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Abstract

Nucleation is the primary mechanism by which systems change phase and it plays a major

role in the formation of new materials in nature and industrially. In particular, experiments

and molecular dynamic simulations have shown that nanoclusters, at the same initial con-

ditions, freeze to different structures through a competitive process. Understanding the

mechanism of nucleation requires a knowledge of the reaction coordinate, which consists of

a set of variables that accurately describe the formation of the critical nucleus. In classical

nucleation theory (CNT), the embryo size is solely used as the reaction coordinate, but this

does not capture the formation of different structures in a competitive nucleation event.

Competitive nucleation is modeled using a two dimensional Potts model undergoing het-

erogeneous nucleation on to a nanoscale impurity. The rates of formation of the different

stable phases are calculated using transition state theory and compared with the rates ob-

tained from the mean first passage time and survival probability methods. Transition state

theory is shown to predict the rates to the different structures under various condition when

the nucleation barrier is correctly normalized relative to the metastable state. A multiple

paths maximum likelihood analysis, (MPMLA), is developed to extract accurate reaction

coordinates to the different phases. The results show that the linear combination of size and

surface area of a given component is the accurate variable that describes the transition to

the phase.

Molecular dynamics simulations are used to study the competitive freezing of gold nan-

oclusters for a range of cluster sizes and temperatures. Measuring the probability of observing

each cluster type in an ensemble of freezing events, along with the overall rate at which liquid

drops freeze to any structure, allows the rate of formation for each structure to be calculated.

The rate of formation of icosahedral structures is about an order of magnitude higher than the

rates for other structures. Also, as the size of the cluster increased, the rate of formation of

icosahedral structure decreased while that of decahedral and FCC structures increases. The

MPMLA is applied to the transition path ensembles to obtain the best reaction coordinate

for the different transitions. Order parameters such as size, the Steinhardt bond orientational

parameters, local order parameters such as Qe, ratio of local atom type in the largest embryo,

and structural order parameters are tested as reaction coordinates. A linear combination of
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size, the fcc − fcc correlation parameter, and the Qe provided the maximum estimate for

the liquid-icosahedral transition, making it the best reaction coordinate. The critical embryo

for this transition consists of bulk fcc-type atoms arranged in a small group, and capped by

surface 111 atoms to form a tetrahedron. There is at least one 5-fold symmetric cap for this

critical embryo. For the liquid-decahedral transition, the linear combination of size, Qe and

the Ihedge− < 111 > correlation parameter is the best reaction coordinate. Analysis of the

critical embryo shows the formation of blocks of bulk fcc atoms. The number of fcc-type

atoms in these blocks is greater than those observed in the case of the icosahedral transition,

hence, the Qe parameter has a stronger effect. There is also the presence of < 111 > and the

Ihedge atoms positioned to form the 5-fold cap. The formation of the FCC structures follows

the growth of the bulk fcc atoms with a corresponding elimination of the 5-fold facets. Hence,

the linear combination of Qe, the Ih − Hcp and Ihedge− < 111 > correlation parameters, is

the best reaction coordinate that describes the formation of FCC clusters.
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points are on a typical trajectory leading to Dh structure. . . . . . . . . . . 117

5.17 Shooting points that are on the liq → Dh transition path projected into order
parameters, n and Qe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.18 A 2D visualization of the critical embryo leading to the Dh structure. Black
circles with green boxes are the bulk fcc atoms, black triangles within magenta
boxes are the surface < 111 >, while red squares in blue dashed circle indicate
the five-fold cap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.19 Plot of the transition path probabilities for Liq → FCC transition as a function
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Chapter 1

Introduction

Nucleation is a major step in the formation of new materials, both in nature and indus-

trially, and, nucleation in nanosystems is gaining enormous attention due to the scientific

and technological potentials of nano-sized materials. Despite its importance, a molecular

level understanding of nucleation is still lacking. In particular, molecular dynamic simula-

tions have shown that nanoclusters at the same initial conditions freeze to different struc-

tures through a competitive process[1, 2, 3]. Understanding the dynamics of competitive

nucleation is essential in the production of materials whose desired properties are struc-

ture dependent, and in the understanding of certain disease conditions caused by misfolded

proteins[4]. The knowledge of these dynamics would aid the controlled formation of different

materials with considerable technical and financial implications especially in areas such as

pharmaceuticals[5], genetic diseases and energy storage[6], where crystalline structures can

play significant roles. The probabilities of having a given structure and its rates of formation

are said to be determined by the nucleation barrier and the growth kinetics[3, 7].

The rate of any nucleation event is dramatically increased by the presence of a hetero-

geneous surface due to the lowering of the free energy barrier to processes such as vapor

condensation and crystallization[8]. Hence, heterogeneous nucleation is more abundant in

nature than homogeneous nucleation and is responsible for important atmospheric physics[9]

as well as protein crystallization[10].

Understanding the mechanism of nucleation requires a knowledge of the reaction coor-

dinate, which consists of a reduced set of variables describing the formation of the critical

nucleus. In many processes, the reaction coordinates are difficult to obtain and sometimes

involve several quantities that are not easily defined. In classical nucleation theory (CNT),

the embryo size is solely used as the reaction coordinate. Though size is an important vari-

able in nucleation [8], it contains little information about the embryo geometry and the
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role of variables such as embryo surface area and structural internal order, which maybe

important, are not well accounted for [11, 12]. To understand the effects of surface areas

and structural order, the different structures should be rigorously identified. To do this,

many approaches have been suggested. Polak and Partykiejew [13] used a combination of

visual inspection, the structural order parameter, Ql, introduced by Steinhardt [14] and the

method of Voronoi polyhedra to observe the structural distribution of face-centered cubic,

(FCC), hexagonal close packed, (HCP), icosahedral, (Ih) and truncated decahedral, (t−Dh)

structures has been used to study Lennard-Jones clusters as a function of temperature. The

authors pointed out that their structures may not be a true representation of the equilib-

rium distribution of these motifs since the global stability of these structures could not be

guaranteed based on their method. Wang et al. [15] used a series of linear combinations of

Ql’s (where l = 4, 6, 8) to identify the local structures within the atomic clusters of different

sizes. The structural unit which they considered is the first coordination shell around an

atom and studies show that for Lennard-Jones and C60 clusters, the FCC, HCP Ih and

Dh motifs provide a complete set of coordination number, which is 12 for these geometries.

The geometries of the Lennard-Jonnes clusters show a marked dependence on the cluster

size based on the number of complete shells of the Mackay Ih or Marks Dh. However, these

studies focused on identifying the nature of the global structure of the cluster, rather than

identifying the structure of the nucleation embryo.

Recently, there have been efforts to understand the role of structure and surface area in

the nucleation of new phases from the metastable liquid using the transition path sampling

method (TPS) [11, 12, 16, 17]. In TPS, the configurations obtained along the transition

path are subjected to a maximum likelihood analyses [12, 18] or genetic neural network

analyses [19], in order to identify the most accurate order parameter, or their combination,

that represents the reaction coordinate. Lechner et al. [20] harvested a reweighted path

ensemble from a 2D z-potential, which they analyzed using the maximum likelihood analysis

and string method to show that reaction coordinates can be non-linear. For the homogeneous

nucleation of nanoparticles, a combination of the embryo size and its structural order has

been shown to explain the nature of the critical nuclei [16, 17]. Using the Ising model to

study homogeneous nucleation in liquids [11, 12], a combination of size and the surface area

of the embryo provided the most accurate reaction coordinate.
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Molecular dynamic simulations of freezing in nanoparticles show that under the same

conditions, clusters will freeze to different structures[1, 2, 3]. This suggests that different

structural parameters are needed to describe the transformation for the different structures.

Rogal et al. [21] used transition interface sampling (TIS), a variant of TPS, to sample a

complex system which exhibits intermediate stable states. They also used the transition

path probability to calculate the rates to the different intermediates and to the final product.

The central theme of this thesis is to develop a molecular level understanding of competi-

tive nucleation processes, with a particular interest in studying the freezing of gold nanopar-

ticles. Its content is organized as follows: In Chapter 1, I will introduce and review the

concept of competitive nucleation as a precursor for polymorphism in natural and industrial

materials. The chapter starts with a general overview of nucleation with particular interest

in models used to understand nucleation events. Section 1.2 reviews competitions in phase

transitions, while Section 1.3 introduces aimless shooting, a method of transition path sam-

pling used in this work. The maximum likelihood analysis, as it applies to obtaining reaction

coordinates, is reviewed in Section 1.4. Finally, the scope of this thesis will be defined in

Section 1.5. Chapter 2 examines the dynamics of competitive nucleation between different

phases forming on a nanoscale heterogeneity using Potts model. In Chapter 3, the aim-

less shooting method of transition path sampling is extended to the study of competitive

nucleation, where multiple transitions may occur. The multiple path maximum likelihood

expression is developed and applied to competitive nucleation in Potts model. Molecular

dynamics simulations are used to study rates of competitive nucleation phenomenon in gold

nanoclusters of various sizes and at different temperatures in Chapter 4, while in Chapter 5

the multiple path maximum likelihood analysis is applied to competitive nucleation in gold

nanocluster of size N = 561. In Chapter 6, the summary of the important findings in this

thesis and their implications are presented.

1.1 Nucleation in Phase Transitions

Phase transitions occur everywhere in nature. Common examples are the condensation of

water vapor into droplets forming rain, the formation of bubbles in the boiling of a liquid,

or the crystallization of water during freezing. These three transitions, which have lots of

practical interests, constitute a fundamental problem in many scientific areas. Any liquid
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can be held at about 10 ◦C below its freezing temperature without freezing. Also, a gas

sample can be compressed to several times its equilibrium condensation pressure before liquid

droplets spontaneously appear. The supercooled liquid and the supersaturated gas are said

to be metastable. This means they are stable to local fluctuations. Small fluctuations of

the metastable phase always disappear while large fluctuations will grow to a new stable

phase. The fundamental mechanism that describes the kinetic transformation of a metastable

phase into a more stable phase is termed nucleation. During a fluctuation, the movement of

materials into the more stable phase lowers the free energy of the system, but the creation

of the new stable phase introduces an interface at a free energy cost. The competition

between these volume and surface terms give rise to a free energy barrier. Fig. 1.1 shows

the contributions of the surface and volume terms to the Gibbs free energy as a function of

droplet size. ∆G∗ is the height of the energy barrier, n∗ is the critical size beyond which the

embryo grows spontaneously.

!G 
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n* 

"n2/3 

!µn 

Figure 1.1: A diagram showing the different surface and volume contributions to the Gibbs free
energy. σ is the surface energy per unit area, while ∆µ is the differences in chemical poetical between
the metastable and stable phases.

There are two main types of nucleation; homogeneous and heterogeneous nucleation. Ho-

mogeneous nucleation occurs in the bulk of a pure substance, while heterogenous nucleation

takes place in the presence of impurities, surfaces, boundaries or pre-existing particles. The

impurities, surfaces, boundaries and pre-existing particles provide preferential sites where

the new stable phase is formed. Such preferential sites reduce the amount of new interface
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that needs to be formed between the stable phase and the metastable phase, thereby reduc-

ing the resultant free energy barrier. Hence, heterogeneous nucleation is more common in

nature than homogeneous nucleation, since the rate of any nucleation event is exponentially

dependent on the free energy barrier.

Nucleation occurs in many forms. Condensation, crystallization, and cavitation in simple

systems are all examples of phase transitions that start with nucleation. Condensation is the

formation of liquid droplets from a supersaturated vapor caused by fluctuations in density.

The nucleation of water droplets or ice crystals in the atmosphere is a major process in the

water cycle and understanding this process constitutes one of the fundamentals of weather

forecasting. Precipitation such as rain or snow can be forced to occur by inducing nucleation

in the atmosphere and the formation of clouds in the presence of aerosols is one of the causes

of global warming [22].

Crystallization, which is the formation of solid crystals from either a supersaturated homo-

geneous solution or a supercooled liquid, has many industrial and biological applications. The

properties of advanced industrial materials such as polymers, ceramics and semi-conductors

are controlled during crystallization. In the pharmaceutical industry, the appropriate choice

of crystal structure of drugs, which is controlled at the nucleation stage, determines their

delivery, bio-availability and effectiveness [23]. Avoiding or controlling ice nucleation is de-

sirable in the area of cryogenics for the preservation of embryos and human tissue [24]. Water

expands when it freezes, as such the preserved tissues can be damaged if ice is not avoided.

The functionality of protein molecules is dependent on their structure. During protein fold-

ing, the shape or structure of the critical nucleus influences the formation of the secondary

and tertiary structure of the protein and hence its functionality. Protein crystallization or ag-

gregation is thought to be a major cause of certain health conditions or diseases such as sickle

cell anemia,a cataract in the eye, and the formation of kidney stones(uric acid crystals) [25].

Several experiments [26, 27, 28, 29, 30, 31] and computational [32, 33, 1, 2] studies have

aimed at the understanding of the nucleation phenomenon. The major theory used to explain

nucleation is Classical Nucleation Theory (CNT). This theory has been developed by the

independent contributions of Volmer and Weber [34], Becker and Doring [35], and Frenkel [36],

among others. CNT is aimed at describing the evolution of the population of clusters of the

new phase. Kinetically, the appearance of an embryo in a new phase can be described as
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the addition of two monomers to form a dimer[8]. Continuous addition to and removal from

this dimer results in fluctuations as the addition and removal of atoms causes the growth

and shrinkage of the embryo, respectively. Therefore, the description of the change in the

population of an embryo of a given size, n, at time, t may be written as

∂f(n, t)

∂t
= βn−1f(n − 1, t) + αn+1f(n + 1, t) − βnf(n, t) − αnf(n, t), (1.1)

where f(n, t) is the number density of embryos having n-monomers at time t, while βn and

αn are the rates at which n − sized embryo gains or loses monomers respectively. This can

be rewritten as
∂f(n, t)

∂t
= J(n + 1, t) − J(n, t), (1.2)

where

J(n, t) = βnf(n, t) − αn+1f(n + 1, t), (1.3)

represents the resultant rate at which embryos of size n become embryos of size n+1 at time

t. The value of the constant βn for the attachment of a monomer is often obtained through

kinetic theory of gases, but the value of the rate constant for the detachment, αn, is not

easily obtained independently. By using the constrained equilibrium hypothesis, which states

that the embryos evolving from the metastable phase cannot grow beyond a certain limiting

size, and assuming microscopic reversibility at equilibrium, the net rate must be zero and

hence independent of it, eqn. 1.3 now becomes

J(n) = βnfeq(n) − αn+1feq(n + 1) = 0, (1.4)

where the equilibrium distribution of n − sized embryos, feq(n), has replaced the non-

equilibrium distribution. Solving for αn+1 in eqn. 1.4 gives

αn+1 =
feq(n)βn

feq(n + 1)
. (1.5)

Putting this back in eqn. 1.3 yields

J(n) = βnfeq(n)

[

f(n, t)

feq(n)
− f(n + 1, t)

feq(n + 1)

]

. (1.6)

CNT assumes steady state conditions, where the distribution of clusters of different sizes

is independent of time. This results in ∂f(n, t)/∂t = 0, and the flux is not dependent on the
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cluster size, i.e, J(n) = J . Performing a recurrent summation over all embryo sizes present,

the total steady state nucleation rate is

J = Ntot

[

nmax
∑

nmin

1

βnfeq(n)

]−1

, (1.7)

where Ntot is the total number density of embryos and the limits of the sum are taken from

the smallest embryo size, nmin to the the largest embryo in the cluster, nmax, and are such

that for n ≥ nmin, f(n) = feq(n) and for n > nmax, f(n) = 0. The equilibrium embryo size

distribution, feq(n), is obtained directly from the theory of thermodynamic fluctuation[8],

feq(n) = feq(0) exp

(−∆G(n)

kBT

)

, (1.8)

where G(n) is the free energy required to form an n − sized embryo from monomers, kB is

the Boltzmann constant and T is the temperature. Replacing the summation in eqn. 1.7 by

an integral and using eqn. 1.8 yields

J ≃ Ntot

[
∫ nmax

n=nmin

1

βnfeq(1)
exp

(

∆G(n)

kBT

)

dn

]−1

. (1.9)

When the free energy barrier is high, eqn. 1.9 may be approximated by the steepest descent

approximation in which the major contribution to the integral comes from values centered

around the location of the critical size of the embryo, n∗, which occurs at the maximum.

Approximating the free energy around the location of the critical embryo, we obtain

∆G(n) ≈ ∆G(n∗) +
1

2

d2∆G(n)

dn2
|n∗ (n − n∗)2. (1.10)

The nucleation rate can now be written as,

J ≈ βn∗feq(1) exp

(

∆G(n∗)

kBT

)

[

∫ ∞

0

exp(
1
2

d2∆G(n)
dn2 |n∗ (n − n∗)2

2kBT
)dn

]−1

. (1.11)

Evaluating the integral in eqn. 1.11 yields the Zeldovich factor[37],

Z =

√

−∂2∆G
∂n2 |n∗

2πkBT
, (1.12)

and this results in the final form of the nucleation rate being given as

JCNT = βn∗ZNtot exp

(

−∆G(n∗)

kBT

)

, (1.13)
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where exp
(

−∆G(n∗)
kBT

)

is related to the probability of seeing a cluster of the new phase con-

taining n∗ monomers, while ∆G(n) is the work of formation of an n − sized cluster. Hence,

the rate calculation can be formulated in terms of the work of formation of the new phase.

CNT calculates the free energy of formation by invoking the capillarity approximation,

in which portions of the new phase are assumed to posses the properties of the bulk phase.

The new phase is thermodynamically more stable than the metastable phase, therefore its

free energy per unit volume is lower than that of the metastable phase. On the other hand,

the creation of an interface increases the free energy by an amount that is proportional to

the area of the surface created. The shape of the nucleus that minimizes this surface energy

for a fixed volume is a sphere. Therefore, the free energy, ∆G(n), can be expressed as the

sum of the volume and interfacial energy contributions,

∆G(n) = −∆µn + σA(n), (1.14)

where ∆µ is the change in the free energy per unit volume between the metastable and stable

phases, and σ is the surface energy per unit area. For undercooled vapors, and assuming

ideal gas behavior, ∆µ is given as,

∆µ = kBT lnS, (1.15)

where S = p/peq is the supersaturation. Assuming a spherical shape for the cluster, ∆G(n)

becomes,

∆G(n) = −nkBT lnS + σs1n
2/3. (1.16)

The value of n when ∂∆G(n)
∂n

|n∗=0, is the critical size,

n∗ = (
2s1σ

3kBT lnS
)3. (1.17)

The maximum in the free energy,

∆G∗
CNT =

4(σs1)
3

27(kBT lnS)2
=

4(σs1)
3

27(∆µ)2
, (1.18)

is the nucleation barrier [8, 38]. The height of the free energy barrier is dependent on

temperature and pressure, and it diverges as the system approaches phase coexistence where

∆µ goes to zero. In the solid nuclei, the shape is hardly spherical. Hence, the equilibrium

shape of a solid embryo can be approximated using Wulffs construction[39]. This approach

minimizes the free energy by changing the shape of the embryo and replacing the surfaces
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associated with high energy facets with low energy facets. In such a case, the surface area

used is the sum of all the areas of the different facets which gives the lowest free energy. The

free energy of formation of an n-sized crystal is expressed as,

∆G(n) = ∆µn +
∑

σiAi, (1.19)

where the summation accounts for the different surfaces that the crystal may have, σi is the

interface tension of surface i with surface area Ai.

CNT has been at the center of understanding nucleation for the last few decades. Its popu-

larity and apparent success lies in its simplicity and the reasonable agreement of experimental

results with theoretical predictions regarding the limits of stability for most substances[40].

But the major failing of CNT is its inability to predict the rates of homogeneous nucleation

accurately. The assumptions of CNT that materials at the center of the embryo have the

same properties as the bulk phase, and that the surface energy of a small spherical cluster is

the same as that of an infinite planar surface become questionable when the nuclei contains

few hundreds of molecules. Theoretical [1, 2, 3, 20] and experimental [31] evidence show that

for liquid - solid nucleation, the nuclei are not necessarily spherical. The different surface

facets have different surface energies [41], that are not equal to the surface energies of the

bulk phase. This difference in surface energies will affect eqn 1.14, and hence, the rates

obtained using eqn 1.13. Another major challenge in invoking CNT is the assumption that

the interface between the stable and metastable phases is sharp. This assumption is not

true at a molecular level. Also, CNT assumes that nucleation is a steady state process, in

which clusters sizes, independent of time, are rapidly attained. The implication of this is that

nucleation rate is constant. Though true in most cases, this assumption becomes question-

able in cases where a finite time is required for the concentration of clusters to attain their

steady values[42, 43]. Using CNT to describe crystallization presents some challenges, pri-

mary among them is the absence of independent measurements of the solid-liquid interfacial

energy, σ, in the supercooled region. This quantity is mostly obtained by fitting the results

of nucleation experiments to the CNT expression. Another challenge is the difficulties in

identifying the solid embryo during crystallization. In this regard, Frenkel and coworkers[44]

showed that the Steinhardt bond order parameters[14] can be used to identify the nuclei and

calculate its size. This has been extended to identify solid nuclei[45, 1, 2, 3] and used as a

major reaction coordinate in nucleation events. Size is an important parameter in nucleation,
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but it does not contain enough information about the geometry of the nucleus or the different

contributions of parameters such as surface area and internal order. These short comings of

size call in to questioning its continuous use to characterize liquid-solid phase transition as

proposed in CNT.

The limitations of CNT seen in experiments have caused an intense search for alternative

theoretical models that can describe nucleation processes more accurately. One such model is

the kinetic model. Its major characteristics is the direct calculation of the rate coefficients for

evaporation and condensation without involving the constrained equilibrium hypothesis or

the evaluation of the work of formation of the clusters. Using this model, Lovett [46] with the

help of thermodynamics, estimated the critical radius and the height of the energy barrier for

a monomer to leave the cluster surface. This model is applicable only to nucleation in gases

and uses the macroscopic values of interfacial tension whose validity is questionable when

applied to small clusters. Another kinetic approach by Bauer et al [47, 48] accounts for the

interaction of the clusters with the carrier gas. This model requires two times the adjustable

kinetic coefficients to fit to the experimental data. Also, the Dynamic Nucleation Theory

(DNT) [49] is used to analyze nucleation in the gaseous phase. This approach evaluates

the rate constants for cluster evaporation and condensation using variational transition state

theory. The downside of this approach is that it is only applicable for the vapor-liquid

nucleation. Recently Reguera developed the non-equilibrium thermodynamics model[40, 50]

which he applied to nucleation kinetics for mesoscopic systems. He derived a modified Fokker-

Planck equation as a function of the bond order parameters and used it to study time

dependent homogeneous nucleation.

Density functional theories (DFT), which are based on order parameter description of

phase transition, allow for a more formal interpretation of nucleation which falls between CNT

and microscopic simulation methods. Unlike CNT, DFT models allow for the possibility of the

interface between the cluster and the metastable phase being diffuse. The basic assumption of

DFT is that a spatially inhomogeneous density ρ(r) underlies the thermodynamic treatment

of a nucleation event. It was Cahn and Hilliard [51, 52] that first proposed the density

functional formalism, but Evans [53] showed that there exists a free energy functional of

the density G[ρ(r)] whose minimum determines the thermodynamic states. For nucleation,

evaluating δG/δρ(r) = 0 gives the density profile of the critical nucleus, and from here the free
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energy barrier ∆G∗ can be calculated. The functional proposed by Cahn and Hilliard [51, 52]

depends on a square gradient term which accounts for non-local contributions to the free

energy. This square gradient approximation does not produce satisfactory results for sharp

interfaces. To avoid this challenge, Oxtoby et al [54, 55] introduced a density functional

constructed directly from the interaction potentials between the molecules. This functional

has been used to study nucleation in different systems using different potentials [56, 57]

including liquid - solid crystallization [58]. The formalism described above only described

the evaluation of the nucleation barrier, with no insight into the kinetics of the nucleation

process. Langer [59] developed a method to incorporate the kinetic component of nucleation

into DFT models.

Different phenomenological models [60, 61, 62, 63] have been formulated to improve the

expression for the work of formation of a cluster with the aim of reconciling experimental and

theoretical measurements. Reiss et al [60, 61] proposed a two dimensional characterization

of the embryo by including the volume, in addition to size, while calculating the free energy.

Based on this, Weakliem and Reiss [64] derived the Modified Liquid Drop model which they

used to perform numerous computer simulations to calculate the work of formation of the

cluster. Reguera and co-workers [62] extended the modified drop model into the Extended

Modified Liquid Drop model (EMLD), taking into consideration translational, vibrational and

rotational fluctuations. Also, the capillarity approximation does not consider the contribu-

tions of translational, rotational, and vibrational degrees of freedom to the free energy of

the cluster. The initial work of Lothe and Pound [65] introduced the need to include these

contributions to correct the free energy of formation of the cluster. Reiss et al [66] solved

the “translational-rotational” paradox while Reguera [40] explained its role in the nucleation

of mesoscopic phase. Recently, Reguera and Reiss [63] combined the EMLD with Dynamic

Nucleation Theory to form the Extended Modified Liquid Drop-Dynamic Nucleation Theory

(EMLD-DNT). Other corrections to the CNT using the phenomenological models include

the Self-Consistent theory [66, 67], Scaled Nucleation theories [68] and Diffuse Interface the-

ory [69].
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1.2 Competitive Nucleation and Polymorphism in Materials

Recently, nanomaterials have become important objects for broad research and development

due to their potential of changing ways in which materials are created. They also hold high

prospects in drug delivery [70]. Nano-sized materials have a wide range of functionalities

which are not available in bulk materials. They have a high surface area to volume ratio

that enhances chemical reactivity, increase mechanical strength and catalytic properties. At

the nano scale, quantum effect sets in leading to novel electrical [71], magnetic [72] and op-

tical properties. These properties in nanomaterials and the ability to use nanomaterials in

drug delivery are sometimes structure dependent. The magnetic properties of Fe [73] and

NdFeB [74] nanoparticles have been shown to be affected by the anisotropy of their sur-

faces. Also, nanocrystals with branched structures, including monopods, bipods, tripods and

tetrapods are in high demand [75] due their high electrical conductivities. In the pharma-

ceutical sector, magnetite and maghemite nanopartcles are used in medical imaging [70], due

to their enhanced magnetic properties which is a function of their structures. The surface

morphologies of nanomaterials allow them to selectively discharge at pathological sites [70]

when used in drug delivery. Also, different crystalline forms of the active ingredient in drugs

have different solubilities and different bio-availabilities [5]

The different structures or polymorphs of the nanomaterials are formed due to competi-

tion during nucleation, growth or impingement [76](The competition during nucleation may

be due to the competition between the thermodynamics and kinetics of the nucleation or

between the different modes of nucleation [76]. Competition during growth arises from com-

petition in thermal diffusion and short-range or long-range solute diffusion [76]. Nucleation

can be regarded as both a thermodynamic and kinetic event simultaneously. Thermodynam-

ically, only nuclei that overcome the maximum work of forming a new phase can go over the

nucleation barrier. Kinetically, nucleation can be explained as a steady state growth and

dissolving of the new phase till the maximum nucleus size is attained. The exact nature of

the competition between thermodynamics and kinetics that determines the phase selection

depends on the system and its inherent conditions.

Competitive nucleation occurs when a single metastable phase can nucleate to any of the

possible stable structures or phases. This phenomenon is common in many physical processes,
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such as nucleation in atomic clusters [1, 2, 3, 20, 31], crystallization of protein [77], where the

presence of huge number of potential energy minima may prevent the system from reaching

the global equilibrium [78]. The crystallization of levo- and dextro- sodium chlorate crystals

from a single solution, thus making them optically active [79], can be explained in terms

of competitive nucleation. J. A. D Wattis [80] applied the Becker and Döring systems of

equation [35] to competitive nucleation for the first time. In his work, the author proposed a

model where two different clusters can form from a single type of monomer having constant

concentration. Also, the author allowed for one of the clusters to be non-crystalline, for

example, amorphous or a gel.

The spin lattice model has often been used to explain nucleation and also to test new

simulation algorithms and methodologies. The Ising model has two phases (q = 2) and has

been used to study various nucleation processes[11, 12, 81, 82]. In particular, the simplicity

of the spin model, and the ease with which it can be simulated means that it is an ideal

model for testing new nucleation theories and for developing new methods for the study of

rare events[11, 12]. For example, Shneidman et al [82] tested the applicability of CNT in

the Ising model. They observed that at intermediate temperatures (up to 70% of the critical

temperature), the distribution of large clusters is in qualitative agreement with CNT, but,

their measurement of the nucleation rate differed by a constant factor. Scheifele et al [81]

also used a 2-dimensional Ising model to study heterogeneous nucleation in the low-barrier

regime. They redefined the free energy barrier using the metastable state containing the

impurity as the reference state. Their results show that renormalization of the free energy

barrier accurately predicts the nucleation rate and is consistent with the nucleation theorem.

Sanders et al[7] used the generalized Potts model[83, 84] to study homogeneous competi-

tive nucleation with many metastable phases. Their results showed that the rate of nucleation

to a given phase depends on the external field strength of such a phase. They also showed

that in cases of competitive nucleation, a probabilistic approach is required in the calculation

of the rates. Sear[85] studied competitive heterogeneous nucleation using the Potts model.

He investigated the nature of the impurity that favors the nucleation of the phase that is

not the equilibrium phase on an impurity. His results showed that though the equilibrium

phase may have a favorable external field, the less stable phase with highest interaction with

the impurity will nucleate on the impurity. In the works of Sanders et al[7] and Sear[85],

13



there was no explicit definition of order parameter(s) or reaction coordinate by which the

transition dynamics can be understood. Knowing the reaction coordinate for any process is

very important in understanding the progress of the process, as it can provide mechanistic

insight to the nucleation and can help identify why one product is preferred over others.

1.3 Transition Path Sampling

Transition Path Sampling (TPS), developed by Chandler et al. [86, 87], is a computational

methodology used to study rare transitions between known and well defined states based on

the statistical mechanics of trajectories. Its major advantage is that it does not require a pri-

ori information on the mechanism [88]. Since nucleation is a rare event, the efficiency of TPS

is increased by focusing mainly on the reactive trajectories [12]. The trajectories are said to

be reactive when they connect the initial and the final states together, i.e when the forward

trajectory ends in the product and backward trajectory ends in the reactant or vice versa.

TPS, in its different versions, has been successfully used to study ice nucleation [89, 90], pro-

tein folding[91] and Grotthus proton transfer[92]. The idea behind TPS consists of assigning

a probability or weight to every pathway, where this probability is a statistical description

of all possible reactive trajectories known as the transition path ensemble (TPE) [12]. For

a system with a single initial state (reactant A) and a single product, B, (see fig. 1.2), the

TPE can be expressed mathematically [93] as it obeys probability,

PAB[x(L)] ≡ Z−1
ABhA(x0)P [x(L)]hB(xL) (1.20)

where ZAB is a normalization factor, while hA and hB are characteristic functions defining

the states A and B, such that their values are unity if the configuration x is within the region,

and zero otherwise,

hA(x) =











1, if x ∈ A

0, if x /∈ A.

Similarly,

hB(x) =











1, if x ∈ B

0, if x /∈ B.

P [x(L)] is the dynamical path probability for a path

x(L) = {x0,x∆t, ....,xL∆t}, (1.21)
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where x∆t denotes the complete microscopic state of the system at time interval ∆t, L is the

length of the transition path.

A B A B A 

Figure 1.2: A diagram showing TPS with regions A and B in phase space corresponding to locally
stable phases.

In TPS, the definition of the TPE requires that locally stable phases A and B be specified.

To do this, one dimensional order parameters or collective variables, say, qA(x) and qB(x) are

defined for each of the phases. It should be noted that these order parameters are sufficient

to specify the stable states but may not necessarily be suitable to describe the complete

transition. The term reaction coordinate is exclusively reserved for specific collective variables

or their combinations that describes a transition’s dynamical mechanism.

The analysis of these harvested pathways yields the required mechanistic information on

the transition mechanism. To use TPS, the transition path has to be well defined in relation

to the configuration landscape. The transition path probabilities, p(TP |x), are the proba-

bilities of trajectories initiated from a configuration, x, connect both reactant and product.

A committor probability is defined as the fraction of trajectories initiated with a Boltzmann

distributed momenta from a given configuration, x, that commit to the product basin[87].

Representing the committor probability as pB(x), then the transition states are configura-

tions for which pB(x) = 0.5, for the reactant configurations, pB(x) < 0.5, while product

configurations have pB(x) > 0.5. The evaluation of pB(x) is computationally expensive and

does not provide useful insight into the physical characteristics that distinguish reactants,

products and transition states[12]. For complex systems, such as condensed phases, a simple

approximation to pB(x), as a function of collective variables, is more useful[12] and compu-

tationally feasible. Collective variable, q(x), are functions of the configuration that compress

several microscopic details into physically important variables. There are many methods

for sampling the transition path ensemble which can be broadly divided into shooting and
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shifting methods. The shooting method has gained much popularity and here the Aimless

shooting method of transition path sampling is explained briefly.

1.3.1 Aimless Shooting Method

Aimless shooting [12] is a version of TPS where a point in configuration space xo
t is selected

from the old transition path, x0. The chosen state may be modified in a manner suitable for

the propagation mechanism. For example, in a system with deterministic dynamics, the mo-

menta are drawn from the Maxwell-Boltzmann distribution for each trial trajectory [94, 12].

The modified state is then propagated forward and backward in time using the appropriate

dynamics until the new path connects the stable basins. Fig. 1.3 depicts this procedure,

where the new pathway (dashed line) is generated from the old pathway (solid line). The

new pathway is reactive if the forward trajectory (f) ends in A and backward trajectory (b)

ends in B or vice versa. If the pathway is reactive, it is accepted into the transition path

ensemble and rejected otherwise. The difference between the new point, xo
t and the old point,

x0, is ∆t. ∆t should be chosen to be very small compared to the duration of the reactive

trajectory, t (∆t << t). The value of ∆t affects the efficiency of the shooting algorithm,

though a wider range of values may be acceptable. To achieve high efficiency, most shooting

points must be chosen to be very close to unknown pB = 0.5 surface.

A B A 

f b 

x
t
o 

x
t
n 

Figure 1.3: A diagram showing the generation of a new transition pathway from an old transition
path in an Aimless shooting method.

Trajectories obtained by aimless shooting reflects the system’s dynamics, therefore, the

corresponding generation and acceptance probabilities also depend on the dynamics, and

the algorithm is relatively simple to execute [94]. For deterministic dynamics with initial

velocities, Vt0 , the probability for generating a new trajectory {xn
±t/2} is

po→n
gen =

1

9
ρeq(Vt0)p({xn

±t/2}|Vt0 , x
n
t0 , t0). (1.22)
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ρeq is the Boltzmann distribution, while the probability p({xn
±t/2}|Vt0 , x

n
t0 , t0) depends on the

equation of motion [12]. The new shooting point can be selected from xo
−∆t, xo

t , and xo
∆t,

hence the factor 1/9. The ratio of the generation probabilities is

po→n
gen

pn→o
gen

=
ρeq(V

n
t0 )p({xn

±t/2}|V n
t0 , x

n
t0 , t

n
0 )

ρeq(V o
t0)p({xo

±t/2}|V o
t0, x

n
t0 , t

o
0)

, (1.23)

and maintains detailed balance [95] in the transition path ensemble which is achieved by ac-

cepting each new trajectory connecting states A and B. The forward and backward reactions

are included in the TPE by accepting trajectories with a probability

TPEacc = hA[xn
−t/2]hB[xn

t/2] + hA[xn
t/2]hB[xn

−t/2]. (1.24)

The ±t/2 in eqns. 1.22, 1.23, and 1.24 indicate that the forward and backward trajectories

are half the length of a full trajectory.

Aimless shooting can be applied to both deterministic and stochastic dynamics and the

moves described above are identical to moves applied for stochastic dynamic. For a deter-

ministic simulation such as Molecular Dynamics, the backward segment is propagated with

the direction of time inverted. This is done by integrating the equation of motion with a

negative time step or first inverting the velocities and integrating forward in time [94]. In a

stochastic dynamics such as Monte Carlo, it is not necessary to modify the shooting point

before shooting. The random nature of the dynamics causes the new path to diverge from the

old path. Here, the generation probability po→n
gen is symmetric and the acceptance probability

becomes

TPEacc = hA[xn
0 ]hB[xn

t ], (1.25)

which means any trajectory connecting A and B are accepted in the transition path ensemble.

Since its development by Chandler et al [86, 87], TPS has been applied to understanding

the dynamics of phase transitions[11, 12, 16, 17] and other rare events[91, 92]. It has also

been used to understand chemical and biological phenomena. Pan et al [11] used the aimless

shooting method of TPS to study the nature of critical nuclei in homogeneous nucleation in a

3D Ising model. Their result shows that the critical nuclei is anisotropic and suggested that

there maybe contributions from other order parameters to the reaction coordinate in addi-

tion to the size of the embryo. Another phase transition which has been studied with aimless

shooting is the freezing of Lennard-Jonnes particles[17], where the authors observed that the
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product of embryo size and the bond orientational order parameter of the embryo is the best

reaction coordinate. Also, Beckham et al[96] used the aimless shooting method to understand

the solid-solid transition of terephthalic acid. TPS has also been used to study phase separa-

tion and crystallization of sodium halides from their melts[97]. TPS has been used to study

some chemical processes including proton transfer in the water trimer[92], hydrated proton

transfer in water[98], and the isomerization and melting of water clusters[99]. In biological

systems, TPS has been used to investigate the isomerization of alanine dipeptide[91, 19] and

DNA repair process by polymerase[100].

1.4 Maximum Likelihood Analysis

To obtain a good reaction coordinate, r(x), the transition path probability, p(TP |r(x)), must

be a function of the reaction coordinate only. This is achieved by screening the collective

variables for the function p(TP |r(x)) that will suitably explain the realization of p(TP |x)

obtained from the aimless shooting. Likelihood maximization [101] determines the optimum

reaction coordinate by screening a large set of collective variables and finding the combi-

nation of the collective variables that best fit the observed data. It has the advantage of

not requiring the calculation of the committor probabilities, but rather uses the statistics

about the accepted and rejected trajectories accumulated during the aimless shooting. The

generated statistics will then be analyzed using the maximum likelihood estimation which is

a statistical method that determines the parameters of a postulated underlying model from

a given data set. The model function used for p(TP |r) must be such that it peaks at the

transition state value of r, and decays to zero on both sides of the peak. One commonly used

function is,

p(TP |r) = p0(1 − tanh[r]2) (1.26)

where p0 is an adjustable parameter. This function (eqn. 1.26) is symmetric with a peak

at r = 0, such that the transition states are found at the isosurface r(x) = 0. p0 can be

determined a priori for two limiting cases. For systems that obey transition state theory,

the transition state x is such that, the forward and backward trajectories must end in the

product and reactant, respectively. This implies that x satisfies p(TP |x) = 1, hence, p0 = 1.

For systems with diffusive barrier crossing mechanism, such as nucleation, transition states
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satisfy p(TP |x) = 0.5 [101]. Transition states are on the surface r(x) and

p(TP |x) = 2pB(x)(1 − pB(x)) (1.27)

where pB(x) is the committor probability, then p0 = 1/2, while

pB = (1 + tanh[r])/2. (1.28)

Fig. 1.4 shows the functions pB(r) and p(TP |r) for a system with diffusive barrier crossings.

The realizations of the transition path probabilities must have the shape of p(TP |r) for this

model to be useful.

Figure 1.4: The p(TP |r) and pB functions for a system with diffusive barrier crossing.

To apply the maximum likelihood estimation, the underlying model in the form of parameter-

dependent probability distributions for the data needs to be specified. The data will consist
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of the observed acceptances and rejections for a large number of shooting points with their

corresponding values of M collective variables q1, q2.....qM [101]. The definition of the model

is achieved by stipulating the dependency of the expected reaction coordinate q on the M

collective variables. One possibility of such a model is;

q = α0 +

M
∑

k=1

αkqk +

M
∑

k,l=1

Aklqkql, (1.29)

where α0 is a free parameter that allows the reaction coordinate to shift so that the transi-

tion states appear at r(q) = 0. The second term is a linear combination of order parameters

weighted by αk, while the third term is the sum of the correlations between the order pa-

rameters weighted by the matrix element Akl. The next step will be to construct a likelihood

function, L, which quantifies the probability of the observed data as a function of the model

parameters;

L(α) =
∏

r∈acc

p(TP |q(r))
∏

r∈rej

[1 − p(TP |q(r))], (1.30)

where, α denotes all model parameters including the coefficients, αk and the matrix elements,

Akl. The first product is over all the accepted transitions while the second product is for all

the rejected trajectories. Maximizing the likelihood function (eqn. 1.30) above with respect

to the parameters, α, will yield the optimum reaction coordinate. In practice, it is easier and

more convenient to maximize the logarithm of eqn. 1.30,

ln L(α) =
∑

r∈acc

ln p(TP |q(r)) +
∑

r∈rej

ln[1 − p(TP |q(r))]. (1.31)

The maximum likelihood analysis constructs the best reaction coordinate from a few col-

lective variables. These few variables are often sufficient to obtain the reaction coordinate,

the major challenge is how to determine which variables are important. Peters et al. [12]

showed that this challenge can be overcome by a systematic search. For a set of M collec-

tive variables, the search starts with each of the M variables in the model for the reaction

coordinate. The best single variable reaction coordinate is compared with the best from all

the pairs of the collective variables. The best reaction coordinate from the pairs of order

parameters is compared with the combinations of three or more variables. The Bayesian

information criterion [102], BIC, determines if the addition of a new variable is significant

to the reaction coordinate. If the additional parameter increases the likelihood estimate by
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0.5 lnNR [102], where NR is the number of realizations in the likelihood function, then the

new variable is regarded as significant.

The maximum likelihood analysis does not require the evaluation of the computationally

expensive committor histogram, as such, it is a flexible and computationally efficient method

of finding reaction coordinates. It has been successfully used to study the mechanistic de-

tails of homogeneous nucleation in Ising model[12, 11]. Beckham et al[103] used Maximum

likelihood analysis to obtain the accurate reaction coordinate for the solid-solid transition of

terephthalic acid. Using the maximum likelihood analysis, Lechner et al. [20] showed that

reaction coordinates can be non-linear.

1.5 Scope of the Thesis

The major objective of this thesis is to develop a molecular understanding of the dynam-

ics of competitive nucleation. In order to achieve this objective, the question: What is

(are) the most suitable reaction coordinate(s) that can be followed to properly

understand the dynamics of the formation of different structures during the nu-

cleation of nanoclusters? must be answered. The evolution of the different structures

during nucleation of nanoclusters are studied by following the global, local and structural

order parameters of the system. These order parameters and their combinations are tested

as suitable reaction coordinates for the different transitions using the maximum likelihood

analysis.

Chapter 2 examines the competitive nucleation between the different phases forming on

a nanoscale heterogeneity using the Potts model. The free energy surfaces for nucleation

at different external field strengths and different interaction parameters are calculated using

Monte Carlo simulations. The normalized free energy barriers are used to calculate the rate

of nucleation to each of the phases using transition state theory. The survival probability and

mean first passage time methods are also used to evaluate the overall rate for the formation

of a stable phase. This overall rate is combined with the probability of seeing the phase

within an ensemble of nucleation events to find the rates to each of the phases.

An important variable in understanding the mechanism of any process is the reaction

coordinate. In Chapter 3, the aimless shooting method of transition path sampling is ex-

tended to study competitive nucleation, where multiple transitions may occur using the Potts

21



model as the test system. The transition path probabilities are evaluated as a function of

different order parameters of the shooting points. The multiple path maximum likelihood

expression is developed and used to maximize the probabilities of configurations being on a

given transition path.

In Chapter 4, molecular dynamics simulations are used to study nucleation phenomenon

in gold nanoclusters of size range 300 ≤ N ≤ 1000 at different temperatures. Different

structures are identified using different set of order parameters. The overall rates of nucleating

to any structure for each of the cluster size as a function of temperature is calculated using

the survival probability method. The probability of observing each structure in an ensemble

of nucleation events is measured. These probabilities are then used to calculate the rate

of formation of each of the structures, and obtain estimates of the nucleation free energy

barriers to the structures at each temperature.

In Chapter 5, the aimless shooting method is applied to the competitive nucleation of gold

nanocluster of size N = 561 at T = 700 K. The transition path probabilities as a function

of global, local and structural order parameters are calculated. The multiple path maximum

likelihood analysis developed in Chapter 3 is used to test for the best reaction coordinate

for the different transitions. Many order parameters and their combinations are screened as

reaction coordinates and these are used to gain mechanistic insight into the formation of Ih,

Dh, and FCC structures.

The summary of the important findings in this thesis and their implications to nucleation

of nanoclusters in particular or phase transitions in general are presented in Chapter 6. The

direction of future work is also suggested in this chapter.
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Chapter 2

Competitive Rates of Heterogeneous Nucleation in a

Potts Model

2.1 Introduction

One of the major objectives of this thesis is to understand the dynamics of competitive

nucleation in nanoclusters. Understanding the dynamics of competitive nucleation is essential

to the production of materials whose desired properties are structure dependent, and in the

understanding of certain disease conditions. In a competitive process, the probabilities of

having a given structure and their rates of formation are said to be determined by the

nucleation barrier and the growth kinetics [3, 7]. Also, the rate of any nucleation event is

dramatically increased by the presence of heterogeneous surface due to the lowering of the

free energy barrier to processes such as vapor condensation and crystallization [8]. Hence,

heterogeneous nucleation is more abundant in nature than homogeneous nucleation and is

responsible for important atmospheric physics [9] as well as protein crystallization [104].

Lattice models have often been used to explain nucleation and also to test new simulation

algorithms and methodologies. In condensed matter physics, the commonly used lattice

models include the Ising, Potts, and Toda models which are lattice models having spins in

one or more directions. In the presence of an external field, these spin models undergo first

order phase transition, which makes them attractive as useful models to explain nucleation.

The Ising model has two phases (q = 2) corresponding to the system with all spins up or

all spins down, and has been used to study various nucleation processes [11, 12, 81, 82], in

the study of magnetic materials [105, 106, 107], and in developing methods for studying rare

events [11, 12]. The Potts model is an extension of the Ising model where each spin can take

any number of possible states, q = 3, 4, 5..... The Potts model with q = 3 has been used to

study the dynamics of liquid - solid nucleation [108] due to the simplicity. Also, Potts models

23



have been used to test the validity of Ostwald’s rule during the competitive heterogeneous

nucleation [85] and competitive homogeneous nucleation [7]. Fig. 2.1 shows transition graphs

representing different scenarios where the Ising and Potts models can be used to study phase

transitions. In each case, the system starts in the metastable phase, A. Fig.2.1 (a) is the

basic Ising model that exhibits a phase transition to a single more stable phase, (b) shows

the transition graph for a succession of three phases where the system initially transforms

to an intermediate metastable phase before finally transforming to the most stable phase,

(c) shows the formation of two competing stable phases from a single metastable phase, (d)

shows the scenario found in (c), but with phase C nucleating to form another phase, while

(e) shows the formation of three competing phases. Sanders et al [7] used the generalized

Potts model [83, 84] to study homogeneous competitive nucleation of many phases. Their

results showed that the applications of Ostwald’s rule should be interpreted probabilistically

because there is a chance that any of the phases could nucleate. They also showed that the

rate of nucleation depended on the probability of observing a nucleus, so the rate was effected

by the number of potential phases that could be formed.

Most nucleation processes in nature are heterogeneous rather than homogeneous. Sear [85]

studied competitive heterogeneous nucleation using the Potts model. He investigated the

nature of the impurity that favors the nucleation of a phase that is not the equilibrium phase

on an impurity. His results showed that though the equilibrium phase may have a favorable

external field, the less stable phase with the strongest interaction with the impurity will

nucleate on the impurity.
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(a)       (b)    (c)                  (d)                           (e) 

Figure 2.1: Transition graphs depicting Ising and Potts models.
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In this chapter, the rates of formation of new phases on an impurity using a simple

spin model with nearest neighbor interaction is measured. In the Potts model used here,

the interaction between the phases and the impurity are equal, removing any advantage of

one phase over the other. The free energy surfaces for the formation of different phases at

different field strengths and interactions are calculated. Then using the transition state theory

(TST) developed by Volmer and Weber [34], Becker and Döring [35], Zeldovich [109], and

Frenkel [36], the individual rates to the new phases are calculated. The rates are subsequently

compared with the rates obtained through the mean first passage time (MFPT) [110] and

survival probability [1] methods. The remainder of this chapter is organized as follows:

Section 2.2 describes the model and the simulation methods used to calculate the free energy

surfaces and the nucleation rates. Section 2.3 describes the results from the different methods

used to calculate the rates of nucleation while Section 2.4 discusses the general features of

competitive nucleation and compares the rates from the different methods, and Section 2.5

has the conclusions to this chapter.

2.2 Model and Methods

2.2.1 Model

The system used in this study is the three state Potts model [83, 84] nucleating in the

presence of a heterogeneity. The transitions are represented by graph c in fig. 2.1. There are

q = 3 phases, with one phase being the metastable phase and two more stable phases. The

heterogeneity could be considered to be a fourth phase, with different interactions, but the

spins associated with the heterogeneity cannot change.

The system consists of L×L = 40×40 square lattices with a total number of spins N = L2

within a period boundary. Each lattice site i has a spin σi with values {1, 2, 3, 4}, where the

σi = 1 is for the metastable phase, σi = 2 and σi = 3 are for the stable phases, while σi = 4

is for the fixed heterogeneity. The energy of a given configuration is

E(σ) = −
∑

〈i,j〉

Jσi,σj
−

q
∑

α=1

HαMα, (2.1)

where Jσi,σj
is the interaction energy between neighboring spins σi and σj , and the sum in
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the first term is overall possible spin neighbor pairs. In the second term,

Mα =

N
∑

i

δσi,α, (2.2)

is the magnetization of the spin type α, where,

δσi
=











1, σi = α

0, otherwise,

and Hα is the external field strength, which controls the relative stability of each of the

phases. It is the interplay of these field strengths, coupled with the interaction energy that

allows the transition paths between the different phases to be tuned. Here, the field strengths

are selected such that, HA < HB ≤ HC while JA,B = JA,C and JB,C < 0 which ensures that

phase A is the metastable mother phase. Also, the value J is such that the diagonal elements

Jα,α equals to unity (i.e βJα,α = 1 for all α). The choice of the interaction parameters

between the stable phases and the impurity ensure that nucleation occurs on the impurity

only. β∆H = βHC − βHB is the field difference between phases B and C. To make the

probability of the phases B and C nucleating from the metastable phase equal, the field

difference is set as β∆H = 0, so that the A → B free energy barrier is expected to be equal

to the A → C barrier. Also, β∆H = 0 ensures a possible transition between phases B and

C. For all the simulations, a constant temperature of kBT = 1.5 is used. The system consists

of an impurity made of a single line of spins of length l = 7. Fig. 2.2 shows two stable phases

surrounding an impurity (black lattices). The white background represent the metastable

phase, while the light grey and dark grey lattices are the B and C phases respectively.

2.2.2 The Nucleation Free Energy Surface

In calculating the free energy surface for the Potts model, the aim is to evaluate the minimum

reversible work of formation of a critical cluster containing a stable phase. A critical cluster

can be defined as a contiguous cluster of the stable phases surrounding the impurity. In

addition to the impurity whose size is fixed, a cluster contains different number of spins

representing the stable phases, nB and nC . In order to obtain the free energy surface, the

partition function of the system with a fixed N, HB, HC , T and l is defined as,

Z =
N

∑

nB=0

N
∑

nC=0

Z(nB, nC), (2.3)
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Figure 2.2: Example of configuration of Potts model with JB,C = −1.0, HB = HC = 0.12. The light
grey and dark grey lattices are the stable phases, the black lattices represent the impurity. The white
background represents the metastable phase.
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where

Z(nB, nC) =
∑

exp(−βE(σ)). (2.4)

The summation in the definition of Z(nB, nC) is for all configurations with the cluster having

nB and nC spins. The free energy as a function of nB and nC is given as

G(nB, nC) = −kT lnZ(nB, nC). (2.5)

Wolde et al [44] defined the free energy barrier to homogeneous nucleation as the minimum

reversible work required to constrain the system to the transition state. Following this

definition, Scheifele et al [81] renormalized the free energy barrier to heterogeneous nucleation

with the partition function of the metastable phase. The nucleation time, τ , obtained through

this free energy barrier was consistent with calculations using other methods [81]. Applying

this normalization to this system, the partition of the metastable phase is defined as,

Zm =

n∗

B
∑

nB=0

n∗

C
∑

nC=0

Z(nB, nC), (2.6)

where the embryos with size (n∗
A, n∗

B) represent the critical states at the boundary between

the metastable phase and the states where the embryo spontaneously grow into the new

stable phase. The free energy of the metastable phase is Gm = −kT lnZm. Therefore, the

work of forming an embryo having nB, nC spins on the heterogeneity from the metastable

phase is given as

∆G(nB, nC) = G(nB, nC) − Gm = −kT ln
Z(nB, nC)

Zm
. (2.7)

This re-normalization is supported by the fact that the present system is one where there

is always one maximum cluster containing the impurity, such that nB, nC can be considered

to be order parameters that describe the microscopic state of the system.

In order to calculate ∆G(nB, nC), a Monte Carlo (MC) simulation is carried out for a

system with βHA = −0.120 and βHB = βHC = 0.120. To improve the sampling of low

probability states, such as the critical embryo, the umbrella sampling method is applied.

This is achieved by adding a biasing potential, UB = κB(nB − n0B)2 + κC(nC − n0C)2, to

the potential energy of the system in eq. 2.1, where n0B and n0C are the umbrella centers

for components B and C respectively. κB and κC are the umbrella constants which control

the fluctuation of the components from the umbrella centers. To access the entire energy
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landscape, a grid of n0B ×n0C is used as the umbrella centers where n0B and n0C range from

0 to 110 at the interval of 10. At each MC move, a spin is randomly flipped and the move is

accepted with a probability min {1, exp(−β∆E)}. One Monte Carlo step (mcs) is equivalent

to N = L2 MC moves. For each umbrella center, the simulation runs for 6.4 × 105 mcs,

saving nB and nC after each 250 mcs. The Multiple Bennett Acceptance Ratio (MBAR)

estimator [111] is used to connect data from different umbrella centers together forming a

smooth free energy surface. This approach gives the probability of observing a nB, nC cluster

in the biased simulation window, which results in free energies for a given cluster size that

differ by an additive constant. The MBAR method provides a way of removing the biases

in each simulation window and matching the windows together to form a complete unbiased

free energy surface.

The free energy surfaces are similarly calculated for two additional conditions. The second

case is the heterogeneous nucleation to the stable phases having unequal fields, where βHA =

−0.120, βHB = 0.120 and βHC = 0.170. In the last scenario, unequal fields are still used ,

but a partial mixing of the spins of the stable phases is allowed. This is achieved by increasing

the value of βJB,C to βJB,C = −0.8 from βJB,C = −1.0 used for the first two scenarios. The

full set of cases studied are summarized in Table 3.1.

Cases βHA βHB βHC βJB,C q

case 1 -0.12 0.12 0.12 -1.0 3

case 2 -0.12 0.12 0.17 -1.0 3

case 3 -0.12 0.12 0.17 -0.8 3

case 4 -0.12 0.12 - - 2

Table 2.1: Summary of conditions and parameters used to calculate the free energy surfaces and the
rates. The free energy surfaces were calculated for cases 1-3.

2.2.3 Competitive Rates of Nucleation

The aim of this work is to calculate the rates of nucleation to different phases in a competitive

process on an impurity. The rates are calculated using three different independent methods

of evaluating rates of nucleation. The first approach is by using the transition state theory

(TST) [36, 112] to calculate the rates JBTST
and JCTST

to phases B and C, respectively. In
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using TST, the assumption that the transition to each of the stable phases is a mutually

exclusive event and independent of each other is made. Therefore, the rates are defined as

JBTST
= f+

B zBexp(−β∆G(n∗
B, nC)), (2.8)

and

JCTST
= f+

C zCexp(−β∆G(nB, n∗
C)), (2.9)

where f+
B and f+

C are the rates of attachment of the spins B and C to the critical clusters lead-

ing to B and C phases. To obtain f+
B , ten different configurations within the umbrella centers

containing the critical size n∗
B are chosen. Using these configurations as initial configurations,

MC simulations are performed to evaluate the rate of attachment from

f+
B =

〈∆n2
B(t)〉
2t

, (2.10)

where 〈∆n2
B(t)〉 is the mean square fluctuation of component B in the cluster, ∆nB(t) ≡

nB(t)−nB(0). 〈 〉 in the expression indicates the ensemble average from these MC simulations

which were stopped when | ∆nB(t) |> 20. The same procedure is repeated for component C

to evaluate f+
C . zB is the Zeldovich factor defined as

zB =

√

βηB

2π
, (2.11)

where ηB = −(δ2G/δn2
B)n=n∗

B
is the curvature at the top of the barrier. For a given transition,

ηB is obtained from a quadratic fit to the data within 0.2kT of the barrier along the channel.

Given that a system can spontaneously nucleate to any one of the possible phases, the

rates can be considered as rates of parallel processes. For a system, with total number of

trajectories, NT , all starting from phase A, with each trajectory forming phase B or C. The

total number of transitions to different phases are conserved such that NT = NA +NB +NC ,

where NA is the number of unnucleated trajectories, NB is the number of trajectories forming

phase B and NC is the number of trajectories forming phase C. Considering NT as the initial

quantity of the reactant, the rate of forming B is given by,

rateB =
dNB

dt
= kbNA, (2.12)

where kb is the rate constant associated with crossing the barrier. Similarly, the rate for the

formation of C is given by

rateC =
dNC

dt
= kcNA. (2.13)
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Finally, the overall rate for the disappearance of A is given by

rate = −dNA

dt
= (kb + kc)NA. (2.14)

If all the trajectories start as phase A, at time t=0, then integrating eq. 2.14

−
∫ NA

NT

dNA

NA
=

∫ t

0

(kb + kc)dt, (2.15)

yields,
NA

NT
= exp(−(kb + kc)t), (2.16)

or

NA = NT exp(−(kb + kc)t). (2.17)

Integrating the rate law with respect to B ,
∫ NB

0

dNB

NA
=

∫ t

0

(kb)dt (2.18)

gives

NB =
kb

kb + kc

NT (1 − exp(−(kb + kc)t)), (2.19)

or
NB

NT

=
kb

kb + kc

− k1

kb + kc

exp(−(kb + kc)t). (2.20)

At infinite time, i.e, t → ∞, eq. 2.20 becomes,

NB

NT
=

kb

kb + kc
. (2.21)

Note that NB

NT
is the probability of having B products from the initial quantity of A, NT .

The rate constants kb +kc can be related to the reaction time using the time required for NT

to reduce to 1/e its value, τ . Using eq. 2.16, it follows that for first order reaction,

(kb + kc)τ = − ln

(

NT /e

NT

)

= − ln
1

e
= 1, (2.22)

giving,

(kb + kc) =
1

τ
. (2.23)

τ is a measure of the decomposition time, hence, (kb +kc) is equivalent to the overall rate, J ,

of the decomposition of A, while kb and kc is a measure of the rates of formation of B and

C respectively. Therefore, eq. 2.21 can be rewritten as

NB

NT
= PB =

JB

J
, (2.24)
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where PB is the probability of having product B, JB is the rate of formation of B and J is

the rate of decomposition of A. Similarly, integration of eq. 2.13 will give

NC

NT
= PC =

JC

J
. (2.25)

Eqs. 2.24 and 2.25 are in agreement with the work of Sanders et al. [7] who, using the

nucleation time for their derivation, stated that the rates in a competitive nucleation process

were given by

J =
∑

i

Ji, (2.26)

and

Ji = PiJ , (2.27)

where Ji is the rate of forming a given structure. For this work, i stands for the different

phases nucleating, the sum in eq. 2.26 is over all possible phases and Pi is the probability of

seeing the ith phase in an ensemble of nucleation events.

As an independent check, the rate of nucleation is calculated using the survival probability

(SP) of the metastable phase. This method, which has been used to study the rate of

nucleation in gold nanoclusters[1, 3], evaluates the fraction of systems that have not nucleated

after time t. Assuming first order kinetics for the nucleation process, the rate is obtain

from [1],

lnR(t) = −JV (t − t0), (2.28)

where R(t) is the fraction of unnucleated sytems at a given time, t, V is the volume and

t0 is the lag time required to reach steady state. To evaluate R(t), a Monte Carlo simula-

tion of 2000 independent trajectories is carried out starting with configurations where the

largest cluster contains only the impurity (nB ∼ 0, nC ∼ 0). For each starting configura-

tion, a spin is randomly selected and flipped and the move is accepted with a probability

min {1, exp(−β∆E)}. One Monte Carlo step (mcs) is equivalent to N = L2 MC moves. The

simulation is stopped when the largest cluster is greater than 60% of N = L2. The nucleation

time with units of mcs is measured as the time at which nB > n∗
B or nC > n∗

C . Fig. 2.3 shows

the size of nB as function of time for twenty trajectories for the case where HB = HC . The

size nB = 150 is chosen as the size to determine the nucleation time, as 150 is well beyond

the critical size of nB or nC .
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Figure 2.3: Plots of the size of component B in the largest cluster as a function of time (mcs)
for twenty different trajectories. The dashed line nB = 150 or nC = 150 is used to determine the
nucleation time. The trajectories with small sizes of component B have high C component where such
trajectories stop.
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Finally, the rate of nucleation is evaluated using the mean first passage time (MFPT), a

method introduced into nucleation studies by Reguera et al[110]. The MFPT method has

the advantages of ease of implementation, precise determination of critical size directly from

kinetics and can also help to differentiate nucleation from growth. For each trajectory, the

time, t, it takes to observe a maximum cluster of size N = (nB + nC) for the first time is

noted. The MFPT as a function of size, τ(N), is the average of this time for size N over

500 different trajectories.

For a system where the barrier is high enough for the steepest descent approximation to

be invoked, the MFPT expression is given as[110]

τ(N) =
τJ

2
(1 + erf((N − N∗)c)), (2.29)

where τJ is the nucleation time, erf (N ) = 2/
√

π
∫

N

0
exp(−N 2 )dN is an error function, N∗

is the critical size while c is the local curvature about the top of the nucleation barrier. c

is proportional to the Zeldovich factor, Z, as c =
√

πZ [110]. Eq. 2.29 is fitted to the data

obtained from simulation and the fit parameters, τJ , N∗ and c are obtained from this fit.

The steady state nucleation rate is related to the nucleation time as,

JMFPT =
1

τJ
. (2.30)

2.3 Results

2.3.1 Free Energy Surfaces

The free energy surface calculated from ∆G(nB , nC) for βHB = βHC = 0.12 is shown in

fig. 2.4. In a two dimensional free energy surface, the transition states between the metastable

droplet and the spontaneous growth of the droplet occur along a boundary line of n∗
B, n∗

C

embryos. However, fig. 2.4 shows that there are two free energy channels leaving the liquid

state, one leading to the formation of B and the other leading to the formation of C. These

channels are the most probable routes for the A → B and A → C transitions. The free

energy barrier at the saddle point along the A → B channel is ∼ 8.0kT at the critical size

of n∗
B = 68 (nC = 5). It should be noted that at every point, both B and C components

are present in a given cluster, but along the channel leaving the metastable state to B, nC

is approximately constant at nC ∼ 5. Similarly, for A → C transition, the critical size is
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n∗
C = 65 (nB = 5). The metastable region used to normalize the free energy is taken as the

region where nB ≤ 68 and nC ≤ 65. It should noted that for equal fields, the embryo size

used to define the metastable region is expected to be equal. However, the values used here

were obtained from a quadratic fits and the difference in ∆G(nB, nC) at this sizes is less than

0.2kBT . Another definition of the metastable region where,

n2
B

n∗
B2

+
n2

C

n∗
C2

− 1 ≤ 0. (2.31)

The difference between ∆G(nB, nC) from these two different definitions is less than ∼ 0.1kBT .

The summary for the free energy surface is contained in Table 2.2. Table 2.2 also contains

data from the free energy surfaces calculated for all the other conditions considered. When

βHC > βHB, the free energy barrier along A → C is lower than that of A → B. There is

also a reduction in the critical size, n∗
C (see Fig. 2.5). When partial mixing is allowed for

the unequal fields, by using JB,C = −0.8, the entire free energy surface becomes lower with

corresponding reductions in ∆G∗
B and ∆G∗

C , as seen in Fig. 2.6. An increase in JB,C allows

for mixing, which has a similar effect as that of lowering the surface tension in the work

of formation. This mixing also causes an increase in the entropy of mixing which causes a

reduction in ∆G. All the free energy surfaces show that there is only one barrier leading to

each of the stable phases. This is consistent with the method used to evaluate the rates to

each of the phases by way of TST.

Conditions βHB βHC n∗
B n∗

C ∆G∗
B ∆G∗

C

1: Equal fields, no mixing 0.12 0.12 68 65 8.095 8.186

2: Unequal fields, no mixing 0.12 0.17 69 47 9.876 8.021

3: Unequal fields, partial mixing 0.12 0.17 58 40 7.944 6.233

Table 2.2: Summary of critical sizes and free energy barriers for different conditions at which the
simulation was performed.

The free energy energy for heterogeneous nucleation calculated by Scheifele et al[81]

showed that for impurity of length l ≥ 3, there is a marked wetting of the impurity by

the stable phase prior to the crossing of the free energy barrier, which is indicated by the

minimum in the free energy plot (cf Figure 3b[81]). This feature is absent from the free energy

surfaces above. To test the absence of wetting phenomena in this model, the probability of
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Figure 2.4: Free energy surface, ∆G(nB , nC) for nucleation of phases B and C from a metastable
phase on an heterogeneity of length l = 7 for the case where βHB = βHC = 0.12. The region below
the red dots indicates the metastable region.
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Figure 2.5: Free energy surface, ∆G(nB , nC) for nucleation of phases B and C from a metastable
phase on an heterogeneity of length l = 7 for case 2 where βHB = 0.12 and βHC = 0.17. The region
below the red dots indicates the metastable region.
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Figure 2.6: Free energy surface, ∆G(nB , nC) for nucleation of phases B and C from a metastable
phase on an heterogeneity of length l = 7 for case 3 where βHB = 0.12 and βHC = 0.17 and JB,C =
−0.8. The region below the red dots indicates the metastable region.
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Figure 2.7: Probabilities of N-sized cluster on the heterogeneity for Potts model with q = 3 and
q = 2 (Ising model). For the case when q = 3, N = nB + nC .

having a given cluster size around the impurity is evaluated. For the different cases studied,

the total size of the cluster is evaluated as N = nB + nC for the Potts model, while N for

a test Ising model is the size of the cluster on the heterogeneity. The probability of having

a given size, P (N), is calculated for N ≤ 100 for a given trajectory. The average of P (N)

is taken for 100 independent trajectories. Fig. 2.7 shows the P (N) for a heterogeneous Ising

model (q = 2) and P (nB + nC) for the different cases where the free energy surfaces were

calculated. A maximum in P(N) represents a local minimum in the free energy. P (N) for

q = 2 shows that there is wetting at N ≈ 18, meaning that the impurity is surrounded by

at least a layer of the stable phase. For the Pott’s model (q = 3), there is partial wetting

for cases 1 and 2 at about N(nB + nC) ≈ 5. The reduction in the degree of wetting results

from the competition between the spins from the different stable phases since they dislike

each other. An increase in the field strength reduces the probability, but does not increase

the size of the wetting cluster or layer, but with βJB,C increased to −0.8, the level of wetting
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increases to N(nB + nC) ≈ 9. This is due to an increase in mixing which allow spins B and

C to sit next to each other on the impurity. It is expected that as JB,C increases, complete

wetting of the heterogeneity will eventually occur.

2.3.2 Transition State Theory

To calculate the rate, JBTST
, as given in eq. 2.8 using the ∆G∗

B obtained, the values of

f+
B and zB are first evaluated. As an example, fig. 2.8 shows a plot of the mean square

fluctuation < ∆n2
B(t) > at βHB = 0.12. The linear fit gives the slope from where f+

B =

11.74 mcs−1 is obtained. f+
B for other conditions and all f+

C ’s are obtained in a similar way.

Fig. 2.9 shows plots of ∆G(nB, nC) close to ∆G∗
B with quadratic fits for different values of nC .

The value of nC is held constant along the free energy channel while ∆G(nB, nC) within 0.2kT

of ∆G∗
B is plotted. The second derivative of the quadratic fit gives ηB = −(δ2G/δn2

B)n=n∗

B

which is used to obtained zB. Another quantity needed to calculate JBTST
from eq. 2.8 is

exp(−∆G(n∗
B , nC)). From the free energy surface, it can be seen that there is no single point

on the free energy surface that represents the critical cluster. Instead there is a saddle point

region that the cluster moves through. For all the ∆G(n∗
B, nC),

exp(−∆G(n∗
B, nC)) = P (n∗

B, nC), (2.32)

where P (n∗
B, nC) is the probability of having critical size n∗

B. At the critical size, n∗
B, the

cluster can pass through any point where ∆G(n∗
B, nC) is very close to the minimum value.

This means that

∑

exp(−∆G(n∗
B, nC)) = P (n∗

B, 1) + P (n∗
B, 2) + P (n∗

B, 3).........P (n∗
B, i), (2.33)

provided ∆G(n∗
B, nC) is within 1.0kT of the minimum values which is regarded as ∆G∗

B

shown in Table 2.2. Table 2.3 shows the summary of kinetic factors, f+
B , f+

C , zB and zC ,
∑

exp(−∆G(n∗
B , nC)),

∑

exp(−∆G(nB , n∗
C)) and the rates for the different transitions.

Conditions f+
B f+

C zB zC

∑

exp(−∆G∗

B)
∑

exp(∆G∗

C) JBT ST
(×10−4) JCTST

(×10−4)
Case 1 11.74 13.60 0.00987 0.00886 1.26 × 10−3 1.18 × 10−3 1.46 ± 0.18 1.43 ± 0.18
Case 2 19.31 18.03 0.00942 0.00803 8.68 × 10−4 4.76 × 10−3 1.57 ± 0.21 6.90 ± 0.24
Case 3 8.96 10.91 0.01078 0.00985 4.21 × 10−3 1.74 × 10−2 4.07 ± 0.24 18.49± 0.20

Table 2.3: Summary of the different factors and free energy barriers used to calculate the rates for
the different conditions.
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Figure 2.8: The fluctuation of size, < ∆n2
B(t) >, for component B as a function of time.
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the curvature of the free energy surface, ηB.
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Fig. 2.10 is a plot of the rates to each of the phases and the overall rates for the three

cases studied. When βHB = βHC , the rates are approximately equal to each other. When

βHC is increased, JCTST
increased significantly while JBTST

remained constant. The increase

in JCTST
corresponds to the decrease in free energy barrier to phase C. When partial mixing

is allowed, both JBTST
and JCTST

increase, but the increase in JCTST
is more than JBTST

. The

overall rate increase steadily from case 1 through case 2 to case 3.
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Figure 2.10: Plots of the rates JBT ST
and JCT ST

compared to the overall rates, JTST , at conditions
defined for the free energy calculations.

2.3.3 Survival Probability

Fig. 2.11 shows plots of lnR(t) versus t, where R(t) is the fraction of unnucleated systems for

the different cases. The plots are linear, confirming a first order process, and the slope equals

−JV . In a bulk, uniform system, the volume term in eq. 2.28 arises because the nucleation

event can occur anywhere with equal probability, thus it accounts for the translational degrees

of freedom of the nucleating embryo. The Potts model used here is a 2-dimensional lattice

model nucleating on an impurity. The external field strength used ensures that there is only
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one cluster in the system containing the impurity. As a result, V = 1 is used and the rate is

reported in units of the number of clusters per unit time. Hence, the slope equals the overall

rate at which the system leaves the metastable phase to the stable phases. Fig. 2.11 also

shows the lnR(t) versus t plot for heterogeneous nucleation of Ising model (q = 2).
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Figure 2.11: Plots of ln R(t) versus MC steps with the slope representing −JV for different cases
listed in Table 3.1 showing the linear fits to the simulation data.

In order to obtain the individual rates, the probabilities of seeing a given phase from an

ensemble of nucleation events are evaluated. PB is the probability of seeing phase B and

it is calculated as the ratio of the number of trajectories ending in B to the total number

of trajectories. Table 2.4 contains PB and PC , the overall rates and the individual rates to

the different phases for the three conditions studied. When βHB = βHC, PB ∼ PC , but PB

is reduced significantly when βHC = 0.17 due to the reduction in ∆G∗
C , allowing most of

the trajectories to end in C. The individual rates are obtained from the overall rate using

eq. 2.27. Fig. 2.12 is a plot of JBSP
and JCSP

, and the overall rates for the three cases studied

using eq. 2.28. The increase in JCSP
corresponds to the decrease in ∆G∗

C due to the increase

in βHC in case 2 and mixing in case 3. The validity of obtaining the JBSP
and JCSP

using
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this method has been shown in the earlier work by Sanders et al [7] who tested their results

with those obtained using the forward-flux sampling method [113].

Conditions PB PC JSP JBSP
JCSP

Case 1 0.482 0.518 0.000277 0.000134 0.000144

Case 2 0.123 0.877 0.000824 0.000101 0.000722

Case 3 0.189 0.811 0.001786 0.000338 0.001448

Table 2.4: The probabilities of seeing different phases, the overall rates obtained from the slopes in
fig. 2.11 and the individual rates for the different conditions.

10
-5

10
-4

10
-3

J S
P(m

cs
-1

)

J
SP

J
B

SP

J
C

SP

1 2 3

Figure 2.12: Plots of the rates JBSP
and JCSP

compared to the overall rates at conditions defined
for the free energy calculations.

2.3.4 Mean First Passage Time

Fig. 2.13 is a plot of mean first passage time as a function of cluster size, τ(N), obtained

from simulations and the corresponding fits to eq. 2.29, for the different conditions which

were studied. For all the cases, τ(N) reaches a good plateau showing that nucleation and
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growth are not coupled together. As can been seen from fig. 2.13, the fits are reasonably

good especially around the inflection point for cases 1 and 2. Table 2.5 is a summary of

the parameters obtained by fitting the simulation data to eq. 2.29, the overall rates and the

rates of formation of the phases. Despite the good fits around the inflection point, the fit

parameter N∗ cannot be described as the critical size. This is based on the fact that τ(N)

follows the combination of N = nB + nC , and sometimes nB + nC = N∗ is not necessarily

on the transition path, thereby giving N∗ the probability of transition less than 50% . Most

importantly, N∗ contains no information on the contribution from each of the two phases,

as such, N∗ does not indicate which phase it would likely form without visual inspection of

the configuration. Similarly, c from the fit may not be a true measure of the curvature at

the top of the nucleation barrier since the MFPT is not restricted to a particular transition.

Despite these short comings of fitting eq. 2.29 into the simulation data, the nucleation times,

τJ , obtained from the fit is equivalent to the value of the MFPT along the plateau region.

From the value of τJ and using eq. 2.30, the overall rate of nucleation is obtained.
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Figure 2.13: MFPT from simulations for the different cases studied.
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Conditions τJ N∗ c JMFPT JBMF PT
JCMF PT

Case 1 4150.23 91.88 0.0177 0.000241 0.000116 0.000125

Case 2 1680.11 80.81 0.0161 0.0005952 0.000073 0.000523

Case 3 796.81 87.72 0.0115 0.001255 0.000237 0.001018

Case 4 712.74 105.55 0.0103 0.00140 - -

Table 2.5: Fit parameters from fitting eq. 2.3.4, the overall nucleation rates and the individual rates
for the different conditions using the MFPT method.

2.4 Discussions

For the different methods used to calculate the rates of nucleation, JB remains almost un-

changed as βHC is increased from 0.12 to 0.17, but JC has increased significantly. With the

mixing parameter increased to −0.80, both JB and JC increase as a result of the lower free

energy barrier to phases B and C. In all the cases studied, JB and JC are lower than J

obtained for heterogeneous Ising model (q = 2) with the same conditions. This is due to

two possible factors. The phase space of the metastable state becomes larger and therefore it

takes a longer time to sample when there are two or more phases involved. Another possibility

is the competition between the phases. Since the spins dislike each other and therefore don’t

like sitting next to each other, the competition to occupy sites on the heterogeneity delays

the nucleation of any of the phases. This competition also reduces the degree of wetting of

the impurity. As the ability of the phases to mix increases, more wetting occurs, causing a

reduction in the free energy barrier, hence a faster rate.

Fig. 2.14 provides a complete summary of the overall rate of leaving the metastable

state, obtained using the three different methods, for all the conditions studied. Fig. 2.14

also contains the rate, J0
TST , which is obtained using the transition state theory, but the

∆G∗
B and ∆G∗

C in eqs. 2.8 and 2.9 are not re-normalized. The rates are highest when 20%

mixing is allowed. This is consistent with the reduced free energy barriers to phases B and

C. The rate is lowest when βHB = βHC, which corresponds to equal free energy barriers.

When the fields are unequal, without mixing, the increase in the overall rate is a result of

the lowering of ∆G∗
C .

Comparing the overall rates of nucleation, JTST are within the errors of JSP for all the

46



10
-4

10
-3

10
-2

J(
m

cs
-1

)

1 2 3

J
SP

J
MFPT

J
TST

J
0

TST

Figure 2.14: Comparison of the rates of exiting the metastable phase, JTST , JSP , JMFPT for different
conditions.

cases studied. JMFPT underestimate both JTST and JSP though they are within error of

each other. J0
TST overestimate JSP and JMFPT as shown in fig. 2.14. The result using

the TST reproduces those obtained from the other two methods within reasonable error,

which seems to confirm the initial findings of Scheifele[81], who showed that re-normalizing

the free energy surface with the probability of the metastable state gives a more accurate

rate using the transition state theory. Though shown earlier for heterogeneous nucleation of

single component[81], the need to re-normalize the free energy surface with the metastable

state as a reference can be applicable to competitive nucleation. Though the components

do not like sitting next each other, there is no evidence of a formation of a homogeneous

cluster elsewhere; all the clusters contain the impurity. Aside from the size of the system,

which allows for only one cluster containing the heterogeneity, the interaction between the

heterogeneity ensures that phases always form on the heterogeneity which is consistent with

the observations of Sears et al[85], where the phase with high interactions with the impurity
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nucleates on it. All these ensure that the transition is from the metastable phase to a stable

phase containing the heterogeneity.

Scheifele et al[81] showed that the three methods they used to calculate the rates gave the

same result for heterogeneous nucleation in the low barrier regime in the Ising model. Two

of the three methods used here are the same with those of Scheifele et al[81], and JTST is

able to reproduce JSP when the saddle point approximation is applied. In the Potts model,

the free energy surface is three dimensional with the nucleating cluster being described by

two variables, unlike the case of the Ising model. This means that there is no longer a

single point on the free energy surface that represents the critical cluster. Instead there is a

saddle point region that the cluster moves through. As a result, it is necessary to account

for transitions moving through the transition region near the saddle point where ∆G(n∗
B, nC)

is within 1.0kT of ∆G∗
B. As the free energy barrier becomes lower, these transition regions

widens, more points fall within 1.0kT thereby increasing
∑

exp(−∆G(n∗
B , nC)), hence a more

accurate JTST in case 3.

The critical size obtained from the fit to the MFPT does not define the transition state as

it has no information on which phase it is going to. Also, parameter c is not a representation

of the curvature and therefore cannot be used to estimate the Zeldovich factor. These two

are important kinetic parameters and given the type of model used here, a Fokker-Planck

equation[114] as a function of two parameters should be solved. This, I suggest will give a

MFPT, τ(nB, nC) where n∗
B and n∗

C can be obtained directly as fit parameters.

2.5 Conclusions

This chapter examines the competitive nucleation between different phases forming on a

nanoscale heterogeneity. The free energy surfaces for nucleation at different external field

strength and different interaction parameters are calculated using Monte Carlo simulations.

The free energy barriers are used to calculate the overall rates of nucleation and the rates to

each of the phases using three different methods. The results show that normalizing the free

energy surfaces with respect to the metastable state is important in obtaining accurate rates

from TST method, and these rates compare to the rates obtained from other methods. Unlike

a single component nucleating on the heterogeneity, the competition between the different

components increases the nucleation time, leading to lower rates of nucleation. The rate is

48



lowest when the two phases have equal external field strength. When the field strength of

one phase increases, the overall rate increases due to the lowering of the free energy barrier to

that phase. The rate increases when the interaction parameter increases, due to the reduction

of the free energy barrier caused by an increase in the entropy of mixing.
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Chapter 3

Reaction Coordinates for Competitive Phase Tran-

sition

3.1 Introduction

A reaction coordinate is a single variable, or combination of variables that describes the

progression of a process from its initial state to its final state. In CNT, the cluster size is

usually used to describe the reaction progress, with the critical size describing the transition

state from metastable to stable phase. However, despite the fact that the cluster criteria

used to identify the growing embryo contains information regarding cluster structure, there

is growing evidence to suggest that a more explicit description of the reaction coordinate

may provide useful information about the mechanisms of nucleation.

For example, recent studies have used transition path sampling to show that the surface

area of an embryo can be an important variable describing the transition state[11, 12, 17].

These suggest that both small compact embryos and large diffuse embryo can be critical.

The primary approach for these studies is to test different order parameters or their com-

bination as the best reaction coordinate using the maximum likelihood[12, 18] or genetic

neural network analyses [19]. These studies only considered systems where a metastable

phase undergoes a transition to a single stable phase. However, molecular dynamic simula-

tions of freezing in nanoparticles show that under the same conditions, clusters will freeze

to different structures[1, 2, 3]. Also, the generalized Potts model[83, 84] has been used to

model systems that can have two or more product phases[7]. These suggest that different

order parameters are responsible for the different structures, hence, each of the products has

a unique reaction coordinate.

In this chapter, the aimless shooting method of transition path sampling is extended to

the study of competitive nucleation, where multiple transitions may occur. The multiple
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path maximum likelihood expression is developed in order to maximize the probabilities of a

configuration being on a certain transition path. The developed multiple path maximum like-

lihood analysis (MPMLA) is applied to the Potts model undergoing heterogeneous nucleation

which was studied in Chapter 2.

3.2 Theoretical Overview

3.2.1 Transition Path Sampling

In order to study the dynamics of freezing in nanoparticles without any bias towards a

particular reaction coordinate, numerous trajectories are required. These trajectories must

be obtained with no previous knowledge or reference to a particular reaction coordinate.

Nucleation is a rare event, as such, obtaining these trajectories is ordinarily a difficult task.

To overcome this difficulty, transition path sampling (TPS) [115, 94, 87] is used to sample

only the reactive trajectories. The trajectories are said to be reactive when they connect the

initial and the final states together, i.e when the forward trajectory ends in the product and

backward trajectory ends in the reactant or vice versa. For a system with a single initial state

(reactant A) and a single product, B, the transition path ensemble (TPE) is the weighted

set of all the reactive trajectories [94]. Mathematically, the TPE can be given as [93]

PAB[x(L)] ≡ Z−1
ABhA(x0)P [x(L)]hB(xL) (3.1)

where ZAB is a normalization factor, while hA and hB are signature functions defining the

states A and B, such that their values are unity if the configuration x is within the reactant

or product regions, and zero otherwise. P [x(L)] is the dynamical path probability for a

path x(L) = {x0,x∆t, ....,xL∆t}, L is the integer number of points where the configuration

is harvested. The major advantage of TPS is that it does not require a priori information

on the mechanism [116]. It also increases sampling efficiency by focusing mainly on the rare

but reactive trajectories [12].

3.2.2 Multiple States Transition Path Sampling

The TPS as explained in the previous subsection is very efficient when used for processes with

only two distinct stable states[12, 18, 19]. However, many systems are of a complex nature.
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For example, a single reactant may give two or more products. Fig. 3.1a shows a process where

two products evolve directly from a single initial state. There may also be an interconversion

between the products as shown in fig. 3.1b. For these types of systems, the simple TPS will

not be efficient. To study such processes, the multiple state TPS (MSTPS)[21, 117] is used,

where the transition path ensemble is define as a weighted set of all trajectories connecting

any two stable states,

PMSTPS[x(L)] ≡
∑

i,j 6=i

Z−1
∏

k

h̄k[x(L)]hi(x0)P [x(L)]hj(xL). (3.2)

Here, Z is the normalization factor

Z ≡
∫

Dx(L)P [x(L)]
∏

k

h̄k[x(L)]
∑

i,j 6=i

hi(x0)hj(xL), (3.3)

where h̄k[x(L)] is ensures that only the start and end of the path are in the stable basins.

The notation,

∫

Dx(L) ≡
∫

...

∫

dx0dx∆tdx2∆t...dxL∆t (3.4)

implies an integration over all time slices L∆t. The different h functions define the stable

state regions, which ensures that only the end points enter as stable state. h is expressed as

hi(x) =











1, if x ∈ i

0, otherwise.

A 

B 

C 

A 

B 

C 

Figure 3.1: Schematic diagram showing possible transitions. (a) Transition only from the metastable
phase to the phases B and C. (b) Possible transition between phases B and C in addition to A → B
and A → C transitions.
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The full transition path ensemble, which is given as,

TPE =
∑

i,j 6=i

hi[x
n
−t/2]hj [x

n
t/2] + hi[x

n
t/2]hj [x

n
−t/2], (3.5)

consists of all the configuration that have been accepted as being on a transition path.

3.2.3 Multiple Paths Maximum Likelihood Analysis

In a two state transition, (A → x), the exact reaction coordinate is the committor probability

(pB(B))[19, 118], also referred to as the committor. The committor probability is the fraction

of trajectories committing to the final product (B) from a given configuration (x) initiated

with Boltzmann distributed velocities[119, 115]. An alternative and computationally less

expensive way of obtaining the reaction coordinate is through the transition path probability,

p(TP |x)[12, 120]. This is the probability that trajectories from x lie on the transition path

A → B. Hummer[120] showed that for a diffusive barrier crossing, as found in nucleation

processes,

p(TP |x) = 2pB(x)(1 − pB(x)) (3.6)

such that at pB(x) = 0.5, p(TP |x) is maximum.

For a transition to two different products (3.1a) with or without the possibility of in-

terconversion among the products, there are more than one reaction path. The transition

paths are independent and trajectories initiated from configuration x can lie on any of the

transition paths. Considering a general case of m phases, the transition path probabilities

obey the additive law
m

∑

i,j

pij(TP |x) = 1. (3.7)

Here pij(TP |x) = pi(x̄)pj(x)+pj(x̄)pi(x), pi(x) is the probability that the forward trajectories

commits to i and pi(x̄) is the probability that backward trajectory commits to i. The

summation eq. 3.7 in all pii(TP |x) signifying configurations not on any transition path. For

the scenario in fig 3.1a,

pAB(TP |x) = 2pB(x)(1 − pB(x) − pC(x)) (3.8)

pAC(TP |x) = 2pB(x)(1 − pB(x) − pC(x)) (3.9)

where the relation, pA(x) = 1 − pB(x) − pC(x) has been used. Fig. 3.2 shows the transition

path probabilities from eqs. 3.8 and 3.9 for an arbitrary reaction coordinate r(x). The
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committor probabilities, pB and pC , are obtained from model functions that have the ideal

characteristics as shown in the inset. For a good reaction coordinate r(x), the function

p(TP |r) has a peak at r∗ indicating the transition state, r(x) = r∗[120]. To obtain a good

reaction coordinate from these transition path probabilities, the maximum likelihood analysis

is applied to these probabilities.
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Figure 3.2: Plot of transition path probabilities as a function the reaction coordinate, r.

To perform the likelihood maximization, a model, p(TP |r), that fits the simulation re-

alization of the transition path probabilities obtained from the transition path ensemble

is required. This function must have a maximum at the transition state with both sides

decaying to zero. A model function commonly used[120, 12, 18] is

p(TP |r) = p0(1 − tanh[r2]). (3.10)

where p0 is an adjustable parameter, and r(q) is the reaction coordinate, which depends

on some order parameters q = q1, q2, ....., qn. The reaction coordinate can be modelled as a

linear combination of the order parameters

r(q) =
n

∑

k=1

α1qk − α0 (3.11)
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where the coefficients α0, α1, ...., αn, are free parameters. The likelihood expression,

Lij =

TP
∏

k

pij(TP |qk))

non−TP
∏

k

(1 − pij(TP |r(qk))), (3.12)

is then maximized to obtain the maximum estimate in addition to the parameters p0, α0, α1, ..., αn.

In order to ease the process of maximization, the log of the likelihood expression is used[121],

lnLij =

TP
∑

i

lnpij(TP |qk)) +

non−TP
∑

k

ln(1 − pij(TP |r(qk))). (3.13)

The first sum in eq. 3.13 is over all the trajectories on the i → j transition path while the

second sum is over all the trajectories that are not on that transition path, though it may

belong to another transition path. For each of the different transitions, the order parameter

or their combinations which gives the highest value in the log likelihood estimate is the desired

reaction coordinate. The search for the best overall reaction coordinate begins with testing

all single order parameters. The order parameter with the highest likelihood estimate is the

best reaction coordinate. The best single order parameter is then compared to the reaction

coordinates formed by combining pairs of order parameters, which are in turn compared

to the reaction coordinates formed by combining triplets of order parameters, etc. When

adding a second or third order parameter, the likelihood will always increase, but a new

parameter is only significant to the reaction coordinate if the increase in the likelihood is

equal or greater than the Bayesian information criterion, BIC = (1/2)lnNR, where NR is

the size of the transition path ensemble. Otherwise, the previous reaction coordinate with

highest log likelihood is regarded as the desired reaction coordinate.

3.3 Simulation Details

3.3.1 Aimless Shooting

In order to test this approach on a system that nucleates to multiple products, the generalized

Potts model [83, 84] nucleating on a heterogeneity, which was studied in Chapter 2, is used.

To harvest the transition path ensemble (TPE), an initial transition path is required. For

the Potts model studied in the previous chapter, the free energy surfaces clearly show the

different initial paths. The initial shooting points should lie along the channels on the A → B

and A → C transition paths. 200 initial shooting points were chosen very close to the critical
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sizes along the two transition paths as shown in fig. 3.3. A small time interval, ∆t, is

chosen as the interval in MC steps, between candidate points for the shooting. The chosen

configuration is propagated forward and backward until a stable basin (A, B or C) is reached.

The trajectory is said to be reactive if the forward and the backward moves end in different

stable basins and non-reactive otherwise. All reactive trajectories are accepted as part of the

TPE and non-reactive trajectories are rejected. If the trajectory is accepted, a new shooting

point is a chosen along it from x−∆t, x0, x+∆t with equal probability of 1/3, where x0 is

the configuration of an old shooting point of a trajectory. If the trajectory is non-reactive,

x0 is used again as the shooting point and the process is repeated. Each shooting point is

saved along with the identity of the stable phases where the trajectories ended. After every

20 shooting points, the acceptance ratio is evaluated. If the the acceptance ratio is less than

40%, ∆t is reduced by 1. Similarly, the the acceptance ratio is greater than 75%, ∆t is

increased by 1. This check ensures that the acceptance ratio is kept between 40% − 75% as

small ∆t keeps a new shooting point closer to the previously reactive point. We choose our

initial ∆t as 5 MC steps.
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Figure 3.3: Free energy surface, ∆G(nB , nC), for nucleation of phases B and C showing the initial
shooting points for the aimless shooting.

The aimless shooting algorithm like most TPS schemes does not require a priori knowledge
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of the reaction coordinate. However, it is necessary to have a function that identifies when

the trajectory has reached one of the end states. The characteristic functions hA(q), hB(q)

and hC(q) for the identification of the metastable state (A), and the two products B and C

are given by,

hA(q) =











1, nB ≤ 30 and nC ≤ 30

0, otherwise

hB(q) =











1, nB ≥ 120 and nC ≤ 50

0, otherwise

hC(q) =











1, nB ≤ 50 and nC ≥ 120

0, otherwise

Here, q = (σ1, σ2, ...., σi, ....) denotes a given a configuration of the lattice, nB and nC are the

B and C components of the largest cluster. The values of nB and nC are chosen such that

they are far away from the stable regions. This ensures that once the trajectory gets into the

product region, it does not go back into the reactant region. For each initial shooting point,

300 other shooting points are generated. Each shooting point is accepted into a particular

transition ensemble depending on where its forward and backward trajectories end. The

transitions paths are A → B, A → C, and B → C transitions, resulting in three sets of

transition path ensembles. The aimless shooting was performed for the three different cases

studied in Chapter 2 viz;

• Equal field strength

• Unequal fields without mixing

• Unequal fields with 20% mixing.

3.4 Results and Discussions

The committor probabilities calculated from the shooting points as a function of nB when

HB = HC are shown in fig. 3.4. The committor, pB(nB), increases with nB, while pA(nB) and

pC(nB) decrease with increase in nB. At nB < 26, pC(nB) is higher than pA(nB), and pA(nB)

seems to increase between nB = 26 and nB = 32 before decreasing. The stable phase on the
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impurity at any given time contains both components B and C. The committor probability

above is calculated using only one component, whereas at nB < 26 we have configurations

with nC >> nB. This means that such configurations commit to phase C more than phases

A and B. As nB increases, configurations with nC >> nB reduces in number, making pA(nB)

higher than pC(nB) and also causing pA(nB) and pC(nB) to decrease with increase in nB.

This behavior also explains why it is not possible to obtain an accurate reaction coordinate

using the committor probability for a competitive process. For the committor probability to

describe the reaction coordinate, it should increase monotonously, having a minimum value in

the reactant and having a maximum value of one in the product. In the case of the present

system, the maximum likelihood analysis is performed by maximizing the transition path

probabilities.

0 50 100 150 200
nB

0

0.2

0.4

0.6

0.8

1

P i(n
B

)

P
A
(nB)

P
B
(nB)

P
C
(nB)

Figure 3.4: The committor probabilities, pA(nB), pB(nB) and pC(nB) as a function of the size of
component B at equal fields(i.e HB = HC = 0.12).

When the fields, HB, HC, are unequal, the behaviors of pA, pB, and pC remain similar to

those in the case of equal fields. The major difference is that pB(nB) does not reach the

value of 1.0. Also, pC(nB) does not decay to zero as nB increases as shown in fig. 3.5, while

pB(nC) approaches zero at larger as nC increases. This can be understood as follows: As the

free energy barrier to phase C is reduced, the probability of configurations along the A → B
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path committing to phase C increases, thereby reducing the probability of them ending in

phase B.
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Figure 3.5: The committor probabilities, pA(nB),pB(nB) and pC(nB) unequal fields(i.e HB =
0.12, HC = 0.17).

Fig. 3.6 shows pB(nB) and pC(nC) when 20% mixing is allowed between components

B and C. It shows that both pB(nB) and pC(nC) do not reach 1.0 even at points very close

to the basin of attraction defining phases B and C. When mixing is allowed, the overall

free energy surface is reduced, but the phases B and C are not the basins with the lowest

∆G(nB, nC). Some configurations will prefer to go the region with the lowest free energy as

shown in fig. 3.7. This reduces the chances of configurations ending in B and C.
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Figure 3.6: The committor probabilities, pB(nB) and pC(nC) unequal fields(i.e HB = 0.12, HC =
0.17) and JB,C = −0.8.
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Figure 3.7: Free energy surface, ∆G(nB, nC), for nucleation of phases B and C when mixing is
allowed, showing the initial shooting points deviating away from basins B and C .
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The transition path probability, which is the probability of a given configuration being on a

given transition path is calculated as a function of different order parameters. Fig. 3.8 shows

plots of the transition path probabilities, pij(TP |q), for the three different cases studied.

Fig. 3.8(a) shows the pij(TP |q) when the fields are equal. The peaks indicate the highest

probabilities of being on the transition path. The pAB(TP |nB) and pAC(TP |nC) are equal,

and are an order of magnitude larger that pBC(TP |nB). This shows that A → B and A → C

are the major transitions with a small percentage of B → C interconversion. When HC

increased (fig. 3.8(b)), pAC(TP |nC) increased more than pAB(TP |nB) while the peaks shift

to a smaller value of nC . When mixing is allowed, both pAB(TP |nB) and pAC(TP |nC) are

reduced in values. The mixing causes a general reduction in ∆G(nB, nC), which also create a

region with ∆G(nB, nC) lower than that of phase B or C. During the aimless shooting, most

configurations move towards the region with lowest ∆G(nB, nC), causing them to move away

from the A → B and A → C transition paths as shown in fig. 3.7. Fig. 3.8(c) shows a further

increase in pAC(TP |nC) and a significant shift in the position of its peak relative to the peak

in pAB(TP |nB). It also shows a significant increase in pBC(TP |nB) and a change in its shape.

As nB increases, the probability of the configuration being on the B → C transition path

increases.

The accurate reaction coordinate for each of the transition is obtained by subjecting the

TPE along each of the transition paths to the maximum likelihood analysis. To reduce the

order parameters to the same length scale for an effective comparison, the order parameters

are redefined as

qnB
=

√
nB (3.14)

and

qsB
= SB/4, (3.15)

where SB is the surface area of phase B. Another order parameter tested is the mole fraction

of component B in the largest cluster. It is defined as,

χnB
=

nB

nB + nC
. (3.16)

Table 3.1 shows the different order parameters tested, their likelihood estimates (LEαmax),

r and r∗ for the A → B transition when the fields are equal. For the A → B transition,

the linear combination of qnB
and qsB

is the best reaction coordinate based on the value of
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Figure 3.8: Free energy surface, ∆G(nB , nC) for nucleation of phases B and C from a metastable
phase on an heterogeneity of length l = 7.
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LEαmax. Table 3.2 contains same information for the A → C transition. Similarly, the linear

combination of qnC
and qsC

is the best reaction coordinate for A → C transition. Peters et

al. [12] showed that a combination of embryo size with its surface area is the best reaction

coordinate for homogeneous nucleation in Ising model. Also, Pan and Chandler[11] analyzed

the transition state ensemble for homogeneous nucleation using the Ising model, and observed

that though size was the best reaction coordinate, other order parameters were still important.

Both studies showed that the critical nucleus is rough and anisotropic [11, 12]. The ratio qS

qN

can provide some insight to the shape of the embryo in lattice models[12]. If the nuclei is a

perfect square, qS

qN
= 1, while qS

qN
= 2/

√
π (≈ 1.13) for a rounded 2-dimensional lattice nuclei.

Fig. 3.9 shows the shooting points from the A → B transition path projected onto the order

parameters qnB
and qsB

. The green line is the least squares fit, qsB
= 1.50qnB

, which indicates

that the nuclei adopt the rectangular shape of the impurity which has qS

qN
= 1.51. The red

line shows the critical condition, q∗sB
= 13.82

√
nB − 102.04. It shows that the surface, SB

is dependent on the size such that small critical nuclei are compact with small surface areas

unlike the small fractal nuclei observed by Peters et al [12]. Large nuclei have large surface

area, while small nuclei have small surface area.

Order Parameters r LEαmax r = 0 surface (r∗)

qnB
0.5399qnB

− 4.369 -24977.1 n∗
B = 64.85

qnC
0.3296qnC

− 0.7527 -26193.7 n∗
C = 5.24

qsB
0.2667qsB

− 2.763 -27143.3 S∗
B = 41.5

qsC
0.2405qsC

− 0.4604 -26740.2 S∗
C = 7.68

qnB
, qsB

0.6014qnB
− 0.0435qsB

− 4.439 -23940.2 S∗
B = 55.26

√
nB − 407.83

χnB
3.54519χnB − 2.81708 -25656.5 χ∗

nB
= 0.796

Table 3.1: Different order parameters tested for A → B transitions in the Potts model with equal
fields. BIC = (1/2)lnNR = 4.36 .

For the case where the fields are unequal, the linear combination of qnB
and qsB

is the best

reaction coordinate for A → B transition, while the linear of qnC
and qsC

is the best reaction

coordinate for A → C for the nucleation of phase C, as can be seen in Tables 3.3 and 3.4.

Allowing for mixing between the different components seems to change the dynamics of the
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Order Parameters r LEαmax r = 0 surface

qnB
0.3442qnB

− 0.8718 -24460.3 n∗
B = 6.42

qnC
0.5258qnC

− 4.224 -23427.0 n∗
C = 64.54

qsB
0.2471qsB

− 0.5336 -25017.8 S∗
B = 8.65

qsC
0.2648qsC

− 2.7218 -25362.1 S∗
C = 41.15

qnC
, qsC

0.5784qnC
− 0.0382qsC

− 4.279 -23401.2 S∗
B = 60.56

√
nC − 448.06

χnC
3.6589χnB − 2.8178 -23822.8 χ∗

nC
= 0.7701

Table 3.2: Different order parameters tested for A → C transitions in the Potts model. BIC =
(1/2)lnNR = 4.65 .
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Figure 3.9: Shooting points showing the collective variables (qsB
, qnB

) for the A → B TPE. The red
line shows the critical condition, while the green line is a least squares fit , qsB

= 1.50qnB
.
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transformations because it leads to the introduction of a new stable state at large nB and

nC , that renders phases B and C metastable. The maximum likelihood analysis shows that

the linear combination of qnC
and qSC

is the best reaction coordinate for A → B transition

as shown in Table 3.5. This seems counter intuitive. However, increasing the interaction

parameter, JBC , allows the components to mix with relative ease. Also, HC is higher than

HC which means C has lower free energy barrier. Therefore, making phase C more probable

to nucleate. Hence, to increase the probability of forming phase B, component C must be

removed. Hence qnC
becomes an important order parameter for the A → B transition. This

is an example of the order parameter working in a negative sense, i.e, where the removal of

the particular type of structure, characterized by the order parameter, allows the transition to

occur. Table 3.6 contains the maximum likelihood results for A → C transition when mixing

is allowed. It shows that the overall size, N = nB +nC , is the best reaction coordinate for the

transition. With mixing allowed, the entire free energy surface becomes a transition path for

the A → C transition. Any chosen configuration has a higher probability of going to phase

C than B.

Order Parameters r LEαmax r = 0 surface

qnB
0.6068qnB

− 4.9307 -15356.1 n∗
B = 66.02

qnC
0.4361qnC

− 1.0486 -16323 n∗
C = 5.78

qsB
0.2985qsB

− 3.108 -17074 S∗
B = 41.65

qsC
0.3145qsC

− 0.5377 -17013 S∗
C = 6.84

qnB
, qsB

0.7282qnB
− 0.0847qsB

− 5.0877 -15272 S∗
B = 34.39

√
nB − 240.26

χnB
4.2022χnB − 3.5698 -15941.5 χ∗

nB
= 0.849

Table 3.3: Different order parameters tested for A → B transitions in the Potts model with unequal
fields. BIC = (1/2)lnNR = 4.36 .
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Order Parameters r LEαmax r = 0 surface

qnB
0.2863qnB

− 0.8557 -31443 n∗
B = 8.93

qnC
0.4957qnC

− 3.5411 -31038 n∗
C = 51.0

qsB
0.2055qsB

− 0.5652 -31871.8 S∗
B = 11.0

qsC
0.2419qsC

− 2.2031 -32789 S∗
C = 36.43

qnC
, qsC

0.5779qnC
− 0.0574qsC

− 3.638 -30979.2 S∗
B = 40.27

√
nC − 253.52

χnC
2.8811χnB − 0.5205 -31733.2 χ∗

nC
= 0.18

Table 3.4: Different order parameters tested for A → C transitions in the Potts model with unequal
fields. BIC = (1/2)lnNR = 4.65 .

Order Parameters r LEαmax r = 0 surface

qnB
0.6116qnB

− 4.6099 -17453.0 n∗
B = 56.8

qnC
0.4302qnC

− 1.1771 -16349.9 n∗
C = 7.5

qsB
0.3048qsB

− 2.7514 -19163.8 S∗
B = 36.1

qsC
0.2780qsC

− 0.5315 -17155.4 S∗
C = 7.64

qN 0.5367qN − 4.6082 -19461.6 N∗ = 73.71

qS 0.1928qS − 2.2245 -19922.6 S∗ = 46.13

qnB
, qsB

0.6894qnB
− 0.0596qsB

− 4.6776 -17415.6 S∗
B = 46.26

√
nB − 313.88

qnC
, qsC

0.4789qnC
− 0.0377qsC

− 1.2073 -16340.5 S∗
C = 50.79

√
nC − 128.02

Table 3.5: Different order parameters tested for A → B transitions in the Potts model with HC =
0.17, HB = 0.12 and 20% mixing. BIC = (1/2)lnNR = 4.36 .
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Order Parameters r LEαmax r = 0 surface

qnB
0.2789qnB

− 0.8361 -34789.1 n∗
B = 8.98

qnC
0.4959qnC

− 3.2706 -35879.3 n∗
C = 43.49

qsB
0.1919qsB

− 0.4443 -35516.5 S∗
B = 9.26

qsC
0.2298qsC

− 1.7489 -38169.2 S∗
C = 30.59

qN 0.5949qN − 4.7879 -33075.2 N∗ = 64.77

qS 0.1847qS − 1.8565 -35421.3 S∗ = 40.18

qnB
, qsB

0.2951qnB
− 0.0129qsB

− 0.8478 -34786.7 S∗
B = 91.51

√
nB − 262.85

qnC
, qsC

0.5808qnC
− 0.0584qsC

− 3.3835 -35793.6 S∗
C = 39.81

√
nC − 231.84

Table 3.6: Different order parameters tested for A → C transitions in the Potts model with HC =
0.17, HB = 0.12 and 20% mixing. BIC = (1/2)lnNR = 4.36 .

For all the three cases studied, there is always a B → C interconversion. For all the

B → C transitions, the mole fraction, χnC , is the best reaction coordinate. Although size

is not the best reaction coordinate for these transitions, the critical sizes obtained from the

multiple paths maximum likelihood analyses are comparable to those obtained from the free

energy surfaces in Chapter 2 (see fig. 3.10). This suggests that the method of decoupling the

transition path is rigorous and accurate, provided the order parameters are unique to each

phase.

The accuracy of the obtained reaction coordinates can be verified through the commit-

tor distribution. To do this, MC simulations of configurations belonging to the transition

state as identified by the reaction coordinate are made and the probability of it ending in

a given phase is evaluated. Fig. 3.11 shows the committor histogram for (a) r(qnC
) and (b)

r(qnC
, qsC

) for the A → C transition. To produce the histogram in fig. 3.11(a), a set of

120 configurations restricted to q∗nC
= 8.033 (n∗

C = 64.54) are selected from the TPE. For

each of the configurations, 100 trajectories are propagated till a stable phase defined by the

characteristic functions is reached. pC is calculated as the ratio of trajectories which ended

in phases C. For fig. 3.11(b), 110 configurations lying on the line q∗sC
= 15.14

√
nC − 112.02

are selected and shows that the committor distribution has a peak at pC ≈ 0.5, indicating

that a configuration in the TSE has equal chance of forming C or shrinking. This shows that
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r(nB, SB) is an accurate estimate of the reaction coordinate for the A → B transition, while

r(nC , SC) is the best reaction coordinate for the A → C transition.

3.5 Conclusions

In this chapter, the maximum likelihood method has been extended to obtain reaction co-

ordinate for multiple products transitions. Multiple states transition path sampling is used

to harvest reactive trajectories along the different transition paths. Defining the likelihood

model for different reaction paths, the best reaction coordinate for the different transitions

are obtained. The results show that decoupling the different transition paths is rigorous

and accurate to obtained the best reaction coordinates. Also, it is important that the order

parameters tested are unique properties of each of the competing phases. The values of these

order parameters in relationship to others can be used to follow the progress of the phases

during a competitive process. The shape of the nuclei is highly correlated to the shape of

the heterogeneity, which can be explored in crystal seeding and other fabrication processes.
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Figure 3.11: A committor probability distributions for two reaction coordinates obtained from the
maximum likelihood analysis.
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Chapter 4

Competitive Rates of Freezing in Gold Nanoclusters

4.1 Introduction

It is well known that small atomic clusters form a variety of novel structure types, including

non-crystalline solids such as icosahedra (Ih) and decahedra (Dh). The relative stability of

the structures is determined by the competition between surface and volume effects. An

icosahedron is generally more stable at small sizes due to its low surface energy, but as the

cluster size grows, the decahedron becomes more stable because it reduces the degree of

internal stress. Experimental [122] and simulation [123, 124] studies of gold clusters both

suggest that the thermodynamic crossover from Ih → Dh occurs at cluster sizes N < 100

and the Dh → FCC transition sets in at N ≈ 400−500, but the Ih structure is still observed

to be the dominant structure formed in clusters containing a few thousand atoms [1]. Chusak

and Bartell [1] observed that gold clusters of size, N ∼ 450, freezing from the same conditions,

led to the formation of various motifs such as Ih, Dh and FCC, with Ih being the most

prevalent. This study suggests that freezing in nanoclusters is a competitive process where a

single droplet may freeze to one of a number of different structures. Therefore, it is expected

that there is a distribution of different cluster types which appear with a given probability

that is determined by the relative heights of the nucleation barriers for each structure. The

goal of this chapter is to study the competitive nature of the nucleation in freezing gold

nanoclusters and to understand the factors that influence the probabilities of observing the

different structures. To achieve this, ensembles of nucleation events are studied in order to

find the nucleation probabilities of the clusters over a range of cluster sizes and temperatures.

These are then related to both the nucleation rates and the difference in free energy barriers

for the various processes.
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4.2 Simulation Methods

4.2.1 Simulation Details

Gold clusters with sizes ranging between 309 and 923 are studied. These include three

clusters with magic numbers for Mackay icosahedra (309, 561, 923), two clusters of perfect

Marks decahedra (389, 686) and four clusters with sizes, N = 459, 500, 600, 800. The particles

within the clusters interact with each other through the embedded atom method (EAM)

interaction potential[125] within a canonical ensemble (NVT). The EAM potential is built

on the insight gained through density functional theory (DFT) which uses the local electron

density to deduce the energy of the system. It is based on the assumption that the total

electron density of a metal is approximated by a linear superposition of the density from

individual atoms. The electronic density in the vicinity of each atom is expressed as the sum

of the density contributed by the atom plus a constant background density. The total energy

of an atom is given as:

Ei = Fi(ρi) + 1/2

Nnb(i)
∑

j(i6=j)

Vi,j(rij). (4.1)

Here Vij(rij) = 1
4πǫ0

Za
i (rij)Z

a
j (rij)/rij is the pair potential between atom i and its neighbor

j, and rij is the inter-atomic distance for atomic pair. The local electron density, ρ, for atom

i is given as

ρi =
∑

j(6=j)

ρa
j (rij). (4.2)

The values of the parameters used in the calculation of electron density, ρa
j (rij), the pair

potential, Vij and the embedded atomic potential functional Fi(ρi) are obtained by fitting

experimental data to information such as lattice parameters, elastic constants, cohesive en-

ergies, vacancy formation energy etc. The EAM shows a better overall agreemeent to exper-

imental surface energies, and shows a more practical finite temperature and finite FCC and

HCP lattice energy [126] difference over potentials such as Foiles et al [125], Johnson [127]

and the glue potential[128]. The simulations are carried out in the NV T ensemble in a cubic

simulation cell with volume V = 1 × 106 Å3 and periodic boundaries. The equations of

motion are integrated using the velocity Verlet algorithm with a time step, ∆t = 2.8 fs and

the Noose-Hoover thermostat [129, 130] is used to maintain a constant temperature, T .
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For each of the cluster sizes considered, an approximate spherical structure with FCC

lattice is constructed. Each cluster is heated from 300 K to 1500 K in increments of 50 K.

At each temperature the cluster is equilibrated for 2.5 × 105 time steps. The choice of the

final temperature ensures the complete melting of the nanocluster. The final configuration is

further equilibrated for 2.5×105 time steps at 1000 K to generate 500 different configurations

each saved after every 140 ps. This ensemble of 500 configurations serves as the starting

configurations for the freezing runs. Each set of the 500 configurations are cooled to a given

temperature between 680 K and 740 K by a spontaneous jump in the temperature, which

involved assigning each atom a random velocity from a uniform distribution appropriate for

the new T . The MD simulations were then allowed to run for 4.8×105 time steps, a time long

enough to observe freezing in nearly all the trajectories. Configurations along the trajectory

were saved every 500 time steps for structural analysis.

Freezing events are recognized by the evolution of the configurational energy and through

the global order parameter described below. The onset of freezing is marked by a sudden

drop in the energy. Fig. 4.1 shows the evolution of the energy per particle, U/N, for a 561-

atom cluster, for 6 MD runs at 700 K. Five of the trajectories show the characteristic drop

in the energy that signifies freezing while one trajectory remains liquid on the time scale of

the simulation.

4.2.2 Structural Analysis

Bond Order Parameters

The structure of the clusters is studied using a number of order parameters based on the

Steinhardt[14] bond order parameters. The bond orientational order parameter, Ql, is defined

as

Ql =

√

√

√

√

4π

2l + 1

l
∑

m=−l

| 1

N

N
∑

i=1

qlm(i)|2, (4.3)

where

qlm(i) =
1

Nnb

Nnb(i)
∑

j=1

Ylm(rij). (4.4)

The summation in eqn 4.4 is over the number of neighbors, (Nnb), for atom i, where two

atoms are considered neighbors if the distance between them is less than or equal to 3.5 Å,

which is the radius corresponding to the first minimum of the radial distribution function
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Figure 4.1: The energy of the cluster per atom as a function of simulation time for six trajectories
(N = 561). The red solid line, U = −3.63eV , identifies the energy used to determine when a cluster
has nucleated.

for gold. Ylm(rij) = Ylm(θij , φij) are the spherical harmonic functions, where θ and φ are the

polar and azimuthal angles of the vector rij , respectively; l is is a free integer parameter, and

m is an integer that runs from m = −l to m = +l. The value of qlm depends on the relative

positions and orientations of the neighbors of atom i, and therefore allows the evaluation of

the structures of clusters with different symmetries depending on the choice of l. For this

work, l = 6 is chosen since Q6 is sensitive to hexagonal structures and gives non-zero Q6

values for the cluster structures observed in our simulations. Ql have been used extensively

in studies of clusters [44, 131, 2] and liquid-solid nucleation in the bulk [132].

The Qs and Qb, which are just the Q6 order parameters calculated independently for the

surface and bulk atoms of the cluster [2], are also measured. These help us to understand

how surface ordering may play a role in the freezing of the clusters as well as distinguishing

between different structure types. They are defined as

Qb,s =

√

√

√

√

4π

13

6
∑

m=−6

| 1

Nb,s

Nb,s
∑

i=1

q6m(i)|2, (4.5)

where Nb and Ns are the number of surface and bulk atoms, respectively. To distinguish the
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surface atoms from the bulk atoms, a slightly modified “cone” algorithm[131] is used. For

a given atom, a “cone region” is defined as the region inside a cone of side length, lc, with

azimuthal angle, θc, and whose vertex rests on the atom center. An atom is said to be on the

surface if it is possible to find a cone surrounding the particle that contains no other atoms,

otherwise, the atom is regarded as bulk atom. Fig. 4.2 shows a diagram of how the cone

algorithm is used to probe surface and bulk atoms. For this work, θc = 120◦ and lc = 3.5 Å.

!
c 

l
c 

!
c 

lc 

!!!

Figure 4.2: A diagram showing how surface and bulk atoms are identified using the cone having
azimuthal angle, θc, and side length, lc. The upper cone identifies a surface atom while the lower cone
shows a bulk atom.

Common Neighbor Analysis

The local order of the individual atoms is studied using a common neighbor analysis (CNA) [133,

134, 135]. This method, which identifies atoms by considering the number and connectivity

of the neighbors shared by two neighboring atoms, was first proposed by Honeycutt and

Anderson[136]. Considering a pair of atoms, α and β, the CNA is classified by a set of

indexes, (i), (ii), (iii) and (iv). The indexes: (i) indicates whether α and β are nearest neigh-

bors (i = 1) or not (i = 2); (ii) indicates the number of nearest neighbors shared by α and

β, which are called common neighbors; (iii) indicates the number of bonds or connections

among the common neighbors; (iv) indicates the number of bonds in the longest continuous

chain formed by the common neighbors. In this work, two atoms are considered neighbors if

the distance between them is less than or equal to 3.5 Å.
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Fig. 4.3 is an illustration of a diagram constructed from the classification of local structural

environments. Atoms i (brown) and j (yellow) are a pair of nearest neighbors, while atoms k

(blue) are the common neighbors to the pair, i,j. From this figure it can be seen that i and j

have 4 common neighbors, and these common neighbors have 2 bonds between themselves.

Also, the pair bond with their common neighbors in the same way, with two bonds in the

longest chain. Therefore, the CNA environment of i with respect to j is 1422. The local

environment of an atom is determined in the both bulk and surface based on the number of

CNA environments that an atom forms with its nearest neighbors. An atom is regarded as

a bulk atom if the number of nearest neighbors is greater than or equal to 10, and a surface

atom otherwise. For a bulk atom, if the number of pairs with index 1421 is equal or greater

than 5, then that atom has an fcc local structure. It be noted that fcc is used to identify

the local environment of the atom, while FCC identifies the entire cluster structure. Other

indexes used for bulk atoms include 1422 and 1555. If the number of pairs for a given atom

with 1555 is greater than or equal to 2, then the atom is bulk Ih, if the number of pairs with

index 1422 is greater than or equal to 5, then the atom has hcp local environment. Bulk

atoms not identified as fcc, Ih or hcp are regarded as amorphous. For surface atoms, if the

number of pairs for a given atom with 1555 is greater than or equal to 1, then the atom is

Ih − vertex. If the number of pairs for a given atom with 1211 is greater than or equal to

3, then the atom is on the 100 surface. There are some local environments on the surface,

which cannot be identified by counting a single index. Examples of such local structures

include, 111, Ih − edge, Ih − join and fcc − edge, therefore a combination of indices such

as 1211,1311, 1322, and 1422 are used to identify such local environments. A surface atom

not identified as being a vertex, on an edge, joint, on the 111 or 100 planes is regarded as an

amorphous atom on the surface.

Finally, the effectiveness of our structural analysis is dramatically improved when per-

formed on configurations that have been subjected to a conjugate gradient quench that takes

the configuration to its local potential energy minimum, or an inherent structure [137], to

remove the thermal noise from the structure. All the structural quantities reported in this

chapter refer to our analysis on these quenched configurations.
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Figure 4.3: Diagrams showing how the classification of local structures defined in CNA are con-
structed. Reproduced with permission from ref. [135]

4.3 Results and Discussions

4.3.1 Structural Identifications

All the clusters quickly establish a stable energy profile at early times in the trajectory

indicating that they have reached a state corresponding to a metastable liquid droplet. Most

of the trajectories then exhibit a rapid decrease in energy as the cluster freezes to a solid

structure while a fraction of clusters remains liquid to the end of the simulation run (see

fig. 4.1). Examples of all the structure types observed in our simulations are shown in

fig. 4.4 with some of the different structural motifs appearing in the core of the clusters

highlighted using the CNA. In fig. 4.4, CNA atom types have been enlarged and colored

to highlight the important structural motifs for each cluster type. Note that, not all atom

types are highlighted for all structures. Red indicates amorphous, pink indicates bulk Ih,

blue indicates surface Ih-edge, purple indicates surface Ih-vertex, brown indicates bulk hcp

and green indicates bulk fcc. The remaining atoms are represented as points, making it easy

to visualize. The liquid cluster, along with Ih, Dh, Dh2 and FCC structures are observed in

all cluster sizes studied but the structure denoted Th is only formed by the N = 923 cluster.

To study the structure of the liquid drop, the average number of atoms with each CNA
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Figure 4.4: Different structural types observed for the N = 923 cluster. For the structures shown,
red indicates amorphous, pink indicates bulk Ih, blue indicates surface Ih-edge, purple indicates surface
Ih-vertex, brown indicates bulk Hcp and green indicates bulk fcc. The remaining atoms are represented
as points for clarity

78



identity from the trajectories that did not exhibit a freezing event is obtained (fig. 4.5).

The core of the droplet is relatively disordered and is dominated by amorphous and bulk

icosahedral atoms. There are a few fcc or hcp atoms and the fraction of these increases

marginally with decreasing temperature. The surface is also relatively disordered with the

amorphous and Ih-vertex atoms being most abundant. However, 20-25% of the surface atoms

are either 〈111〉 or Ih-edge atoms which are the atom types necessary to form the surface

of an Ih cluster. The fraction of these atom types also increases with decreasing T , which

is consistent with Nam et al [138] who observed an increase in the Ih surface order of gold

nanoparticles as they were cooled. Fig. 4.6 and fig. 4.7 plot the number of bulk icosahedral

atoms, Nb(Ih), as a function of Q6 for cluster sizes N = 561 and N = 923, respectively, while

fig. 4.8 and fig. 4.9 show plots of Qs as a function of Qb for the same cluster sizes. The

initial liquid drops and the drops that did not freeze, denoted as Liq∗ in fig. 4.7 and fig. 4.9,

occupy the same region in the order parameter plots showing that the liquid structure does

not evolve systematically in time.

While a perfect icosahedron was never seen in simulations, all the Ih structures observed

have a significant number of the 20 possible tetrahedral subunits completed and a single,

clearly defined icosahedral atom at the center, forming the vertex of the tetrahedral subunits.

Most of the tetrahedral subunits are the correct size for a given cluster size, but subunits

that are either one layer of atoms too small or too large are also observed. In all the Ih

clusters there is a small number of neighboring subunits that are deformed or disordered and

the CNA identifies the atoms in these sections as either amorphous or Ih bulk.

The Dh structures formed in the simulations all exhibit a line of the bulk icosahedral atoms

running through the center of the cluster and at least one well formed five-fold symmetric

cap made of 〈111〉 planes and Ih− edge atoms. The Dh2 structures, with the diagnostic line

of bulk icosahedral atoms located off-center of the cluster, have been seen previously [1, 139]

but it should be noted that the Dh2 clusters all lack the presence of the cap surface structure.

Later, the analysis of the freezing trajectories shows that the cap formation is a key initial step

in the formation of the Dh solids, suggesting that the Dh2 may have a different nucleation

pathway. The FCC structures appear as truncated octahedra with a mix of fcc and Hcp

stacked planes and a combination of 〈100〉 and 〈111〉 faces. The Th structure contains

three lines of five-fold symmetric bulk Ih atoms forming the edges of a slightly truncated
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Figure 4.5: The fraction of surface (top) or bulk (bottom) atoms of a given CNA type as a function
of temperature for liquid particles. Fraction of amorphous atoms not shown.
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Figure 4.6: Nb(Ih) as a function of Q6 for the initial liquid configuration (triangles) and the final
configurations (circles) of the N = 561 clusters.
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Figure 4.7: Nb(Ih) as a function of Q6 for the final configurations of the N = 923 clusters.
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Figure 4.8: Qs as a function of Qb for the initial liquid configuration (triangles) and the final
configurations (circles) of the N = 561 clusters.
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Figure 4.9: Qs as a function of Qb for final configurations of the N = 923 clusters.

tetrahedron that sits in the core of the nano-cluster and is an example of the poly-decahedral

structures that have been observed in larger gold nano-clusters [139].

One of the goals was to see if the structural order parameters and the CNA analysis are

able to help identify and distinguish the different frozen clusters. In general, Q6 alone does

a reasonable job of separating out the different solid structure types into distinctive groups,

but it is unable to separate liquid clusters from the Ih structures. This last separation can

be achieved by introducing Nb(Ih), which significantly decreases when the liquid drops freeze.

Plots of Qb vs Qs were used in a recent study of the freezing of Lennard-Jones clusters [2] to

identify core ordered structures. In that study, the Dh, Dh2 and FCC structures all showed

a positive correlation with respect to the two order parameters, but the structures containing

tetrahedral subunits in the core were negatively correlated. The same is true here. Relative

to the Ih structure, the Th structure has fewer bulk Ih atoms, which increases Qb, but three

of the ordered 〈111〉 surfaces of the core tetrahedron are buried in the core and appear as

Hcp planes. These are covered by disordered surface atoms that reduce Qs, leading to the

negative correlation. This suggests that the appearance of a negative correlation between Qb

and Qs may be indicative of the presence of more complex core ordered structures in other
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atomic cluster systems since they tend to have these buried planes covered in disordered

atoms.

Finally, it is important to note that the structures observed here are determined by their

accessibility from the liquid state, which in turn, is determined by their nucleation barriers.

If the barrier to nucleation is too high, then the structure would not be observed on the time

scale of our simulations so there may be additional metastable structures that gold particles

can form that are not found in this work.

4.4 Nucleation Rates

The probability, Pi, that a cluster type i (i = Ih, Dh, Dh2, FCC) nucleates from a liquid

drop is calculated from our simulations using only the trajectories that exhibited a freezing

event so the small fraction of non-nucleated systems at the end of the simulation time did

not count in the ensemble total. Fig. 4.10 shows PIh and indicates that the icosahedron

is the most dominate cluster formed over the range of T and N studied, even though it

is not necessarily the most thermodynamically stable structure. However, PIh decreases

with decreasing temperature and increasing cluster size. Within the scatter of our data,

PDh ≈ PFCC (fig. 4.11) and both probabilities show the opposite trend to that seen for the

Ih clusters. PDh2
is not shown, but remains approximately constant near 0.015 over the

range of conditions studied.

These probabilities can be related to the difference in height of the nucleation free energy

barriers between the various processes. Classical nucleation theory (CNT) gives the rate for

each nucleation pathway as

Ji = Ai exp (−β∆G∗
i ) , (4.6)

where Ai is the kinetic coefficient, ∆G∗
i is the height of the free energy barrier to nucleation,

β = 1/kT and k is Boltzmann’s constant. Taking the ratio of the rates, Ji/Jm, for processes

i and m, using eqs. 2.27 and 4.6 and assuming Ai = Am, yields the difference in the barrier

heights as

β∆G∗
m,i = β (∆G∗

m − ∆G∗
i ) = ln

(

Pi

Pm

)

. (4.7)

Using eq. 4.7 shows that for N = 309, β∆G∗
FCC,Ih ≈ 6 at T = 680K but this decreases to

β∆G∗
FCC,Ih ≈ 2 for N = 923. It is important to note that as the Ih structure becomes highly
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dominant our ability to accurately measure PDh and PFCC decreases. Nam et al. [140] also

found β∆G∗
FCC,Ih ≈ 5 − 6 for N = 459 at T = 770K, using a direct free energy calculation

that involved the use of a global order parameter as the reaction coordinate.

The key element to note from these results is the temperature and size dependencies of

Pi, and hence the barrier heights, mirror what is expected in the equilibrium phase diagram

of the clusters, which is driven by the competition between the surface free energy and the

strain energy associated with the packing of tetrahedral subunits. This suggests, both the

surface and the tetrahedral subunit strain energy may play a role in the nucleation barriers.
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Figure 4.10: T versus PIh for cluster sizes N = 309 − 923

To calculate the individual rates from eqn. 2.27, the overall rate, J, at which the liquid

clusters are freezing, must be evaluated. Assuming that nucleation obeys first order kinetics,

the rate at which the clusters freeze is given by [1],

ln R(t) = −JVc(t − t0), (4.8)

where R(t) is the fraction of unnucleated clusters at time t, Vc is the volume of the cluster
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Figure 4.11: T versus Pi for i=Dh (top) and i=FCC (bottom) for cluster sizes N = 309 − 923
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and t0 is the lag time. The time to each nucleation event in the ensemble was determined

by finding the time at which the energy in the trajectory dropped below a predetermined

value of Ux/N = −3.63 eV , that clearly separates the solid states from the liquid drop (see

fig. 4.1). Fig. 4.12 is a plot of lnR(t) vs t, for N = 561 at T = 680K, 700K, 730K. The slope

of the linear part of these plots gives the overall rate, J . Saika-Voivod et al [141] showed that,

while different methods used in the determination of the nucleation time gave different results

for the nucleation times themselves, the rate of nucleation obtained from eqn. 4.8 remained

the same. An energy criteria was used here to determine the nucleation times because it is

insensitive to the final structure of the nanocluster.
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Figure 4.12: Determination of nulceation rate, J , from R(tn) for N = 923 at three different temper-
atures.

In a bulk, uniform system, the volume term in eqn. 4.8 arises because the nucleation event

can occur anywhere with equal probability, thus it accounts for the translational degrees

of freedom of the nucleating embryo. There is still considerable debate concerning where

nucleation occurs in cluster systems and what role the surface plays as a pseudo-heterogeneous
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interface for nucleation [142]. Even if nucleation occurred exclusively in either the surface

or the bulk of the droplet, it is not clear how much of the volume or the surface should

contribute to the translation degrees of freedom, making it difficult to determine Vc. The

volume of these clusters are small and they nucleate to only one structure per drop so the

experimental measure used here is the number of droplets forming a given structure. As a

result, Vc = 1 is used, and the rate is reported in units of the number of clusters per unit time.

Furthermore, fig. 4.13(left) shows that rescaling J by the number of atoms per cluster causes

all the rates to collapse onto a single rate at low temperatures, although there is still some

systematic size dependence which increases at higher T . The rates for the individual structure

types (fig. 4.13(right)) show that the Ih rate is an order of magnitude faster than either the

Dh or FCC rates for all cluster sizes studied here, but that the difference is decreasing with

increasing cluster size and the rates will cross at a larger cluster size.
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Figure 4.13: (Left) J/N as a function of T for different cluster sizes. (Right) Ji/N, for i =
Ih, Dh, Dh2, Th, FCC as a function of N at T = 700K.

89



4.5 Conclusions

The goal of this chapter was to study the competitive nature of the nucleation which occurs

during the freezing of gold nanoclusters and to understand the factors that influence the

probabilities of observing the different structures. The results show that non-crystalline Ih

is the predominant cluster type formed, and the rate of its formation is significantly faster

than Dh and FCC clusters. As the cluster size increases, the probability of Ih clusters

forming decreases, while that of Dh and FCC clusters forming increases during the freezing

of gold nanoclusters of small to medium sizes. At larger cluster size(N = 923), there is

competition between the formation of FCC and Ih clusters leading to a lower rate for the

Ih cluster, and the Th structure, which has been observed in smaller LJ clusters, is observed

for the first time in the N=923 cluster. The probability of observing an Ih cluster increases

with increasing temperature, while that of PDh and PFCC decrease. The results show that

the probabilities of freezing to different solid structures, which is determined by nucleation

barrier and growth kinetics, follow a similar temperature and cluster size dependence as

that of the equilibrium free energies of the structures. In the metastable liquid, there is a

general ordering of the surface than the core, suggesting that ordering begins at the surface

for very small embryos. The next chapter deals with understanding the arrangement of local

structures to give the different structures observed in simulation.
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Chapter 5

Effective Reaction Coordinates in the Nucleation of

Gold Nanoclusters

5.1 Introduction

Recent studies [1, 3, 138] show that gold clusters, freezing from the same conditions, lead to

the formation of various motifs such as Ih, Dh and FCC with Ih being the most prevalent.

Nam et al [138] showed that the surface atoms of liquid clusters are somewhat ordered

in a way that resembles the five-fold symmetry facets of the Ih structure and potentially

lower the nucleation barrier for this structure relative to the others. Direct calculations of

the nucleation barrier to freezing in gold nanoclusters also found that a significant number

of the atoms in the critical embryo were located on the surface [45]. However, the study

uses a generic solid-like order parameter to identify atoms belonging to the growing embryo

and only uses the embryo size to describe the nucleation reaction coordinate. The embryo

size is the usual order parameter used to describe nucleation, but by itself, it is unable to

distinguish between the nucleation pathways of different structures. In this chapter, the

multi-phase maximum likelihood analysis (MPMLA) developed in Chapter 3 is applied to

the competitive nucleation of a gold nanocluster of size N = 561. The main goal is to

identify reaction coordinates describing the formation of the different structures. The aimless

shooting algorithm is used to harvest the transition path ensemble which consist of the

configurations along the different transition paths. The MPMLA is then used to obtain the

most accurate reaction coordinate for each of the major transitions. Finally, the resulting

reaction coordinates, obtained in terms of various order parameters, are used to explore and

understand the mechanism of nucleation for each of the pathways.
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5.2 Simulation Details

5.2.1 Aimless Shooting

In order to perform the MPMLA, the transition path ensemble (TPE) and the transition

path probabilities are required. These can be obtained using the aimless shooting method

in a multi-state transition path sampling. The aimless shooting used here is similar to the

one used in Chapter 3, but implemented through molecular dynamics. To harvest the TPE

for this system, the aimless shooting is performed on 300 initial shooting points. To obtain

these initial shooting points, 500 liquid gold nanoclusters at 1000K are cooled to 700K by a

spontaneous jump in the temperature, which involved assigning each atom a random velocity

from a uniform distribution appropriate for T = 700K using the EAM potential[125]. The

configurations are saved along the trajectories after every 500 timesteps. The maximum

embryo size, which will be defined later, is evaluated using the saved configuration. The initial

shooting configurations are chosen from trajectories that exhibit a freezing event indicated

by a sudden drop in Ux/N and a sharp increase in n. Fig. 5.1 is a plot of the size evolution

for five different trajectories. The green arrows indicate the beginning point for increase in n

where the shooting points are picked from, up to the green dash line. A total of 300 shooting

points were used, 20 leading to the Ih structure, 110 leading to the Dh structure, 50 leading

to the Dh2 structure and 120 that lead to the formation of the FCC structure. The initial

velocities of the chosen configuration are drawn from the Maxwell-Boltzmann distribution for

the selected temperature. The configuration is then propagated forward and backward in time

using a molecular dynamics scheme, that integrates the equations of motion by way of the

velocity Verlet algorithm, with a time step, ∆t = 2.8 fs. The backward trajectory is initiated

by multiplying the velocities of the particles by −1. The forward and backward trajectories

are stopped when a stable basin is reached. The trajectory is reactive if the forward and

backward propagations end in different basins and are non-reactive otherwise. The shooting

points are saved with the information describing the basins where the forward and reverse

trajectories end. If the shooting trajectory is accepted as reactive, a new shooting point is

chosen along it from x−δt,x0,x+δt with equal probability. x0 is the original configuration of

the shooting point on the reactive trajectory, x−δt and x+δt are configurations with number of

time steps, δt, before and after the previous shooting point. After every 50 shooting points,
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the acceptance ratio is evaluated. If the acceptance ratio is less than 40%, δt is reduced by 100

time steps . This helps to maintain an acceptance ratio of between 40%− 75%, though some

of the trajectories were not able to attend such an acceptance ratio. The initial timesteps,

δt, was chosen as 500. For each of the initial trajectories, 300 shootings were made, thus

giving our TPE a size of 9.0 × 104 points.
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Figure 5.1: A diagram showing cluster size,n, along different trajectories used in picking initial
shooting points. The arrows point to points where the initial shooting configurations were picked
from.

5.2.2 Structural Basin Identification

The major advantage of the aimless shooting algorithm is that it does not require a pre

knowledge of the reaction coordinate of the system. All that is required is to identify correctly

when a product or reactant is reached during the simulation. For a system with many

products, some closely related, a rigorous definition of the product basins is a major factor in

performing an accurate sampling. The structural identification in the previous chapter used

a 2-dimensional correlation of the order parameters. To make sure that the basins are not
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on the path to another basin, we define each of them as an ellipsoid,

x2

a12
+

y2

b12
+

z2

c12
= 1, (5.1)

where x = Q6 − Q̂6; y = Qb − Q̂b; z = Qs − Q̂s. The mean values Q̂6, Q̂b and Q̂s, are

the values of the Q6, Qb and Qs defining the coordinates of the center of the ellipsoid for a

given products. Their values were obtained using unquenched trajectories that ended in each

of the products during the initial freezing events described in subsection 5.2.1. Therefore,

there are five different values of Q̂6 representing the liquid state, icosahedral, decahedral,

off-centered decahedral and FCC structures. Q6, Qb and Qs are the values of these order

parameters obtained along the trajectory. a1, b1 and c1 are the semi-principal axes of the

ellipsoid. Their values determine the width of a product basin. At any point along the

aimless shooting trajectory, if the expression

(Q6 − Q̂6)
2

a12
+

(Qb − Q̂b)
2

b12
+

(Qs − Q̂s)
2

c12
≤ 1, (5.2)

is true, the trajectory is considered to have entered the respective product basin. Table 5.1

shows the values of Q̂6, Q̂b, Q̂s, a1, b1 and c1 used for the identification of the different struc-

tures. Fig. 5.2 shows the different structural basins. The points represent the end configu-

rations from different freezing trajectories. The different ellipsoids define the region for each

of the structures, and are constructed using data in Table 5.1.

Structure Q̂6 Q̂b Q̂s a1 b1 c1

Liquid 0.0423 0.0642 0.0636 0.041 0.044 0.034

Ih 0.112 0.126 0.129 0.044 0.042 0.056

Dh 0.238 0.281 0.168 0.042 0.048 0.034

Dh2 0.303 0.354 0.232 0.045 0.041 0.030

FCC 0.384 0.447 0.325 0.051 0.074 0.050

Table 5.1: Mean values of Steinhardt order parameters and semi-principal axes used to identify the
product basins.

To ensure that the basins identified are well defined, a second set of order parameters based

on the cluster neighbour analysis (CNA)[134, 135] which identifies the local structure around

a given atom as discussed in Chapter 4 are also used. The number of atoms in a cluster with

94



Figure 5.2: Identification of the different structural basins with ellipsoids constructed using data
from Table 5.1. Red ellipsoid represent the metastable liquid, light green is for Ih, blue is for Dh
while pink and cyan are for Dh2 and FCC, respectively. The points are the end configurations from
different freezing trajectories.
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a given CNA environment is related to the global structure of the cluster. For example, the

number of bulk icosahedral atoms (NbIh) in a perfect icosahedral cluster (N = 561) is 49,

while the same quantity in a perfect FCC cluster is zero. The number of icosahedral edge

atoms (NIhedge), provides a measure of the surface ordering in the Ih and Dh structures and

is highest in the Ih clusters, medium in the Dh clusters and zero in both the FCC and liquid

clusters. The final parameter used is the number of bulk fcc atoms, Nbfcc. Therefore, the

second expression for a product basin is given as,

(NbIh − N̂bIh)
2

a22
+

(Nbfcc − N̂bfcc)
2

b22
+

(NIhedge − N̂Ihedge)
2

c22
≤ 1, (5.3)

where N̂bIh, N̂bfcc, and N̂Ihedge are the mean values of the number NbIh, Nbfcc and NIhedge in

the different structures. Table 5.2 shows the values of ˆNbIh, ˆNbfcc, ˆNIhedge, a2, b2 and c2 used

in the second identification. ˆNbIh, ˆNbfcc, and ˆNIhedge are the coordinates of the centers of the

ellipsoid representing the different product basins, while a2, b2 and c2 are the semi-principal

axes of the ellipsoid. During the aimless shooting, when a given configuration is identified

as belonging to a given basin using the two sets of parameters above, then it is accepted to

that basin and the trajectory ends, otherwise the shooting continues.

Structure ˆNbIh
ˆNbfcc

ˆNIhedge a2 b2 c2

Liquid 70 10 6 50 12 7

Ih 34 70 36 24 25 18

Dh 10 155 20 8 28 10

Dh2 6 171 0 5 30 4

FCC 0 180 0 4 34 4

Table 5.2: Mean values of order parameters from CNA and their corresponding semi-principal axes
used to identify the product basins.

5.2.3 Test Order Parameters

The configurations obtained from the aimless shooting are evaluated using order parameters,

which are then used in a multi-path maximum likelihood analysis to construct the reaction

coordinates. The most commonly used order parameter in nucleation studies is the embryo
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size. Two different embryo criteria are used in this study. The first definition uses the local

bond order parameters to distinguish between liquid-like and solid-like atoms. It is based on

the Steinhardt order parameters and has been used extensively in the study of nucleation in

both bulk[2, 3] and nano particle systems[44]. This is achieved by considering the correlation

of the structure surrounding particle i with the structure surrounding each of its neighbors.

The local structure around neighbouring atoms is highly correlated in a solid structure, but

it is less correlated in a liquid. To measure the degree of correlation of the structure of atoms

i and j, a scalar product is used;

sij =

6
∑

m=−6

q̃6m(i)̇̃q∗6m(j). (5.4)

Here,

q̃6m(i) = q6m(i)/
∑

m

q6m(i), (5.5)

where,

q6m(i) =
1

Nnb

Nnb(i)
∑

j=1

Y6m(rij). (5.6)

q̃6m(j) is the normalized q6m, and q̃∗6m(j) is the complex conjugate of q̃6m(j), Nnb is the

number of nearest neighbors of atom i, Ylm(rij) = Ylm(θ(r̂), φ(r̂)) is a spherical harmonic

function where the angles θ and φ, measured from an arbitrary coordinate reference, defined

by the radial vector between atoms i and j. The value of sij is close to unity when the atoms

are in the same environment and very small otherwise. This helps in the identification of

ordered atoms in the embryo. A threshold above which two atoms are regarded as being in

the same environment is the threshold dot product, smin. The value of smin was determined

for gold nanoclusters by considering the distribution of sij in the liquid and solid phases of a

3892-atom gold cluster[143]. Low values of sij had higher frequencies within the liquid phase,

while in the solid phase, high values of sij had higher frequencies. smin = 0.65 was chosen as

the point within the solid phase close enough to the point where the two distributions cross

each other. Two particles i and j are then said to be correlated if the sij ≥ smin and the

bond between them is termed a solid bond. An atom is considered to be a solid atom if it is

connected to more than 50% of it neighbors with a solid bond. Finally, two solid atoms are

considered to be part of the same embryo if they are connected by a solid bond. The largest

embryo containing solid atoms is regarded as the largest embryo size, n.
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The second embryo criteria uses the local crystallinity defined by the CNA. CNA identifies

the local environment of the atoms and labels them as fcc, Hcp, Ih, < 111 >, < 100 >,

fcc− edge, Ih− edge, Ih− join, Ih− vertex or amorphous. For the purpose of this embryo

definition, all local environments except the amorphous are regarded as solid-like. If two

solid-like atoms i and j are nearest neighbors, then they are regarded as being connected by

a solid bond. The largest connected cluster is termed the CNA embryo with size, nCNA. For

both embryo criteria, two atoms are regarded as neighbors if the distance between them is

less the or equal to rb = 3.5 Å, which is the radius corresponding to the first minimum of the

radial distribution function for gold.

Another set of order parameters tested include the Steinhardt bond order parameters,

such as Q6, W4 and W6, which are calculated globally for the entire cluster. Others are the

different variants of Q6, such as Qb where the bulk atoms are used to calculate the Q6, and,

Qs, which is the Q6 of all atoms on the surface of the cluster. The calculations of Q6, Qb, and

Qs are described in subsection 4.2.2. Another variant of Q6 used as a test order parameter

is the Qe, which is the Q6 calculated by using atoms in the largest solid embryo[16] alone,

Qe =

√

√

√

√

4π

13

6
∑

m=−6

| 1
n

n
∑

i=1

Q6m|2, (5.7)

where

Q6m(i) =
1

Nnb

Nnb(i)
∑

j=1

Y6m(rij), (5.8)

with the restriction that i and j must be in the largest embryo and connected by a solid

bond.

The order parameter, Wl, which was first used by Desgranges and Delhommelle[144] to

distinguish between different crystal structures, is defined as follows: For a given particle, i,

wl(i) =

∑

m1+m2+m3=0





l l l

m1 m2 m3



qlm1
(i) × qlm2

(i) × qlm3
(i)

(
∑l

m=−l |qlm(i)|2)3/2
, (5.9)

where the integers m1, m2 and m3 run from −l to +l, but only the combinations with m1 +

m2 + m3 = 0 are allowed. The matrix





l l l

m1 m2 m3



 is the Wigner-3j coefficients. wl

determines the local crystallinity around each individual particle. To identify the crystal
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structure of the entire cluster the average value of wl is taken as,

Wl =

√

√

√

√

4π

2l + 1

l
∑

m=−l

| 1

N

N
∑

i=1

wlm(i)|2. (5.10)

The values, l = 4 and l = 6 are chosen due to their sensitivity to cubic and hexagonal

symmetries, respectively. Steinhardt et al [14] showed that the Wl’s are very sensitive to

different symmetries and can be used to identify different cluster types base on their values.

The average values for W6 and W4 were calculated for gold nanoclusters [15] and are given

in Table5.3

Structure W4 W6

Liquid 0.00 0.00

Ih -0.15932 -0.16975

FCC -0.15732 -0.01316

Table 5.3: Average bond order parameters for liquid, Ih and FCC structures.

The local environments of the atoms are often organized into larger scale features in the

non-crystallographic clusters. For example, the lines of Ih atoms surrounded by planes of

Hcp atoms appearing in both the Ih and Dh clusters. To capture and understand the role

these structures play in the nucleation process, a structural correlation parameter, Sa−b(i), is

defined as the number of nearest neighbors of an atom, i, in local environment a, which have

environment b. For example, if a bulk Ih atom is surround by five hcp atoms, SIh−hcp = 5.

Ŝa−b is the average over all the particles with local environment a in the largest embryo. A

similar parameter has been used to study the evolution of a solid phase from its metastable

liquid phase[145, 146, 147], but the atoms were not identified based on their local CNA en-

vironment. The present work focuses on understanding the correlation between the different

structural environments of the particles as identified by CNA. Fig. 5.3 shows a represen-

tation of how the parameter Sa−b(i) is defined. The cut-off radius beyond which particles

are no longer regarded as nearest neighbors is rb = 3.5 Å. The green particles all have the

same local environment which is different from that of the red particles. For particle i, all

the particles within the orange circle are the neighbors, but only the green ones are counted.

From the example shown in fig. 5.3, i has 5 neighbors, but Si−i = 4. This parameter provides
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a molecular view of how the local structure of an atom is correlated with the neighboring

atoms in the largest embryo. The choice of a and b local environments is such that the

value of Ŝa−b is close to zero in the liquid phase, but increases to a unique value in the solid

phase. For example, the bulk fcc atoms with the nearest neighborhood of another bulk fcc,

Ŝfcc−fcc, is 3 and 12 for a perfect Ih and FCC structures, respectively. The values of these

parameters are cluster size dependent. For example, Ŝfcc−fcc = 3 for a perfect Ih for the

system size, N = 561 only. For the non-crystalline structures with characteristic five-fold

symmetry, five planes of Hcp atoms surround a single line of bulk Ih atoms. Hence for such

structures, ŜIh−Hcp = 5, while it is zero for a perfect FCC cluster.

i i 

Figure 5.3: A diagram showing how S(i) is constructed using the local environment of the nearest
neighbors of particle i. All the atoms within the orange circle are the nearest neighbors. All the green
atoms have the same local environment as identified using CNA, while the red atoms are in a different
environment from the green ones.

5.3 Results and Discussions

First, the liquid to solid transition in gold nanoclusters is studied without any separation

into the different structural phases. The different structures are regarded as one solid phase,

thereby giving a two state system. The two state maximum likelihood analyses using both

the committor model

psol(r) =
1

2
(1 + tanh(r)) (5.11)

and the transition path probability model,

Pliq→sol(TP |r) = p0(1 − tanh2(r)), (5.12)
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are performed independently. For each of the parameters used, or their combination, the

critical condition is obtained by solving the expression,

psol(r) = 1/2. (5.13)

Table 5.4 is a summary of the likelihood analysis using eqn. 5.11 for the liquid → solid

transition, showing the likelihood estimate and the critical conditions for the different test

order parameters. The maximum embryo size which is often used as the reaction coordinate

in the studies of liquid → solid nucleation is better than every single parameter. It gives a

critical size, n∗ = 153 for the system size studied. Fig. 5.4 shows the committor probability

and transition path probability as a function of n. It also shows the models used. When a

combination of the order parameters was made, the results show that the sum of the embryo

size, n, and Qe is the best reaction coordinate. Moroni et al[17] showed, using MLA, that

the product of n and Qe is the best reaction coordinate to study the freezing of Lennard-

Jones particles. Fig. 5.5 shows the committor probability and transition path probability as

a function of r = n × Qe for our system and their models. The models do not fit well to

the data especially for r < 25. The manner of the combination of these two parameters are

different from that of Moroni et al[17], but they appear to offer the best understanding of the

liquid-solid transition in nanoclusters. This result is only valid for a liquid-solid transition

that does not recognize the different structures.

Order Parameters Reaction Coordinates (r) LEαmax r∗

nCNA 0.0118nCNA − 1.011 -49945 n∗ = 98

n 0.0095n − 1.568 -45776 n∗ = 153

Q6 15.0476Q6 − 1.6927 -48906 Q∗
6 = 0.1125

Qb 10.8839Qb − 1.6697 -47718 Q∗
b = 0.1534

Qs 14.6694Qs − 1.6549 -56103 Q∗
s = 0.1128

Qe 1.2961Qe − 0.1279 -47650 Q∗
e = 0.099

n + Qe 0.0101n + 3.0781Qe − 2.533 -44488 Qe = 0.8231 − 0.0032n

n × Qe 0.0299nQe − 1.3114 -44504.5 nQ∗
e = 43.76

Table 5.4: Test order parameters and their performance as reaction coordinate for liquid→solid
transition in gold nanoclusters. BIC = (1/2)lnNR = 5.499.
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Figure 5.4: Aimless shooting data for liquid → solid transitions compared to (a) Psol(r(n)) and (a)
P (TP |r(n)).
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Figure 5.5: Aimless shooting data for liquid → solid transitions compared to (a) Psol(r) and (b)
P (TP |r), where r = n × Qe
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The extent to which the maximum likelihood analysis provides an accurate reaction coor-

dinate can be determined by evaluating the probability that configurations on the transitions

state, r∗, have equal chance of growing or shrinking. If the given reaction coordinate is a good

reaction coordinate, the committor probability distribution would have a maximum at 0.5.

Fig. 5.6 shows the psolid distributions for configurations lying on transition states based on

two reaction coordinates, where psolid denotes the probability of a configuration ending in the

solid phase. For the distributions in fig. 5.6(a), 120 configurations are selected on or close to

the region nQ∗
e = 43.76. For each configuration, 100 trajectories are run and the committor

probability is evaluated as the ratio of trajectories ending in the solid phase. As seen from

the histogram, the peak is at psolid = 0.6, though not very different from that of psolid = 0.5.

For fig. 5.6(b), 270 configurations are drawn from configurations lying on or close to the line

Qe = 0.8231 − 0.0032n. This distribution clearly shows a peak at psolid = 0.5 confirming

that r = 0.0101n + 3.0781Qe − 2.533 is an accurate estimate of the reaction coordinate for

liquid-solid transition for gold nanoclusters.

0 0.2 0.4 0.6 0.8 1

p
solid

 estimates
0

10

20

30

40

oc
cu

re
nc

es

(a) r = 0.0299nQe − 1.3114

0 0.2 0.4 0.6 0.8

p
solid

 estimates
0

20

40

60

80

oc
cu

re
nc

es

(b) r = 0.0101n + 3.0781Qe − 2.533

Figure 5.6: Committor probability distributions for two reaction coordinates obtained from the
maximum likelihood analysis.

The transition path probabilities were calculated using different order parameters for the

transitions to the different structural phases. Fig. 5.7(a) shows that the probability of a

configuration to be on the Liq→Ih transition path as a function of size is an order of mag-

nitude higher than that of other transition paths. This result is consistent with previous
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calculations[3, 1], where the probability of seeing an icosahedral structure during the simula-

tion of gold nanoclusters was higher than others . In fig. 5.7(b), we see that the probabilities

of solid → solid rearrangement increase after the critical size. Using High Resolution Electron

Microscopy to study the formation of gold nanoclusters, Koga et al[31] observed that there is

a solid→solid transition below the melting point for the gold nanoclusters they studied. The

increase in the transition path probabilities beyond the critical size supports this experimental

observation of solid→solid transitions. The committor probabilities for the different liquid to

solid transitions as a function of different order parameters is also calculated. Fig. 5.8 shows

the committor probability to the different phases as a function of (a) Qe and (b) Ŝfcc−fcc . All

the committors except PFCC do not possess the basic feature of a committor, that is, having

a value of zero in the liquid phase and a value of one in the solid phase. As stated earlier, it

is only a committor with this feature that can describe a transition accurately. With many

phases, as seen in the system studied, as the probability of committing to a particular phase

increases, the probability of committing to other phases reduces. For example, the commit-

tor probability for Ih increases as the configuration x approaches the Ih basin. It becomes

maximum when it is in Ih product basin, but as it moves away the probability reduces while

the probability of committing to another structure increases. This causes the bell shape

of the committor probabilities, except the committor to the FCC. For most of the tested

order parameters, FCC has the highest or the least value. No other structure is seen beyond

after FCC, such that there is no decline in PFCC when its maximum value is attained. For

a complex system with many products, one method that can aid the understanding of the

transitions is the transition path sampling with the maximum likelihood analysis of the tran-

sition path probabilities. Next, the multi-phase maximum likelihood analysis is performed

for the different transitions in order to understand the mechanism for the formation of the

different structures.

5.3.1 Icosahedral Structure

All the order parameters are tested as reaction coordinates for the nucleation of the icosa-

hedral structure from metastable liquid. A summary of some of the single order parameters

and their likelihood estimate is contained in Table 5.5. For all the single order parameters,

Ŝfcc−fcc describes the liquid →Ih transition better than others, based on the likelihood esti-
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Figure 5.7: The transition path probabilities for (a) liquid - solid and (b) solid-solid transitions. In
the plots, A=Liquid, B=Icosahedral,C=Decahedral,D=Off-centered Decahedral, E=FCC.
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mates. Since the major feature of the icosahedron is the five-fold symmetry, intuition would

suggest that parameters (ŜIh−Ih and ŜIh−hcp) that measure the formation of these five-fold

symmetries will be more important. Fig. 5.9(a) shows the transition path probability as a

function of Ŝfcc−fcc, while fig. 5.9(b) shows PAB(TP |ŜIh−Ih) and PAB(TP |SIh−hcp) with the

models describing them. The model describing PAB(TP |Ŝfcc−fcc) fits well with the data. An

icosahedron is made of 20 tetrahedral subunits that all share one vertex atom at the center

of the cluster. Each tetrahedron has a core made from fcc ordered particles and shares

three interfaces with its neighboring tetrahedra. The interface shared by the tetrahedra is

constructed from a plane of hexagonally close packed (Hcp) particles connected to the bulk

icosahedral (Ih) particles. The maximum in PAB(TP |Ŝfcc−fcc) occurs when Ŝfcc−fcc ∼ 3.0,

(see fig. 5.9a), which corresponds to the formation of a tetrahedron for the N = 561 icosahe-

dron. ŜIh−Ih measure how the bulk Ih atoms align themselves with each other, while, ŜIh−hcp

measure how the bulk Hcp atoms are arranged around the bulk Ih atoms giving the five-fold

symmetry. The models describing PAB(TP |ŜIh−Ih) and PAB(TP |ŜIh−hcp) do not fit the data

well. Although the model for ŜIh−Ih peaks near 2 which is expected of a linear chain of bulk

Ih atom, the scatter in the data could be due the presence of some bulk Ih atoms in the

amorphous section of the cluster.

Order Parameters Reaction Coordinates (r) LEαmax r∗

n 0.0111n − 1.7322 -44479.1 n∗ = 156.17

Qe 6.1701Qe − 0.8124 -45567.1 Q∗
e = 0.1317

ŜIh−hcp 0.3915ŜIh−hcp − 0.9217 -48766.1 Ŝ∗
Ih−hcp = 2.354

Ŝfcc−fcc 0.5320Ŝfcc−fcc − 1.4562 -44190.6 Ŝ∗
fcc−fcc = 2.737

Svert−edge 0.3732Ŝvert−edge − 1.1614 -48097.7 Ŝ∗
vert−edge = 3.112

Ŝedge−<111> 0.2674Ŝedge−<111> − 0.6923 -49008.3 Ŝ∗
edge−<111> = 2.588

ŜIh−Ih 0.3235ŜIh−Ih − 0.9319 -48906.6 S∗
Ih−Ih = 2.880

Table 5.5: Different single order parameters tested for liquid→Ih transitions in gold nanocluster.
BIC = (1/2) lnNR = 4.942 .

The order parameters are also examined along a number of freezing trajectories that begin

in the liquid phase and end in the Ih structure. Fig. 5.10 shows that Ŝfcc−fcc increases more
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rapidly than the ŜIh−hcp. During the formation of Ih cluster, the tetrahedra cannot be

packed in a way that completely fills space and the system must be strained in order to form

a uniform structure. This strain seems to slow down the formation of the five-fold facets

which gives Ih its character.
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Figure 5.10: A Plot showing ŜIh−hcp, Ŝfcc−fcc and Ŝedge−<111> for Ih trajectory.

The best single order parameter is compared to the best reaction coordinate from all pairs

of order parameters, which is in turn compared to the best coordinate from all combinations

of three order parameters, etc. The likelihood will always increase each time a parameter

is added to the model, but a new parameter is significant to the reaction coordinate if the

increase in likelihood is equal or greater than (1/2)lnNR, where NR is the number of realiza-

tions in the likelihood function. The results for the combinations of the order parameters are

summarized in Table 5.6. From the likelihood estimate, it shows that a linear combination of

n, Ŝfcc−fcc, and the Qe, is the best reaction coordinate describing the formation of icosahedral

structure. The full reaction coordinate is given as

r = 0.00880n + 0.2261Ŝfcc−fcc + 3.1582Qe − 2.9533, (5.14)

with a critical condition being

Ŝ∗
fcc−fcc = 13.0617 − 0.03893n − 13.9735Qe. (5.15)
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It should be noted that the transition path probabilities is not guarantied to be equal to

0.5 at the critical point, but, always a maximum. To solve for the critical conditions,

∂Pliq−Ih(r)/∂r = 0 is evaluated, where Pliq−Ih is the transition path probability as a function

of the reaction coordinate, r. Fig. 5.11 is a 3-dimensional plot of the shooting points using

n, Ŝfcc−fcc and Qe. The red points are points for a typical trajectory leading to Ih structure.

Points on the plane S∗
fcc−fcc = 13.0617 − 0.03893n − 13.9735Qe indicate the critical point,

which is a saddle point. Fig. 5.12 shows the density plot of the shooting points that lie on

the liquid → Ih transition path using the order parameters, n and Ŝfcc−fcc. Also shown

are two lines representing the critical conditions when Qe = 0.18 and Qe = 0.31. The green

and blue dots are points from two different trajectories leading to Ih structure. They pass

through the region of highest density between the lines representing the critical conditions.

From both plots it can be seen that at a fixed embryo size, increasing Ŝfcc−fcc increases

the probability of the formation of Ih structures. But as seen in fig. 5.12, as Ŝfcc−fcc in-

crease well beyond 3, the probability starts to decline. All shooting points lying on the plane

Ŝ∗
fcc−fcc = 13.0617 − 0.03893n − 13.9735Qe belong to the transition state ensemble. It in-

cludes small embryos with some well formed tetrahedra (values of Ŝfcc−fcc ∼ 3.0) and large

embryos with small values of Ŝfcc−fcc.

Order Parameters Reaction Coordinates (r) LEαmax r∗

Ŝfcc−fcc, Qe 0.1976Ŝfcc−fcc + 5.3449Qe − 1.4428 -44529.6 Ŝ∗

fcc−fcc = 7.298 − 27.0366Qe

Ŝfcc−fcc, ŜIh−hcp 0.5403Ŝfcc−fcc + 0.09242ŜIh−hcp − 1.5917 -44148.3 Ŝ∗

fcc−fcc = 2.9454 − 0.1710ŜIh−hcp

Ŝfcc−fcc, Ŝvert−edge 0.5218Ŝfcc−fcc − 0.1311Ŝvert−edge − 1.326 -44111.2 Ŝ∗

fcc−fcc = 2.5411 + 0.2513Ŝvert−edge

Ŝfcc−fcc, Ŝedge−<111> 0.5309Ŝfcc−fcc + 0.0229Ŝedge−<111> − 1.4894 -44187.7 Ŝ∗

fcc−fcc = 2.8048 − 0.04330Ŝedge−<111>

Ŝfcc−fcc, ŜIh−Ih 0.5270Ŝfcc−fcc − 0.0732ŜIh−Ih − 1.3131 -44164.7 Ŝ∗

fcc−fcc = 2.4914 + 0.1389ŜIh−Ih

Ŝfcc−fcc, n 0.3345Ŝfcc−fcc + 0.006762n − 2.07468 -42901.0 Ŝ∗

fcc−fcc = 6.198 − 0.02020n

Ŝfcc−fcc, n, Ŝvert−edge
0.00713n + 0.3115Ŝfcc−fcc−

0.18940Ŝvert−edge − 1.9329
-42722.8

Ŝ∗

fcc−fcc =

6.0596 − 0.02187n + 0.2865Ŝvert−edge

Ŝfcc−fcc, n, Ŝedge−<111>
0.00717n + 0.3277Ŝfcc−fcc−

0.09386Ŝedge−<111> − 1.986
-42852.7

Ŝ∗

fcc−fcc =

6.2049 − 0.02289n + 0.6080Ŝedge−<111>

Ŝfcc−fcc, n, Qe
0.00880n + 0.2261Ŝfcc−fcc+
3.1582Qe − 2.9533

-42467.0 Ŝ∗

fcc−fcc =
13.0617 − 0.03893n − 13.9735Qe

Table 5.6: Different single order parameters tested for liquid → Ih transitions in gold nanocluster.
BIC = (1/2)lnNR = 4.942 .

To understand the nature of the critical embryo, configurations from the trajectories head-

ing to Ih lying within the transition state ensemble are chosen for visualization. A conjugate

gradient quench is performed on these configurations which takes the configurations to their
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Figure 5.11: Shooting points that lie on the liquid → Ih transition path plotted with
n, Ŝfcc−fcc and Qe. The red points are points for a typical trajectory leading to Ih structure.
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Figure 5.12: Shooting points that lie on the liquid → Ih transition path projected into order
parameters, n and Ŝfcc−fcc. The purple and pink lines are critical lines for Qe = 0.18 and Qe = 0.31
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local potential energy minima, or inherent structures [137], to remove the thermal noise from

the structure. A 2D visualization of the maximum embryo is produced by projecting the

CNA order parameters for each atom in the embryo onto a unit sphere that surrounds the

cluster and is centered on the center of mass of the embryo [148]. This projection is then flat-

tened into a two dimensional plot of the inclination, θ, and azimuth, φ, angles of the atoms

that are periodic at the boundaries. Fig. 5.13 shows the projections for bulk and surface

atoms, respectively, from a configuration taken from the transition state ensemble. It shows

that one side of the cluster is mostly ordered while a section is still amorphous. Within the

ordered region, the bulk fcc atoms are mostly aligned to form tetrahedra (black circles within

dashed green boxes), which is bounded on the surface by the < 111 > (black triangles within

magenta boxes) planes. The formation of five-fold symmetric cap (red squares in dashed blue

circles) occurs in the same region. This shows that at the critical point, the facets leading to

an icosahedral structures are already in place. The results from MPMLA and the analysis

of the trajectory point to the fact that the icosahedral structure forms through the gradual

joining together of the tetrahedra rather than a shell-by-shell growth process[31].
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Figure 5.13: A 2D visualization of a configuration on the transition state leading to the icosahedral
structure.(a)The black circles enclosed within the green boxes are the bulk Fcc atoms arranged to form
tetrahedra structures. (b) The black triangles enclosed within magenta boxes are the surface < 111 >
facets while the red squares within the blue circles are the atoms forming the five fold cap.

Fig. 5.14 shows the distribution of pIh estimates for the best reaction coordinate obtained

from the MPMLA. 300 initial configurations are selected from the TSE, between the two
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lines in fig. 5.12. For each configuration, 100 trajectories are run, and the trajectories are

terminated when the product basins is reached. pIh is the fraction of trajectories that ended

in the Ih structure. Fig. 5.14 shows that the distribution peaks at pIh = 0.5, implying

that at the transition state described by the reaction coordinate, the configurations have

a 50% chance of going to the Ih structure. This confirms that the linear combination of

n, Ŝfcc−fcc and Qe describes the liquid → Ih transition.
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Figure 5.14: A pIh distribution histogram for the critical condition, Ŝ∗

fcc−fcc = 13.0617−0.03893n−
13.9735Qe.

5.3.2 Decahedral Structure

Table 5.7 contains a summary of the results for the maximum likelihood analysis for the

TPE along the liquid → Dh transition path using single order parameters. Based on the

likelihood score, embryo size, n, is better than the rest of the parameters. But, n does not

say anything about the hierarchical order that appears in the structures found during the

freezing of gold nanoclusters. In terms of the structural order parameters, Ŝfcc−fcc has the

highest likelihood, second only to n. A Dh has a single line of bulk Ih atoms in the core,

surrounded by five planes of bulk Hcp atoms. Fig. 5.15 shows a plot of ŜIh−hcp, Ŝfcc−fcc and

Ŝedge−<111> for a trajectory ending in the Dh structure. It shows that although ŜIh−hcp gives
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Dh its unique characteristics, it is built at a later time than the grouping together of bulk

fcc atoms and the formation of the surface facets.

Order Parameters Reaction Coordinates (r) LEαmax r∗

nCNA 0.01155 ∗ nCNA − 0.9847 -10187.9 n∗
CNA = 85.2

n 0.00883n − 1.4538 -10132.9 n∗ = 164.6

Qe 8.0096Qe − 2.2393 -10264.9 Q∗
e = 0.2795

ŜIh−hcp 0.6756ŜIh−hcp − 0.6938 -10312.8 Ŝ∗
Ih−hcp = 1.027

Ŝfcc−fcc 0.3702Ŝfcc−fcc − 1.2374 -10224.3 Ŝ∗
fcc−fcc = 3.342

Ŝvert−edge 0.1603Ŝvert−edge − 0.02783 -10352.9 Ŝ∗
vert−edge = 0.1736

Ŝedge−<111> 0.4018Ŝedge−<111> − 0.3023 -10328.4 Ŝ∗
edge−<111> = 0.7522

ŜIh−Ih 0.37906ŜIh−Ih − 0.7285 -10342.7 Ŝ∗
Ih−Ih = 1.9220

Table 5.7: Different single order parameters tested for liquid → Dh transitions in gold nanoclusters.
BIC = (1/2) lnNR = 3.837 .

The results for the combinations of the order parameters is summarized in Table 5.8. It

shows that the best reaction coordinate describing the formation of the decahedral structure

is the linear combination of n, Qe, and Ŝedge−<111>, and it is given as,

r = 0.00904n + 5.4419Qe − 0.2714Ŝedge−<111> − 3.1467. (5.16)

The equation defining the critical surface is

Q∗
e = 0.578236 − 0.00166118n + 0.0498723Ŝedge−<111>. (5.17)

Qe in the reaction coordinate is sensitive to hexagonal symmetries and captures the overall

quality of the embryo, while Ŝedge−<111> captures the formation of the five-fold cap. Fig. 5.16

shows the shooting point that lies on the liquid→ Dh transition path and the surface defining

the critical conditions for this transition. Also shown is a typical trajectory leading to a Dh

structure. The same data is presented in fig. 5.17 but with only n and Qe. Also shown in

fig. 5.17 is the critical condition given by eq. 5.17, for Ŝedge−<111> = 1 and Ŝedge−<111> = 4.

It can be seen that for a fixed n, increasing Qe and Ŝedge−<111> increases the chances of Dh

nucleating from the system.
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Figure 5.15: A Plot showing ŜIh−hcp, Ŝfcc−fcc and Ŝedge−<111> for Dh trajectory.
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Order Parameters Reaction Coordinates (r) LEαmax r∗

n, Qe 0.00839n + 6.9244Qe − 3.5919 -10096.4 Q∗

e = 0.5187 − 0.00121n

n, ŜIh−hcp 0.00883n + 0.5152SIh−hcp − 1.9106 -10130.9 S∗

Ih−hcp = 3.7084 − 0.017139n

n, Ŝfcc−fcc 0.00708n + 0.1298Ŝfcc−fcc − 1.6340 -10113.4 Ŝ∗

fcc−fcc = 12.5814 − 0.05456n

n, Ŝvert−edge 0.00893n − 0.29272Ŝvert−edge − 1.3691 -10123.3 Ŝ∗

vert−edge = 0.03050n − 4.6770

n, Ŝedge−<111> 0.00872n + 0.0250Ŝedge−<111> − 1.4624 -10132.7 Ŝ∗

edge−<111>e = 58.3345 − 0.34816n

n, Qe, ŜIh−hcp 0.00872n − 0.28732ŜIh−hcp + 6.3657Qe − 3.2319 -10077 Ŝ∗

Ih−hcp = 0.03036n + 22.1549Qe − 11.248

n, Qe, Ŝfcc−fcc
0.00753n + 0.1136Ŝfcc−fcc+
4.6722Qe − 3.19494

-10084.7
Ŝ∗

fcc−fcc =

Ŝ = 28.119 − 0.06633n − 41.121Qe

n, Qe, Ŝvert−edge

0.00891n + 7.3105Qe−

0.1811Ŝvert−edge − 3.57832
-10079.8 Ŝ∗

vert−edge =
0.04922n − 40.3603Qe − 19.7552

n, Qe, Ŝedge−<111>
0.00904n + 5.4419Qe−

0.2714Ŝedge−<111> − 3.1467
-10073.1 Ŝ∗

edge−<111> =
0.0333n + 20.0494Qe − 11.593

Table 5.8: Linear combination of order parameters tested for liquid→Dh transitions in gold nanoclusters. BIC = (1/2) lnNR = 3.837 .
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Figure 5.16: Shooting points that on the liquid → Dh transition path plotted with order parameters
making the reaction coordinate ( n, Qe and Ŝedge−<111>). The red points are on a typical trajectory
leading to Dh structure.

Configuration along the trajectories in fig. 5.16 that lie on the critical surface are chosen

and visualized in detail to understand the nature of the critical embryo. Fig. 5.18 shows the

projections for bulk and surface atoms, respectively, from the embryo of a configuration at the

transition state leading to a Dh structure. It shows that within one side of the embryo, the

bulk fcc atoms are mostly aligned to form large tetrahedra (black circles within dashed green

boxes) which are bounded on the surface by the < 111 > (black triangles within magenta

boxes) planes. The number of bulk fcc atoms here is greater than that observed in the case

of the Ih. But the number of < 111 > planes is less than observed for Ih. In fig. 5.18 there

are two five-fold symmetric caps (red squares in dashed blue circles) appearing, but they are

not linked together. One of these caps later dissolves and appears at the opposite end of the

other cap to give the structure its unique characteristic. This shows that at the critical point,

the bulk Fcc atoms are grouped to form a block and at least one five-fold symmetric cap

appears, which is similar to Ih, but the formation of the line of bulk Ih surrounded by Hcp

atoms gives it the final structure. This latter formation of the line of bulk Ih surrounded by

Hcp atoms as seen in fig. 5.15 may be one of the factors causing a higher free energy barrier

to the Dh structure, in addition to the appearance of high energy < 100 > facets.
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Figure 5.17: Shooting points that are on the liq → Dh transition path projected into order param-
eters, n and Qe.

5.3.3 FCC Structure

For the formation of the FCC structure, the Qe has the highest likelihood score among the

single order parameters (see Table 5.9). Qe is the Q6 calculated using the atoms in the

largest embryo, and it is sensitive to the hexagonal nature of a single fcc or Hcp atom.

This correlation may be the reason why Qe is better than Ŝfcc−fcc as most FCC structures

contain fcc and Hcp atoms. Another order parameter that performs well is ŜIh−hcp. A

metastable liquid contains a large number of bulk Ih atoms, while a perfect FCC structure

has no bulk Ih atoms. The elimination of these bulk Ih appears to be important for the

evolution of FCC structure. Fig. 5.19 shows the transition path probabilities along the

liquid→ FCC transition path as a function of ŜIh−hcp and Ŝfcc−fcc, and the models which

describe them. It shows that the model P (TP |ŜIh−hcp) fits better to the data. The scatter

in the P (TP |Ŝfcc−fcc) maybe due to the presence of Hcp atoms in the FCC clusters. A

configuration that lies on the liquid→ FCC transition path can contain a high ratio of bulk

Hcp atoms compared to bulk fcc atoms. Table 5.9 contains a summary of the maximum

likelihood analysis. It shows that a linear combination of Qe, ŜIh−hcp and Ŝedge−<111> is the
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Figure 5.18: A 2D visualization of the critical embryo leading to the Dh structure. Black circles with
green boxes are the bulk fcc atoms, black triangles within magenta boxes are the surface < 111 >,
while red squares in blue dashed circle indicate the five-fold cap.

best reaction coordinate. The growth of bulk fcc atoms and the elimination of five-fold

local structures (ŜIh−hcp and Ŝedge−<111>) are the major drivers to the nucleation of an FCC

phase.

Order Parameters Reaction Coordinates (r) LEαmax r∗

n 0.00796n − 1.4814 -10566.7 n∗ = 185.9

Qe 9.1935Qe − 3.3292 -10264.9 Q∗

e = 0.3621

ŜIh−hcp 0.9362ŜIh−hcp − 0.4621 -10524 Ŝ∗

Ih−hcp = 0.49353

Ŝfcc−fcc 0.2708Ŝfcc−fcc − 1.4750 -10612.8 Ŝ∗

fcc−fcc = 5.4455

n, Qe 0.005814 + 9.794Qe − 4.53058 -10388.7 Q∗

e = 0.4626 − 0.0005936n

Qe, ŜIh−hcp 7.7331Qe − 0.4512ŜIh−hcp − 2.5252 -10359.9 Ŝ∗

Ih−hcp = 17.138Qe − 5.5964

Qe, Ŝfcc−fcc 9.7686Qe − 0.09838Ŝfcc−fcc − 3.13996 -10407.9 Ŝ∗

fcc−fcc = 99.2899Qe − 31.9151

Qe, ŜIh−hcp, Ŝedge−<111>
7.0602Qe − 0.2529ŜIh−hcp

−0.41233Ŝedge−<111> − 2.0240
-10292.0

Q∗

e = 0.2866 + 0.0358ŜIh−hcp

+0.0584013Ŝedge−<111>

Table 5.9: Different single order parameters tested for liq → FCC transitions in gold nanoclusters.
BIC = (1/2) lnNR = 3.858 .

The pFCC estimate distribution is calculated to determine the accuracy of r = 7.0602Qe−
0.2529ŜIh−hcp − 0.41233Ŝedge−<111> − 2.0240 as reaction coordinate for the liquid→ FCC

transition. 96 initial configurations are selected from the TSE and 100 trajectories are made

from each configuration. pFCC is the fraction of trajectories that ended in the FCC structure

for each configuration. Fig. 5.20 shows that the distribution peaks at pFCC = 0.5, implying
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Figure 5.19: Plot of the transition path probabilities for Liq → FCC transition as a function of Ŝfcc

and ŜIh−hcp.

that within the transition state described by the reaction coordinate, the configurations have

a 50% chance of growing into the FCC structure. This confirms that the anti-correlation of

all the five-fold local environment and the Qe best describe the liquid → FCC transition.

5.3.4 Icosahedral - Decahedral Transition

In fig. 5.7(b), we see the transition path probabilities for the various solid→solid trans-

formations. Of particular interest is the Ih → Dh transition which has been observed

experimentally[31]. From the MLA performed on the collective variable on this transition

path, the best reaction coordinate for this transition is the linear combination of n and Qe.

This is the same pair of order parameters that describe the formation of the Dh structure,

which may cause confusion. Fig. 5.21 shows points along liquid→ Ih path projected into n

and Qe, and two trajectories passing through Ih to Dh. It also shows a single trajectory that

nucleates directly to Dh. The first critical line (green) is the transition point to Ih using the

TPE for the liquid → Ih. Visualization of the configurations lying on this TSE shows the

features of a critical embryo on its way to the Ih structure (see fig. 5.22(a)). Fig. 5.22(a)

shows the bulk fcc atoms positioned to form the tetrahedra that join to form the Ih struc-

ture. At the second transition state (maroon), there has been some rearrangement of the

bulk Fcc atoms to form larger blocks as shown in fig. 5.22(b) .
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Figure 5.20: A pFCC distribution histogram for the critical condition, Q∗

e = 0.2866+0.0358ŜIh−hcp+

0.0584013Ŝedge−<111>.

5.3.5 Discussion

The probabilities for a configuration to lie on the liquid→Ih transition path is an order of

magnitude higher than others. This is in agreement with results from direct calculations of

the probability of observing Ih structure in an ensemble of nucleation events[3]. This shows

that our scheme is able to identify the stable basin and that the multiple states shooting is

properly executed. The results from the MPMLA show that while embryo size and Qe can

accurately describe transitions from liquid to solid states, the structural parameters are very

important in understanding the formation of the different structures found during freezing

of gold nanoclusters. Although these structural parameters are present in all the structures,

their responses are unique to each of the transition paths. The Ŝfcc−fcc parameter indicates

the coming together of bulk fcc atoms. For the Ih structure, this parameter measures the

formation of tetrahedral units, and it is a very good component of the reaction coordinate

for the formation of Ih cluster from the metastable liquid. A further look at the trajectories

producing Ih shows that the Ih structure grows by the sequential addition of tetrahedral

subunits. A few tetrahedral subunits can pack together without introducing significant strain
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into the system, allowing the Ih to grow. However, since they cannot fill space, the last few

subunits cannot be completed without redistributing the stress throughout the structure,

giving rise to the partially formed Ih structures found in the simulations. The Dh structures

are formed through the initial formation of surface < 111 > facets, with a corresponding

growth of blocks of bulk fcc atoms. Although the formation of Ih and Dh structures share

the formation of a five-fold symmetric cap, the clustering of the bulk fcc atoms underneath

the cap is made in a different manner. While regular tetrahedral units are formed in Ih, a

large block in the form of a triangular prism is the shape of the bulk fcc atoms in the case

of Dh structure. This highlights how the delicate balance between surface and bulk growth

play an important role in the competitive nucleation in nanoclusters.

Despite the large grouping of bulk fcc atoms in Dh and FCC structures, Ŝfcc−fcc is not

part of the reaction coordinates for the formation of these structures from the liquid. Qe

is sensitive to to hexagonal environments present due to bulk fcc, bulk Hcp, < 111 > and

< 100 > atoms. Hence, Qe becomes a stronger order parameter for Dh and FCC structures

since they contain high ratios of the hexagonal environment. Table 5.10 contains the coeffi-

cients of the major test order parameters when used as reaction coordinate for the different

structures. As these coefficients increase, the order parameter becomes more important for

a given transition. Hence, while Qe is the least important for the liquid → Ih transition, it

is most important for the liquid → FCC transition. The order parameters measuring the

growth of five-fold symmetry environments (ŜIh−hcp and Ŝedge−<111>) are significant in the

formation of FCC. This is a form of anti-correlation, as elimination of five-fold symmetry

enhances the growth of the FCC structure.

Structure n Ŝfcc−fcc ŜIh−hcp Qe Ŝedge−<111>

Ih 0.0111 0.532 0.3915 6.170 0.2674

Dh 0.0088 0.370 0.6756 8.009 0.4018

FCC 0.0079 0.270 0.9362 9.193 0.6774

Table 5.10: Coefficients of the different order parameters for the different structures formed from
the metastable liquid.
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5.4 Conclusions

The evolution of the solid phase is best described by size and the orientational order parameter

of the embryo, but to follow the formation of each of the structures, a structural order

parameter is required. The formation of Ih is through the tetrahedral structures having one

of its sides as a < 111 > plane. This shows that both surface and bulk grow at the same

time, as Ih forms via a gradual coming together of the tetrahedral units and not shell by shell

growth. Both Ih and Dh begin with a gathering of the bulk fcc atoms to form a tetrahedron

in the Ih structure while oblong triangular pyramids form in the Dh. The alignment of the

bulk Ih atoms surrounded by Hcp planes which gives it the characteristic five-fold symmetry,

delays the formation of Dh structures. The maximum likelihood analysis shows that the Dh

structure can nucleate directly from the metastable liquid as well as by solid-solid transition.
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Chapter 6

Discussions and Conclusions

6.1 Discussions

The major theme in this thesis is to develop a molecular understanding of competition in

phase transitions. Competitive nucleation is a phenomenon where a metastable phase can

undergo nucleation to any of the many stable structures or phases. For example, molecu-

lar dynamic simulations and experiments have shown that nanoclusters at the same initial

conditions nucleate to different structures, such as icosahedral, decahedral and face-centered

cubic structures [1, 2, 3, 20, 31]. Competitive nucleation has been observed during the crys-

tallization of proteins [77] and optically active sodium chlorate crystals [79]. Competitive

nucleation often appears in systems that exhibit polymorphism. Therefore, understanding

the dynamics of competitive nucleation is very essential in the production of materials whose

desired properties, such as electrical [71], magnetic [73], optical and catalytic properties, are

structure dependent.

In order to understand the dynamics of the nucleation process, a good knowledge of the

reaction coordinate is required. The embryo size, which is often used as reaction coordinate

in nucleation studies lacks information on the effects of surface areas, embryo geometry and

structural order [11, 12], which are important in understanding how different structures are

formed. Numerous studies [13, 14, 15] have been carried out with the aim of understanding

how surface areas and structural order affect the different structures formed during com-

petitive nucleation. However, these studies focused on identifying the nature of the global

structures, rather than identifying the structure of the critical embryo. Therefore, this the-

sis sought to answer the question “What are the most suitable reaction coordinates

that can be followed to properly understand the formation of different structures

during the nucleation of nanoclusters?” To answer this question, the aimless shooting
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algorithm was extended to sample multiple product basin, and a multiple path maximum

likelihood analysis was developed and used to determine the appropriate reaction coordinate.

The research work covered in this thesis began by focusing on competitive heterogeneous

nucleation in the Potts model because the system can be easily simulated, which allows the

nucleation rates and free energy surfaces to be accurately calculated using a variety of different

methods. The simplicity of the model also allows the nucleation conditions to be changed

by adjusting a few parameters such as the external field and the interaction between the

spins representing the different phases. This provides an opportunity to test the effectiveness

of the rate calculations under different conditions. The Potts model also provides an ideal

system for testing the new methodology associated with the multiple state aimless shooting

and maximum likelihood analysis because the nucleation behaviour of the system can be fully

characterized using the traditional methods.

The survival probability rate JSP was selected as our reference rate because the method

has been used extensively, is robust to the selection of cut off parameters [141], and is easily

performed. However, it only provides information about the total rate at which materials

leave the metastable basin, and provides no information regarding the nucleation of the

competing phases. The transition state theory calculations do provide direct information

about the nucleation of the different phases, but requires the calculation of the complete free

energy surface and the calculation of the kinetic pre-factor. These can be time consuming

and difficult calculations, particularly in cases where the system involves a more complicated

molecular model.

The correct normalization of ∆G(nB, nC), with respect to the metastable region, was

essential for correctly predicting the rates on the basis of eqs. 2.8 and 2.9 for the heteroge-

neous nucleation in the Potts model. This is consistent with earlier studies of heterogeneous

nucleation in the Ising model [81]. Without the correct normalization of the free energy sur-

face, the rates from the TST method overestimate the rates.These heterogeneous nucleation

studies benefit from the fact that there is only a single nucleating embryo possible in the

system, i.e., the one located at the impurity, so that the cluster size is an accurate order

parameter describing the state of the system. The question of the correct normalization re-

mains a problem in homogeneous nucleation, where the normalization has only been shown

in cases where the barriers are expected to be high and the nucleation embryo rare. The free
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energy surfaces calculated in Chapter 2 are three dimensional in nature, involving two order

parameters. Usually the saddle point approximation is used so that only the free energy of

the lowest crossing point enters TST. Here, it was necessary to account for fact that the tran-

sition state becomes a boundary rather than a point, which involves introducing additional

contributions. This also complicates the calculations of f+ and the Zeldovich factor which

serve as the pre-factors for eqs. 2.8 and 2.9. It was necessary to simplify the process. In

future, it may be helpful to develop a more rigorous set of approximations for dealing with

these features on two dimensional free energy surfaces.

The MFPT has been used to calculate nucleation rates in many systems, and to reconstruct

the free energy surface for single component systems[110]. It is also useful in obtaining the

critical size and the Zeldovich factor. But for the Potts model studied here, the critical size

obtained from the fit to the MFPT does not define the transition state as it has no information

regarding which phase it is going to. Also, the parameter c is not a representation of the

curvature and therefore cannot be used to estimate the Zeldovich factor. These two kinetic

parameters are important and given the type of model used here, the two dimensional Fokker-

Planck equation should be appropriately related to a two dimensional MFPT, τ(nB, nC)

where n∗
B and n∗

C can be obtained directly as fit parameters.

The sampling of any configuration with the aim of obtaining an accurate reaction co-

ordinate for any transition must be achieved without reference to a pre defined reaction

coordinate. To do this, the aimless shooting method of TPS was extended to sample con-

figurations where multiple transitions may occur. The multiple path maximum likelihood

expression was developed and used to maximize the probabilities of any configuration being

on a certain transition path. While the two-state MLA can be tested using the committor

probabilities or the transition path probabilities [11, 12], MPMLA used only the transition

path probabilities. The results show that when there is absolutely no mixing between the two

components, a linear combination of the size and surface area of the component was the most

accurate reaction coordinate. The pB distribution histogram confirms these results, which

strongly suggest that for a competitive process, the method of decoupling the transition path

is rigorous and accurate, provided the order parameter is unique to each phase. This shows

the importance of local order parameters, unique to the competing phases, in understanding

how each phase is formed through the process of competitive nucleation. The size of the
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cluster is often regarded as a global parameter. While this is correct if the system is made of

a single component, in the Potts model used in this work, the size of the different components

could be regarded as a local order parameter. The surface area that is part of the reaction

coordinate is the interfacial area between the evolving phase and the metastable phase and

therefore a local order parameter. Unlike the homogeneous Ising model [11, 12], the shape

of the cluster in this model does not vary much, but rather aligns with the shape of the het-

erogeneity. Therefore, for the critical clusters, both small and large sizes are compact unlike

the fractal small critical sizes observed by Peters et al[12]. With partial mixing, the two

components like sitting next to each other. Eliminating the opposite components increases

the probability of the other phase being formed. This shows the negative effect of some order

parameters, which means that certain local ordering must be removed or suppressed before

a desired structure can nucleate from the metastable phase.

The second system studied in this thesis is competitive nucleation in gold nanoclusters.

For this system, the probabilities of seeing a given structure in an ensemble of freezing events

are temperature and size dependent. The results show that PIh increases with temperature

while PDh and PFcc decrease with increase in temperature. The increase of PIh with respect

to temperature is due to two factors; ((a) the low value of σ<111> which Ih surfaces are

made of, compared to σ<100> that surrounds Dh and FCC structures, (b) the ratio of bulk

Ih atoms in the metastable phase increases with temperature, making the metastable liquid

more like the Ih phase. These reasons may explain why the Ih structure is the predominant

structure, even in size range where energetic predictions favours the FCC structures. As

size increases, PIh decreases at a fixed temperature. This means the smallest size (N = 309)

form mostly Ih structures, while, the number of Ih formed decreases as the cluster becomes

larger. On the other hand, PDh and PFcc increase with an increase in the cluster size, but

their values are an order magnitude lower than PIh. The rates per particle decrease with

increasing in temperature for all the cluster sizes.

In Chapter 5, the multiple path transition path sampling was used to sample gold nan-

oclusters. The multiple path maximum likelihood analyses was performed for the different

transition paths. The probabilities of a configuration to lie on the liquid → Ih transition

path is an order of magnitude higher than the others despite the fact that only 7% of the

initial shooting points were from initial liquid → Ih trajectories. This confirms the initial
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probabilities observed by the direct calculations in Chapter 4. The ability to reproduce the

probabilities shows that the multi path aimless shooting scheme is able to identify the sta-

ble basin and the shooting is properly executed. The results for the multi-path maximum

likelihood analyses in gold nanoclusters, show that while the embryo size as well as some

global parameters such as Q′
ls can accurately describe transitions from liquid to solid states,

the structural parameters are very important in understanding the formation of the different

structures found during freezing. Though these structural parameters are present in all the

structures, their responses are unique to each of the transition paths. The Ŝfcc−fcc signal

indicates the formation of tetrahedral units in the Ih, and is found to be a very good com-

ponent of the reaction coordinate for the formation of the Ih structure. A further look at

the trajectories producing Ih structure shows that the Ih structure grows by the sequential

addition of tetrahedral subunits. A few tetrahedral subunits can be packed together without

introducing significant strain into the system, allowing the Ih to grow. However, since they

cannot fill space, the last few subunits cannot be completed without redistributing the stress

throughout the structure, giving rise to the partially formed Ih structures found in the sim-

ulations. Presumably, the perfect Ih, in the case of the appropriate magic sized nanocluster,

would be formed over a long period of time as the structure anneals. The Dh structures

are nucleated through the initial formation of surface < 111 > facets, with a corresponding

growth of blocks of bulk fcc particles. Though the formation of the Ih and Dh structures

share the formation of a five-fold symmetric cap, the clustering of the bulk fcc atoms under-

neath the cap is made in a different manner. While regular tetrahedral units are formed in

the Ih, a triangular prism is the shape of the bulk fcc atoms in the case of the Dh structure.

The formation of a five-fold symmetric cap and < 111 > facets give credence to surface

initiated freezing suggested by many authors[149, 150, 151], but the clustering of the bulk fcc

atoms underneath shows that both surface and bulk growth start at the same time. Hence,

this work highlights how the same delicate balance between surface and bulk that leads to

the size dependent equilibrium phase diagram of nanoclusters also plays an important role

in their competitive nucleation behavior.

Following the resulting reaction coordinate leads to the understanding of how local struc-

tures arrange themselves to form large scale non-crystalline structures such the Ih and Dh

structures. Unfortunately, an explicit reason why the Ih structure is dominant even in size
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ranges where the FCC is expected to have a global stability is not known. An in-depth look

into the potential energy landscape may be necessary to understand the predominance of Ih

structures. Although relative free energy barriers, β∆G∗
m,i (see eq. 4.7), to the structures

can be estimated from the probabilities of seeing the structures in simulation, a free energy

calculation as a function of the obtained reaction coordinates is desirable. This could be used

to further confirm the suitability of these reaction coordinates, though a three dimensional

free energy calculation will be challenging. Another way of confirming the suitability of

these reaction coordinates would be measuring the MFPT as a function of the different order

parameters making up the reaction coordinate. This will measure the rates of crossing the

barriers using the appropriate reaction coordinate in multiple dimension. In this work, the

Bayesian information criterion and the committor probability estimates are the quantitative

way of checking when additional parameter is significant to the reaction coordinate or oth-

erwise. Also, the critical nuclei of each of the major transitions qualitatively indicate a high

accuracy of our method. Despite the level of accuracy obtained in this work, an independent

test of our methods could use the transition path ensemble to perform the Genetic Neural

Network analysis.

6.2 Conclusions

In this thesis, a molecular understanding of competitive nucleation was investigated using the

Potts model and gold nanoclusters. The free energy surface of the Potts model, with q = 3,

nucleating on an impurity shows that the competition between the components reduces the

level of wetting of the impurity. This competition also delays the nucleation thereby reducing

the rates at which the system leaves the metastable phase when compared to single component

system. The rate to each of the phases is a function of the free energy barrier which depends

on the external field strength for each of the spins. The results show that the normalizing

the free energy surfaces with respect to the phase space of the metastable state is important

in calculating an accurate rate that compares to the rates obtained from other methods.

A multiple path maximum likelihood analysis was developed and used to explore the accu-

rate reaction coordinates for the different transitions to stable phases. The linear combination

of the size and surface area is the best reaction coordinate for each transition on the Potts

model. The implication is that for competitive processes, the local order parameters explain
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the transitions. For the transitions in gold nanoclusters, the correlations between the local

geometric environment appear to explain the evolution of the different structures. The com-

bination of these structural order parameters with the embryo size or the Qe gives the best

reaction coordinate for the different transitions. The formation of the five-fold symmetric

cap at the same time when bulk tetrahedral structures are formed during the evolution of Ih

and Dh geometries give credence to surface initiated nucleation as well as bulk nucleation.
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[69] László Gránásy, “Diffuse interface approach to vapour condensation”, Europhys. Lett.
24, pp. 121–126 (1993).

[70] Sanjeeb K Sahoo and Vinod Labhasetwar, “Nanotech approaches to drug delivery and
imaging”, Drug Delivery Today 8(24), pp. 1112–1120 (2003).

[71] P. Paulus, A. Goossens, R. Thiel, A. Van Der Kraan, G. Schmid, and L. De Jongh, “Sur-
face and quantum-size effects in pt and au nanoparticles probed by 197au mössbauer
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