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Abstract: Thermophysical and thermochemical calorimetric investigations were carried out on the
synthetic analogue of mandarinoite. The low-temperature heat capacity of Fe2(SeO3)3·5H2O(cr)
was measured using adiabatic calorimetry between 5.3 and 324.8 K, and the third-law entropy was
determined. Using these Co

p,m(T) data, the third law entropy at T = 298.15 K, So
m, is calculated as

520.1 ± 1.1 J·K−1·mol−1. Smoothed Co
p,m(T) values between T → 0 K and 320 K are presented,

along with values for So
m and the functions [Ho

m(T)− Ho
m(0)] and [Φo

m(T)−Φo
m(0)]. The enthalpy

of formation of Fe2(SeO3)3·5H2O(cr) was determined by solution calorimetry with HF solution
as the solvent, giving ∆fHo

m(298 K, Fe2(SeO3)3·5H2O, cr) = −3124.6 ± 5.3 kJ/mol. The standard
Gibbs energy of formation for Fe2(SeO3)3·5H2O(cr) at T = 298 K can be calculated on the basis
on ∆fHo

m(298 K) and ∆fSo
m(298 K): ∆fGo

m(298 K, Fe2(SeO3)3·5H2O, cr) = −2600.8 ± 5.4 kJ/mol.
The value of ∆fGm for Fe2(SeO3)3·5H2O(cr) was used to calculate the Eh–pH diagram of the
Fe–Se–H2O system. This diagram has been constructed for the average contents of these elements in
acidic waters of the oxidation zones of sulfide deposits. The behaviors of selenium and iron in the
surface environment have been quantitatively explained by variations of the redox potential and the
acidity-basicity of the mineral-forming medium. These parameters precisely determine the migration
ability of selenium compounds and its precipitation in the form of solid phases.

Keywords: mandarinoite; adiabatic calorimetry; heat capacity; entropy; enthalpy of formation;
the Gibbs energy of formation

1. Introduction

Hydrous selenite minerals are found, as a rule, in the oxidation zone of sulfide and selenide
ores [1,2]. Our understanding of low-temperature mineral assemblages strongly depends on our
knowledge of the thermodynamic stability of the constituting mineral phases. Experimental and
thermodynamic modeling is quite essential to analyze the conditions under which selenites and
selenates replace selenides, and selenium-bearing sulfides in the oxidation zones of sulfide ore
deposits or upon weathering of technologic waste. The physicochemical modeling is based on the
thermodynamic constants of minerals. Reliable solubility product or Gibbs energy of formation values
of the phases crystallized in the system are necessary for calculation of mineral equilibria. In this study,
we continue our systematic investigation of the thermodynamic properties of hydrous selenites [3–5]
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by performing a calorimetric and thermodynamic study of hydrous ferric selenite, a synthetic analogue
of mandarinoite, (Fe2(SeO3)3·5H2O).

Mandarinoite was found for the first time at Pacajake mine near Hiaco, Colquechaca, Bolivia [6],
where it is associated with native selenium, siderite (FeCO3), penroseite (NiSe2), and alteration
products of selenides and selenium-bearing sulfides such as ahlfeldite (NiSeO3·2H2O), cobaltomenite
(CoSeO3·2H2O), chalcomenite (CuSeO3·2H2O), and molybdomenite (PbSeO3). The water content
of mandarinoite was not directly analyzed by Dunn et al. [6], but the amount of water was derived
from difference based on electron microprobe analysis (Σ(Fe2O3 + SeO2) + H2O = 100.00 wt %) and
the theoretical formula of the new mineral was deduced as Fe2(SeO3)3·4H2O. A single ferric selenite
hydrate crystal from De Lamar silver mine was studied by Hawthorne [7], who derived the ideal
formula of mineral (Fe2(SeO3)3·6H2O) from the structure based on single-crystal X-ray precession
photographs. In our recent work [8], based on XRD measurements and thermal analysis, we were able
to derive Fe2(SeO3)3·(6− x)H2O (x = 0.0–1.0) as the formula of the hydrous ferric selenite mandarinoite.
The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the
lower the x value, the higher crystallinity can be expected. The sample synthesized by us, identical to
mandarinoite according to XRD analysis, has the composition Fe2(SeO3)3·5H2O.

The analysis of the thermodynamic parameters (solubility product or Gibbs energy of formation)
for calculation of mineral equilibria involving selenites [1–3,5,9–11] showed that these parameters
frequently raise questions and need specification.

No calorimetric determination of the standard enthalpy of formation of iron(III) selenites from
aqueous solution has been found. Chukhlantsev and Tomashevsky [12] were the first to study the
solubility of iron(III) selenite with respect to other selenites. The solubility of the specimen in a dilute
solution of nitric or sulfuric acid was measured at 293 K. The solid phase, however, was identified
only by the determination of Fe and Se concentration and it was assumed that the composition of
the solid phase is Fe2(SeO3)2. The reported value of the solubility product is (−30.91 ± 0.25) [12].
No information on the quality of the specimen is available but, according to the authors of [10], it is
most likely amorphous.

The authors of this book recalculated the data of [12] for the equilibrium:

Fe2(SeO3)2(am)→ 2Fe3+ + 3SeO3
2−.

The result was log10K (293.15 K) = (−33.77 ± 0.15), but it is not selected [10] due to insufficient
characteristics of the solid phase.

The value of the solubility product obtained in the study of Rai et al. [13] for Fe2(SeO3)3·6H2O is
more than 10 orders of magnitude less than that reported value. Their result for the equilibrium:

Fe2(SeO3)3·6H2O (cr)→ 2Fe3+ + 3SeO3
2− + 6H2O

is log10K (296 K) = (−41.58± 0.11), and it is selected in the reference book [10]. This is the value we used
earlier [1,2,14] to calculate the Eh-pH diagram in the system Fe-Se-H2O. However, Giester et al. [15]
reinvestigated compounds synthesized by the method of Rai et al. [16] and studied the synthetic
phases by chemical analysis, IR spectroscopy, powder and single crystal X-ray diffraction as well as
thermogravimetric analysis. Giester et al. [15] were able to show that the formula of synthetic analogue
of mandarinoite, i.e., Fe2(SeO3)3·6H2O, is erroneous and should be rewritten as Fe2(SeO3)3·3H2O. Thus,
the value of lgSP obtained in the work [13] apparently is not a characteristic value of mandarinoite,
but describes the other iron selenite—Fe2(SeO3)3·3H2O.

It should be noted that the experimental determination of thermodynamic data of rare minerals
in general, and of the hydrous ferric selenite mandarinoite in particular, on the basis of studying
their solubility or by calorimetric measurements, can hardly rely on natural samples, because
these usually do not occur in sufficient amounts, form only tiny crystals, may include inclusions,
be covered by weathering crusts, and almost inevitably contain impurities. All these defects influence
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many properties of the samples studied and certainly their thermodynamic parameters. In this
communication we therefore present the results of our investigations of the enthalpy of formation and
of the heat capacity of the synthetic analogue of mandarinoite Fe2(SeO3)3·5H2O.

2. Experimental Methods

2.1. Sample Preparation

Detailed description of synthesis technique of analogues of mandarinoite are given in [8]. In short,
powdered SeO2 (initial weight: ∼0.207 g) and FeCl3·6H2O (∼0.331 g) dissolved in distilled water
(26 mL) were mixed together. The purity of the starting materials is given in Table 1. The solutions
were placed in Teflon containers (total reactor volume: 55.75 mL), which were then positioned in steel
autoclaves. The entire reactors were transferred to Memmert® heating ovens at room temperature
and heated up to 30 ◦C, inducing an autogenous pressure of 1.5 bar due to the thermal expansion
of the fluid in relation to the filling rate. A synthetic analogue of mandarinoite only formed under
low-hydrothermal conditions at 30 ◦C (see [8] for more details). Pre-run and post-run pH values
were more or less constant (pre-run pH 1.03 ± 0.02; post-run pH 1.09 ± 0.03). The duration of
synthesis varied between 34 and 69 days. Synthesis experiments were terminated by removing the
autoclaves from the heating oven and immediately opening them. The solid particles were filtered
out, desiccated overnight, and stored in an exsiccator until further analysis. Sample recovery was
254± 25 mg (except for sample 9 with only 152 mg; please note sample identification is identical to [8]).
As precise calorimetric determination requires a fairly large mass (in our study we used ~500 mg for
determination of heat capacity and 200 to 500 mg for heat of solution determination; see below for
more details), synthetic analogues of mandarinoite of various runs (9, 13, 14, 15, 16) were combined
and used for calorimetric investigation.

Table 1. Characterization of compounds used or synthesized in this study.

Compound Source Initial Mass
Fraction Purity

Purification
Method

Final Mass
Fraction Purity

Analysis
Method

Selenium(IV) oxide Alfa Aesar 0.994 None a

Iron(III) chloride·6H2O Alfa Aesar ≥0.97 None a

Sodium selenate Vecos 0.998 None a

Sodium nitrate Vecos 0.998 None a

Iron(III) nitrate
nonahydrate Vecos 0.998 None a

Hydrofluoric acid (45%) Halopolymer 0.9999 None a

Fe2(SeO3)3·5H2O Synthetic 0.97 XRD b, XRF bc

a not specified by the supplier. b X-ray fluorescence analysis. c X-ray powder diffraction.

2.2. Calorimetric Methods

Low-temperature heat capacity, Co
p,m, was determined using adiabatic calorimetry for the

temperature range T = 5.3 to 324.8 K for Fe2(SeO3)3·5H2O(cr). Measurements were done using
a “AK-9.02/BCT-21”-type calorimeter (TERMAX, Moscow, Russia). The experimental uncertainty was
determined from previous heat-capacity measurements made on benzoic acid (mass fraction purity
0.99998) and synthetic sapphire, α-Al2O3 (mass fraction purity 0.99999). The Co

p,m results between T = 5
and 330 K on the benzoic acid, compared to published values [17], are shown in Figure S1. The Co

p,m
results between T = 5 and 273 K on the synthetic sapphire, compared to published values [18], are
shown in Figure S2. The agreement is better than 0.4% at T > 20 K and 2.0% at T < 20 K for benzoic acid,
and better than 0.2% at T > 30 K and 2.0% at T < 30 K for sapphire. We conclude, with this calorimeter
and our experimental setup, that Co

p,m(T) can be determined with a standard deviation of ±2% for the
temperature interval from T = 5 to 15 K, ±0.5% from T = 15 to 40 K and ±0.2% from T = 40 to 330 K at
the 0.95 level of confidence (k = 2).
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The heat capacity of Fe2(SeO3)3·5H2O(cr) was measured on a powder pressed into pellets with
masses of 0.562 g in the first series and 0.555 g in the second series. Liquid nitrogen and helium were
used to reach cryogenic temperatures in two different sets of Co

p,m(T) determinations. One set of data
was collected between T = 78.7 to 324.8 K and the other from T = 5.2 to 85.4 K. For the measurements
an evacuated titanium ampoule, which was closed and hermetically sealed using indium after adding
a sample pellet, was filled with dry helium to serve as a heat exchanger (room temperature and
0.008 MPa pressure). Further details on the construction of the calorimeter and the experimental
procedures are given in [19].

The ∆fHo
m(298 K, 0.1 MPa) for Fe2(SeO3)3·5H2O(cr) was determined using the heat of solution

calorimetry with HF as the solvent. The experiments were performed in a differential heat-conducting
Tian–Calvet calorimeter operating at T = 298 K [20]. Dissolution experiments on ground powders
were performed inside a large outer Teflon container that, in turn, holds a smaller inner Teflon vessel.
The inner vessel contains the sample and the external container the solvent (volume 25 mL) consisting
of 8.5 M hydrofluoric acid. The acid:sample ratio was chosen to fully dissolve a solid sample having
a mass between 200 and 500 mg within 5 to 10 min. The solution was stirred by a solvent-air mixing
system integrated into the calorimeter in order to aid the dissolution process. The enthalpy for the
dissolution of potassium chloride (mass fraction purity 0.9998) in doubly distilled and deionized water
was measured (molar ratio KCl:H2O = 1:200) in order to determine the precision of the calorimeter
and our experimental methodology. Seven experiments were performed and an average value of
∆solHo

m = 17.49 ± 0.51 kJ·mol−1 was obtained, which agrees well with the value from the literature
of 17.56 ± 0.08 kJ·mol−1 [21]. The statistical Student’s t-distribution was below 3% for the whole
experimental series.

The iron(III) nitrate used for HF-solution calorimetry was in its nonahydrate form
Fe(NO3)3·9H2O(cr). The compound was purchased newly for these experiments, and the package was
unopened until the initiation of the experiments. To avoid hygroscopic reactions, the reagent was stored
in a tightly closed reagent bottle and all manipulations were performed in a laboratory maintained at
low humidity (<20%). To test the potential for hygroscopicity during routine manipulations, a 0.3 g
control sample was open to the air for 1 h. The mass of the sample actually decreased slightly (0.002 g),
confirming the slow dehydration of nonahydrate of iron(III) nitrate in the open air to a form of
hexahydrate of iron(III) nitrate described in the literature [22]. The sample used for the experiment
was in the open air (air humidity <20%) only during weighing (not more than 3 min). After weighing,
the sample was immediately placed in a tightly closed reaction vial with small volume, precluding
contact with air [20].

3. Results

3.1. Sample Characterization

Synthetic analogues of mandarinoite were optically inspected by scanning electron microscopy
(SEM) and characterized by X-ray diffractometry. Figure 1 illustrates the optical appearance of synthetic
analogues of mandarinoite.

The chemical composition of solid phases was measured using energy dispersive X-ray
microanalysis. The average Se:Fe ratio of 1:1.52 for synthetic analogues of mandarinoite corresponds
to the stoichiometric ratio Se:Fe equal to 3:2. The amounts of other elements were below the detection
limit, with the exception of some samples with traces of Cl, which apparently remained after synthesis
with ferric chloride. A small amount of Cl (less than 0.2%) was detected in samples #10 and #11 [8].
As those samples consist of both ferric selenite hydrates, Fe2(SeO3)3·3H2O and Fe2(SeO3)3·5H2O,
the samples were not further studied regarding the calorimetric and thermodynamic investigation.
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The amount of water and the thermal behavior of the synthesized phases were investigated by 
thermal analysis with thermogravimetry, difference thermogravimetry, and differential scanning 
calorimetry. The released volatile phases were determined by thermogravimetric analyses combined 
with mass spectrometry. 

Figure 1. Secondary electron images of representative synthetic analogue of mandarinoite (sample #9;
30 ◦C, 1.5 bar, 47 days).

The X-ray powder diffraction (XRD) patterns clearly indicate that synthesized solid phases are
synthetic analogues of mandarinoite (Figure 2). The unit-cell parameters calculated from the powder
data are in good accordance with data obtained by other authors for natural mandarinoite (Table 2).
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Figure 2. Representative XRD patterns of synthetic analogue of mandarinoite (sample #9; 30 ◦C, 1.5 bar,
47 days) [8]. The blue bars depict the theoretical XRD reflexes of mandarinoite.

Table 2. Cell parameters of mandarinoite (Space group P21/c).

Cell
Parameters

Mandarinoite
Fe2(SeO3)3·4H2O

Mandarinoite
Fe2(SeO3)3·6H2O

Synthetic Analogue
of Mandarinoite #9

Synthetic Analogue
of Mandarinoite #16

a, Å 16.78(3) 16.810(4) 16.824(6) 16.771(13)
b, Å 7.86(1) 7.880(2) 7.849(3) 7.825(5)
c, Å 9.96(6) 10.019(2) 10.010(4) 10.008(6)
β, 0 98.3(6) 98.26(2) 98.20(2) 98.21(4)

V, Å3 1313(4) 1308(2) 1300(1)
Source [6] [7] [8] This work



Geosciences 2018, 8, 391 6 of 14

The amount of water and the thermal behavior of the synthesized phases were investigated
by thermal analysis with thermogravimetry, difference thermogravimetry, and differential scanning
calorimetry. The released volatile phases were determined by thermogravimetric analyses combined
with mass spectrometry.

Representative measurements of thermal behavior of synthetic analogue of mandarinoite are
illustrated in Figure 3 (TG, DTG, DSC curves). Measurements were performed under air with heating
ramps of 5 K/min.
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Figure 3. TG, DTG and DSC curves of synthesized analogue of mandarinoite (sample #9; 30 ◦C, 1.5 bar,
47 days) [8]. TG (gray solid line), DSC (black solid line), DTG (gray dashed line).

From Figure 3, within the temperature range 25–300 ◦C, there are two endothermic effects
accompanied by mass losses. These effects occur in the temperature intervals 84–179 ◦C and 182–228 ◦C,
respectively. The total mass loss of these two effects is 15.25 wt %, which coincides with the calculated
value of mass loss of the dehydration reaction of ferric selenite hydrates with five molecules of water,
i.e., Fe2(SeO3)3·5H2O→ Fe2(SeO3)3 + 5H2O (15.4 wt %). Thus, the synthesized ferric selenite hydrate
contains five molecules of water.

More detailed information regarding the sample characterization is provided by Holzheid et al. [8].

3.2. Enthalpy of Formation

The determination of the standard enthalpy of formation, ∆fHo
m(298 K), for Fe2(SeO3)3·5H2O(cr)

was performed using HF solution calorimetry. In order to do so, the enthalpy of solution at T = 298 K
was determined for each of the following phases:

2Fe(NO3)3·9H2O(cr) + (HF solution) → (solution A1) (1)

3Na2SeO3(cr) + (solution A1) → (solution A2) (2)

Fe2(SeO3)3·5H2O(cr) + (HF solution) → (solution B1) (3)

6NaNO3(cr) + (solution B1) → (solution B2) (4)

13H2O(liq) + (solution B2) → (solution B3) (5)
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The respective values are given in Table 3. Writing the reaction

2Fe(NO3)3·9H2O(cr) + 3Na2SeO3(cr) = Fe2(SeO3)3·5H2O(cr) + 6NaNO3(cr) + 13H2O(liq) (6)

Table 3. Enthalpy of solution values for reactions (1) to (5) at T = 298 K and p = 0.1 MPa a.

No. Reaction ∆rHo
m/kJ·mol−1

(1) 2Fe(NO3)3·9H2O(cr)+ (HF solution)→ (solution A1)

33.52
33.56
32.54
33.00
32.28

Mean 32.98 ± 0.71

(2) 3Na2SeO3(cr)+ (solution A1)→ (solution A2)

−131.25
−127.35
−123.09
−130.68
−134.25

Mean −129.32 ± 4.90

(3) Fe2(SeO3)3·5H2O(cr)+ (HF solution)→ (solution B1)

5.16
5.43
5.66
5.24

Mean 5.37 ± 0.35

(4) 6NaNO3(cr)+ (solution B1)→ (solution B2)

110.10
108.60
108.60
109.50
106.56

Mean 108.67 ± 1.67

(5) 13H2O(liq)+ (solution B2)→ (solution B3)

−9.23
−8.45
−10.14
−10.27
−8.71
−9.75
−10.01
−9.10
−9.49
−8.84
−8.84

Mean −9.35 ± 0.42
a Standard uncertainty, u, is u(T) = 0.1 K and u(p) = 0.001 MPa. The expanded uncertainties for ∆H are given with
a 0.95 level of confidence (k ≈ 2).

Following Hess’ law, one obtains:

∆rHo
6 (298 K) = ∆rHo

1 (298 K) + ∆rHo
2 (298 K)− ∆rHo

3 (298 K)− ∆rHo
4 (298 K)− ∆rHo

5 (298 K) (7)

and

∆fHo
m(298 K, Fe2(SeO3)3·5H2O, cr) = ∆rHo

6 (298 K) + 2∆fHo
m(298 K, Fe(NO3)3·9H2O, cr)

+ 3∆fHo
m(298 K, Na2SeO3, cr)− 6∆fHo

m(298 K, NaNO3, cr)− 13∆fHo
m(298 K, H2O, liq).

(8)

From the experimental results in Table 3 and the literature data [23], namely ∆fHo
m(298 K,

Fe(NO3)3·9H2O, cr) = −3285.3 kJ/mol, ∆fHo
m(298 K, Na2SeO3, cr) = −958.6 kJ/mol, ∆fHo

m(298 K,
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NaNO3, cr) = −467.85 kJ/mol, ∆fHo
m(298 K, H2O, liq) = −285.83 kJ/mol, one obtains ∆fHo

m(298 K,
Fe2(SeO3)3·5H2O, cr) = −3124.6 ± 5.3 kJ/mol.

3.3. Heat-Capacity Behavior

The raw low-temperature molar heat capacity (Co
p,m(T)) data for the Fe2(SeO3)3·5H2O(cr) are

given in the Supplementary Materials (see Table S3). Figure 4 presents the temperature dependence
of mandarinoite (cr) heat capacity in the temperature range T = 5.2 to 324.8 K. The ferric selenite
hydrate Fe2(SeO3)3·5H2O(cr) undergoes one phase transition within the temperature range studied.
The observed endothermic transition is reversible, and was reproduced by repeated cooling and
heating. The maximum of the heat capacity of the sample in the transition range T = 21 to 45 K
corresponds to a phase transition temperature of Ttr = 33.4 K. The enthalpy of transition ∆trHo

m =
123.4 J/mol was calculated by subtracting the integral computed from the interpolated heat capacities
in the transition range from that computed from the measured Co

p,m(T) of mandarinoite.
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Figure 4. Temperature dependence of isobaric heat capacity, Co
p,m(T)/J·K−1·mol−1, of mandarinoite

(cr) in the temperature range from T = 5.2 K to 324.8 K. Experimental data obtained using liquid
helium (T = 5.2 K to 85.4 K) are shown as open circles (#) and experimental data using liquid nitrogen
(T = 78.7 K to 324.8 K) are shown as solid circles ( ). The solid curve corresponds to extrapolation of
experimental data using Equation (10).

In order to extrapolate the heat-capacity behavior down to T = 0 K, we used the equation
Co

p,m = A·Tn, where A and n are fit parameters that were determined using experimental data between
T = 5.5 and 6.5 K (polynomial Equation (9), see below). In logarithmic form we obtain for the respective
compounds:

ln
Co

p,m

J·K−1·mol−1 = 1.9633 ln
(

T
K

)
− 4.3051, with an error less than 0.73%. (9)

In standard notation one has Co
p,m = 0.0135·T1.9633.

The heat capacity (Co
p,m(T)) data for the Fe2(SeO3)3·5H2O(cr) were fit over the five different

temperature ranges (from T = 5.3 to 9 K, from T = 10 to 21 K, from T = 22 to 32 K, from T = 33 to 64 K
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and from T = 65 to 325 K) by the method of nonlinear least squares, using the following polynomial
equation [24]:

Co
p,m

J·K−1·mol−1 = k0 + k1·
(

T
K

)−3
+ k2·

(
T
K

)−2
+ k3·

(
T
K

)−0.5
+ k4·

(
T
K

)
+ k5·

(
T
K

)2
+ k6·

(
T
K

)3
. (10)

The final best-fit values of the polynomial coefficients ki are presented in the Supplementary
Materials (see Table S4). The difference between the experimental Co

p,m data and the fitted Co
p,m values

is presented in Figure S5.

4. Discussion

4.1. The Gibbs Energy of Formation

The standard molar entropy at 298.15 K, So
m, for the ferric selenite hydrate Fe2(SeO3)3·5H2O(cr)

was calculated from the smoothed Co
p,m data by numerically solving the integral

So
m − ST=0K =

∫ 298.15

0

Co
p,m

T
dT, (11)

assuming ST=0K = 0. We obtain 520.1 ± 1.1 J·K−1·mol−1. The expanded uncertainties for S are given
at the 0.95 confidence level (k ≈ 2).

For the calculation of the entropy of formation at T = 298.15 K, ∆fSo
m, of mandarinoite(cr),

its respective measured So
m value, together with the data in Table 4, was used. We obtain with the

uncertainty given as two standard deviations of the mean:

∆fSo
m(Fe2(SeO3)3·5H2O, cr) = −1756.7 ± 1.1 J·K−1·mol−1.

Table 4. Standard entropies of elemental substances at T = 298 K and p = 0.1 MPa [22].

Substance So
m/J·K−1·mol−1

Fe, cr 30.04
Se, cr 42.442

O2, gas 205.138
H2, gas 130.684

Finally, the standard molar Gibbs free energy of formation, ∆fGo
m, for the ferric selenite hydrate

Fe2(SeO3)3·5H2O(cr) at T = 298.15 K and p = 0.1 MPa can be calculated using the newly obtained
values of ∆fSo

m and ∆fHo
m. We calculate with the uncertainty given as two standard deviations of

the mean:
∆fGo

m(Fe2(SeO3)3·5H2O, cr) = −2600.8 ± 5.4 kJ·mol−1.

Table 5 lists smoothed Co
p,m(T) values between T→ 0 and 320 K as well as the values for So

m and
the functions [Ho

m(T)− Ho
m(0)] and [Φo

m(T)−Φo
m(0)].
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Table 5. Standard molar thermodynamic functions of mandarinoite(cr) at p = 0.1 MPa a.
∆T

0 Φo
m(T) = ∆T

0 So
m(T) − ∆T

0 Ho
m(T)/T.

T/K Co
p,m(T)

J·K−1·mol−1
∆T

0 Ho
m(T)

kJ·mol−1
∆T

0 So
m(T)

J·K−1·mol−1
∆T

0 Φo
m(T)

J·K−1·mol−1

[0] [0] [0] [0] [0]
5 0.319 0.0005 0.162 0.055
10 5.381 0.010 1.226 0.263
15 15.07 0.061 5.259 1.200
20 26.09 0.163 11.05 2.904
25 38.44 0.323 18.14 5.227
30 55.55 0.557 26.64 8.064
35 63.83 0.872 36.31 11.41
40 64.91 1.189 44.78 15.06
45 73.68 1.533 52.88 18.81
50 84.70 1.929 61.21 22.63
70 131.4 4.093 97.17 38.70
90 178.7 7.199 136.0 55.96

110 220.0 11.20 175.9 74.14
130 256.6 15.97 215.7 92.86
150 290.5 21.44 254.8 111.9
170 322.5 27.57 293.1 130.9
190 352.7 34.33 330.7 150.0
210 381.2 41.67 367.4 169.0
230 408.3 49.57 403.3 187.8
250 434.2 57.99 438.4 206.4
270 459.6 66.93 472.8 224.9

273.15 463.6 68.39 478.1 227.8
290 485.1 76.38 506.5 243.1

298.15 495.7 80.37 520.1 250.5
310 511.6 86.34 539.7 261.2
320 525.5 91.53 556.2 270.2

a Standard uncertainties, u, are u(T) = 0.05 K, u(p) = 0.001 MPa. The combined expanded uncertainties, Uc,r are

Uc,r

(
Co

p,m(T)
)

= 0.02 for T < 15 K, 0.005 from T = 15 to 40 K, 0.002 between T = 40 K and T = 330 K, Uc,r
(
∆T

0 So
m(T)

)
= 0.022 for T < 15 K, 0.0055 between T = 15 K and T = 40 K, 0.0022 between T = 40 K and T = 330 K, Uc,r

(
∆T

0 Ho
m(T)

)
= 0.022 for T < 15 K, 0.0055 between T = 15 K and T = 40 K, 0.0022 between T = 40 K and T = 330 K, Uc,r

(
∆T

0 Φo
m(T)

)
= 0.022 for T < 15 K, 0.0055 between T = 15 K and T = 40 K, 0.0022 between T = 40 K and T = 330 K (0.95 level
of confidence).

4.2. Stability of Mandarinoite in the Oxidation Zone

These results motivate a re-evaluation of the conditions under which ferric selenite could replace
iron selenides, and Se-bearing sulfides in the oxidation zones of sulfide ore deposits or upon weathering
of technologic waste. Special attention should be given to a substantiation of the thermodynamic
approach for the modeling of mineral-forming processes in near-surface conditions.

The obtained value of fGo
m for Fe2(SeO3)3·5H2O was used to calculate the Eh–pH diagram of the

Fe–Se–H2O system. Previously, this diagram was calculated [1,2,14] on the basis of data on solubility
obtained by Rai et al. [13] and recommended in [10].

Using the obtained value of ∆fGo
m(Fe2(SeO3)3·5H2O, cr) = −2600.8 ± 5.4 kJ·mol−1 and

the literature data [22], namely ∆fGo
m(298 K, Fe3+, aq) = −4.7 kJ·mol−1, ∆fGo

m(298 K, SeO3
2−, aq)

= −369.8 kJ·mol−1, ∆fGo
m(298 K, H2O, liq) = −237.129 kJ·mol−1, the solubility product (SP) of

Fe2(SeO3)3·5H2O(cr) at T = 298.15 K has been calculated: log10SP (298 K) = −51.90. Calculation
of the Eh-pH diagram was by means of the software Geochemist’s Workbench, University of Illinois,
USA (GMB 9.0). The calculation was predated by the introduction of new data for Fe2(SeO3)3·5H2O
into the database and the specification of some constants. The activity coefficients are calculated from
the Debye–Hückel equation. Eh-pH diagrams of Fe–Se–H2O systems have been constructed for the
average contents of these elements in acidic waters of the oxidation zones of sulfide deposits [1,2,14].
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Finally, the Eh-pH plot of the Fe–Se–H2O system is shown in Figure 5. This system attracts
interest because it allows the estimation of the physical-chemical parameters of the formation of
hydrous ferric selenite, mandarinoite. The diagram contains a native selenium stability field, and
FeSe (achávalite), FeSe2 (ferroselite), FeO (wüstite), FeFe2O4 (magnetite), Fe2O3 (hematite), and ferric
selenite (mandarinoite) stability fields. As follows from this diagram, Fe2(SeO3)3·5H2O is the stable
phase at the temperature fluctuations corresponding to the environmental conditions in the acid to
neutral areas at a high positive Eh.
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Figure 5. Eh-pH diagram of Fe-Se-H2O system at 25 ◦C and the activities of the components: aΣSe=
10−5, aΣFe = 10−2.

It is interesting to compare the conditions of copper and iron selenite formation in the oxidation
zone of selenium-containing sulfide ores because copper (like iron) is a widespread element in primary
ores. For this purpose, an Eh-pH diagram of the Fe-Cu-Se–CO2–H2O system has been constructed to
obtain the thermodynamic properties of chalcomenite [4] and the average contents of these elements
in acidic waters of the oxidation zones of sulfide deposits (Figure 6). This system attracts interest
because it allows the estimation of the physical-chemical parameters of the formation of hydrous
Fe and Cu selenites (mandarinoite and chalcomenite), which are associated in the oxidation zones
of some selenium-bearing deposits (e.g., Virgen de Surumi mine [6], El Dragón mine [25], Baccu
Locci Mine [26]). As can be seen, copper selenides and oxides (klockmannite CuSe, krut’aite CuSe2,
umangite, Cu3Se2, cuprite Cu2O, and tenorite CuO) are largely stable at lower concentrations of copper
and selenium. Under oxidative conditions, a narrow field of chalcomenite appears in the mandarinoite
stability field (Figure 6).

As shown previously, the stability of hydrous selenites of cobalt (cobaltomenite CoSeO3·2H2O) [3],
nickel (ahlfeldite, NiSeO3·2H2O) [3], zinc (ZnSeO3·2H2O and ZnSeO3·H2O) [5,27] and cadmium
(CdSeO3·H2O) [5,28] correspond to the conditions of mandarinoite formation, with the only difference
that mandarinoite crystallized in a more wide range of pH values. It should be noted that zinc and
cadmium selenites have not yet been found in in the oxidation zone of sulfide and selenide ores
because, in our opinion, diagnostics are partly hampered: Zn and Cd (in contrast to Cu, Co, Ni, and
Fe) are not chromophores and therefore their salts are colorless or white.
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Kru—krut’aite, Um—umangite, Cup—cuprite, Ten—tenorite.

5. Conclusions

The obtained thermodynamic constants of mandarinoite can be used to determine the conditions
of selenium and iron behavior in the near-surface and surface environment. The distribution of these
elements in soil and water and their mobility can be quantitatively explained by variations in the
redox potential and the acidity-basicity of the mineral-forming medium. In general, these parameters
determine the migration ability of selenium compounds and their precipitation in the form of various
solid phases.
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