

Smart Control of Buck Converters using a Switching-based Clustering Algorithm Dr. Brook Abegaz, Matthew Cmiel

Preparing people to lead extraordinary lives

Abstract

- new approach to the control of switching voltage regulators using a switching-based clustering algorithm. implemented a fuzzy-logic Also

3 Methods and Research Design

Switching Based Clustering

- The algorithm groups the output voltage into three clusters A new reference voltage signal was implemented. based on similarity • The purpose was to determine if the system is able
- Based on the clustering coefficients and indices, the switching frequencies of the PWM were adjusted.
- to learn from the previous pulsed input and decrease the fall time to the desired output voltage.

controller, proportional integral derivative controller, and a neural network based controller.

Introduction

- A buck converter takes an input voltage, and outputs a lower voltage.
- Applications include the power supplies of laptops and mobile phones as well as the power type and level conversion from solar panels.
- A comparison of the different controllers and new, unsupervised machine learning controller which uses a switching-based clustering algorithm is presented

Figure 3: A model of the conventional controller with fuzzy logic control

• A comparison of load voltages and • A comparison of load voltages and currents of the original, PID, fuzzy logic, and switching-based clustering converter are shown in Figure 4.

4 **Results**

currents of the converter with the PID, fuzzy logic controller and switching-based clustering for the pulsed reference is shown in Figure

· · ·		
	Controller and Values	
Rise Time	Switching-based Clustering 1.75x10 ⁻⁴ s (fastest)	
Fall Time	Switching-based Clustering 3.13x10 ⁻⁴ s (fastest)	
Overshoot	Switching-based Clustering 2.58V (lowest)	
nitial Value	Same value for all approaches	
Peak Value	PID 5.64V (highest)	
Final Value	Switching-based Clustering 3.01V (closest to 3V)	

Figure 1: Application Areas of Buck Converters

- conventional buck converter system consists of:
 - Two switches
 - A MOSFET
 - A diode
 - Resistor-inductor-capacitor elements

Figure 4: A comparison of the load currents and load voltages

 Table 1: Summary of Best

Controllers for Initial Test

	Controller and Values	
Rise Time	Fuzzy Controller 9.36x10 ⁻⁴ s (fastest)	
Fall Time	PID 1.39×10^{-3} s (fastest)	
Overshoot	Switching-based Clustering 2.94V (lowest)	
Initial Value	Same value for all approaches	
Peak Value	Fuzzy Controller 6.16V (highest)	
Final Value	Fuzzy Controller 3V (closest to 3V)	

 Table 2: Summary of Best

Controllers for Second Test

- The new switching-based clustering algorithm provided a stable voltage output more efficiently than competing methods.
- The proposed method could improve the performance of the system by 2.7% in terms of its settling time and by 0.6% in terms of the overshoot

The authors would like to thank the Office of Services (ORS) Research at Loyola University of Chicago, LUROP, and the Center for Experiential Learning.

Figure 2: A pulsed reference voltage signal

B. W. Abegaz and M. Cmiel, "Smart Control of Buck Converters using a Switching-based Clustering Algorithm," 2019 14th Annual Conference System of Systems Engineering (SoSE), Anchorage, AK, USA, 2019, pp. 334-339.