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Abstract: In the frame of the current work, it was shown that plasma electrolytic oxidation (PEO)
treatment can be applied on top of phosphoric sulfuric acid (PSA) anodized aluminum alloy AA2024.
Being hard and well-adherent to the substrate, PEO layers improve both corrosion and wear
resistance of the material. To facilitate PEO formation and achieve a dense layer, the systematic
analysis of PEO layer formation on the preliminary PSA anodized layer was performed in this work.
The microstructure, morphology, and composition of formed PEO coatings were investigated using
scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical emission
spectroscopy (GDOES). It was shown that under constant current treatment conditions, the PSA layer
survived under the applied voltage of 350 V, whilst 400 V was an intermediate stage; and under
450 V, the PSA layer was fully converted after 5 min of the treatment. The comparison test with
PEO formation on the bare material was performed. It was confirmed that during the “sparking”
mode (400 V) of PEO formation, the PEO coatings, formed on PSA treated AA2024, were more wear
resistant than the same PEO coatings on bare AA2024.

Keywords: AA2024; plasma electrolytic oxidation; phosphoric-sulfuric acid anodizing; corrosion
resistance; wear resistance; post-treatment

1. Introduction

Aluminum alloy AA2024 is widely used, specifically, in the aerospace industry due to its superior
mechanical properties [1,2]. However, the corrosion susceptibility of this alloy is high because of
the microgalvanic coupling between the alloy matrix and the present intermetallics, especially those
containing Cu. The main solutions currently implemented in the aeronautical industry include the
formation of high barrier layers together with active protection components based on corrosion
inhibitors present in different parts of the protective system. Historically the pre-treatments, anodic
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layers, and corrosion protection primers were based on Cr(VI) technologies. However, many countries
have banned the use of protective systems containing toxic chromates [3]. Following this, a lot of
research has focused on the formation of corrosion protection systems that fit with the environmental
regulations [4,5].

Phosphoric sulfuric acid (PSA) anodizing is nowadays widely used in the aeronautical industries
to prevent toxic chromium containing compounds [6,7]. During this anodization, a thin anodic oxide
layer with a thickness of about 1 to 3 um is formed, which is intended to improve the adhesion between
the metallic substrate and the applied top-coat. However, in some places, the surface of the aluminum
alloy is subject to enhanced mechanical properties and resistance to wear in particular. Those regions
should be additionally treated to prevent mechanical damage and to extend the lifetime of the materials
in use. Local engineering for only local reinforcement of components provides an additional design
option, if the general properties are not sufficient.

The application of plasma electrolytic oxidation (PEO) treatment to aluminum alloys leads to a
significant increase of the alloys hardness, as well as providing improved wear and corrosion resistance
due to the formation of ceramic-like coatings [8-12], as a result of short-living spark discharges
under high voltage conditions in alkaline environmentally friendly electrolytes. The most used
electrolytes for PEO treatment of aluminum alloys are composed of mixtures of several components,
e.g., sodium silicate (0.5-50 g L™!), potassium or sodium hydroxide (1-50 g L~1!), sodium aluminate
(2-20g L~1), sodium or potassium carbonate (up to 500 g L), sodium fluoride (0.5-20 g L~1), and
hexametaphosphate (up to 150 g L=1) [13]. Silicate and/or silicate-phosphate electrolytes are the most
environmentally friendly electrolytes, when they do not contain fluorides and/or heavy metal salt
additives [14-18]. In this work, we investigated whether the properties of a PSA anodized layer can be
improved with a subsequent PEO treatment. We also checked whether this might be an option for the
local reinforcement of a PSA layer. A comparative study of the structure, morphology, and properties
of such PEO coatings with and without anodizing pre-treatment was performed.

2. Experimental

2.1. Materials

The following chemicals were used for surface preparation, PSA synthesis, and PEO synthesis:
sodium metasilicate (Na,SiO3, 44-47% SiO,, Sigma-Aldrich Chemie GmbH, Darmstadt, Germany),
sodium hydroxide (NaOH, >99%, Merck KGaA, Darmstadt, Germany), sodium dihydrogen phosphate
(NapH,P>07, 98%, Chempur, Karlsruhe, Germany), nitric acid (HNOs3, 65%, Merck KGaA, Darmstadt,
Germany), sulfuric acid (H,SO4, 95-97%, Merck KGaA, Darmstadt, Germany), ortho-phosphoric acid
(H3POy, 87 % extra pure, Merck KGaA, Darmstadt, Germany), and sodium chloride (NaCl, 99.98%,
Fisher Chemical, Loughborough, UK). Deionized water was used as a solvent. AA2024-T3 with a
nominal composition of [wt.%]: 3.8-4.9 Cu, 0.5 Fe, 0.1 Cr, 1.2-1.8 Mg, 0.3-0.9 Mn, 0.5 Si, 0.15 Ti, 0.25
Zn, 0.15 others, and Al balance—was used (specimen dimensions of 20 x 30 x 2 mm?).

2.2. Surface Treatment

Before the PSA anodizing procedure, aluminum specimens were degreased and etched according
to the standard commercial procedure (alkaline cleaning in Metaclean T2001 (Chemie Vertrieb
Hannover, Hannover, Germany) at 65 °C for 15 min, alkaline etching in P3 Almeco (Turco Chemie,
Hamburg, Germany) at 35 °C for 3 min, acid etching in Turco Liquid Smutgo NC (Turco Chemie,
Hamburg, Germany)) at 40 °C for 5 min each, followed by rinsing in deionized water and drying
under air.

The anodizing process was performed in a phosphoric acid/sulfuric acid bath at 27 °C and carried
out at 18 V for 23 min following the method described in Reference [19]. After the anodizing step, the
specimens were rinsed with deionized water and dried under air conditions.
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Prior to the PEO treatment on bare AA2024, the surface of the aluminum alloy was chemically
etched according to the procedure outlined in References [20-22]. Briefly, AA2024 (without PSA
treatment) was firstly degreased in a mixture of ethyl alcohol and acetone (1:1), etched in 20% NaOH
for 60 s, then rinsed with deionized water, then it was additionally desmutted in 65% HNOj for 60 s.
Finally, the AA2024 was rinsed with deionized water and dried under compressed air. PSA treated
samples did not undergo any pretreatments before PEO application.

PEO processing was carried out using a pulsed DC power supply with a duty cycle of
ton:tosf = 1 ms:9 ms and maximum average current density was limited to 5 A dm~2. The aqueous
electrolyte, comprising of 9 g L~! Na,SiO3, 2 g L~! NaOH and 11 g L~! NayH,P,0;, was continuously
stirred during the treatment and kept at 20 & 2 °C using a water cooling system. The counter-electrode
was made of stainless steel. After PEO treatment, the specimens were rinsed with deionized water and
dried under compressed air. Three different voltages (350, 400, and 450 V) and three different times (5,
15, and 30 min) were applied to the PEO processing.

2.3. Characterization Methods

Surface morphology and cross-sections of the formed coatings were examined using a Tescan
Vega3 SB scanning electron microscope (SEM, Brno-Kohoutovice, Czech Republic). Cross-sections were
prepared by grinding through successive grades of silicon carbide (SiC) paper, with final polishing
done to a 1 um diamond finish.

Phase compositions of the samples were characterized using a Bruker D8 Advance diffractometer
(Karlsruhe, Germany, Ni-filtered Cu K« radiation (1.5406 A), step size 0.02°, dwell time ~1.5 s) at room
temperature with a glancing angle of 0.5, 1, 2, and 3°.

Glow discharge optical emission spectroscopy (GDOES) analysis of the coatings was done using a
HORIBA GD-Profiler 2 with a copper anode of 4 mm in diameter (Horiba, Longjumeau, France). Argon
sputtering of the sample surface occurred at a pressure of 650 Pa and power of 30 W. A minimum of
four measurements were performed on each sample.

The dry sliding wear behavior of the PEO coatings was assessed with an oscillating ball-on-disc
tribometer (Tribotec AB, MéInlycke, Sweden), with an AISI 52100 steel ball of 6 mm diameter as the
static friction counterpart (RGPBALLS S.r.1., Cinisello Balsamo, Italy). The wear tests were performed
at ambient conditions (25 £ 2 °C and 36—44% relative humidity) with different loads ranging from 1 to
10 N and on an oscillating amplitude of 10 mm with a sliding velocity of 5 mm s~!, and a total sliding
distance of 12,000 mm. Arithmetic mean surface roughness (R,) usually called average roughness of the
coatings was measured using a Hommel profilometer T1000 (Hommelwerke GmbH, S-Schwenningen,
Germany).

Electrochemical impedance spectroscopy (EIS) measurements were conducted (three electrode
cell) in a stirred aqueous 0.5 wt.% NaCl solution at 22 & 0.5 °C using a computer controlled potentiostat
system (Gamry interface 1000: Gamry instruments, Warminster, PA, USA). All potentials were
measured with respect to the Ag/AgCl reference electrode. A platinum mesh was used as the
counter electrode. The measurements were performed at different times up to 24 h via applying a
sinusoidal perturbation of 10 mV RMS amplitude and a frequency sweep from 30 kHz to 0.01 Hz, using
a working electrode area of 0.5 cm?. All measurements were repeated twice with good reproducibility.
The impedance spectra were analyzed with the Gamry Echem Analyst software (Gamry instruments,
Warminster, PA, USA). The errors for the individual parameters of the equivalent electrical circuits
(such as CPE and R) are presented in the results discussion.

3. Results and Discussion

3.1. Voltage Evolution and Current Density Variation

Figure 1 shows the voltage and current density as a function of the PEO processing time of
aluminum alloy AA2024 without and with PSA pre-treatment. Different stages of PEO treatment can
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be distinguished in the graphs. During the first stage (until the voltage reaches the predetermined
values of 350, 400, and 450 V, respectively), the current density was constant at 5 A dm~2 (so called
galvanostatic or constant current oxidation (CC-mode)). During the second period, the process
proceeded at a constant voltage (potentiostatic or constant voltage oxidation (CV-mode)) and the
current density changed. At the moment of the CC to CV mode transition, the current density
decreased immediately.
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Figure 1. Voltage evolution (a) and current density (b) plots as a function of the plasma electrolytic
oxidation (PEO) processing time for 350, 400, and 450 V without and with phosphoric sulfuric acid
(PSA) pre-anodizing.

The samples which were originally covered with a PSA layer reached the defined voltage faster
compared to the samples without the PSA treatment (the transition between CC and CV modes in
Figure 1 requires, 14 and 25 s at 350 V, 30 and 52 s at 400 V, and 120 and 150 s at 450 V, respectively).
It could be attributed to better dielectric properties of the existing PSA layer on the surface. As a result,
PEO processing on the PSA coated aluminum alloy required a higher voltage in order to reach the
same current densities as was observed for the bare samples.

Under the conditions of the so-called “soft sparking” [23,24] (relatively low voltage (350 and
400 V), the CC to CV transition happened much earlier (not later than after 52 s). Thus, the exposure
period to high current density was significantly shorter at the lower voltages. Afterwards, the current
density decreased very sharply to the minimum values within 3-5 min of the PEO treatment and then
it remained constant. Thus, during this time, the PSA layer could not be fully converted into a PEO
coating leading to differences in the current density of the PSA pre-anodized samples and the bare
AA2024. For the PSA pre-anodized samples, sparking started earlier on the surface of the alloy and
the current density decreased faster, since the PSA layer acted as a pre-formed passive oxide film.
However, the higher final current densities of the pre-anodized specimens indicated that they were
more defective than those, which were directly grown on the AA2024.

It was observed that the nature of sparking was also changed under different applied voltages.
During oxidation processes under 350 V, sparking was hardly visually observed (only in the dark could
a glow at 350 V on a metal substrate be seen). It could be explained that the sparks were very small and
visually indistinguishable. At 400 V, the number of sparks decreased, but the size did not change, and
at 450 V, the number of sparks decreased, but at the same time the sparks were significantly enlarged.

3.2. Surface and Cross-Sectional Morphologies

The SEM investigation of the surface morphology of PEO covered AA2024 (350 and 400 V) showed
that under a voltage of 350 V, PSA + PEO coatings had more round pores with an average diameter of
0.1-1 pm, and in the case of PEO coatings only, the pores became elongated with a width of 0.5-1 um
and a length up to 5 um. It was also observed that under a voltage of 400 V, the size of the large round
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pores in the PSA + PEO coatings reached 2 um, and for the PEO coatings, pores of a more oval shape
up to 2-3 um were visible. At a voltage of 450 V, a sharp surface relief with pores of irregular shape
and dimensions of up to 5 um was observed for both cases. No difference in surface morphology for
the PEO and PSA + PEO coatings was observed at voltages of 450 V, since at this voltage the PSA layer
practically did not influence the formation of the PEO coatings.

As can be seen in Figure 2, the surface of the aluminum after etching contains cavities, which were
formed due to the removal of intermetallics that were part of the initial alloy. These cavities were clearly
distinguishable on the uncoated alloy, on the PSA-treated surfaces, and on the PSA + PEO coatings
with a small thickness 0.5-2.5 um (350-400 V, 5-30 min). The presence of cavities on the samples with a
PSA layer in comparison with only PEO treated samples was related to the more aggressive conditions
of AA20204 surface preparation (etching) prior to PSA anodizing [19]. The coating relief repeated all
the changes in the relief of the original surface without the formation of additional defects (as can be
seen in Figure 2d-f surface view, and Figure 3 cross-section view).
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Figure 2. Scanning electron microscopy (SEM) images of the coating surfaces of bare AA2024, PSA
coated AA2024, PEO coated AA2024, and PEO coated AA2024 with PSA pre-treatments after different
voltages and times of PEO processing (a) PEO 400 V 5 min, (b) PEO 400 V 15 min, (c) PEO 400 V 30 min,
(d) PSA + PEO 400 V 5 min, (e) PSA + PEO 400 V 15 min, (f) PSA + PEO 400 V 30 min, (g) PEO 350 V
15 min, (h) PEO 450 V 15 min, (i) PSA, (j) PSA + PEO 350 V 15 min, (k) PSA + PEO 450 V 15 min, (1)
AA2024 bare.
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Figure 3. SEM images of the coatings cross-sections for PEO coated AA2024 with PSA pre-treatments
and pits of etching after PEO processing at different voltages (a) PSA + PEO 350 V 15 min, (b) PSA +
PEO 400 V 15 min, (c) PSA + PEO 450 V 30 min.

From the cross-sections presented in Figure 4, the PEO coatings do not have uniform thickness,
i.e., the coatings consist of a thicker outer porous layer and a thin inner layer, as was also confirmed in
other works [25,26].
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5 min ~ 15 min " 130 min sl
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Figure 4. SEM images of the coatings cross-sections for bare AA2024, PSA coated AA2024, PEO coated
AA2024, and PEO coated AA2024 with PSA pre-treatments after different voltages and times of PEO
processing (a) PEO 400 V 5 min, (b) PEO 400 V 15 min, (c) PEO 400 V 30 min, (d) PSA + PEO 400 V
5 min, (e) PSA + PEO 400 V 15 min, (f) PSA + PEO 400 V 30 min, (g) PEO 350 V 15 min, (h) PEO 450 V
15 min, (i) PSA, (j) PSA + PEO 350 V 15 min, (k) PSA + PEO 450 V 15 min.
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The cross-sections of PEO coatings (Figures 3 and 4) revealed that for all PEO coatings (350450 V),
a characteristic dense inner layer existed near the interface with a thickness of about 0.5 pm, which did
not depend on the applied voltage. However, the thickness of the outer layer and its defectiveness
strongly depended on the oxidation conditions. At 350 V for PEO and PSA + PEO coatings, the
outer layer did not fully cover the surface; and the isolated islands of PEO could be distinguished.
Internal closed cavities of about 100 nm for PEO coatings and 100-300 nm for PSA + PEO coatings
were observed. At 400 V, breakdown channels and craters of up to 1 um in size were visible in the
outer layer of the PEO coatings, as well as large cavities between the inner and outer layers of the
coating with a width of up to 1 um and a length of up to 2 um. In the case of PSA + PEO coatings,
a denser structure of the outer layer was visible, and the cavity size did not exceed 1 pm. At a voltage
of 450 V, the above-mentioned defects and internal cavities with a width of up to 2 pm and a length
of up to 5 um were observed in both cases. All the thicknesses were measured 10 times at different
positions of the sample and the average results were presented.

Using cross-section SEM analysis (Figure 4), the average thickness of the coatings was determined.
The preliminary formed PSA layer influenced not only the parameters of the PEO coating formation,
but also the coating thickness. Under a voltage of 350 V, the PSA pre-treatment increased the thickness,
whilst under higher voltages, the behavior was the opposite and the PEO coatings that formed on the
bare material were thicker (Figures 3 and 5). It could be explained that under 350 and 400 V, the PSA
layer was not completely converted to a PEO layer and the resulting total thickness of the PSA + PEO
coatings was higher than the PEO coatings on bare alloy. The thinner layer of PEO + PSA under 450 V
in comparison with PEO on bare AA2024 could be explained by the complete transformation of the
anodic PSA layer, which reduced the total time available for PEO formation.

- PSA
8 -{mmm PEO 350 V
I PSA+PEO 350 V
7 I PEO 400 V
I PSA+PEO 400 V
6 I PEO 450 V
{IEE PSA+PEO 450 V

Thickness, um

PSA 5 min 15 min 30 min

Figure 5. The thickness measured from the cross-section of PEO coated AA2024 at different voltages
(350-450 V) and times (5-30 min) without and with PSA pre-treatments.

3.3. Roughness of the PEO Coating

Under lower voltages of PEO processing, the formation of coatings with relatively uniform
structure (both on bare and on PSA pre-treated AA2024 alloy) is observed (Figure 4). However, with
the increase in the oxidation voltage, the larger cavities, located between the dense inner barrier layer
and the outer looser layer of the PEO coating, were noticed for the PEO coatings obtained after PSA
anodizing. The tendency of pore number reduction, as well as enlargement of the individual pore
diameter, as a function of voltage as described previously in Reference [27] was observed, leading to
the increase in roughness of the layer.

It can be seen from Figure 6 that the initial AA2024 alloy and the alloy coated with the PSA
layer have different roughness (0.26 £ 0.02 and 0.42 pm = 0.01, respectively), which also affects the
roughness of the PEO coatings, especially those formed at voltages of 350 and 400 V. Therefore, for
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the PEO coatings on the bare AA2024 and with the PSA layer obtained at 350 V, the roughness was
0.18-0.23 £ 0.03 um and 0.45-0.48 =+ 0.05 um, respectively. The PEO coatings formed under more
stringent oxidation conditions at a voltage of 450 V had significantly higher roughness values, i.e.,
0.62-0.68 £ 0.02 um vs 0.41-0.50 & 0.02 pm for PEO coatings on the initial alloy and on a previously
applied PSA layer, respectively.

btk 777771 AA2024 (bare)

B PSA
1.2 -y PEO 350 V
B PSA+PEO 350 V
B PEO 400 V
| PSA+PEO 400 v
|mmmPEO 450 v
B PSA+PEO 450 V
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o
)

e
o

Roughness (R, um
X o

o
n
)

0.0-
Bare PSA 5 min 15 min 30 min

Figure 6. The roughness R, (b) of the PSA and the PEO coating, at different voltages (350-450 V) and
times (5-30 min) without and with PSA pre-treatments.

3.4. Chemical and Phase Composition of the Coatings

Depth profile analysis for the elements of the coatings was performed for the coatings (GDOES)
to analyze the effect of the PSA layer on the formation of PEO coatings (Figures 7 and 8). The evolution
of the PSA layer was followed by a sulfur signal change, since PSA is the only source of sulfur in
the system (Figure 8). For the PEO layer directly formed on AA2024, the signal of sulfur is on the
background level (Figure 7).

From Figure 5 it can be seen that the conversion of the PSA layer to the final PEO coating required
a significantly longer time under lower voltages, since the final thickness of the PEO coatings was
comparable to the thickness of the original PSA layers. This assumption was supported by the sulfur
distribution profiles (Figure 8) through newly formed PEO coatings: There was a clear maximum
of the sulfur elemental distribution curve for samples after 30 min of PEO treatment (more evident
peak for 350 V, but it was still existing for 400 V). Moreover, the maximums of sulfur distribution
profiles were located closer to the outer surface of the PEO coating rather than to the PEO/metallic
interface where the PSA was applied originally. For PEO coatings obtained at 350 V for 5 min, the
maximum of the sulfur profile was observed at a depth of about 0.5-0.6 um from the outer surface
of PEO coating (with its total thickness of about 1 um, Figure 8). As can be seen from Figure 1b, the
voltage parameters determine the current density of the PEO process. At 450 V, the current density
was still quite high (Figure 1b), facilitating the rapid transformation of the PSA layer to PEO. However,
under the voltages of 350-400 V, the current density decreased to the minimum values already after
2-5 min of PEO treatment (Figure 1b). This explained why the remains of the PSA layer were still
present and sulfur peaks were still visible during GDOES measurements (Figure 8).
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According to Figure 8, PEO coatings formed under relatively low voltages (350-400 V) contain a
significant amount of sulfur through all the entire PEO coatings which came from the original PSA
layer, while under high voltages (450 V), the sulfur signal is practically at the noise level. A significant
difference was observed in the ratio between aluminum and oxygen for both the low and high voltage
PEO treatments. If aluminum profiles dominated for PEO coatings on bare alloy, for the samples with
a previously applied PSA anodization, oxygen profiles significantly increased (Figures 7 and 8).

At the same time, the coatings contained a small amount of phosphorus, the main source of
which was the silicate-phosphate electrolyte used in this work. The PSA layer itself, as seen from
Figure 8, contains only a small amount of phosphorus, so it cannot be its main source. This is especially
noticeable for the PEO coatings formed at a voltage of 350 V, where the amount of phosphorus was
much higher (since the conditions for the conversion of the phosphate compounds were not yet
sufficiently severe), and its amount smoothly decreased from the outer edge of the coating to the
coating/metal interface.

Voltage
350V 400V 450V
a. a—" | b, i c. /"‘
/ —=—Al
—e—0
4 / G
! . P
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=

Figure 7. Qualitative depth profile measured by GDOES of PEO coated AA2024 at different voltages
(350-450 V (vertical)) and times (5-30 min (horizontal)), without PSA pre-treatments (the dashed line
indicates the thickness of the coatings).
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Figure 8. Qualitative depth profile measured by GDOES of PSA (j) and PSA-PEO (a-i) coated AA2024
at different voltages (350450 V (vertical)) and times (5-30 min (horizontal)), with PSA pre-treatments
(the dashed line indicates the thickness of the coatings).

Figure 9 shows the XRD patterns of PSA and PEO coated AA2024 without and with pre-anodizing
PSA treatment at different voltages (350—450 V). The formation of PEO coatings in the presence of
PSA occured in a manner similar to the case when PSA was absent (the comparison was made using
the peaks of x-Al,O3 at 20 = 35°, 43°, and peaks of y-Al,O3 at 20 = 39.6°, 45.9°, 67°). However, as
can be seen from Figure 9, preliminary anodizing (i.e., PSA in this work) promoted the formation
of PEO coatings with lower crystallinity, and even at 450 V, almost no corundum (x-Al,O3) phase
was detected. The characteristic peaks of y-Al,O3 also had a lower intensity, and even for the PEO
coating formed under 350 V, no peaks of crystalline Al,O3 were detected. This fact confirmed that
the previously formed PSA layer facilitated the sparking initiation, leading to a lower current density
during the PEO treatment and reducing the overheating of the system, leading to the formation of
more amorphous PEO coatings.
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Figure 9. X-ray diffraction (XRD) patterns of PSA (g) and PEO coated AA2024 (a—ch) with
pre-treatments PSA (d-f,i) at different voltages (350, 400, and 450 V). Phases of «-Al,O3 and y-Al,O3
denoted by « and vy respectively.

3.5. Corrosion Protection Performance of the PEO Coatings

The corrosion protection performance of the obtained PEO coatings was monitored using the
electrochemical impedance spectroscopy (EIS). EIS confers the possibility to quantify important
physicochemical parameters of metallic systems during immersion in relevant electrolytes.
The evolution of the barrier properties of different coating layers, as well as resistance to the charge
transfer, can provide important quantitative insights towards understanding the corrosion resistance
of the coated Al alloy substrate. All the systems under study were measured using EIS during 24 h of
immersion in NaCl solution. The typical impedance spectra obtained during the evolution of PSA-PEO
coated AA2024 in corrosive electrolyte are presented in Figure 10.

At the initial stage of immersion, only two well defined time constants could be evidenced at
high (10 kHz) and middle (10 Hz) frequencies, which corresponded to the outer and inner layer of
the PEO coating, respectively. After 6 h of immersion, another relaxation process appeared at low
frequencies (about 0.1 Hz). This time constant could be ascribed to the starting of electrochemical
activities at the metal-electrolyte interface inside the pores. The appearance of a new time constant
was accompanied by the simultaneous significant drop of the resistance of the outer layer due to the
filling of most of the pores and discharge channels with electrolyte. After 24 h, the pore resistance
of the outer layer dropped to the level when it was not distinguishable from the resistance of the
surrounding electrolyte anymore. Therefore, the respective high frequency time constant disappeared
from the spectra at this stage. The inner layer response and the corrosion-induced low frequency time
constant were still well defined on the spectra. Thus, during the evolution of the coated system in
the corrosive electrolyte, different equivalent circuits could be used to fit the spectra (Figure 11a—).
The equivalent circuit with three RC (resistance and capacitance) elements enclosed in a cascade like
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schema (Figure 11b) could be used as a model equivalent to the described electrochemical response of
the full system. During the different immersion periods, the simplified equivalent circuits composed
of only two time constants could be used. The circuit shown in Figure 11a is applicable to the cases
where the corrosion processes had not yet become visible. The circuit without the high frequency time
constant (Figure 11c) is adequate for the cases where the high frequency relaxation process is fully
hidden by the high electrolyte conductivity in numerous pores of the outer layer.

10°
—<—2h -804
107 4 -« 6h
&~ 10° —~—24h s0d o A F g
E ~~~
= — fits &
9\: 10° + E -40 1
= & [9)
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Figure 10. Electrochemical impedance spectroscopy measurements (Bode plots) for PEO-350 V for
15 min, with PSA pre-treatment after immersion in 0.5 wt% NaCl: 2 h, 6 h and 24 h (impedance

modulus—a and phase angle—b).
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Figure 11. The schematic presentation of the PEO coatings on AA2024, as a function of applied voltage
and respective equivalent circuits (a) 350V, (b) 400V, (c) 450V.

Figure 10 demonstrates the fitting results of the impedance spectra obtained after 2 h, 6 h, and
24 h, using the equivalent circuits from Figure 11a—c, respectively. In all the cases, the constant phase
element was used instead of an ideal capacitor to account for the non-uniformities and associated
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dispersion of the capacitive response. A high quality of fitting could be evidenced, as also confirmed
in Table 1 with acceptable goodness and relatively low errors associated with the main parameters.

Table 1. Parameters PEO-350 V for 15 min with PSA pre-treatment coating from fitting of the
experimental impedance spectra with different equivalent circuits.

Immersion Time (h) 2 6 24
Equivalent Circuit A B C
Reout (Q cm?) 1322 + 6.6 117.3 + 8.9 206.0 + 1.7
Rout (kO cm?) 21.94 + 1.66 5.197 + 0.227 -
Qout (nS cm™2) 14.63 + 1.34 23.07 + 3.497 -
Tout 0.951 =+ 0.008 0.916 + 0.313 -
R;;, (MQ cm?) 18.09 + 0.80 2.80 + 0.29 27.05 + 0.58
Qi (NS cm™2) 95.62 + 2.47 260.7 + 10.3 2955.0 + 920.2
iy 0.756 =+ 0.004 0.813 + 0.006 0.864 =+ 0.004
Ret (MQ em?) - 10.10 + 1.89 0.053 + 0.003
Qu (S cm™2) - 0.350 + 0.024 29300 + 920
n - 0.9997 + 0.0741 1.000 + 0.029
Goodness 0.534 x 1073 0.518 x 1073 2484 x 1073

The presented equivalent circuits were systematically applied to fit all the impedance spectra
obtained on all the samples. A specific circuit was selected in each case depending on the number of
time constants evidenced on the respective spectrum. Figure 12 presents the values of resistance of the
outer and inner layer of PEO coatings during the immersion in NaCl solution.

350 V 400 V 450 V 350 V 400 Vv 450 V
' : X Il 2 h immersion
' Il 2 h immersion 10 4 [ & h imme rsion
'
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10 ' o, "
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: E 1] :
— '
= '
N
c
o1
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5 15 20 5 15 30 5 15 30 5 15 20 5 15 30 5 15 30
Time of PEO (min) Time of PEO (min)
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&-\10 E ) —_ ! d)
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Time of PEO (min) Time of PEQ (min)

Figure 12. The resistance of the outer (a,c) and inner (b,d) layers for the PEO coatings (a,b) and PEO
coatings with pre-anodized PSA layer (c¢,d) during immersion 0.5 wt % NaCl (2, 6 and 24 h) (The results
of the PEO-PSA sample obtained under 350 V after 24 h of immersion are presented and explained in
Figure 10 and Table 1.).
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The results clearly demonstrated that higher barrier properties of the outer and inner layers were
observed for the systems pre-treated with PSA when the PEO coating was applied at 350 V and 400 V,
especially at shorter treatment times. This fact suggested that the PSA layer was not fully destroyed by
the applied PEO process under such conditions and it contributed to the corrosion protection of the
whole system. In contrast, when the PEO was done at the highest voltage, 450 V, the difference in the
initial barrier properties because of PSA pre-treatment became insignificant. The high energy input
was sufficient to fully convert the PSA pre-layer without leaving any significant remnants. According
to the GDOES and SEM results, it was clear that the pre-deposited PSA layer did not influence the
PEO process at 450 V, as well as the structure and composition of the formed coatings. The corrosion
resistance of the PSA + PEO coatings, obtained under 450 V, after 24 h of exposure in a corrosive
environment did not show any difference to the PEO coatings (without PSA pretreatment) obtained
under the same conditions.

The increase of the treatment voltage decreased the initial barrier properties of the outer PEO layer
in the case of both types of systems. The higher voltage led to the formation of the thicker layers with
more developed porosity. Therefore, the greater thickness of the outer layer had no direct correlation
with the barrier properties. It was previously reported in several works that thicker PEO coatings
had a sufficiently larger porosity and contained additional cracks, which facilitated the penetration
of the corrosive medium to the metal interface [27-30]. At the same time, the longer duration of the
treatment had no obvious effect on this parameter.

3.6. Wear Behavior of the Coatings

In this work, the maximal load, under which the coating was still not failing, was determined.
A relative study of the abrasion of a steel ball counterpart in contact with PEO coatings was carried
out (the static friction partner wear rate (Wk)). The maximum load, the width of the attrition track,
and the abrasion diameter of the metal ball were considered.

Figure 13 shows the dependence of the friction coefficient (f) on the abrasion time under a given
load. It could be seen that under a voltage of 450 V, the most wear-resistant PEO coatings were
formed, since they coatings contained a crystalline structure with a mixture of corundum (x-Al,O3)
and y-AlOs3. Such coatings withstood a maximum load of 10 N (Tables 2 and 3), and a change in
the friction coefficient throughout the test period was almost identical, regardless of the time of PEO
treatment (from 5 to 30 min) and to the preliminary PSA anodization (Figure 13c).

Under the conditions of so-called “soft sparking” (350 V), PEO coatings with an amorphous
structure and a thickness of not more than 1 pm were formed. This immediately had an influence on
the load bearing capacity of the coatings (Figure 13a). The thickness of such coatings was very small,
and the surface roughness (R,) was approximately 0.25-0.45 £ 0.05 um. At loads of 1 N, the coatings
survived, whilst at loads of 2 N, the coating had already failed. Only the PSA coating failed at 1 N;
thus, there was a small improvement due to the PEO treatment at 350 V.

The “sparking” mode (under a voltage of 400 V) could be called a transient mode. With the
relatively low thickness of the PEO coating (1.5-2 pm), a significant increase in the coatings wear
resistance property was observed. Such coatings were resistant to abrasion under a load of 4-6 N
(Tables 2 and 3). In this case, as can be seen from the distribution of friction coefficient values, the PEO
coatings produced on an aluminum alloy with PSA pre-treatment withstood a higher load (5-7 N)
than the same coatings formed on a bare alloy (4-6 N).
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Figure 13. The dependence of the friction coefficient (f) on the abrasion time under a given load of the
PSA and the PEO coating, at different voltages (350 V (a), 400 V (b), and 450 V (c)), and times (5-30 min)
without and with PSA pre-treatments.

Table 2. Parameters wear tests of the PSA and the PEO coating, at different voltages (350450 V) and
times (5-30 min) without and with PSA pre-treatments.

Static Friction Partner

Specimen Vol\t;lge, T;I?:, Fo;::),(N Dian:‘e‘:‘e:n\;\ieaanr) Ball, Track(‘:/‘\g:l:?, um - Friction Coefficient Wear Rate
min max average Wi, mm?® N~1Tm~1!
PSA - - 1 (not) 490.4 £ 61.5 508.8 +£11.3 0.370 0.600 0.448 7.8773 x 107>
PEO 350 5 1 378.8 £12.9 348.8 +£15.2 0.208 0.661 0.587 2.7867 x 107>
PSA + PEO 350 5 1 4122 +78 389.4+9.3 0.240 0.682 0.611 3.9339 x 105
PEO 350 15 1 397.8 +16.4 337.0+12.3 0.242 0.665 0.605 33912 x 107>
PSA + PEO 350 15 2 447.8 £ 141 435.0 £31.4 0.267 0.621 0.586 2.7264 x 107>
PEO 350 30 1 421.0 £ 8.6 3788 £16.4 0.305 0.704 0.642 4.2895 x 107>
PSA + PEO 350 30 1 4142 +£49 420.6 + 16.0 0.286 0.702 0.601 4.0108 x 1075
PEO 400 5 4 500.2 + 21.6 457.8 +£15.0 0.212 0.575 0.511 21354 x 107>
PSA + PEO 400 5 5 535.8 £8.7 532.0 +23.0 0.236 0.565 0.518 22392 x 1075
PEO 400 15 6 485.6 £ 16.6 602.0 £+ 31.0 0.189 0.534 0.473 1.2597 x 105
PSA + PEO 400 15 7 4914 +22 459.4 +10.7 0.179 0.528 0.462 1.1345 x 10>
PEO 400 30 6 5372+76 524.6 +£14.5 0.212 0.598 0.534 1.8944 x 105
PSA + PEO 400 30 7 5120+ 2.4 4844+ 88 0.276 0.582 0.502 1.3417 x 1075
PEO 450 5 10 7474+ 6.9 8232492 0.227 0.653 0.611 4.2676 x 1075
PSA + PEO 450 5 10 700.8 £ 5.4 736.0 +9.4 0.278 0.665 0.593 3.2877 x 1075
PEO 450 15 10 708.0 +13.9 767.6 =89 0.248 0.618 0.580 3.4416 x 107>
PSA + PEO 450 15 10 7614 +74 851.8 £13.3 0.214 0.649 0.600 45967 x 107>
PEO 450 30 10 7744 +13.0 855.8 £17.0 0.243 0.671 0.620 49194 x 107°
PSA + PEO 450 30 10 7482+ 7.6 819.0 £9.0 0.219 0.630 0.575 42898 x 107>
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Table 3. The photos (optical microscope, 40x magnification) of abrasion tracks on the surface of
coatings and steel balls of the PEO coating, at different voltages (350450 V) and times (5-30 min)
without and with PSA pre-treatments, and the PSA and bare AA2024 aluminum alloy.

PSA

PEO
350V

PSA + PEO
350V

PEO
400V

PSA + PEO
400V

PEO
450V

PSA + PEO
450V

4. Conclusions

Overall, the authors considered the possibility to obtain and optimize the conditions for PEO
coating formation on the surface of an aluminum alloy AA2024 after PSA anodizing layer application.
To understand the PSA influence, the microstructure and properties were correlated to a direct PEO
formation without any anodizing pre-treatment. This work demonstrates that a PEO treatment
improves the wear and corrosion resistance to a large extent and offers the option to a localized PEO
application for local surface reinforcement. The use of PEO treatment under more stringent oxidation
conditions (i.e., high voltage and high current density) has led to the formation of stable crystalline
a- and y-alumina phases, which contribute to the formation of a wear and corrosion resistant layer.
The effect of the pre-anodized coating on the conditions and properties of the newly formed PEO
coatings, compared with the formed coating with PEO layer formed directly on the bare AA2024 was
analyzed. The following conclusions can be reached from this work:
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(1) PEO coatings can be formed on preliminary PSA anodized AA2024 alloy, opening the possibility
of local reinforcement for future industrial applications.

(2) Preliminary formation of the PSA layer on the surface of aluminum alloy AA2024 facilitates
further PEO processes and promotes the formation of PEO-coatings with lower crystallinity.

(3) Under the CC mode, the PSA layer survives under the final voltage of 350 V, whilst at 400 V,
there is an intermediate stage; and under 450 V, the PSA layer is fully converted after 5 min of
the treatment.

(4) It was shown that during the “sparking” mode (at 400 V) of PEO formation, the PEO coatings
formed on the samples with a PSA layer were more wear resistant than the same PEO coatings
on bare AA2024.
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