-d were collected and analyzed to identify trends that might be 

used to assign the relative configurations of related aldol adducts. The discussion will begin with 39a-d 

(Table 2.1). Structures that have a syn relative configuration between C-7 and C-8 (39a, 39b) consistently 

have a H3C-18 1H NMR chemical shift that is ≥ 1.35 ppm. In contrast, structures that have an anti relative 

configuration between C-7 and C-8 (39c, 39d) have a 1H NMR chemical shift of H3C-18 that is ≤ 1.20 ppm. 

Three carbon nuclei (C-8, C-7 and C-19) have chemical shifts that consistently change with the relative 

configuration between C-6 and C-7. Structures that have a syn relative configuration between C-6 and C-

7 (39a, 39d) consistently possess the 13C NMR chemical shifts ≤ 37.8 ppm, ≤ 71.1 ppm and ≤ 30.3 ppm 

for C-8, C-7 and C-19, respectively. On the other hand, structures that have an anti relative configuration 

between C-6 and C-7 (39b, 39c) consistently possess the 13C NMR chemical shifts ≥ 39.7 ppm, ≥ 76.5 

ppm and ≥ 35.7 ppm for C-8, C-7 and C-19, respectively. 

Table 2.1 Unique characteristic NMR features of 39a-d with corresponding structural features. 

 

 

 

 
39a 

 
39b 

 
39c 

 
39d 

Relative 
configuration 

C-6–C-7 syn anti anti syn 

C-7–C-8 syn syn anti anti 

Chemical 
shift (ppm) 

δH, C-18 1.35 1.36 1.20 1.16 

δC, C-8 37.8 40.4 39.7 37.5 

δC, C-7 71.0 76.5 76.7 71.1 

δC, C-19 30.3 35.7 35.7 29.7 
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 The spectral features that correspond to the relative configuration of structures 42a-d are 

identical with those of 39a-d (Table 2.2). Structures that have a syn relative configuration between C-7 

and C-8 (42a, 42b) consistently have a H3C-18 1H NMR chemical shift that is ≥ 1.32 ppm. In contrast, 

structures that have an anti relative configuration between C-7 and C-8 (42c, 42d) displays constantly 

with a 1H NMR chemical shift of H3C-18 that is ≤ 1.23 ppm. Three carbon nuclei (C-8, C-7 and C-19) have 

chemical shifts that consistently vary with the relative configuration between C-6 and C-7. Structures 

that have a syn relative configuration between C-6 and C-7 (42a, 42d) consistently possess the 13C NMR 

chemical shifts ≤ 38.8 ppm, ≤ 72.5 ppm and ≤ 10.0 ppm for C-8, C-7 and C-19, respectively. On the other 

hand, structures that have an anti relative configuration between C-6 and C-7 (42b, 42c) consistently 

possess the 13C NMR chemical shifts ≥ 40.0 ppm, ≥ 77.0 ppm and ≥ 15.9 ppm for C-8, C-7 and C-19, 

respectively. 

Table 2.2 Unique characteristic NMR features of 42a-d with corresponding structural features. 

 

 

 

 

 

 
42a 

 
42b 

 
42c 

 
42d 

Relative 
configuration 

C-6–C-7 syn anti anti syn 

C-7–C-8 syn syn anti anti 

Chemical 
shift (ppm) 

δH, C-18 1.33 1.32 1.23 1.13 

δC, C-8 38.8 40.5 40.0 38.2 

δC, C-7 72.4 77.0 77.6 72.5 

δC, C-19 10.0 15.9 15.9 9.3 
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2.5 Synthesis of ketone 44 

2.5.1 Enantioselective proline-catalyzed intermolecular aldol reaction 

It has been established that the enol dicyclohexylborinate of thiopyran ketone 35 adds to rac-11 

with high Felkin selectivity and anti-selective relative topicity (discussed in Section 2.3). According to the 

multiplicativity rule, reaction of rac-11 with an enol dicyclohexylborinate that possesses high biased 

diastereoface selectivity should proceed via kinetic resolution with synthetically useful selectivity. Based 

on previous work of Ward group15, aldol reactions of enol dicyclohexylborinates derived from thiopyran 

ketones show high levels of anti relative topicity and trans ketone enol(ate) face selectivity. 

Consequently, ketone 44 emerged as a viable candidate for reaction with rac-11. Enantioenriched 

ketone 44 was synthesized in two steps starting with aldehyde 42 and ketone 35, a readily available 

material in the Ward group that is also available commercially (Scheme 2.6). The first reaction was a 

proline-catalyzed intermolecular aldol reaction that was previously optimized with ketone 35 in excess 

to afford aldol adduct 43 in dr > 20 and > 98% ee.16 For this work, aldehyde 42 was used in excess and 

the resulting aldol adduct 43 was obtained in dr > 20 (by 1H NMR of the crude reaction mixture) and 

with slightly lower enantiopurity (92% ee by optical rotation) for unknown reasons. Aldol adduct 43 was 

protected as a triethylsilyl ether to afford 44. 

Scheme 2.6 Synthesis of ketone 44. 
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2.5.2 Establishment of the diastereoface selectivity of enol(ate) of ketone 
44 

In order to establish the diastereoface selectivity of 44, aldol reaction with isobutyraldehyde 42 

was investigated (Scheme 2.7). Reaction of 44 with chlorodicyclohexylborane and triethylamine 

followed by the addition of 42 afforded adduct 45 (dr > 20 by 1H NMR of the crude reaction mixture). In 

order to determine its relative configuration, 45 was desilylated to afford diol 46. The 13C spectrum of 46 

had seven signals suggesting a structure with either CS (cis-anti relative configuration) or C2 (trans-anti 

relative configuration) symmetry. Reduction of 46 gave unsymmetric triol 47 in quantitative yield 

(thirteen signals in the 13C NMR spectrum) thereby establishing that 46 was C2 symmetric. Because 

ketone 44 has the (3S,4S) absolute configuration, an absolute configuration of (3S,4S,6S,7S) can be 

assigned to 45. The exclusive formation of 45 from reaction of isobutyraldehyde with enol borinate of 44 

suggests the diastereoface bias of 44 for addition to aldehyde is highly trans-selective. 

Scheme 2.7 Establishment of the relative configuration of aldol adduct 45. 
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2.6 Total synthesis of (3S,4S,8S)-vallartanone A 

2.6.1 Aldol reaction with kinetic resolution 

It has been established that the enol borinate of thiopyran ketone 35 adds to rac-11 with high 

Felkin selectivity and anti-selective relative topicity (discussed in Section 2.3). The enol borinate of chiral 

ketone 44 undergoes aldol reaction with trans diastereoface selectivity and anti-selective relative 

topicity (discussed in Section 2.5.2). Based on previous work of the Ward group,16 it is expected that the 

reaction of enol borinate of 44 with rac-11 will afford 49, a synthetic precursor of vallartanone A, that 

has the required absolute configuration (3S,4S,8S) and the configurations at C-6 (6S) and C-7 (7S) set to 

aid the desired aldol coupling (Figure 2.3). 

 

Figure 2.3 A synthetic precursor that can be transformed into (3S,4S,8S)-vallartanone A. 

 Reaction of 44 with chlorodicyclohexylborane and triethylamine followed by the addition of 

three equivalents of rac-11 afforded adduct 49 (dr = 10 by 1H NMR of the crude reaction mixture) 

(Scheme 2.8). Generally in a kinetic resolution, the enantiomeric ratio of an initially racemic reactant 

increases with conversion and the ratio of stereoisomeric products decreases.17 In order to preserve 

both yield and selectivity of product, an excess amount of rac-11 was used in the reaction between enol 

borinate 48 and aldehyde rac-11. The relative configuration of 49 was analyzed through conformational 

and spectral analyses. 
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Scheme 2.8 Aldol reaction with kinetic resolution. 
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2.6.2 Structural elucidation of aldol adduct 49 

If 49 is a cis-1,3-substituted tetrahydropyran ring (50), substituents R1 and R2 would both be in 

equatorial orientations (Figure 2.4). Consequently a single chair conformer would dominate and the 

expected coupling constants for H-C4–C20-H2 are 0-5/6-14 Hz and 0-5/6-14 Hz for H-C6–C19-H2 (Table 

2.3). If 49 is a trans-1,3-substituted tetrahydropyran ring, two chair conformers are possible, 51a and 

51b, that will differ in energy according to the difference in conformational energies of the two 

substituents, R1 and R2. The expected coupling constants in 51a for H-C4–C20-H2 are 0-5/0-5 Hz and 0-

5/6-14 Hz for H-C6–C19-H2 (Table 2.3). In 51b, the expected coupling constants for H-C4–C20-H2 are 0-

5/6-14 Hz and 0-5/0-5 Hz for H-C6–C19-H2, respectively. The observed coupling constants of H-C4–C20-

H2 and H-C6–C19-H2 are 5/10.5 Hz and 5/6 Hz, respectively, thereby establishing 49 has a trans relative 

configuration between C-4 and C-6 with 51a as the predominant conformer. 

Table 2.3 Proton spin-coupling constants comparison of 49-51. 

 

 

50 51a 51b 49 

Coupling constants (Hz) 

Expected Expected Expected Observed 

C-4–C-20 0-5, 6-14 0-5, 6-14 0-5, 0-5 5, 10.5 

C-6–C-19 0-5, 6-14 0-5, 0-5 0-5, 6-14 5, 6 



 

31 
 

 

Figure 2.4 Conformational analyses of 50 and 51. 

The NMR data of 39a-d was used to assign the remaining relative configurations of 49. Aldol 

adduct 49 was assigned a syn relative configuration between C-7 and C-8 based on its observed H3C-18 

1H NMR chemical shift, 1.29 ppm (Table 2.4). The anti relative configuration between C-6 and C-7 was 

assigned based on the observed 13C NMR chemical shifts of C-8 (39.4 ppm) and C-7 (74.8 ppm). To 

further validate the above assignment, 49 was desulfurized and the corresponding acyclic aldol adduct 

52, was investigated. 

 

 

 

 



 

32 
 

Table 2.4 Comparison of chemical shifts between 39a-d and 49. 

 
39a-d 

 
49 

Relative configuration 
Observed 
chemical 

shift (ppm) 

C-6–C-7 syn anti anti syn 

C-7–C-8 syn syn anti anti 

Chemical shift (ppm) 

δH, C-18 1.35 1.36 1.20 1.16 1.29 

δC, C-8 37.8 40.4 39.7 37.5 39.4 

δC, C-7 71.0 76.5 76.7 71.1 74.8 

δC, C-19 30.3 35.7 35.7 29.7 30.8 

 

The relative configuration of aldol adduct 52 was assigned by the comparison of its NMR data 

with those of 42a-d. The syn relative configuration between C-7 and C-8 was assigned based on the 

observed H3C-18 1H NMR chemical shift (1.36 ppm) of 52 (Table 2.5). The anti relative configuration 

between C-6 and C-7 was assigned based on the observed 13C NMR chemical shifts of C-8 (40.0 ppm), C-

7 (76.1 ppm) and C-19 (14.7 ppm) in 52. In conclusion, the relative configuration of 49 was assigned 

trans (C-4–C-6), anti (C-6–C-7) and syn (C-7–C-8) based on the conformational analysis of 49 and the 

spectral analyses of 49 and 52. Because the starting ketone 44 has the (3S,4S) absolute configuration, a 

(3S,4S,6S,7S,8S) absolute configuration can be assigned to 49. 
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Table 2.5 Comparison of chemical shifts between 42a-d and 52. 

 
42a-d 

 
52 

Relative configuration 
Observed 
chemical 

shift (ppm) 

C-6–C-7 syn anti anti syn 

C-7–C-8 syn syn anti anti 

Chemical shift (ppm) 

δH, C-18 1.33 1.32 1.23 1.13 1.36 

δC, C-8 38.8 40.5 40.0 38.2 40.0 

δC, C-7 72.4 77.0 77.6 72.5 76.1 

δC, C-19 10.0 15.9 15.9 9.3 14.7 
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2.6.3 Endgame 

 Aldol adduct 52 was oxidized with IBX in DMSO at room temperature and without 

characterization, the oxidized products were treated with 10 wt. % HF to afford (3S,4S,8S)-vallartanone 

A as a single compound suggesting that no epimerization had occurred throughout those two 

transformations. Due to difficulty of separation after the aldol reaction, a telescoped procedure was also 

developed starting with ketone 44 and rac-11(Scheme 2.9). 

Scheme 2.9 Completion of the total synthesis of (3S,4S,8S)-vallartanone A. 
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2.7 Total synthesis of 8-epi-vallartanone A 

2.7.1 Strategic switch of one stereocontrol element 

 Similar to the efficient total synthesis of (3S,4S,8S)-vallartanone A, synthetic precursors of 8-epi-

vallartanone A (54-57) can also be assembled through an aldol reaction that proceeds via kinetic 

resolution (Figure 2.5). The precursors 54, 55, and 56 emerge by inverting the C-4–C-6, C-6–C-7, or C-7–

C-8 relative configuration of 49, respectively (Table 2.6). Precursor 57 arises by inverting the C-4–C-6, C-

6–C-7, and C-7–C-8 relative configurations of 49. The key to switch the enantioselectivity of the reaction 

is to selectively reverse one or all of the three stereocontrol elements by modification of the reaction 

conditions. 

 

Figure 2.5 Possible synthetic precursors (54-57) for 8-epi-vallartanone A. 
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Table 2.6 Configurational relationship between 49 and 54-57. 

 
(8S)-49 (8R)-54 (8R)-55 (8R)-56 (8R)-57 

Relative configuration 

C-4–C-6a trans  cis  trans  trans  cis  

C-6–C-7b anti  anti  syn  anti  syn  

C-7–C-8c syn  syn  syn  anti  anti  

Controlled by adiastereoface selectivity of enolate, brelative topicity of reaction and cdiastereoface 
selectivity of aldehyde. 

Based on previous work of Ward group,18 the diastereoface selectivity of an aldehyde can be 

modulated in the presence of a chelating Lewis acid, leading to non-Felkin addition to the aldehyde. 

Attempting to reverse the diastereoface selectivity of rac-11, it was allowed to react with enolsilane 36 

in the presence of MgBr2·OEt2 (Scheme 2.10). After purification, a mixture of four diastereomers was 

isolated in low yield. 

Scheme 2.10 Modulation of diastereoselectivity in the presence of a chelating Lewis acid. 

 

 Based on previous work of Ward group16, aldol reactions of thiopyran ketones show high levels 

of anti and syn relative topicities using enol borinates and titanium enolates, respectively. Thus, an aldol 

reaction between the in situ generated titanium enolate of ketone 44 and rac-11 was attempted in an 

effort to obtain syn relative topicity (Scheme 2.11). After purification, a mixture of two diastereomers 

(dr = 1.4 by 1H NMR in favor of 49) was obtained in low yield. 
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Scheme 2.11 Modulation of diastereoselectivity through titanium enolate. 

 

aUtilizing the NMR data of 39a-d, aldol adduct 58/59 was assigned a syn relative configuration between 
C-7 and C-8 based on  its observed H3C-18 1H NMR chemical shift, 1.31 ppm. The syn relative 
configuration between C-6 and C-7 was assigned based on the observed 13C NMR chemical shifts of C-8 
(38.0 ppm), C-7 (71.0) and C-19 (29.9 ppm).  

 The diastereoface selectivity of enol borinate 48 was rationalized through conformational 

analysis (Scheme 2.12). The diastereoface selectivity of aldol reactions of chiral ethyl ketones is 

influenced by the geometry of the enolate as well as the preferred torsion angle C4–C5. Enol borinate 48 

is a six-membered ring with limited C4–C5 rotation; moreover, only an (E)-enol borinate can be formed. 

As a result, the most stable conformer of 48 will have the R substituent in an equatorial orientation (48b) 

when the aldehyde undergoes a pseudo-axial attack. On the other hand, torsion C4–C5 will be 

influenced by minimization of 1,3-allylic strain in (E)-enol borinate 62, now that it lacks the cyclic sulfide. 

The most stable conformer of 62 will have H-C4 eclipsing with the vinyl methyl group (62c) with the 

diastereotopic faces differentiated by methyl and R groups. The aldehyde should approach on the rear 

face of 62 to afford 4,6-syn-63 due to steric effect, hence reversing the diastereoface selectivity of the 

ketone enol(ate). 
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Scheme 2.12 Rationalization of opposite diastereoface selectivity of enol borinates 48 and 62. 

 

Thus, ketone 44 was desulfurized to afford the acyclic analogue, 61 (Scheme 2.12), and the 

aforementioned hypothesis was tested by reacting the (E)-enol borinate of ketone 61 and aldehyde 42 

(Scheme 2.13). The reaction afforded one aldol adduct, 64, after purification (dr > 20 by 1H NMR of the 

crude reaction mixture). In order to determine its relative configuration, 64 was reduced to afford one 

diol 65. Desilylation of 65 gave symmetric triol 66 (seven signals in the 13C NMR spectrum) thereby 

establishing its CS symmetry. Because ketone 61 has the (3S,4S) absolute configuration, an absolute 

configuration of (3S,4S,6R,7R) can be assigned to 64. The exclusive formation of 64 from reaction of 

isobutyraldehyde with enol borinate of 61 suggests it undergoes aldol reaction with 4,6-syn 

diastereoface selectivity and anti-selective relative topicity. 
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Scheme 2.13 Establishment of the relative configuration of aldol adduct 64. 
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2.7.2 Aldol reaction with kinetic resolution (sequel) 

 Similar to the aldol reaction between aldehyde rac-11 and enol borinate 48, it is expected the 

reaction of rac-11 and enol borinate 62 will also proceed with kinetic resolution. As a result, a synthetic 

precursor of 8-epi-vallartanone A (67) would be assembled that has the required absolute configuration 

(3S,4S,8R), and the configuration at C-6 (6R) and C-7 (7R) set to aid the desired aldol coupling (Figure 

2.6). 

 

Figure 2.6 A synthetic precursor that can be transformed into 8-epi-vallartanone A. 

Reaction of 61 with chlorodicyclohexylborane and N,N-dimethylethylamine followed by the 

addition of three equivalents of rac-11 afforded adduct 67 (dr = 10 by 13C NMR of the crude reaction 

mixture) (Scheme 2.14). The relative configuration of 67 was assigned through spectral analyses. 

Scheme 2.14 Aldol reaction with kinetic resolution (sequel). 

 



 

41 
 

2.7.3 Structural elucidation of aldol adduct 67 

The relative configuration of 67 was assigned by comparison of its NMR data with those of 42a-d. 

Aldol adduct 67 was assigned with syn relative configuration between C-7 and C-8 based on the 

observed H3C-18 1H NMR chemical shift, 1.28 ppm (Table 2.7). The anti relative configuration between 

C-6 and C-7 was assigned based on the observed 13C NMR chemical shifts of C-8 (38.9 ppm), C-7 (76.0 

ppm) and C-19 (14.7 ppm) in 67. The NMR data of 67 are different from those of 52; however, the 

relative configurations at C-6–C-7 and C-7–C-8 in 67 are identical to those of 52. Because, the 4,6-anti 

relative configuration was assigned in aldol adduct 67 based on NMR analysis of the precursor 49, the 

4,6-syn relative configuration was assigned to 67. In conclusion, the relative configuration of 67 was 

assigned syn (C-4–C-6), anti (C-6–C-7) and syn (C-7–C-8) based on spectral analysis of 67. Because the 

starting ketone 61 has the (3S,4S) absolute configuration, a (3S,4S,6R,7R,8R) absolute configuration can 

be assigned to 67. 

Table 2.7 Comparison of chemical shifts between 42a-d and 67. 

 
42a-d 

 
67 

Relative configuration 
Observed 
chemical 

shift (ppm) 

C-6–C-7 syn anti anti syn 

C-7–C-8 syn syn anti anti 

Chemical shift (ppm) 

δH, C-18 1.33 1.32 1.23 1.13 1.28 

δC, C-8 38.8 40.5 40.0 38.2 38.9 

δC, C-7 72.4 77.0 77.6 72.5 76.0 

δC, C-19 10.0 15.9 15.9 9.3 14.7 
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2.7.4 Endgame 

Aldol adduct 67 was oxidized with IBX in DMSO at room temperature and without 

characterization, the oxidized products were treated with 10 wt. % HF to afford a mixture of 8-epi-1 and 

1 (dr = 15 by 1H NMR) suggesting epimerization had occurred throughout those two transformations. 

Even though 1 was obtained free of its C-8 epimer under identical condition, the origin of epimerization 

for the formation of 8-epi-1 was unknown. Due to difficulty of separation after the aldol reaction, a 

telescoped procedure was also developed starting with ketone 61 (Scheme 2.15). 

Scheme 2.15 Completion of the total synthesis of 8-epi-vallartanone A. 
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2.8 Explanation of stereochemical outcome of aldol reactions 

The diastereoface selectivities of the enol borinates 48 and 62 (trans and syn, respectively) were 

governed by steric effects (discussed in Section 2.7.1). The diastereoface selectivity of aldehyde rac-11 

can be rationalized using the Felkin-Anh model.10 The anti relative topicity of the aldol reactions 

originate from (E)-enol borinates (48 and 62) that react with rac-11 via chair-like Zimmerman-Traxler 

transition states.9 The relative configurations of aldol adducts 49 and 67 essentially arise from the 

simultaneous cooperation of the three stereocontrol elements: 1) diastereoface selectivity of the ketone 

enol(ate), 2) relative topicity of the reaction and 3) diastereoface selectivity of the aldehyde (Figure 2.7). 

 

Figure 2.7 Aldol adducts 49 and 67. 

 In the presence of both enantiomers of 11, enol borinates 48 and 62 preferentially reacted with 

(R)-11 and (S)-11, respectively. This enantiomer selective reaction can be rationalized through the 

conformational analyses of their respective chair-like transition states (Figure 2.8). The hypothesis was 

that the C-7–C-8 torsion in 69 would be governed by minimization of steric interactions particularly 

avoidance of syn-pentane interactions between C-18 and C-19. Assuming the pyrone group of (R)-11 

resembles a phenyl group, the lowest energy transition state should have HC-8 synperiplanar with H2C-

19, at the same time, C-18 synperiplanar with HC-6. 



 

44 
 

 

Figure 2.8 Proposed transition state for aldol reaction between 48 and (R)-11. 

 Similarly, the preferred C-7–C-8 torsion in transition state 70 would be strongly biased by steric 

repulsion between C-18 and C-19 (Figure 2.9). With the assumption that the pyrone group of (S)-11 

resembles a phenyl group, the lowest energy transition state should have HC-8 synperiplanar with H3C-

19, and C-18 synperiplanar with HC-6. 

 

Figure 2.9 Proposed transition state for aldol reaction between 62 and (S)-11. 
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2.9 Comparison of physical data 

 Synthetic (3S,4S,8S)-1 ([α]D = -180 (c 0.50, CHCl3) gave spectroscopic data (MS and 1H) that 

matched with those reported1 for isolated 1 ([α]D = -176 (c 0.68, CHCl3)) (Table 2.8). 

Table 2.8 Comparison of 1H NMR spectra (CDCl3) between natural 1 and synthetic (3S,4S,8S)-1. 

 
(3R,4R,8R)-1 

assignmenta  
(3S,4S,8S)-1 

naturala synthetic 

δH (360 MHz) 
multiplicity 
(J’s in Hz) 

δH (500 MHz) 
multiplicity 
(J’s in Hz) 

4.17 q (7.1) C-8 4.17 q (7) 

3.79 dd (2.6, 12.9) C-3 3.78 dd (2.5, 13) 

2.62 q (7.6) C-14 2.68-2.56 m 

2.38 dq (12.9, 6.8) C-4 2.38 dq (13, 7) 

1.96 s C-16 1.95 s 

1.94 s C-17 1.94 s 

1.85b m C-2 1.99-1.95 m 

1.75 s C-19 1.74 s 

1.47 d (7.1) C-18 1.46 d (7) 

1.23 t (7.6) C-15 1.22 t (7.5) 

1.08 d (6.8) C-1 1.08 d (7) 

1.07 d (6.8) C-20 1.06 d (7) 

0.84 d (6.8) C-21 0.83 d (7) 
aData and assignment according to Faulkner (ref. 1). bDiscrepancy was assumed to be caused by artifact 
during isolation, based on matching data (13C NMR, specific rotation and circular dichroism) between 
isolated 1 and synthetic 1. 

 Because Faulkner used a 2D 1H/13C HSC experiment to assign the 13C NMR spectrum of 1, signals 

that correspond to the quaternary carbons were assigned based on chemical shift and were considered 

interchangeable (Table 2.9).1 In this work, all 13C NMR spectra were assigned and confirmed by gHSQC 

and gHMBC experiments. 13C Chemical shifts for synthetic 1 are consistently higher (average = 0.14 ppm) 
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than those reported for the natural 1, except for C-10, presumably due to a different reference standard; 

this work used δC CDCl3 = 77.23 ppm. 

Table 2.9 Comparison of 13C NMR spectra (CDCl3) between natural 1 and synthetic (3S,4S,8S)-1. 

 
(3R,4R,8R)-1 

assignmenta 
 

(3S,4S,8S)-1 

naturala synthetic 

δC (50 MHz) δC (125 MHz) 

195.2 C-5 195.7 

179.4 C-11 179.8 

168.4b,d C-7 168.8 

164.4b,e C-13 164.7 

160.8f C-9 161.0 

119.4c C-10 119.1 

118.3c C-12 118.5 

108.7 C-6 108.8 

87.4 C-3 87.4 

41.0 C-4 41.1 

38.8 C-8 38.9 

28.9 C-2 29.0 

24.8 C-14 25.0 

19.6 C-1 19.8 

14.6 C-21 14.7 

14.2 C-18 14.5 

11.2 C-15 11.6 

10.1 C-20 10.2 

9.4 C-16 9.8 

9.2 C-17 9.5 

8.9 C-19 9.3 
aData and assignment according to Faulkner (ref. 1). b,cSignals maybe interchanged (ref. 1). dOriginally 
assigned as C-13 (ref. 1). eOriginally assigned as C-9 (ref. 1). fOriginally assigned as C-7 (ref. 1). 

Although the 1H NMR spectrum of 8-epi-1 was the only physical data provided by Faulkner, the 

1H NMR spectrum of synthetic (3S,4S,8R)-1 ([α]D = -100 (c 0.30, CHCl3)) matched with those reported1 for 

8-epi-1 (Table 2.10). 

Table 2.10 Comparison of 1H NMR spectra (CDCl3) between isolated 8-epi-1 and synthetic (3S,4S,8R)-1. 
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(3R,4R,8S)-1 

assignmenta  
(3S,4S,8R)-1 

isolateda synthetic 

δH (360 MHz) 
multiplicity 
(J’s in Hz) 

δH (500 MHz) 
multiplicity 
(J’s in Hz) 

4.14 q (7.0) C-8 4.14 q (7) 

3.71 dd (2.8, 12.8) C-3 3.71 dd (2, 13) 

2.61 q (7.7) C-14 2.67-2.54 m 

2.45 dq (12.8, 6.9) C-4 2.45 dq (13, 7) 

2.00 m C-2 1.99-1.91 m 

1.95 s C-16 1.95 s 

1.94 s C-17 1.94 s 

1.73 s C-19 1.73 s 

1.49 d (7.0) C-18 1.49 d (7) 

1.23 t (7.7) C-15 1.22 t (7.5) 

1.07 d (6.9) C-20 1.06 d (7) 

0.96 d (6.9) C-1 0.96 d (7) 

0.95 d (6.9) C-21 0.95 d (7) 
aData and assignment according to Faulkner (ref. 1). 

The circular dichroism spectra of (3S,4S,8S)-1 and (3S,4S,8R)-1 were acquired for further 

structural validation (Figure 2.10). The negative split Cotton effect exhibited by (3S,4S,8S)-1 (max @ 235 

nm and min @ 276 nm) matched with those reported1 for 1 (max @ 237 nm and min @ 274 nm). 
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Figure 2.10 Circular dichorism spectra of isolated 1 (left), (3S,4S,8S)-1 (red), and (3S,4S,8R)-1 (blue). 
Copied with permission from Manker, D. C.; Faulkner, D. J. Vallartanone A and B, polypropionate 
metabolites of Siphonaria maura from Mexico. J. Org. Chem. 1989, 54, 5374-5377. Copyright 1989 
American Chemical Society. 
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2.10 Conclusion 

 The first total syntheses of (3S,4S,8S)-1 and its C-8 epimer were accomplished starting with 

commercially available materials: ketone 35, isobutyraldehyde and propanoic acid (Figure 2.11). The 

syntheses of 49 and 67, the synthetic precursors for (3S,4S,8S)-1 and (3S,4S,8R)-1, respectively, were 

achieved by coupling rac-11 with specific enantioenriched ketones via aldol reactions designed to 

proceed with kinetic resolution but with opposite enantioselectivity. In the presence of rac-11, the enol 

borinate of 44 reacted preferentially with (R)-11 (i.e., enantiomer selective) in a highly 

diastereoselective manner (trans ketone enol(ate) diastereoface selectivity, anti relative topicity and 

Felkin aldehyde diastereoface selectivity) to afford (3S,4S,6S,7S,8S)-49 (dr =10). The enantioselectivity of 

the reaction was switched by a tactical change of the ketone enol(ate) diastereoface selectivity (trans to 

syn) through the usage of ketone 61, the desulfurized analogue of 44. In the presence of rac-11, the enol 

borinate of 61 reacted preferentially with (S)-11 in a highly diastereoselective manner (syn ketone 

enol(ate) diastereoface selectivity, anti relative topicity and Felkin aldehyde diastereoface selectivity) to 

afford (3S,4S,6R,7R,8R)-67 (dr =10). Both aldol adducts, 49 and 67, were individually transformed into 

(3S,4S,8S)-1 and (3S,4S,8R)-1, respectively. Physical data (MS, CD, NMR, [α]D) of (3S,4S,8S)-1 and 1H NMR 

of (3S,4S,8R)-1 was found to matched with those reported1 for naturally occurring 1 and 8-epi-1, 

respectively. Base on the unambiguous configurational assignments of 49 and 67, the absolute 

configuration of vallartanone A should be revised from (3R,4R,8R) to (3S,4S,8S). 
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Figure 2.11 Summary of total syntheses of vallartanone A and 8-epi-vallartanone A. 
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3. EXPERIMENTAL 

3.1 General Methods 

Anhydrous solvents were distilled under argon atmosphere as follows: tetrahydrofuran (THF) 

from benzophenone sodium ketyl; Et2O from benzophenone sodium ketyl; CH2Cl2 from CaH2; DMSO 

from CaH2 at reduced pressure (stored over 4Å molecular sieves); MeOH from Mg(OMe)2. Unless 

otherwise noted, all experiments involving air- and/or moisture-sensitive compounds were conducted in 

an oven dried round-bottom flask (RBF) capped with a rubber septum, and attached via a needle and 

connecting tubing to an argon manifold equipped with mercury bubbler (ca. 5 mm positive pressure of 

argon). Low temperature baths were: ice/water (0 °C), CO2(s)/MeCN (-50 °C), and CO2(s)/AcMe (-78 °C). 

Unless otherwise noted, reaction temperatures refer to that of the bath. 

 Concentration refers to removal of volatiles at water aspirator pressure on a rotary evaporator. 

Preparative TLC (PTLC) was carried out on glass plates (20x20 cm) pre-coated (0.25 mm) with silica gel 

60 F254. Materials were detected by visualization under an ultraviolet lamp (254 nm) and/or by treating a 

1 cm vertical strip removed from the plate with a solution of phosphomolybdic acid (5%) containing a 

trace of ceric sulphate in aqueous sulfuric acid (5% v/v) followed by charring on a hot plate. Flash 

column chromatography (FCC) was performed according to Still et al.19 with silica gel 60 (40-63 µm). All 

mixed solvent eluents were reported as v/v solutions. Unless otherwise noted, all reported compounds 

were homogeneous by thin layer chromatography (TLC) and by 1H NMR. 
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3.2 Spectral data 

 High resolution mass spectra (HRMS) and low resolution mass spectra (LRMS) were obtained on 

a double focussing high resolution spectrometer; only partial data are reported. Electron impact (EI) 

ionization was accomplished at 70 eV, chemical ionization (CI) at 50 eV with ammonia as the reagent gas; 

only partial data are reported. Alternatively, HRMS were obtained on an LC-MS/MS time-of-flight high 

resolution spectrometer with electrospray ionization (ESI) from acetonitrile solution. Infrared (IR) 

spectra were recorded on a Fourier transform interferometer using a diffuse reflectance cell (DRIFT); 

only diagnostic and/or intense peaks are reported. Unless otherwise noted, NMR spectra were 

measured in CDCl3 solution at 500 MHz for 1H and 125 MHz for 13C. Signals due to the solvent (13C NMR) 

or residual protonated solvent (1H NMR) served as the internal standard: CDCl3 (7.26 δH, 77.23 δC); C6D6 

(7.16 δH, 128.39 δC). The 1H NMR chemical shifts and coupling constants were determined assuming 

first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t 

(triplet), q (quartet), m (multiplet), br (broad), ap (apparent); the list of couplings constants (J) 

corresponds to the order of the multiplicity assignment. Coupling constants are reported to the nearest 

0.5 Hz (i.e. ±0.25 Hz as consistent with the digital resolution 0.2 Hz/pt). The 1H NMR assignments were 

made on the basis of chemical shift, multiplicity and were confirmed by homonuclear decoupling and/or 

two-dimensional correlation experiments (gCOSY, gHSQC, gHMBC).20 The multiplicity of 13C NMR signals 

refers to the number of attached H's (i.e., s = C, d = CH, t = CH2, q = CH3). The 13C assignments were made 

on the basis of chemical shift and multiplicity (as determined by gHSQC) and confirmed by two-

dimensional 1H/13C correlation experiments (gHSQC and gHMBC).20 Specific rotations ([α]D) were the 

average of five determinations at ambient temperature using a 1 mL, 10 dm cell; the units are 

(deg∙mL)/(g∙dm) and/or (10-1∙deg∙cm2)/g), and the concentrations (c) are reported in g/100 mL, and the 

values were rounded to reflect the accuracy of the measured concentrations (the major source of error). 
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3.3 Materials 

 The following compounds and reagents were prepared as described previously: 35,21 36,21 37,22 

43,16 W-2 Raney nickel,23 IBX24 and (c-Hex)2BCl.25 2,6-Lutidine and Et3N were distilled from CaH2 under 

argon and stored over KOH under argon. Isobutyraldehyde was distilled from anhydrous Na2SO4 and 

stored under argon. All other reagents were commercially available and unless otherwise noted, were 

used as received. 

3.4 General experimental procedures 

3.4.1 General procedure for desulfurization of aldol adducts26 

A suspension of Raney Ni (W-2)23 (ca. 1 mL settled volume/50 mg of substrate) in ethanol was 

added in one portion to a stirred solution of substrate in ethanol (0.01 M) and the reaction mixture was 

heated under reflux. The reaction was monitored by TLC and when complete, the mixture was decanted 

and the solid was suspended in ethanol and heated under reflux with vigorous stirring for several min. 

The above washing procedure was repeated with ethyl acetate and with acetone. The supernatants 

were filtered through a pad of Celite® and the combined filtrates were concentrated to give the crude 

product. 
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3.5 Experimental procedures and spectral data for compounds 

2-Ethyl-6-((S)-1-((2S,3S)-2-isopropyl-3,5-dimethyl-4-oxo-3,4-dihydro-2H-pyran-6-yl)ethyl)-3,5-
dimethyl-4H-pyran-4-one (vallartanone A) (1). 

 
(1) 

Aldol reaction of 44 (101 mg, 0.33 mmol) with rac-11 (220 mg, 1.1 mmol) according to the 

procedure described for the preparation of 49 gave a crude product whose 1H NMR spectrum indicated 

the presence of a 10:1 mixture of diastereoisomeric aldol adducts. The crude was fractionated by SCC 

(packed and loaded with PhMe, eluted with 30% Et2O in PhMe) to give a 2.6:1 mixture of 49 and 72, 

respectively (107 mg; ca. 55% yield of 49). Reaction of the above mixture (107.5 mg) with Raney Ni (1.5 

mL settled volume) in THF (3 mL) for 30 minutes according to the general procedure gave, after work up, 

the crude desulfurization product (107 mg, complete conversion by 1H NMR). IBX (125.5 mg, 0.45 mmol) 

was added to a stirred solution of the above crude ketone (107 mg) in DMSO (2.2 mL) at ambient 

temperature. After 14 h, the reaction was quenched by addition of sat. aqueous NaHCO3. The mixture 

was diluted with ethyl acetate, washed with water and brine, dried over Na2SO4, concentrated, and 

fractionated by FCC (30% EtOAc in hexanes) to give the crude dione (49.5 mg) as mixture of keto-enol 

tautomers by 1H NMR. Aqueous HF (20% (w/w); 0.5 mL) was added to a stirred solution of the crude 

diketone (49.5 mg) in MeCN (1 mL) at ambient temperature. After 14 h, the reaction was quenched by 

addition of sat. aqueous NaHCO3. The mixture was diluted with ethyl acetate, washed with water and 

brine, dried over Na2SO4, concentrated to give the title compound (36 mg, 31% over 4 steps; dr  >19:1). 

white amorphous solid, TLC Rf = 0.38 (50% ethyl acetate in hexane, developed thrice), []D –170 (c 0.5, 

CHCl3) (lit.
1 –176; c 0.68, CHCl3) 

IR (DRIFT) max 1655, 1616 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.17 (1H, q, J = 7 Hz, HC-8), 3.78 (1H, dd, J = 2.5, 13 Hz, HC-3), 2.63 (2H, dq, J 

= 15, 7.5 Hz, HC-14), 2.60 (1H, dq, J = 15, 7.5 Hz, HC-14), 2.38 (1H, dq, J = 13, 7 Hz, HC-4), 1.99-1.92 (1H, 

m, HC-2), 1.95 (3H, s, H3CC-12), 1.94 (3H, s, H3CC-10), 1.74 (3H, s, H3CC-6), 1.46 (3H, d, J = 7 Hz, H3CC-8), 
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1.22 (3H, t, J = 7.5 Hz, H3C-15), 1.08 (3H, d, J = 7 Hz, H3C-1), 1.06 (3H, d, J = 7 Hz, H3CC-4), 0.83 (3H, d, J = 

7 Hz, H3C-1'). 

13
C NMR (125 MHz, CDCl3)  195.7 (s, C-5), 179.8 (s, C-11), 168.8 (s, C-7), 164.7 (s, C-13), 161.0 (s, C-9), 

119.1 (s, C-10), 118.5 (s, C-12), 108.8 (s, C-6), 87.4 (d, C-3), 41.1 (d, C-4), 38.9 (d, C-8), 29.0 (d, C-2), 25.0 

(t, C-14), 19.8 (q, C-1), 14.7 (q, C-1'), 14.5 (q, CH3C-8), 11.6 (q, C-15), 10.2 (q, CH3C-4), 9.8 (q, CH3C-12), 

9.5 (q, CH3C-10), 9.3 (q, CH3C-6). 

LRMS (EI), m/z (relative intensity): 346 ([M]+, 100), 317 (12), 263 (44), 234 (12), 206 (19), 180 (64). 

HRMS m/z calcd. for C21H30O4 346.2144, found 346.2146 (EI). 

2-Ethyl-6-((R)-1-((2S,3S)-2-isopropyl-3,5-dimethyl-4-oxo-3,4-dihydro-2H-pyran-6-yl)ethyl)-3,5-
dimethyl-4H-pyran-4-one (8-epi-vallartanone A) (8-epi-1). 

 
(8-epi-1) 

From 67. IBX (15 mg, 0.054 mmol) was added to a stirred solution of 67 (12 mg, 0.025 mmol) in 

DMSO (0.3 mL) at room temperature. After 48 hours, the mixture was diluted with ethyl acetate and 

washed sequentially with NaHCO3, water, and brine. The organic phase was dried over Na2SO4, 

concentrated, and fractionated by PTLC (30% ethyl acetate in hexanes) to give 68 (9 mg, 75%) as a 

mixture of keto-enol tautomers (by 1H NMR). 10% aqueous HF (0.2 mL) was added to a stirred solution 

of the above 68 (8 mg, 0.02 mmol) in MeCN (0.4 mL) at room temperature. After 51 hours, the reaction 

mixture was diluted with ethyl acetate and washed sequentially with NaHCO3, water, and brine. The 

organic phase was dried over Na2SO4, concentrated, and fractionated by PLTC (30% ethyl acetate in 

hexane, multiple developments) to give the title compound (4 mg, 70%). From 61. (c-Hex)2BCl (1.0 M in 

hexane; 0.30 mL, 0.30 mmol) and Me2NEt (40 μL, 27 mg, 0.37 mmol) were added to a stirred solution of 

61 (40 mg, 0.15 mmol) in Et2O (0.45 mL) at room temperature. After 3 h, the mixture was cooled to –78 

°C and a solution of rac-11 (94 mg, 0.45 mmol) in Et2O (0.75 mL) was added. After 1 day, the reaction 

was quenched by sequential addition of phosphate buffer (pH = 7; 1 mL), MeOH (1 mL) and 30% aq H2O2 

(0.5 mL) with vigorous stirring. After stirring at 0 °C for 15 min, sat. aqueous Na2SO3 was added and the 

mixture was diluted with water and extracted with CH2Cl2. The combined organic layers were dried over 

Na2SO4, concentrated, and fractionated by FCC (30% ethyl acetate in hexane) to give a 3:1 mixture of 67 
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and 72, respectively (28 mg; ca. 35% of 67). IBX (31 mg, 0.11 mmol) was added to a stirred solution of 

the above mixture (28 mg) in DMSO (0.60 mL)at room temperature. After 14 h, the reaction was 

quenched by addition of sat. aqueous NaHCO3. The resulting suspension was diluted with ethyl acetate 

and washed with water and brine. The organic phase was dried over Na2SO4 and concentrated to give a 

crude (23 mg) that was taken up in in MeCN (0.50 mL) and 20% HF in H2O (0.25 mL) was added with 

stirring. After 36 h, the reaction was quenched buy addition of sat. aqueous NaHCO3. The mixture was  

diluted with ethyl acetate and washed with water and brine. The organic phase was dried over Na2SO4, 

concentrated, and fractionated by PTLC (40% ethyl acetate in hexane) to give the title compound (10 

mg, 19% over 3 steps; dr 17:1). 

colorless oil, TLC Rf = 0.23 (30% ethyl acetate in hexane), []D –100 (c 0.4 CHCl3) 

IR (DRIFT) max 1657, 1616 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.13 (1H, q, J = 7 Hz, HC-8), 3.70 (1H, dd, J = 2.5, 13 Hz, HC-3), 2.62 (1H, dq, J 

= 15, 7.5 Hz, HC-14), 2.59 (1H, dq, J = 15, 7.5 Hz, HC-14), 2.44 (1H, dq, J = 13, 7 Hz, HC-4), 1.99-1.91 (1H, 

m, HC-2), 1.945 (3H, s, H3CC-10 or H3CC-12), 1.937 (3H, s, H3CC-10 or H3CC-12), 1.72 (3H, s, H3CC-6), 1.48 

(3H, d, J = 7 Hz, H3C-8), 1.22 (3H, t, J = 7.5 Hz, H3C-15), 1.06 (3H, d, J = 7 Hz, H3CC-4), 0.95 (3H, d, J = 7 Hz, 

H3C-1), 0.94 (3H, d, J = 7 Hz, H3C-1'). 

13
C NMR (125 MHz, CDCl3)  195.7 (s, C-5), 179.8 (s, C-11), 168.9 (s, C-7), 164.7 (s, C-13), 161.3 (s, C-9), 

118.9 (s, C-10), 118.5 (s, C-12), 109.1 (s, C-6), 87.2 (d, C-3), 41.1 (d, C-4), 39.0 (d, C-8), 28.9 (d, C-2), 25.1 

(t, C-14), 19.6 (q, C-1), 14.9 (q, C-1'), 14.6 (q, CH3C-8), 11.7 (q, C-15), 10.3 (q, CH3C-4), 9.7 (q, CH3C-12), 

9.5 (q, CH3C-10), 9.1 (q, CH3C-6). 

LRMS (EI), m/z (relative intensity): 346 ([M]+, 78), 263 (36), 180 (73). 

HRMS m/z calcd. for C21H30O4 346.2144, found 346.2149 (EI). 
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2-Ethyl-6-(1-hydroxypropan-2-yl)-3,5-dimethyl-4H-pyran-4-one (10). 

 
(10) 

Adapting the procedure of Kigoshi,7a NaHMDS (1.0 M in THF; 7.1 mL, 7.1 mmol) was added to a 

stirred solution of pyrone 34 (1.061g, 5.89 mmol) in THF (20 mL) at 0 °C under Ar. After 1 min, solid 

paraformaldehyde (360 mg; 2 equiv of CH2O) was added. After 7 min, the reaction was quenched by 

addition of saturated aq NH4Cl. The mixture was diluted with ethyl acetate, washed with saturated aq 

NH4Cl, dried over Na2SO4, concentrated, and fractionated by FCC (ethyl acetate) to give the title 

compound (727 mg 59%). NMR data for 10 were consistent with those previously reported.2,5b 

white amorphous solid, TLC Rf = 0.24 (100% ethyl acetate) 

IR (DRIFT) max 2974, 2940, 2878, 1656, 1614, 1590 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.83 (1, m, HC-1'), 3.72 (1, m, HC-1'), 3.23 (1, m, HC-2'), 2.61 (2, dq, J = 2.5, 

7.5 Hz, H2CC-2), 1.98 (3, s, H3CC-5), 1.93 (3, s, H3CC-3), 1.83 (1, t, J = 6 Hz, HO), 1.22 (3, t, J = 7.5 Hz, H3CC-

2), 1.21 (3, d, J = 7 Hz, H3C-3'). 

13
C NMR (125 MHz, CDCl3)  180.0 (s, C-4), 164.4 (s, C-2), 163.7 (s, C-6), 119.6 (s, C-5), 118.2 (s, C-3), 65.6 

(t, C-1'), 38.5 (d, C-2'), 25.0 (t, CH2C-2), 14.5 (q, C-3'), 11.5 (q, CH3C-2), 9.7 (q ×2, CH3C-3, CH3C-5). 

LRMS (EI), m/z (relative intensity): 210 ([M]+, 48), 193 (100), 179 (57), 166 (12). 

HRMS m/z calcd. for C12H18O3 210.1256, found 210.1256. 
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2-(6-Ethyl-3,5-dimethyl-4-oxo-4H-pyran-2-yl)propanal (11). 

 
(11) 

IBX (600 mg, 2.14 mmol) was added to a solution of 10 (224 mg, 1.07 mmol) in MeCN (3.6 mL) 

and the mixture was heated under reflux until TLC analysis indicated complete consumption of 10 (ca. 1 

h). The suspension was cooled to 0 °C and then filtered through a sintered glass funnel with the aid of 

ethyl acetate. The combined filtrate and washings were washed with saturated aq NaHCO3, dried over 

Na2SO4, concentrated, and fractionated by FCC (60% ethyl acetate in hexane) to give the title compound 

(180 mg, 81%). 

colorless liquid, TLC Rf = 0.27 (60% ethyl acetate in hexane) 

IR (DRIFT) max 1737, 1658, 1419 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  9.71 (1, s, HC-1), 3.79 (1, q, J = 7 Hz, HC-2), 2.60 (2, q, J = 7.5 Hz, H2CC-6'), 

1.99 (3, s, H3CC-3'), 1.95 (3, s, H3CC-5'), 1.45 (3, d, J = 7 Hz, H3C-3), 1.19 (3, t, J = 7.5 Hz, H3CC-6'). 

13
C NMR (125 MHz, CDCl3)  197.7 (d, C-1), 179.7 (s, C-4'), 165.2 (s, C-6'), 158.9 (s, C-2'), 121.0 (s, C-3'), 

118.7 (s, C-5'), 49.1 (d, C-2), 25.0 (t, CH2C-6'), 11.7 (q, C-3'), 11.4 (q, CH3C-6'), 9.9 (q), 9.7 (q). 

LRMS (EI), m/z (relative intensity): 208 ([M]+, 42), 179 (100), 151 (25). 

HRMS m/z calcd. for C12H16O3 208.1099, found 208.1092. 

2,6-Diethyl-3,5-dimethyl-4H-pyran-4-one (34). 

 
(34) 

Adapting the procedure of Mullock,6a a mixture of propanoic acid (30 g) and polyphosphoric acid 

(150 g) were heated under reflux (bath temperature, 200 °C). After 3 h, the mixture was removed from 

the heating bath and the reaction was quenched by slow addition of ice. The mixture was diluted with 
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water and extracted with CH2Cl2 and the combined organic layers were dried over Na2SO4, and 

concentrated. The residue was distilled (150 °C, 0.5 mbar) to give the title compound (9.3 g, 52%). 

yellow crystalline solid, TLC Rf = 0.54 (60% ethyl acetate in hexane) 

IR (DRIFT) max 1664, 1626, 1611 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  2.59 (4H, q, J = 7.5 Hz, H2CC-2, H2CC-6), 1.94 (6H, s, H3CC-3 H3CC-5), 1.21 

(6H, t, J = 7.5 Hz, H3CCC-2, H3CCC-6). 

13
C NMR (125 MHz, CDCl3)  180.1 (s , C-4), 164.6 (s ×2, C-2, C-6), 118.0 (s ×2, C-3, C-5), 25.0 (t ×2, CH2C-

2, CH2C-6), 11.6 (q ×2, CH3CC-2, CH3CC-6), 9.7 (q ×2, CH3C-3, CH3C-5). 

LRMS (EI), m/z (relative intensity): 180 ([M]+, 69), 179 (100), 137 (13), 113 (15), 57 (15). 

HRMS m/z calcd. for C11H16O2 180.1150, found 180.1128 (EI). 

2-Ethyl-6-(1-hydroxy-1-(1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-4H-pyran-4-one 
(38a-d). 

 
(38a-d) 

Adapting the procedure of Kigoshi,7a NaHMDS (1.0 M in THF; 0.85 mL, 0.85 mmol) was added to 

a stirred solution of pyrone 34 (177 mg, 0.98 mmol) in THF (1.2 mL) at 0 °C under Ar. After 10 min, the 

reaction mixture was cooled to –78 °C and a solution of aldehyde 37 (106 mg, 0.56 mmol) in THF (0.5 mL 

+ 0.5 mL rinse) was added via a syringe over 3 min. After 3 h, the reaction was quenched by addition of 

saturated aq NH4Cl. The suspension was diluted with ethyl acetate and washed sequentially with 

saturated aq NH4Cl, water and brine. The organic layer was dried over Na2SO4, and concentrated to give 

the crude product that contained 34 and 37 and a 1.7:1.3:1 mixture of adducts 38d, 38a, and (38b + 

38c), respectively. Fractionation of the crude by FCC (70% ethyl acetate in hexanes) gave recovered 34 

(94 mg, 53%), 37 (25 mg, 24%), 38a (52 mg, 25%), and a 7.7:2.2:1 mixture of 38d, 38c, and 38b, 

respectively (102 mg, 50%). The mixture (69 mg) was further fractionated by PTLC (50% PhMe in ethyl 

acetate; multiple development) to give 38d (36 mg, 26%), 38c (6 mg, 4.3%) and 38b (3 mg, 2.2%). 
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2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-
4H-pyran-4-one (38a). 

 
(38a) 

pale yellow foam, TLC Rf = 0.21 (60% ethyl acetate in hexane) 

IR (DRIFT) max 1657, 1607 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.39 (1H, br d, J = 10 Hz, HC-1'), 4.11-3.92 (4H, m, H2C-2'', H2C-3''), 3.19 (1H, 

s, HO), 3.08 (1H, dq, J = 10, 6.5 Hz, HC-2'), 3.03 (1H, dd, J = 11.5, 14 Hz, HC-7''), 2.77 (1H, ddd, J = 2.5, 

12.5, 13.5 Hz, HC-9''), 2.67-2.43 (4H, m, H2CC-2, HC-7'', HC-9''), 2.10 (1H, ddd, J = 3, 4, 14 Hz, HC-10''), 

1.97 (3H, s, H3C-3 or H3C-5), 1.94 (3H, s, H3C-3 or H3C-5), 1.71 (1H, dd, J = 3.5, 11.5 Hz, HC-6''), 1.61 (1H, 

ddd, J = 3.5, 12.5, 14 Hz, HC-10''), 1.33 (3H, d, J = 6.5 Hz, H3C-3''), 1.21 (3H, t, J = 7.5 Hz, H3CCC-2). 

13
C NMR (125 MHz, CDCl3)  179.9, 164.7, 163.8, 119.0, 118.0, 110.3, 70.9, 64.8, 64.3, 47.1, 38.9, 36.0, 

26.6, 26.1, 24.9, 15.7, 11.2, 9.8, 9.7. 

LRMS (EI), m/z (relative intensity): 368 ([M]+, 1), 237 (3), 209 (5), 189 (5), 180 (100), 99 (20). 

HRMS m/z calcd. for C19H28O5S 368.1657, found 368.1650 (EI). 

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-
4H-pyran-4-one (38b). 

 
(38b) 

pale yellow foam, TLC Rf = 0.09 (60% ethyl acetate in hexane) 

IR (DRIFT) max 3489, 1653, 1605 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.26 (1H, ap t, J = 5 Hz, HC-1'), 4.20-3.96 (5H, m, HO, H2C-2''. H2C-3''), 3.26 

(1H, dq, J = 5, 7 Hz, HC-2'), 2.91 (1H, dd, J = 2.5, 14 Hz, HC-7''), 2.76 (1H, ddd, J = 3, 8.5, 13.5 Hz, HC-9''), 
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2.73-2.65 (2H, m, HC-7'', HC-9''), 2.62 (2H, ap q, J = 7.5 Hz, H2CC-2), 2.16 (1H, m, J = 3.5, 9, 13.5 Hz, HC-

10''), 2.02 (3H, s, H3CC-3 or H3CC-5), 1.99-1.92 (1H, m, HC-6''), 1.94 (3H, s, H3CC-3 or H3CC-5), 1.79 (1H, 

ddd, J = 3.5, 7, 13.5 Hz, HC-10''), 1.27 (3H, d, J = 7 Hz, H3C-3'), 1.22 (3H, t, J = 7.5 Hz, H3CCC-2). 

13
C NMR (125 MHz, CDCl3)  180.2, 165.1, 164.6, 118.6, 118.1, 110.6, 73.4, 64.8, 64.1, 46.5, 38.4, 34.7, 

30.2, 26.9, 25.0, 11.5, 11.0, 9.8, 9.8. 

LRMS (CI, NH3), m/z (relative intensity): 369 ([M+1]+, 99), 209 (10), 189 (10), 180 (100), 99 (19). 

HRMS m/z calcd. for C19H28O5S+H 369.1736, found 369.1728 (CI, NH3). 

2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-
4H-pyran-4-one (38c). 

 
(38c) 

pale yellow foam, TLC Rf = 0.09 (60% ethyl acetate in hexane) 

IR (DRIFT) max 3489, 1656, 1606 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.11 (1H, ddd, J = 5.5, 7, 7 Hz, HC-1'), 4.04-3.95 (4H, m, H2C-2'', HC-3''), 3.89 

(1H, d, J = 5.5 Hz, HO), 3.34 (1H, dq, J = 7, 7 Hz, HC-2'), 2.84 (1H, dd, J = 3, 14 Hz, HC-7''), 2.77 (1H, dd, J = 

8, 14 Hz, HC-7''), 2.74-2.66 (2H, m, H2C-9''), 2.61 (2H, ap q, J = 7.5 Hz, H2CC-2), 2.23-2.16 (1H, m, HC-10''), 

2.04 (1H, ddd, J = 4, 7, 8 Hz, HC-6''), 1.97 (3H, s, H3CC-3 or H3CC-5), 1.94 (3H, s, H3CC-3 or H3CC-5), 1.81-

1.74 (1H, m, HC-10''), 1.29 (3H, d, J = 7 Hz, H3C-3'), 1.22 (3H, t, J = 7.5 Hz, H3CCC-2). 

13
C NMR (125 MHz, CDCl3)  180.0, 165.0, 164.5, 119.4, 118.1, 111.0, 76.0, 64.4, 64.0, 45.2, 39.9, 35.1, 

31.1, 26.7, 25.0, 15.3, 11.5, 10.1, 9.7. 

LRMS (CI, NH3), m/z (relative intensity): 369 ([M+1]+, 100), 209 (6), 189 (10), 180 (94), 99 (19). 

HRMS m/z calcd. for C19H28O5S+H 369.1736, found 369.1725 (CI, NH3). 
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2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)propan-2-yl-3,5-dimethyl-
4H-pyran-4-one (38d). 

 
(38d) 

pale yellow foam, TLC Rf = 0.09 (60% ethyl acetate in hexane) 

IR (DRIFT) max 3416, 1657, 1605 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.35 (1H, d, J = 10 Hz, HC-1'), 4.15-3.97 (4H, m, H2C-2''. H2C-3''), 3.19 (1H, s, 

HO), 3.09 (1H, dq, J = 10, 7 Hz, HC-2'), 3.07 (1H, dd, J = 12, 13.5 Hz, HC-7''), 2.84 (1H, ddd, J = 2.5, 12.5, 

13.5 Hz, HC-9''), 2.65-2.55 (3H, m, H2CC-2, HC-7''), 2.51 (1H, dddd, J = 2.5, 3.5, 3.5 13.5 Hz, HC-9''), 2.19-

2.11 (2H, m, HC-6'', HC-10''), 1.95 (3H, s, H3CC-3 or H3CC-5), 1.90 (3H, s, H3CC-3 or H3CC-5), 1.75 (1H, 

ddd, J = 3.5, 12.5, 14 Hz, HC-10''), 1.19 (3H, t, J = 7.5 Hz, H3CCC-2), 1.12 (3H, d, J = 7 Hz, H3C-3'). 

13
C NMR (125 MHz, CDCl3)  179.9, 164.5, 164.1, 119.5, 118.0, 110.5, 71.0, 65.1, 64.3, 46.3, 38.3, 36.6, 

26.6, 25.2, 24.9, 14.6, 11.4, 9.8, 9.7. 

LRMS (CI, NH3), m/z (relative intensity): 369 ([M+1]+, 100), 189 (10), 180 (79), 99 (17). 

HRMS m/z calcd. for C19H28O5S+H 369.1736, found 369.1727 (CI, NH3). 

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((R)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-
4H-pyran-4-one (39a). 

 
(39a) 

From 39b. A solution of 39b (12 mg, 0.037 mmol) and imidazole (28 mg, 0.41 mmol) in CDCl3 (1 

mL). After 4 d, 1H NMR suggested the presence of a 1.6:1 equilibrium mixture of 39a and 39b, 

respectively. The mixture was diluted with ethyl acetate, washed with aq citric acid (0.1 M), dried over 

Na2SO4, concentrated, and fractionated by PTLC (70% ether in benzene; multiple development) to give 

39b (4 mg 33%) and the title compound (5 mg 42%). From 38a. FeCl3·6H2O (0.50 M in acetone; 0.60 mL, 
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0.30 mmol) was added to a solution of 38a (32 mg, 0.086 mmol) in acetone (0.6 mL) and the mixture 

was heated under reflux. After 1 h, the mixture was diluted with ethyl acetate, washed with water, dried 

over Na2SO4, concentrated, and fractionated by FCC (60% ethyl acetate in hexane) to give the title 

compound (21 mg 75%). 

amorphous white solid, TLC Rf = 0.44 (90% ethyl acetate in hexane) 

IR (DRIFT) max 3385, 2929, 1706, 1651, 1590 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.55 (1H, ddd, J = 2.5, 4, 9 Hz, HC-1'), 3.07 (1H, dd, J = 11.5, 13.5 Hz, HC-2''), 

3.05 (1H, dq, J = 9, 7 Hz, HC-2'), 2.96 (1H, ddd, J = 3.5, 11.5, 13.5 Hz, HC-6''), 2.89 (1H, dddd, J = 2.5, 5, 

4.5, 13.5 Hz, HC-6''), 2.83 (1H, ddd, J = 2.5, 4.5, 13.5 Hz, HC-2''), 2.73 (1H, ddd, J = 3,5, 4.5, 13.5 Hz, HC-

5''), 2.67 (1H, m, J = 5, 11.5, 13.5 Hz, HC-5''), 2.64 (1H, d, J = 4 Hz, HO), 2.62-2.54 (2H, m, H2CC-2), 2.51 

(1H, ddd, J = 2.5, 4.5, 11.5 Hz, HC-3''), 2.00 (3H, s, H3CC-5), 1.95 (3H, s, H3CC-3), 1.35 (3H, d, J = 7 Hz, H3C-

3'), 1.16 (3H, t, J = 7.5 Hz, H3CCC-2). 

13
C NMR (125 MHz, CDCl3)  211.3 (s, C-4''), 179.9 (s, C-4), 164.6 (s, C-2), 163.4 (s, C-6), 119.1 (s, C-5), 

118.5 (s, C-3), 71.0 (d, C-1'), 55.9 (d, C-3"), 45.0 (t, C-5"), 37.8 (d, C-2'), 30.8 (t, C-6"), 30.3 (t, C-2"), 24.9 

(t, CH2C-2), 15.5 (q, C-3'), 11.5 (q, CH3CC-2), 10.0 (q, CH3C-5), 9.8 (q, CH3C-3). 

LRMS (EI), m/z (relative intensity): 324 ([M]+, 14), 209 (11), 180 (100), 151 (6), 89 (6), 57 (14). 

HRMS m/z calcd. for C17H24O4S: 324.1395; found: 324.1399 (EI). 

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((S)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-
4H-pyran-4-one (39b). 

 
(39b) 

From 38b. A solution of FeCl3·6H2O (19 mg, 0.070 mmol) and 38b (7.3 mg, 0.020 mmol) in 

acetone (0.60 mL) was heated under reflux for 0.75 h. The mixture was diluted with ethyl acetate, 

washed with water, dried over Na2SO4, concentrated, and fractionated by PTLC (ethyl acetate) to give 

the title compound (3 mg 46%). From 35. The “amine free” Li enolate of tetrahydro-4H-thiopyran-4-one 

was prepared by reaction of the corresponding TMS enol ether (157.5 mg, 0.84 mmol) in ether (2 mL) 
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with MeLi (1.6 M in ether; 0.45 mL, 0.72 mmol) at 0 °C to room temperature under argon, as previously 

described.8 After 1 h, THF (2 mL) was added to the lithium enolate suspension and the resulting solution 

was cooled to –78 °C. A solution of pyrone aldehyde rac-11 (104 mg, 0.50 mmol) in THF (0.5 mL) was 

added via syringe and, after 5 min, the reaction was quenched by addition of a solution of AcOH (0.06 

mL, 1 mmol) in THF (0.20 mL). The mixture was diluted with CH2Cl2 and washed with saturated aq 

NaHCO3 and brine, dried over Na2SO4, concentrated, and fractionated by FCC (60% ethyl acetate in 

hexane) to give the title compound (97 mg, 60%). 

amorphorus white solid, TLC Rf = 0.1 (40% ethyl acetate in hexane) 

IR (DRIFT) max 3399, 1711, 1650, 1591 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.66 (1H, ddd, J = 2.5, 10, 11.5 Hz, HC-1'), 3.37 (1H, dq, J = 10, 7 Hz, HC-2'), 

3.22 (1H, dd, J = 11.5, 13.5 Hz, HC-2''), 3.00 (1H, d, J = 11 Hz, HO), 2.97 (1H, ddd, J = 3, 11.5, 13.5 Hz, HC-

6''), 2.93-2.86 (1H, m, HC-6''), 2.83 (1H, ddd, J = 2.5, 4.5, 13.5 Hz, HC-2''), 2.69 (1H, ddd, J = 3.5, 4, 13.5 

Hz, HC-5''), 2.56-2.66 (4H, m, H2CC-2, HC-3'', HC-5'',), 1.95 (3H, s, H3CC-3), 1.85 (3H, s, H3CC-5), 1.36 (3H, 

d, J = 7 Hz, H3C-3'), 1.20 (3H, t, J = 7.5 Hz, H3CCC-2). 

13
C NMR (125 MHz, CDCl3)  212.9 (s, C-4''), 179.8 (s, C-4), 164.5 (s, C-2), 163.7 (s, C-6), 119.2 (s, C-5), 

118.4 (s, C-3), 76.5 (d, C-1'), 55.1 (d, C-3''), 45.7 (t, C-5''), 40.4 (d, C-2'), 35.7 (t, C-2''), 31.4 (t, C-6''), 24.9 

(t, CH2C-2), 15.2 (q, C-3'), 11.5 (q, CH3CC-2), 9.72 (q, CH3C-3 or CH3C-5), 9.70 (q, CH3C-3 or CH3C-5). 

LRMS (EI), m/z (relative intensity): 324 ([M]+, 3), 235 (1), 208 (7), 180 (100), 149 (10), 89 (8), 57 (14). 

HRMS m/z calcd. for C17H24O4S: 324.1395; found: 324.1394 (EI). 

2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((R)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-
4H-pyran-4-one (39c). 

 
(39c) 

From 39d. A solution of 39d (33.5 mg, 0.10 mmol) and imidazole (163 mg, 2.4 mmol) in CH2Cl2 

(3.4 mL) was allowed to stand at room temperature in a stoppered flask. After 2 days, the mixture was 

diluted with aq citric acid (0.1 M) and extracted with CH2Cl2. The combined organic layers were dried 
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over Na2SO4 and concentrated to give the crude product as a 2:1 mixture of 39d and 39c, respectively 

(by 1H NMR). The crude was fractionated by PTLC (70% ether in benzene; multiple developments) to give 

39d (3 mg 9%), a 9:1 mixture of 39d and 39c (19 mg, 57%), respectively, and the title compound (5 mg 

15%).  

amorphous white solid, TLC Rf = 0.1 (50% ethyl acetate in hexane) 

IR (DRIFT) max 3389, 1709, 1655, 1589 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.78 (1H, ddd, J = 2.5, 8.5, 10.5 Hz, HC-1'), 3.42 (1H, dq, J = 8.5, 7 Hz, HC-2'), 

3.21 (1H, ap dd, J = 11.5, 15 Hz, HC-2''), 3.02 (1H, d, J = 10.5 Hz, HO), 3.06-2.93 (4H, m, HC-2'', HC-3'', 

H2C-6''), 2.79-2.74 (2H, m, H2C-5''), 2.65-2,57 (2H, m, H2CC-2), 2.00 (3, s, H3CC-5), 1.94 (3, s, H3CC-3), 1.22 

(3, t, J = 7.5 Hz, H3CC-2), 1.20 (3, d, J = 7 Hz, H3C-3'). 

13
C NMR (125 MHz, CDCl3)  212.3 (s, C-4''), 180.0 (s, C-4), 164.4 (s, C-2), 163.6 (s, C-6), 119.8 (s, C-5), 

118.2 (s, C-3), 76.7 (d, C-1'), 54.5 (d, C-3''), 45.8 (t, C-5''), 39.7 (d, C-2'), 35.7 (t, C-2''), 31.4 (t, C-6''), 25.0 

(t, CH2C-2), 15.6 (q, C-3'), 11.5 (q, CH3CC-2), 10.0 (q, CH3C-5), 9.7 (q, CH3C-3). 

LRMS (EI), m/z (relative intensity): 324 ([M]+, 2), 208 (14), 180 (100), 116 (12). 

HRMS m/z calcd. for C17H24O4S: 324.1395; found: 324.1402 (EI). 

2-Ethyl-6-((1R,2S)-rel-1-hydroxy-1-((S)-4-oxotetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-
4H-pyran-4-one (39d). 

 
(39d) 

A solution of FeCl3·6H2O (102 mg, 0.38 mmol) and 38d (39 mg, 0.11 mmol) in acetone (1.6 mL) 

was heated under reflux for 1 h. The mixture was diluted with EtOAc, washed with water, dried over 

Na2SO4, concentrated, and fractionated by PTLC (ethyl acetate) to give the title compound (24 mg 68%). 

amorphorus white solid, TLC Rf = 0.47 (ethyl acetate) 

IR (DRIFT) max 3385, 1706, 1653, 1591 cm
-1

. 
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1
H NMR (500 MHz, CDCl3)  4.40 (1H, ddd, J = 3.5, 4.5, 9 Hz, HC-1'), 3.13 (1H, dq, J = 9, 7 Hz, HC-2'), 3.10 

(1H, dd, J = 11.5, 13.5 Hz, HC-2''), 3.00 (1H, ap dt, J = 4.5, 13.5 Hz, HC-6''), 2.99 (1H, dd, J = 4.5, 13.5 Hz, 

HC-2"), 2.96-2.90 (1H, m, HC-6''), 2.83 (1H, ddd, J = 3.5, 4.5, 11.5 Hz, HC-3''), 2.79-2.70 (2H, m, H2C-5''), 

2.65-2.55 (2H, m, H3CC-2), 2.58 (1H, d, J = 4.5 Hz, HO), 1.92 (6H, s, H3CC-3, H3CC-5), 1.20 (3H, t, J = 7.5 Hz, 

H3CCC-2), 1.16 (3H, d, J = 7 Hz, H3C-3'). 

13
C NMR (125 MHz, CDCl3)  211.2 (s, C-4''), 179.9 (s, C-4), 164.3 (s, C-2), 163.7 (s, C-6), 119.8 (s, C-5), 

118.2 (s, C-3), 71.1 (d, C-1'), 55.2 (d, C-3''), 45.1 (t, C-5''), 37.5 (d, C-2'), 30.7 (t, C-6''), 29.7 (t, C-2''), 25.0 

(t, CH2C-2), 14.7 (q, C-3'), 11.5 (q, CH3C-2), 9.9 (q, CH3C-3 or CH3C-5), 9.7 (q, CH3C-3 or CH3C-5). 

LRMS (EI), m/z (relative intensity): 324 ([M]+, 7), 208 (12), 180 (100), 151 (6), 116 (9), 89 (6), 57 (9). 

HRMS m/z calcd. for C17H24O4S: 324.1395; found: 324.1394 (EI). 

2-((S)-rel-1-((4S,4aR,8aR)-2,2-Dimethylhexahydrothiopyrano[4,3-d][1,3]dioxin-4-yl)ethyl)-6-ethyl-3,5-
dimethyl-4H-pyran-4-one (40). 

 
(40) 

p-TsOH (14 mg, 0.074 mmol) was added to a stirred solution of 71 (40 mg, 0.12 mmol) and 2,2-

dimethoxypropane (0.10 mL, 0.81 mmol) in CH2Cl2 (2 mL) at ambient temperature. After 15 min 

(reaction complete by TLC analysis), the mixture was diluted with ethyl acetate, washed sequentially 

with saturated aq NaHCO3, water and brine, dried over Na2SO4, concentrated, and fractionated by PTLC 

(60% ethyl acetate in hexane) to give the title compound (30 mg, 68%) that was homogeneous by 1H 

NMR. 

amorphous white solid, TLC Rf = 0.53 (ethyl acetate) 

IR (DRIFT) max 1655, 1601 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.72 (1H, dd, J = 4, 10 Hz, HC-4''), 3.51 (1H, ddd, J = 3.5, 10.5, 10.5 Hz, HC-

8''a), 3.17 (1H, dq, J = 4, 7 Hz, HC-1'), 2.82 (1H, ddd, J = 2.5, 12.5, 14 Hz, HC-7''), 2.55-2.65 (3H, m, H2CC-

6, HC-7''), 2.44 (1H, ddd, J = 2.5, 3, 13.5 Hz, HC-5''x), 2.36 (1H, dd, J = 11.5, 13.5 Hz, HC-5''y), 2.09 (1H, 
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dddd, J = 2.5, 3, 3.5, 13 Hz, HC-8''), 1.97 (3H, s, H3CC-3), 1.95 (3H, s, H3CC-5), 1.85-1.73 (2H, m, HC-8'', 

HC-4a), 1.34 (6H, ap s, (H3C)2C-2''), 1.27 (3H, d, J = 7 Hz, H3C-2'), 1.22 (3H, t, J = 7.5 Hz, H3CC-6). 

13
C NMR (125 MHz, CDCl3)  180.1 (s, C-4), 164.6 (s, C-2), 164.5 (s, C-6), 118.12 (s, C-3 or C-5), 118.08 (s, 

C-3 or C-5), 98.6 (s, C-2''), 74.0 (d, C-4''), 72.8 (d, C-8a), 45.2 (d, C-4a), 37.5 (d, C-1'), 34.2 (t, C-8''), 30.1 

(q, CH3C-2''), 27.79 (t, C-5'' or C-7''), 27.73 (t, C-5'' or C-7''), 24.9 (t, CH2C-6), 19.7 (q, CH3C-2''), 11.6 (q, C-

2'), 11.4 (q, CH3CC-6), 9.76 (q, CH3C-3 or CH3C-5), 9.74 (q, CH3C-3 or CH3C-5). 

LRMS (CI, NH3), m/z (relative intensity): 367 ([M+1]+, 100), 351 (5), 180 (72), 129 (9), 101 (7). 

HRMS m/z calcd. for C20H30O4S+H: 367.1943; found: 367.1935 (Ci, NH3). 

2-((S)-rel-1-((4R,4aS,8aS)-2,2-Dimethylhexahydrothiopyrano[4,3-d][1,3]dioxin-4-yl)ethyl)-6-ethyl-3,5-
dimethyl-4H-pyran-4-one (41). 

 
(41) 

Water (35 µL, 35 mg, 1.94 mmol) was added to a stirrred suspension of tetrahydro-4H-

thiopyran-4-one (35) (168 mg, 1.45 mmol) and L-proline (15 mg, 0.13 mmol) in DMSO (0.30 mL) under 

argon at room temperature. After 2 h, the suspension was transferred via syringe to a vial containing 

aldehyde rac-11 (46 mg, 0.22 mmol). After stirring for 5 days, the mixture was diluted with NH4Cl and 

extracted with CH2Cl2. The combined organic layers were dried over Na2SO4 and fractionated by FCC (5-

100% ethyl acetate in hexane) to provide a 6.2:1 mixture of 39b and 39a, respectively (28 mg; ca. 34% 

%), and a 3.2:1 mixture of 39c and 39a, respectively (8 mg; ca. %). The latter fraction was dissolved in 

ethanol (0.44 mL) and NaBH4 (6.6 mg, 0.17 mmol) was added to the stirred solution at room 

temperature. After 15 min, the reaction was quenched by slow addition of 10% aq HCl until 

effervescence ceased and then the mixture was basified by addition of aq NaOH (3 M). After stirring for 

30 min, the mixture was diluted with brine and extracted with ethyl acetate. The combined organic 

layers were dried over Na2SO4, concentrated, and the resulting crude product was fractionated by PTLC 

(ethyl acetate) to provide a mixture of diols (7 mg). Without further purification, the mixure was taken 

up in CH2Cl2 (0.37 mL) and 2,2-dimethoxypropane (15 µL, 0.12 mmol) and p-TsOH (6 mg, 0.03 mmol) 

were added to the stirred solution. After 20 min, the mixture was diluted with ethyl acetate and washed 
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sequentially with saturated aq NaHCO3, water and brine. The organic layer was dried over Na2SO4, 

concentrated, and fractionated by PTLC (40% ethyl acetate in hexane, multiple developments) to give 

the title compound as an amorphous white solid (2.5 mg, 3% over 3 steps).  

amorphous white solid, TLC Rf = 0.64 (ethyl acetate) 

IR (DRIFT) max 1654, 1606 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.67 (1H, dd, J = 3, 10.5 Hz, HC-4''), 3.49 (1H, ddd, J = 3.5, 10.5, 11 Hz, HC-

8a), 3.18 (1H, dq, J = 3, 7 Hz, HC-1'), 2.80 (1H, ddd, J = 3, 12.5, 14 Hz, HC-7''), 2.63-2.56 (3H, m, H2CC-6, 

HC-7''), 2.43 (1H, ddd, J = 2.5, 3, 13.5 Hz, HC-5''), 2.31 (1H, dd, J = 11.5, 13.5 Hz, HC-5''), 2.06 (1H, dddd, J 

= 3, 3.5, 3.5, 13 Hz, HC-8''x), 1.98 (3H, s, H3CC-3), 1.96 (3H, s, H3CC-5), 1.71 (1H, dddd, J = 3.5, 11, 12.5, 

13 Hz, HC-8''), 1.60 (1H, dddd, J = 3, 10.5, 10.5, 11.5 Hz, HC-4''a), 1.45 (3H, s, H3CC-2''), 1.37 (3H, s, H3CC-

2''), 1.32 (3H, d, J = 7 Hz, H3CC-2'), 1.24 (3H, t, J = 7.5 Hz, H3CC-6). 

13
C NMR (125 MHz, CDCl3)  180.1 (s, C-4), 164.7 (s, C-6), 163.0 (s, C-2), 120.0 (s, C-3), 118.1 (s, C-5), 98.8 

(s, C-2''), 75.1 (d, C-4''), 72.9 (d, C-8a), 44.9 (d, C-4a), 38.0 (d, C-1'), 34.1 (t, C-8''), 30.1 (q, CH3C-2''), 28.1 

(t, C-5''), 27.8 (t, C-7''), 25.0 (t, CH2C-6), 19.5 (q, CH3C-2"), 14.3 (q, C-2'), 11.6 (q, CH3CC-6), 10.3 (q, CH3C-

3), 9.8 (q, CH3C-5). 

LRMS (CI, NH3), m/z (relative intensity): 367 ([M+1]+, 100), 180 (73), 129 (9), 101 (8). 

HRMS m/z calcd. for C20H30O4S: 366.1865; found: 366.1856 (EI). 

2-Ethyl-6-((2S,3S,4R)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42a). 

 
(42a) 

According to general procedure for desulfurization, reaction of 39a (183 mg, 0.56 mmol) with 

Raney nickel (W2) in ethanol for 20 min followed by work up gave the title compound (72 mg, 44%) that 

was homogeneous by 1H NMR. 

amorphous white solid, TLC Rf = 0.3 (40% ethyl acetate in hexane) 

IR (DRIFT) max 3397, 1712, 1653, 1592 cm
-1

. 



 

69 
 

1
H NMR (500 MHz, CDCl3)  4.18 (1H, ddd, J = 2, 2.5, 9.5 Hz, HC-3'), 3.32 (1H, d, J = 2.5 Hz, HO), 3.00 (1H, 

dq, J = 9.5, 7 Hz, HC-2'), 2.57 (2H, ap q, J = 7.5 Hz, H2C-2), 2.49 (1H, dq, J = 18, 7 Hz, HC-6'), 2.33 (1H, dq, J 

= 18, 7 Hz, HC-6'), 2.32 (1H, dq, J = 2, 7 Hz, HC-4'), 1.96 (3H, s, H3CC-5), 1.92 (3H, s, H3CC-3), 1.33 (3H, d, J 

= 7 Hz, H3C-1'), 1.16 (3H, t, J = 7.5 Hz, H3CC-2), 1.08 (3H, d, J = 7 Hz, H3CC-4'), 0.99 (3H, t, J = 7 Hz, H3C-7'). 

13
C NMR (125 MHz, CDCl3)  216.3 (s, C-5'), 180.0 (s, C-4), 164.6 (s, C-2), 163.9 (s, C-6), 119.0 (s, C-5), 

118.3 (s, C-3), 72.4 (d, C-3'), 47.6 (d, C-4'), 38.8 (d, C-2'), 34.8 (t, C-6'), 24.9 (t, CH2C-2), 15.7 (q, C-1'), 11.6 

(q, CH3CC-2), 10.0 (q, CH3C-4'), 9.9 (q, CH3C-5), 9.7 (q, CH3C-3), 7.8 (q, C-7'). 

LRMS (EI), m/z (relative intensity): 294 ([M]+, 1), 237 (4), 209 (9), 180 (100), 57 (15). 

HRMS m/z calcd. for C17H26O4: 294.1831; found: 294.1820 (EI). 

2-Ethyl-6-((2S,3S,4S)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42b). 

 
(42b) 

According to general procedure for desulfurization, reaction of 39b (61 mg, 0.019 mmol) with 

Raney nickel (W2) in ethanol for 20 min gave the title compound (33 mg, 59%) after work up and 

fractionation of the crude by FCC (60% ethyl acetate hexane). 

amorphous white solid, TLC Rf = 0.3 (40% ethyl acetate in hexanes) 

IR (DRIFT) max 3375, 1700, 1652, 1591 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.68 (1H, ddd, J = 3.5, 8.5, 10 Hz, HC-3'), 3.44 (1H, d, J = 10 Hz, HO), 3.04 (1H, 

dq, J = 8.5, 7 Hz, HC-2'), 2.58 (2H, ap q, J = 7.5 Hz, H2CC-2), 2.47 (1H, dq, J = 3.5, 7 Hz, HC-4'), 2.47 (1H, 

dq, J = 7, 18.5 Hz, HC-6'), 2.21 (1H, dq, J = 7, 18.5 Hz, HC-6'), 1.91 (3H, s, H3CC-3), 1.84 (3H, s, H3CC-5), 

1.32 (3H, d, J = 7 Hz, H3C-1'), 1.22 (3H, d, J = 7.5 Hz, H3CC-4'), 1.18 (3H, t, J = 7.5 Hz, H3CCC-2), 0.95 (3H, t, 

J = 7 Hz, H3C-7'). 

13
C NMR (125 MHz, CDCl3)  218.0 (s, C-5'), 179.8 (s, C-4), 164.53 (s, C-2 or C-6), 164.50 (s, C-2 or C-6), 

118.7 (s, C-5), 118.2 (s, C-3), 77.0 (d, C-3'), 47.0 (d, C-4'), 40.5 (d, C-2'), 36.1 (t, C-6'), 24.9 (t, CH2C-2), 15.9 
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(q, CH3C-4'), 15.2 (q, C-1'), 11.5 (q, CH3CC-2), 9.67 (q, CH3C-3 or CH3C-5), 9.65 (q, CH3C-3 or CH3C-5), 7.4 

(q, C-7'). 

LRMS (CI, NH3), m/z (relative intensity): 295 ([M+1]+, 48), 209 (100), 180 (36). 

HRMS m/z calcd. for C17H26O4+H: 295.1909; found: 295.1906 (CI, NH3). 

2-Ethyl-6-((2S,3R,4R)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42c). 

 
(42c) 

According to general procedure for desulfurization, reaction of 39c (3 mg, 0.009 mmol) with 

Raney nickel (W2) in ethanol for 20 min gave the title compound (2 mg, 80%) after work up and 

fractionation of the crude by PTLC (80% ethyl acetate hexane). 

amorphous white solid, TLC Rf = 0.2 (50% ethyl acetate in hexane) 

IR (DRIFT) max 3378, 1698, 1654, 1591 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.74 (1H, ddd, J = 4, 7.5, 10 Hz, HC-3'), 3.40 (1H, d, J = 10 Hz, HO), 3.12 (1H, 

dq, J = 7.5, 7 Hz, HC-2'), 2.78 (1H, dq, J = 4, 7 Hz, HC-4'), 2.65-2.55 (3H, m, H2CC-2, HC-6'), 2.40 (1H, dq, J 

= 18.5, 7 Hz, HC-6'), 1.97 (3H, s, H3CC-5), 1.94 (3H, s, H3CC-3), 1.29 (3H, d, J = 7 Hz, H3CC-4'), 1.23 (3H, t, J 

= 7.5 Hz, H3CCC-2), 1.23 (3H, d, J = 7 Hz, H3C-1'), 1.02 (3H, t, J = 7 Hz, H3C-7'). 

13
C NMR (125 MHz, CDCl3)  217.3 (s, C-5'), 179.9 (s, C-4), 164.5 (s, C-2), 164.1 (s, C-6), 119.5 (s, C-5), 

118.2 (s, C-3), 77.6 (d, C-3'), 47.0 (d, C-4'), 40.0 (d, C-2'), 36.2 (t, C-6'), 25.0 (t, CH2C-2), 15.9 (q, CH3C-4'), 

15.5 (q, C-1'), 11.5 (q, CH3CC-2), 10.1 (q, CH3C-5), 9.7 (q, CH3C-3), 7.5 (q, C-7'). 

LRMS (CI, NH3), m/z (relative intensity): 295 ([M+1]+, 34), 277 (5), 209 (100), 180 (29), 151 (5). 

HRMS m/z calcd. for C17H26O4+H: 295.1909; found: 295.1907 (CI, NH3). 
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2-Ethyl-6-((2S,3R,4S)-rel-3-hydroxy-4-methyl-5-oxoheptan-2-yl)-3,5-dimethyl-4H-pyran-4-one (42d). 

 
(42d) 

According to general procedure for desulfurization, reaction of 39d (24 mg, 0.074 mmol) with 

Raney nickel (W2) in ethanol for 20 min gave the title compound (14 mg, 64%) after work up and 

fractionation of the crude by PTLC (80% ethyl acetate hexane). 

amorphous white solid, TLC Rf = 0.30 (80% ethyl acetate in hexane) 

IR (DRIFT) max 3374, 1713, 1654, 1591 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.20 (1H, ddd, J = 2.5, 3.5, 9 Hz, HC-3'), 3.08 (1H, dq, J = 9, 7 Hz, HC-2'), 2.95 

(1H, d, J = 3.5 Hz, HO), 2.71 (1H, dq, J = 2.5, 7 Hz, HC-4'), 2.68-2.55 (3H, m, H2CC-2, HC-6'), 2.49 (1H, dq, J 

= 18, 7 Hz, HC-6'), 1.95 (3H, s, H3CC-5), 1.92 (3H, s, H3CC-3), 1.22 (3H, d, J = 7 Hz, H3CC-4'), 1.20 (3H, t, J = 

7.5 Hz, H3CC-2), 1.13 (3H, d, J = 7 Hz, H3C-1'), 1.06 (3H, t, J = 7 Hz, H3C-7'). 

13
C NMR (125 MHz, CDCl3)  216.3 (s, C-5'), 179.9 (s, C-4), 164.3 (s, C-2), 164.1 (s, C-6), 119.7 (s, C-5), 

118.1 (s, C-3), 72.5 (d, C-3'), 46.8 (d, C-4'), 38.2 (d, C-2'), 34.9 (t, C-6'), 25.0 (t, CH2C-2), 14.7 (q, C-1'), 11.6 

(q, CH3CC-2), 9.8 (q, CH3C-3 or CH3C-5), 9.7 (q, CH3C-3 or CH3C-5), 9.3 (q, CH3C-4'), 7.8 (q, C-7'). 

LRMS (EI), m/z (relative intensity): 294 ([M]+, 2), 279 (1), 237 (5), 209 (7), 208 (6), 180 (100), 57 (27). 

HRMS m/z calcd. for C17H26O4: 294.1831; found: 294.1821 (EI). 

(S)-3-((S)-2-Methyl-1-((triethylsilyl)oxy)propyl)dihydro-2H-thiopyran-4(3H)-one (44). 

 
(44) 

TESOTf (1.5 mL, 6.7 mmol) and 2,6-lutidine (0.89 mL, 7.7 mmol) were added sequentially to a 

stirred solution of aldol 43 (1.027 g, 5.46 mmol) in CH2Cl2 (50 mL) at –78 °C under argon. After 10 min, 

the reaction was quenched by addition of 10% aq HCl. The mixture was diluted with ethyl acetate, 

washed sequentially with 10% aq HCl, water and brine, dried over Na2SO4 and concentrated. The residue 
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was filtered through a plug of silica (ca. 15 g) eluting with 5% ethyl acetate in hexane to give the title 

compound (1.545 g, 94 %). 

colorless liquid, TLC Rf = 0.39 (5% ethyl acetate in hexane), []D –99 (c 5.2, CHCl3) 

IR (DRIFT) max 1712 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.20 (1H, dd, J = 4, 6 Hz, HC-1'), 2.98-2.88 (3H, m, HC-2, H2C-6), 2.83-2.73 

(3H, m, HC-2, HC-3, HC-5), 2.66 (1H, ap ddd, J = 5.5, 8.5, 14 Hz, HC-5), 1.71 (1H, dqq, J = 4, 6.5, 6.5 Hz, 

HC-2'), 0.93 (9H, t, J = 8 Hz, H3CCSi ×3), 0.89 (3H, d, J = 6.5 Hz, H3C-3'), 0.87 (3H, d, J = 6.5 Hz, H3C-3'), 

0.59 (6H, ap q, J = 8 Hz, H2CSi ×3). 

13
C NMR (125 MHz, CDCl3)  209.1 (s, C-4), 74.9 (d, C-1'), 58.7 (d, C-3), 44.0 (t, C-5), 31.6 (t, C-2), 30.9 (d, 

C-2'), 30.5 (t, C-6), 20.6 (q, C-3'), 17.0 (q, C-3'), 7.2 (q ×3, CH3CSi), 5.5 (t ×3, CH2Si). 

LRMS (EI), m/z (relative intensity): 302 ([M]+, 2), 273 (100), 239 (21), 201 (39), 182 (29), 171 (31), 153 

(30), 115 (34), 100 (52), 57 (84). 

HRMS m/z calcd. for C15H30O2SiS 302.1736, found 302.1730 (EI). 

(3S,5S)-3-((S)-1-Hydroxy-2-methylpropyl)-5-((S)-2-methyl-1-((triethylsilyl)oxy)propyl)dihydro-2H-
thiopyran-4(3H)-one (45). 

 
(45) 

This procedure was performed with Schlenk technique and under Ar using freshly distilled Et2O 

that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. Ketone 44 was 

dried by concentration from benzene solution immediately prior to use. (c-Hex)2BCl (1.0 M in hexane; 

0.18 mL, 0.18 mmol) and Et3N (0.030 mL, 22 mg, 0.22 mmol) were added to a stirred solution of 44 (37 

mg, 0.12 mmol) in Et2O (1.2 mL) at 0 °C. After 20 min, the mixture was cooled to –78 °C and i-PrCHO 

(0.045 mL, 35 mg, 0.49 mmol) was added. After 20 min, the reaction was quenched by sequential 

addition of phosphate buffer (pH = 7; 1 mL), MeOH (1 mL) and 30% aq H2O2 (0.50 mL) with vigorous 

stirring. After stirring at 0 °C for 15 min, aq Na2SO3 was added and the mixture was diluted with water 

and extracted with CH2Cl2.  The combined organic layers were dried over Na2SO4, concentrated, and 

fractionated by FCC (10% ethyl acetate in hexane) to give the title compound (35 mg, 78%). 
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colorless oil, TLC Rf = 0.40 (10% ethyl acetate in hexane) 

IR (DRIFT) max 3537, 1699 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.13 (1H, dd, J = 5, 5 Hz), 3.68 (1H, ddd, J = 5, 5, 7 Hz), 3.00-2.83 (6H, m), 

2.75-2.67 (1H, m), 1.84-1.74 (2H, m), 1.01 (3H, d, J = 7 Hz), 0.96 (9H, t, J = 8 Hz, H3CCSi x3), 0.914 (3H, d, J 

= 7 Hz), 0.905 (3H, d, J = 7 Hz), 0.90 (3H, d, J = 7 Hz), 0.63 (6H, ap q, J = 8 Hz, H2CSi x3). 

13
C NMR (125 MHz, CDCl3)  213.5, 77.1, 75.9, 57.4, 52.5, 31.9, 30.5, 30.2, 29.8, 20.3, 19.8, 18.1, 15.6, 

7.3, 5.6. 

LRMS (CI, NH3), m/z (relative intensity): 375 ([M+1]+, 85), 303 (74), 273 (100), 243 (33), 201 (55), 187 

(86). 

HRMS m/z calcd. for C19H38O3SSi+H 375.2389, found 375.2378 (CI, NH3). 

(3S,5S)-3,5-Bis-((S)-1-Hydroxy-2-methylpropyl)dihydro-2H-thiopyran-4(3H)-one (46). 

 
(46) 

Aqueous HF (10% (w/w); 0.10 mL) was added to a stirred solution of 45 (91 mg, 0.24 mmol) in 

MeCN (2.4 mL) at room temperature. After 25 min, the reaction was quenched by addition of saturated 

aq NaHCO3 and the resulting mixutre was diluted with EtOAc. The organic phase was sequentially 

washed with water and brine, and the combined aqueous layers were extracted with CH2Cl2. The 

combined organic layers were dried over Na2SO4 and concentrated to give the titled compound (58 mg, 

93%). 

colorless oil, TLC Rf = 0.19 (20% ethyl acetate in hexane) 

IR (DRIFT) max 3451, 1699 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.79 (2H, dd, J = 5, 6.5 Hz), 3.00-2.80 (6H, m), 2.65 (2H, br s), 1.82 (2H, dqq, J 

= 5, 7, 7 Hz), 0.98 (6H, d, J = 7 Hz), 0.89 (6H, d, J = 7 Hz). 

13
C NMR (125 MHz, CDCl3)  214.7, 76.5, 54.4, 33.4, 30.4, 20.1, 16.7. 
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LRMS (EI), m/z (relative intensity): 260 ([M]+, 20), 242 (13), 217 (26), 199 (26), 187 (26), 170 (21), 145 

(100). 

HRMS m/z calcd. for C13H24O3S 260.1446, found 260.1449 (EI). 

(3S,5S)-3,5-Bis((S)-1-Hydroxy-2-methylpropyl)tetrahydro-2H-thiopyran-4-ol (47). 

 
(47) 

Sodium borohydride (18 mg, 0.48 mmol) was added to a stirred solution of 46 (56 mg, 0.22 

mmol) in EtOH (2.2 mL) at room temperature. After 20 min, aq NaOH (1.0 M; 3 mL, 3 mmol) was added 

and after 25 min, the mixture was diluted with water and extracted with CH2Cl2. The combined organic 

layers were dried over Na2SO4, concentrated, and fractionated by FCC (40% ethyl acetate in hexane then 

20% methanol in CH2Cl2) to give the title compound (58 mg, quantitative). 

white foam, TLC Rf = 0.44 (70% ethyl acetate in hexane) 

IR (DRIFT) max 3362 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.31 (1H, br d, J = 3.5 Hz), 4.18 (3H, br s), 3.84 (1H, dd, J = 2, 9.5 Hz), 3.69 

(1H, dd, J = 3.5, 8 Hz), 3.03 (1H, br d, J = 13 Hz), 2.81 (1H, dd, J = 10.5, 13 Hz), 2.29 (1H, br d, J = 13.5 Hz), 

2.15 (1H, dd, J = 5, 13.5 Hz), 2.16-2.07 (1H, m), 2.02-1.95 (1H, m), 1.90-1.75 (2H, m), 1.00 (3H, d, J = 7 

Hz), 0.98 (3H, d, J = 7 Hz), 0.89 (3H, d, J = 7 Hz), 0.84 (3H, d, J = 7 Hz). 

13
C NMR (125 MHz, CDCl3)  76.7, 75.8, 69.8 (br), 43.6, 40.0, 29.6, 28.9, 26.4, 25.8, 20.4, 20.2, 15.3, 14.0. 

LRMS (EI), m/z (relative intensity): 262 ([M]+, 64), 244 (11), 219 (36), 201 (52), 183 (62). 

HRMS m/z calcd. for C13H26O3S 262.1603, found 262.1593 (EI). 
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2-Ethyl-6-((1S,2S)-1-hydroxy-1-((3S,5S)-5-((S)-2-methyl-1-(triethylsilyloxy)propyl)-4-oxotetrahydro-2H-
thiopyran-3-yl)propan-2-yl)-3,5-dimethyl-4H-pyran-4-one (49). 

 
(49) 

This procedure was performed with Schlenk technique and under Ar using freshly distilled 

CH2Cl2 that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. Ketone 44 

was dried by concentration from benzene solution immediately prior to use. (c-Hex)2BCl (1.0 M in 

hexane; 0.96 mL, 0.96 mmol) and Et3N (0.16 mL, 120 mg, 1.2 mmol) were added to a stirred solution of 

44 (210 mg, 0.64 mmol) in CH2Cl2 (3.5 mL) at 0 °C. After 20 min, the mixture was cooled to –78 °C and a 

solution of rac-11 (432 mg, 2.1 mmol) in CH2Cl2 (2.0 mL) was added. After 20 min, the reaction was 

quenched by sequential addition of phosphate buffer (pH = 7; 4 mL), MeOH (4 mL) and 30% aq H2O2 (2 

mL) with vigorous stirring. After stirring at 0 °C for 15 min, sat. aqueous Na2SO3 was added and the 

mixture was diluted with water and extracted with CH2Cl2.  The combined organic layers were dried over 

Na2SO4, concentrated, and fractionated by FCC (40% ethyl acetate in hexane) to give a mixture of aldol 

adducts and cyclohexanol (329 mg). The cyclohexanol was removed by evaporation (60 °C @ 0.1 torr) to 

give the aldol adducts (305 mg). A portion of the mixture (28 mg) was further fractionated by FCC (50% 

ethyl acetate in hexane) to give the titled compound (21 mg, 64%). 

white waxy solid, TLC Rf = 0.32 (35% Et2O in benzene), []D –38 (c 0.20, CHCl3) 

IR (DRIFT) max 3377, 1713, 1653, 1594 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.08 (1H, dd, J = 4.5, 7.5 Hz, HC-1'), 4.05 (1H, ap dd, J = 3, 6 Hz, HC-1'''), 3.25 

(1H, dq, J = 7.5, 7 Hz, HC-2'), 2.97 (1H, dd, J = 5.5, 13 Hz, HC-2''), 2.92-2.82 (4H, m, HC-2'', HC-5'', H2C-6''), 

2.76 (1H, ddd, J = 4.5, 5.5, 9 Hz, HC-3''), 2.60 (2H, ap q, J = 7.5 Hz, H2CC-2), 1.94 (3H, s, H3CC-3 or H3CC-5), 

1.93 (3H, s, H3CC-3 or H3CC-5), 1.65 (1H, dqq, J = 6, 6.5, 7 Hz, HC-2'''), 1.29 (3H, d, J = 7 Hz, H3C-3'), 1.20 

(3H, t, J = 7.5 Hz, H3CCC-2), 0.94 (9H, t, J = 8 Hz, H3CCSi ×3), 0.87 (3H, d, J = 6.5 Hz, H3C-3'''), 0.78 (3H, d, J 

= 7 Hz, H3C-3'''), 0.60 (6H, ap q , J = 8 Hz, H2CSi ×3). 

1
H NMR (500 MHz, C6D6)  4.25 (1H, ddd, J = 6, 6, 6.5 Hz, HC-1'), 4.16 (1H, dd, J = 5, 5 Hz, HC-1'''), 3.48 

(1H, d, J = 6 Hz, HO), 3.08 (1H, ddd, J = 5, 5, 10.5 Hz, HC-5''), 3.03 (1H, dq, J = 6.5, 7 Hz, HC-2'), 2.75 (1H, 

m, J = 5, 6, 7 Hz, HC-3''), 2.67 (1H, ddd, J = 1.5, 5, 13.5 Hz, HC-6''), 2.63 (1H, dd, J = 5, 13.5 Hz, HC-2''), 
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2.55 (1H, dd, J = 10.5, 13.5 Hz, HC-6''), 2.46 (1H, dd, J = 1.5, 7, 13.5 Hz, HC-2''), 2.14 (3H, s, H3CC-3 or 

H3CC-5), 2.12-2.00 (2H, m, H2CC-2), 1.86 (3H, s, H3CC-3 or H3CC-5), 1.57 (1H, dqq, J = 5, 7, 7 Hz, HC-2'''), 

1.16 (3H, d, J = 7 Hz, H3C-3'), 1.03 (9H, t, J = 8 Hz, H3CCSi ×3), 0.88 (3H, d, J = 7 Hz, H3C-3'''), 0.87 (3H, t, J = 

7.5 Hz, H3CCC-2), 0.84 (3H, d, J = 7 Hz, H3C-3'''), 0.75-0.66 (6H, m, H2CSi ×3). 

13
C NMR (125 MHz, CDCl3)  211.3 (s, C-4''), 179.8 (s, C-4), 164.3 (s, C-2 or C-6), 164.1 (s, C-2 or C-6), 

119.0 (s, C-5), 118.4 (s, C-3), 76.8 (d, C-1'''), 74.8 (d, C-1'), 58.1 (d, C-5''), 52.4 (d, C-3''), 39.4 (d, C-2'), 32.0 

(t, C-2'''), 30.8 (d, C-2''), 28.5 (t, C-6''), 24.9 (t, CH2C-2), 20.2 (q, C-3'''), 18.7 (q, C-3'''), 14.0 (q, C-3'), 11.5 

(q, CH3CC-2), 9.7 (q, CH3C-3 or CH3C-5), 9.6 (q, CH3C-3 or CH3C-5), 7.2 (q ×3, CH3CSi), 5.4 (t ×3, CH2Si). 

13
C NMR (125 MHz, C6D6)  210.2 (s, C-4''), 179.2 (s, C-4), 163.8 (s, C-2 or C-6), 163.6 (s, C-2 or C-6), 119.5 

(s, C-3 or C-5), 118.7 (s, C-3 or C-5), 76.9 (d, C-1'''), 75.1 (d, C-1'), 58.5 (d, C-5''), 53.2 (d, C-3''), 39.5 (d, C-

2'), 32.1 (t, C-2''), 31.9 (d, C-2'''), 29.6 (t, C-6''), 24.9 (t, CH2C-2), 20.7 (q, C-3'''), 18.7 (q, C-3'''), 13.6 (q, C-

3'), 11.6 (q, CH3CC-2), 10.12 (q, CH3C-3 or CH3C-5), 10.09 (q, CH3C-3 or CH3C-5), 7.7 (q ×3, CH3CSi), 6.0 (t 

×3, CH2Si). 

 

LRMS (EI), m/z (relative intensity): 510 ([M]+, 3), 481 (21), 467 (7), 409 (15), 273 (94), 209 (60), 201 (59), 

187 (76), 180 (82), 179 (100). 

HRMS m/z calcd. for C27H46O5SSi 510.2835, found 510.2835 (EI). 

2-Ethyl-6-((2S,3S,4S,6S,7S)-3-hydroxy-4,6,8-trimethyl-5-oxo-7-((triethylsilyl)oxy)nonan-2-yl)-3,5-
dimethyl-4H-pyran-4-one (52). 

 
(52) 

Desulfurization of 49 (18 mg, 0.035 mmol) with Raney nickel (W2, 1.0 mL settled volume) in 

refluxing EtOH (2 mL) for 20 minutes according to the general procedure and fractionation of the crude 

product by PTLC (40% ethyl acetate in hexane) gave the title compound (12.5 mg, 74%). 

colorless liquid, TLC Rf = 0.37 (40% ethyl acetate in hexane), []D –25 (c 0.25, CHCl3) 

IR (DRIFT) max 3385, 1715, 1652, 1596 cm
-1

. 
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1
H NMR (500 MHz, CDCl3)  3.83-3.78 (2H, , HC-3', HC-7'), 3.37 (1H, br s, HO), 3.11 (1H, dq, J = 8, 7 Hz, 

HC-2'), 2.75 (1H, dq, J = 9, 7 Hz, HC-6'), 2.60 (2H, ap q, J = 7.5 Hz, H2CC-2), 2.55 (1H, dq, J = 4, 7.5 Hz, HC-

4'), 1.93 (3H, s, H3CC-3), 1.87 (3H, s, H3CC-5), 1.70 (1H, dqq, J = 2.5, 7, 7 Hz, HC-8'), 1.33 (3H, d, J = 7 Hz, 

H3C-1'), 1.25 (3H, d, J = 7.5 Hz, H3CC-4'), 1.20 (3H, t, J = 7.5 Hz, H3CCC-2), 0.93 (6H, t, J = 8 Hz, H3CCSi ×3), 

0.92 (3H, d, J = 7 Hz, H3C-9'), 0.81 (6H, ap d, J = 7 Hz, H3CC-6', H3C-9'), 0.64 (6H, q, J = 8 Hz, H2CSi ×3). 

1
H NMR (500 MHz, C6D6)  3.90-3.82 (2H, m, HC-3', HC-7'), 3.32 (1H, d, J = 9 Hz, HO), 3.00 (1H, dq, J = 7.5, 

7 Hz, HC-2'), 2.60 (1H, dq, J = 8.5, 7 Hz, HC-6'), 2.50 (1H, dq, J = 4.5, 7.5 Hz, HC-4'), 2.09-1.94 (2H, m, 

H2CC-2), 1.97 (3H, s, H3CC-5), 1.92 (3H, s, H3CC-3), 1.57-1.49 (1H, dqq, J = 2, 7, 7 Hz, HC-8'), 1.28 (3H, d, J 

= 7 Hz, H3C-1'), 1.22 (3H, d, J = 7.5 Hz, H3CC-4'), 1.05 (9H, t, J = 8 Hz, H3CCSi x3), 0.90 (3H, d, J = 7 Hz, H3C-

9'), 0.82 (3H, t, J = 7.5 Hz, H3CC-2), 0.79 (3H, d, J = 7 Hz, H3C-9'), 0.75-0.67 (6H, m, H2CSi x3), 0.67 (3H, d, J 

= 7 Hz, H3CC-6'). 

13
C NMR (125 MHz, CDCl3)  218.3 (s, C-5'), 179.7 (s, C-4), 164.9 (s, C-6), 164.4 (s, C-2), 118.7 (s, C-5), 

118.3 (s, C-3), 77.3 (d, C-7'), 76.1 (d, C-3'), 50.0 (d, C-6'), 47.1 (d, C-4'), 40.0 (d, C-2'), 30.9 (d, C-8'), 24.9 

(t, CH2C-2), 20.1 (q, C-9'), 16.0 (q, C-9'), 15.1 (q, C-1'), 14.7 (q, CH3C-4'), 14.1 (q, CH3C-6'), 11.5 (q, CH3CC-

2), 9.8 (q, CH3C-3 or CH3C-5), 9.7 (q, CH3C-3 or CH3C-5), 7.2 (q ×3, CH3CSi), 5.6 (t ×3, CH2Si). 

13
C NMR (125 MHz, C6D6)  217.5 (s, C-5), 179.1 (s, C-4), 164.5 (s, C-6), 163.7 (s, C-2), 119.1 (s, C-5), 118.6 

(s, C-3), 77.8 (d, C-7'), 76.4 (d, C-3'), 50.7 (d, C-6'), 47.5 (d, C-4'), 40.3 (d, C-2'), 31.2 (d, C-8'), 24.9 (t, 

CH2C-2), 20.6 (q, C-9'), 16.2 (q, C-9'), 15.0 (q, CH3C-4'), 14.9 (q, C-1'), 14.1 (q, CH3C-6'), 11.6 (q, CH3C-2), 

10.2 (q, CH3C-3 or CH3C-5), 10.0 (q, CH3C-3 or CH3C-5), 7.8 (q ×3, CH3CSi), 6.2 (t ×3, CH2Si). 

LRMS (EI), m/z (relative intensity): 480 ([M]+, 6), 451 (27), 379 (94), 243 (52), 199 (38), 187 (61), 180 

(100), 179 (60), 171 (47), 115 (55). 

HRMS m/z calcd. for C27H48O5Si 480.3271, found 480.3258 (EI). 

(4S,5S)-4,6-Dimethyl-5-((triethylsilyl)oxy)heptan-3-one (61). 

 
(61) 

A suspension of Raney nickel (W2; 5.0 mL settled volume) in EtOH (5 mL plus 2 5 mL rinses) 

was added to 44 (591 mg, 1.96 mmol) and the resulting mixture was heated under reflux with vigorous 
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stirring. After for 20 min (reaction was complete by TLC analysis), the mixture was decanted and the 

solid was suspended in EtOH (15 mL) and heated under reflux with vigorous stirring for several min. This 

washing procedure was repeated with ethyl acetate and with acetone. The combined organic layers 

were filtered through Celite®, concentrated to give the title compound (518 mg, 97%)27 that was 

homogeneous by 1H NMR. 

colorless liquid, TLC Rf = 0.22 (20% ethyl acetate in hexane), []D +11 (c 9.1, CHCl3) 

IR (DRIFT) max 1720 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.80 (1H, dd, J = 3, 8 Hz, HC-5), 2.73 (1H, dq, J = 8, 7 Hz, HC-4), 2.53 (1H, dq, J 

= 18.5, 7, HC-2), 2.45 (!H, dq, J = 18.5, 7 Hz, H2C-2), 1.72 (1H, dqq, J = 3, 7, 7 Hz, HC-6), 1.02 (3H, t, J = 7 

Hz, H3C-1), 0.94 (3H, d, J = 7 Hz, H3CC-4), 0.93 (9H, t, J = 8 Hz, H3CCSi ×3), 0.91 (3H, d, J = 7 Hz, H3C-7), 

0.85 (3H, d, J = 7 Hz, H3C-7), 0.56 (6H, ap q, J = 8 Hz, H2CSi ×3). 

13
C NMR (125 MHz, CDCl3)  214.7 (s, C-3), 78.8 (d, C-5), 50.3 (d, C-4), 37.0 (t, C-2), 30.9 (d, C-6), 20.2 (q, 

C-7), 15.9 (q, C-7), 14.1 (q, CH3C-4), 7.6 (q, C-1), 7.2 (q ×3, CH3CSi), 5.5 (t ×3, CH2Si). 

LRMS (CI, NH3), m/z (relative intensity): 273 ([M+1]+, 100), 243 (42), 58 (40). 

HRMS m/z calcd. for C15H32O2Si 273.2250, found 273.2245 (CI, NH3). 

(3R,4R,6S,7S)-3-Hydroxy-2,4,6,8-tetramethyl-7-((triethylsilyl)oxy)nonan-5-one (64). 

 
(64) 

This procedure was performed with Schlenk technique and under Ar using freshly distilled Et2O 

that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. (c-Hex)2BCl (1.0 M 

in hexane; 0.64 mL, 0.64 mmol) and EtMe2N (0.080 mL, 54 mg, 0.74 mmol) were added to a stirred 

solution of 61 (88 mg, 0.32 mmol) in Et2O (1.0 mL) at rt. After 3 h, the mixture was cooled to –78 °C and 

i-PrCHO (0.058 mL, 46 mg, 0.64 mmol) was added. After 3 h, the reaction was quenched by sequential 

addition of phosphate buffer (pH = 7; 2 mL), MeOH (2 mL) and 30% aq H2O2 (0.50 mL) with vigorous 

stirring. After stirring at 0 °C for 15 min, aq Na2SO3 was added and the mixture was diluted with water 

and extracted with CH2Cl2.  The combined organic layers were dried over Na2SO4, concentrated, and 

fractionated by FCC (5% ethyl acetate in hexane) to give the title compound (67.5 mg, 61%). 
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colorless liquid, TLC Rf = 0.5 (10% ethyl acetate in hexane) 

IR (DRIFT) max 3454, 1714 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.89 (1H, dd, J = 2.5, 8 Hz), 3.45 (1H, dd, J = 3, 8.5 Hz), 3.12 (1H, dq, J = 8, 7 

Hz), 2.82 (1H, dq, J = 8.5, 7 Hz), 1.83-1.75 (2H, m), 1.004 (3H, d, J = 7 Hz), 0.999 (3H, d, J = 7 Hz), 0.98 (3H, 

d, J = 7 Hz), 0.96 (9H, t, J = 8 Hz), 0.95 (3H, d, J = 7 Hz), 0.0904 (3H, d, J = 7 Hz), 0.0898 (3H, d, J = 6.5 Hz), 

0.62 (6H, ap q, J = 8 Hz). 

13
C NMR (125 MHz, CDCl3)  219.1, 79.2, 78.2, 51.0, 50.1, 31.5, 29.6, 20.4, 19.7, 17.3, 14.5, 13.8, 13.7, 

7.2, 5.4. 

LRMS (EI), m/z (relative intensity): 344 ([M]+, 0.3), 329 (0.6), 243 (100). 

HRMS m/z calcd. for C19H40O3Si 344.2747, found 344.2743 (EI). 

(3R,4R,6R,7S)-2,4,6,8-Tetramethyl-7-((triethylsilyl)oxy)nonane-3,5-diol (65). 

 
(65) 

Et2BOMe (0.007 mL, 5 mg, 0.05 mmol) was added to stirred solution of 64 (11 mg, 0.032 mmol) 

in abs. EtOH (0.35 mL) at –78 °C under argon. The reaction vessel was removed from the cooling bath 

and after 15 min, powdered NaBH4 (6 mg, 0.2 mmol) was added at –78 °C. The reaction vessel was 

removed from the cooling bath and after 2.5 h, the reaction mixture was concentrated. The residue was 

taken up in MeOH (0.5 mL) and 30% (w/w) aq H2O2 (0.05 mL) and aq NaOH (1 M; 0.45 mL) was added 

with vigorous stirring. After 10 min, the mixture was diluted with water and extracted with CH2Cl2. The 

combined organic layers were dried over NaSO4, concentrated, and fractionated by PTLC (10% ethyl 

acetate in hexane) to give the title compound (7 mg, 63%). 

colorless liquid, TLC Rf = 0.44 (10% ethyl acetate in hexane) 

IR (DRIFT) max 3396 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  4.50 (1H, bs), 3.76 (1H, bs), 3.49 (1H, dd, J = 4.5, 7.5 Hz), 3.45 (1H, dd, J = 3.5, 

8.5 Hz), 3.42 (1H, dd, J = 4, 6 Hz), 2.09 (1H, ddq, J = 4, 7.5, 7 Hz), 1.93 (1H, ddq, J = 6, 8.5, 7 Hz), 1.86-1.77 
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(2H, m), 1.00 (3H, d, J = 7 Hz), 0.99 (9H, t, J = 8 Hz), 0.97 (3H, d, J = 7 Hz), 0.92 (3H, d, J = 6.5 Hz), 0.91 

(3H, d, J = 6.5 Hz), 0.90 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz), 0.67 (6H, ap q, J = 8 Hz). 

13
C NMR (125 MHz, CDCl3)  85.2, 82.0, 79.8, 39.4, 38.5, 34.0, 30.4, 20.7, 19.5, 18.93, 18.90, 17.3, 15.2, 

7.1, 5.4. 

HRMS m/z calcd. for C19H42O3Si+Na+ 369.2795, found 369.2808 (ESI). 

(3R,4R,6S,7S)-2,4,6,8-Tetramethylnonane-3,5,7-triol (66). 

 
(66) 

Aqueous HF (10% (w/w); 0.05 mL) was added to a stirred solution of 65 (16.5 mg, 0.048 mmol) 

in MeCN (0.48 mL) at rt. After 5 min, the reaction was quenched by addition of saturated aq NaHCO3. 

The mixture was diluted with ethyl acetate and washed sequentially with aq. NaHCO3, water and brine, 

dried over Na2SO4, and concentrated to give the title compound (10.5 mg, 94%) as flakey white solid. 

white solid, TLC Rf = 0.50 (50% ethyl acetate in hexane) 

IR (DRIFT) max 3331 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.55 (1H, t, J = 5.5 Hz, HC-5), 3.53 (3H, br s, HO x3), 3.46 (2H, dd, J = 3, 8.5 

Hz, HC-3, HC-5), 1.97 (2H, ddq, J = 5.5, 8.5, 7 Hz, HC-4, HC-6), 1.89 (2H, dqq, J = 3, 7, 7 Hz, HC-2, HC-8), 

0.98 (6H, d, J = 7 Hz, H3C-1, H3C-9), 0.91 (6H, d, J = 7 Hz, H3CC-4, H3CC-6), 0.87 (6H, d, J = 7 Hz, H3CC-2, 

H3CC-8). 

13
C NMR (125 MHz, CDCl3)  83.9, 81.0 (×2), 39.5 (×2), 30.3 (×2), 20.5 (×2), 16.3 (×2), 14.8 (×2). 

LRMS (CI, NH3), m/z (relative intensity): 233 ([M+1]+, 100), 215 (6), 197 (25), 171 (6), 125 (8). 

HRMS m/z calcd. for C13H28O3+H 233.2117, found 233.2110 (CI, NH3). 
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2-Ethyl-6-((2R,3R,4R,6S,7S)-3-hydroxy-4,6,8-trimethyl-5-oxo-7-((triethylsilyl)oxy)nonan-2-yl)-3,5-
dimethyl-4H-pyran-4-one (67). 

 
(67) 

This procedure was performed with Schlenk technique and under Ar using freshly distilled 

CH2Cl2 that was degassed (bubbling Ar into ether for 10 minutes) prior to immediate usage. Ketone 61 

was dried by concentration from benzene solution immediately prior to use. (c-Hex)2BCl (1.0 M in 

hexane; 0.51 mL, 0.51 mmol) and Me2NEt (66 μL, 45 mg, 0.61 mmol) were added to a stirred solution of 

61 (46 mg, 0.17 mmol) in Et2O (1.7 mL) at room temperature. After 24 h, the mixture was cooled to –78 

°C and a solution of rac-11 (124 mg, 0.60 mmol) in Et2O (1.0 mL) was added. After 20 min, the reaction 

was quenched by sequential addition of phosphate buffer (pH = 7; 1 mL), MeOH (1 mL) and 30% aq H2O2 

(0.5 mL) with vigorous stirring. After stirring at 0 °C for 15 min, sat. aqueous Na2SO3 was added and the 

mixture was diluted with water and extracted with CH2Cl2. The combined organic layers were dried over 

Na2SO4, concentrated, and fractionated by FCC (30% ethyl acetate in hexane) to give a 2.5:1 mixture of 

67 and 72, respectively (18 mg). Fractionation of the mixture by PTLC (4% methanol in toluene, multiple 

developments) gave the title compound (12 mg, 15%). 

amorphous white solid, TLC Rf = 0.30 (30% ethyl acetate in hexane), []D +98 (c 0.35, CHCl3) 

IR (DRIFT) max 3389, 1697, 1651, 1590 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.90-3.85 (2H, m, HC-3', HC-7'), 3.39 (1H, bs, HO), 3.11 (1H, dq, J = 5, 7 Hz, 

HC-2'), 2.98 (1H, dq, J = 7.5, 7 Hz, HC-6'), 2.80 (1H, dq, J = 7, 7 Hz, HC-4'), 2.66-2.53 (2H, m, H2CC-2), 1.96 

(3H, s, H3CC-5), 1.94 (3H, s, H3CC-3), 1.72 (1H, dqq, J = 3, 7, 7 Hz, HC-8'), 1.28 (3H, d, J = 7 Hz, H3C-1'), 

1.20 (3H, t, J = 7.5 Hz, H3CC-2), 1.11 (3H, d, J = 7 Hz, H3CC-4'), 0.97 (3H, d, J = 7 Hz, H3CC-6'), 0.91 (3H, d, J 

= 7 Hz, H3C-9'), 0.91 (9H, t, J = 8 Hz, H3CCSi ×3), 0.87 (3H, d, J = 7 Hz, H3C-9'), 0.57 (6H, ap q, J = 8 Hz, 

H2CSi ×3). 

13
C NMR (125 MHz, CDCl3)  218.2 (s, C-5'), 180.0 (s, C-4), 165.0 (s, C-6), 164.5 (s, C-2), 118.3 (s, C-5), 

118.1 (s, C-3), 78.9 (d, C-7'), 76.0 (d, C-3'), 51.3 (d, C-6'), 49.2 (d, C-4'), 38.9 (d, C-2'), 31.5 (d, C-8'), 24.9 

(t, CH2C-2), 19.8 (q, C-9'), 17.2 (q, C-9'), 14.7 (q, CH3C-4'), 13.7 (q, CH3C-6'), 12.1 (q, C-1'), 11.5 (q, CH3CC-

2), 9.7 (q, CH3C-3, CH3C-5), 7.1 (q ×3, CH3CSi), 5.4 (t ×3, CH2Si). 
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LRMS (EI), m/z (relative intensity): 480 ([M]+, 5), 451 (38), 379 (54), 209 (52), 199 (100), 180 (27). 

HRMS m/z calcd. for C27H48O5Si 480.3271, found 480.3257 (EI). 

2-Ethyl-6-((1S,2S)-rel-1-hydroxy-1-((3R,4R)-4-hydroxytetrahydro-2H-thiopyran-3-yl)propan-2-yl)-3,5-
dimethyl-4H-pyran-4-one (71). 

 
(71) 

Et2BOMe (0.030 mL, 23 mg, 0.23 mmol) was added to a stirred solution of 39b (53 mg, 0.17 

mmol) in THF (4.1 mL) and MeOH (0.8 mL) at –78 °C under Ar. The cloudy mixture became clear upon 

warming to ambient temperature. The resulting solution was cooled to –78 °C and NaBH4 (16 mg, 0.43 

mmol) was added. After 1 h, MeOH (1 mL) was added and, after allowing the mixture to warm to 

ambient temperature, aq NaOH (1 M; 3 mL) was added. After 1.5 hours, the suspension was diluted with 

water and extracted with CH2Cl2. The combined organic layers were dried over Na2SO4, concentrated, 

and fractionated by FCC (ethyl acetate) to give the title compound (40 mg, 73%). 

amorphous white solid, TLC Rf = 0.2 (ethyl acetate) 

IR (DRIFT) max 3395, 1692, 1650, 1597 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  3.88-3.84 (1, m, HOC-4'', HC-1'), 3.69 (1, ddd, J = 3.5, 9.5, 9.5 Hz, HC-4''), 

3.32 (1, dq, J = 6.5, 7 Hz, HC-2'), 2.67-2.55 (4, m, H2CC-2, H2C-6''), 2.55-2.50 (2, m, H2C-2''), 2.26 (1, ap 

dddd, J = 3.5, 3.5, 4, 13 Hz, HC-5''), 1.96 (3, s, H3CC-5), 1.92 (3, s, H3CC-3), 1.80-1.71 (2, m, HC-3'', HC-5''), 

1.30 (3, d, J = 7 Hz, H3C-3'), 1.22 (3, t, J = 7.5 Hz, H3CCC-2). 

13
C NMR (125 MHz, CDCl3)  180.2 (s, C-4), 165.3 (s, C-6), 164.9 (s, C-2), 118.7 (s, C-5), 118.3 (s, C-3), 78.1 

(d, C-1'), 72.4 (d, C-4''), 47.5 (d, C-3''), 40.0 (d, C-2'), 36.7 (t, C-5''), 30.7 (t, C-2''), 27.3 (t, C-6''), 25.0 (t, 

CH2C-2), 12.4 (q, C-3'), 11.5 (q, CH3CC-2), 9.8 (q ×2, CH3C-3, CH3C-5). 

LRMS (EI), m/z (relative intensity): 326 ([M]+, 1), 210 (16), 193 (30), 160 (100), 84 (27). 

HRMS m/z calcd. for C17H26O4S 326.1552, found 326.1554 (EI). 
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2-Acetyl-6-ethyl-3,5-dimethyl-4H-pyran-4-one (72). 

 
(72) 

IBX (107.5 mg, 0.38 mmol) was added to a solution of 10 (40.5 mg, 0.19 mmol) in MeCN (2 mL) 

and the mixture was heated under reflux. After 15 h, the suspension was cooled to 0 °C and filtered 

through a sintered glass funnel with the aid of ethyl acetate. The combined filtrate and washings were 

washed with saturated aq NaHCO3, dried over Na2SO4, concentrated, and fractionated by FCC (40% ethyl 

acetate in hexane) to give the title compound (10 mg, 27%). 

White amorphous solid, mp 79-81 °C, TLC Rf = 0.53 (60% ethyl acetate in hexane) 

IR (DRIFT) max 1711, 1638, 1618 cm
-1

. 

1
H NMR (500 MHz, CDCl3)  2.70 (2H, q, J = 7.5 Hz, H2CC-6), 2.53, (3H, s, H3C-1'), 2.27 (3H, s, H3CC-3'), 

2.00 (3H, s, H3CC-5'), 1.30 (3H, t, J = 7.5 Hz, H3CC-6). 

13
C NMR (125 MHz, CDCl3)  195.3 (s, C-1'), 180.2 (s, C-4), 164.4 (s, C-6), 152.5 (s, C-2), 125.2 (s, C-3), 

119.9 (s, C-5), 28.1 (q, C-2'), 25.1 (t, CH2C-6), 11.4 (q, CH3C-6), 10.0 (q, CH3C-5), 9.7 (q, CH3C-3). 

LRMS (EI), m/z (relative intensity): 194 ([M]+, 100), 165 (18), 151 (41). 

HRMS m/z calcd. for C11H14O3 194.0943, found 194.0493 (EI). 
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