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ABSTRACT

Upon entry into the host, pathogens must overcome innate immunity in order to 

cause disease. The innate immune system is a fast-acting initial line of defense to 

prevent infection. In order to withstand innate defenses, bacterial pathogens like the 

Gram-positive bacterium Staphylococcus aureus produce a wide array of virulence 

factors that can inhibit innate immune cell recruitment and antimicrobial activity, or 

directly target and kill phagocytic leukocytes thereby facilitating pathogenesis. Infection 

with S. aureus can cause disease in virtually any tissue site and is a significant burden 

to human health. In this thesis, we sought to understand how S. aureus counters the 

host innate immune system to cause disease. Macrophages are professional 

phagocytic leukocytes that are central to innate defenses. As such, we hypothesized 

that S. aureus must be able to overcome macrophage inflammatory responses to aid in 

its pathogenesis.  

Data from a forward genetic screen using S. aureus cell free supernatants 

derived from a transposon mutant library uncovered that a mutation in the gene 

encoding the lipoic acid synthetase (LipA), which is required for the de novo synthesis 

of the cofactor lipoic acid, resulted in enhanced TLR2-dependent activation of 

macrophages. We found that the hyper-inflammatory response elicited by a DlipA 

mutant correlated with the absence of lipoylation on the E2 subunit of the pyruvate 

dehydrogenase complex (E2-PDH). In wild type cells, the release of lipoyl-E2-PDH 

occurred during exponential growth and required the major staphylococcal autolysin Atl. 
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Purified S. aureus lipoyl-E2-PDH prevented TLR1/2 activation by triacylated 

lipopeptides. Moreover, the absence of lipoyl-protein production in vivo resulted in the 

recruitment of activated inflammatory macrophages that are better able to restrict S. 

aureus growth through production of bactericidal reactive oxygen and nitrogen species. 

Despite enhanced antimicrobial immunity upon primary infection with a DlipA mutant, we 

found that the host fails to mount an improved recall response to secondary infection. 

Overall, data in this thesis indicate that S. aureus lipoylated E2-PDH moonlights 

as a novel immune evasion protein by suppressing TLR-mediated macrophage 

activation. Our data also suggest that lipoic acid synthesis in S. aureus promotes 

bacterial persistence during infection through limitation of reactive oxygen and nitrogen 

species generation by macrophages. Broadly, this work furthers our understanding of 

the intersections between bacterial metabolism and the immune response to infection. 

Furthermore, work in this thesis provides a potential therapeutic target for S. aureus that 

can cripple bacteria replication and promote host immunity.  
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CHAPTER ONE

REVIEW OF LITERATURE 

Section 1: Staphylococcus aureus and Human Health 

Nearly 140 years have passed since Sir Alexander Ogston first isolated an 

infectious bacterium from a patient’s leg abscess and named it Staphylococcus aureus 

(1, 2). S. aureus is a Gram-positive coccus which causes a significant amount of human 

disease. Up to one-third of humans are asymptomatic carriers of S. aureus where it 

mainly resides in the nasal cavities, but recent data demonstrates that other sites of the 

body can be colonized as well (3-9). In addition to these carriers, a large proportion of 

people are transiently colonized with S. aureus (3-5). The pool of asymptomatic and 

transient carriers contributes to a large carrier population. Though S. aureus is highly 

pathogenic and potentially lethal, it is considered to be part of normal bacterial flora in 

asymptomatic carriers (5). Moreover, these carriers may facilitate the transmission of S. 

aureus throughout the population both in healthcare and community settings (10).  

S. aureus Disease and Morbidity. 

The most common manifestation of S. aureus disease is skin and soft-tissue 

infections such as impetigo, boils, scalded skin syndrome, or abscesses, and atopic 

dermatitis. Though the skin is the most common infection site of S. aureus, the 

bacterium can breach skin barriers and colonize almost every tissue site in the host. 

Upon access to these other tissues of the host, S. aureus infections lead to more severe
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diseases including osteomyelitis, pneumonia, toxic shock syndrome, necrotizing 

fasciitis, food borne illness, endocarditis, bacteremia, and sepsis. 

S. aureus is an opportunistic pathogen. Immunocompromised individuals, as well 

as those undergoing device implantations or procedures like catheterization are all at 

higher risk of contracting a severe S. aureus infection (11). In 2013, the Centers for 

Disease Control and Prevention (CDC) estimated an incidence of 80,000 severe 

infections and 11,000 deaths caused by S. aureus (12). Alarmingly, a recent report cites 

that the number of reported severe infections has increased to just under 200,000 cases 

and around 20,000 deaths (13). A contributing factor to the mortality of patients with 

severe infections is the inability to treat S. aureus infections due to antibiotic resistance.  

Antibiotic Resistance in S. aureus. 

The first successful antibiotic to treat S. aureus infections was penicillin. 

However, resistance by S. aureus to penicillin quickly appeared (14, 15). In 1960, a 

synthetic derivative of penicillin, named methicillin, was created as an alternative aimed 

to treat penicillin-resistant S. aureus infections. However, after only one year of use the 

first incidence of methicillin-resistant S. aureus (MRSA) was identified (16). Resistance 

to methicillin is conferred by the presence of the mecA gene which is mobilized by a 

mobile genetic element called the staphylococcal cassette chromosome mec (17). The 

presence of methicillin resistance on a mobile genetic element leads to robust horizontal 

transfer between different S. aureus strains (18). A large number of genes that encode 

antibiotic resistance mechanisms and virulence factors are found on mobile genetic 

elements which are transferred by phage transduction (19). Transduction by phage is 

the most common route for gene transfer as S. aureus is not naturally competent. 
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Though resistance to methicillin is considered a dangerous adaptation, MRSA can still 

be treated with the antibiotic vancomycin. Similarly, as with methicillin, the emergence 

of vancomycin resistance in S. aureus isolates appeared quickly after its implementation 

(20, 21). Despite its high level of antimicrobial resistance, there are several antibiotics in 

use or in development that can still control this pathogen. Derivatives of vancomycin 

such as telavancin, dalbavancin, and oritavancin all can kill S. aureus in vitro (22, 23). In 

the clinic, the cephalosporins ceftobiprole and ceftaroline were shown to be effective 

against skin and soft-tissue infections (24, 25). In summary, the emergence of antibiotic 

resistant isolates of S. aureus highlights the adaptability of this human pathogen.  

Epidemiology of S. aureus. 

There are many different infectious strains and isolates of S. aureus that have 

been characterized over the years. Three main typing methods such as multilocus 

sequence typing (MLST), staphylococcal protein A gene (spa) typing, and pulsed-field 

gel electrophoresis (PFGE) have been used to molecularly classify the different types of 

S. aureus isolates (26). MLST is a sequence-based genotyping method based on single 

nucleotide variations of seven S. aureus housekeeping genes that lead to distinct 

profiles known as sequence type (ST) (27, 28). Furthermore, S. aureus genomes are 

categorized into clonal complexes (CC) based on MLST, of which four CC cover 90% of 

all known S. aureus genomes (29, 30). spa typing is based on the variable tandem 

repeats in the spa gene (31). Lastly, PFGE incorporates fragmentation of the DNA with 

restriction enzymes followed by separation of the fragments PFGE. In the United States, 

PFGE was chosen as a standard over other typing methods and classified eight 

different lineages designated as pulsed-field types USA100 through USA800 (32).  
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Although infections occur on a global scale, a global pandemic strain has never 

emerged, rather infectious strains tend to only regionally dominate. A recent example of 

a strain that emerged in the healthcare setting was CC30 in North America and Europe 

(33, 34). In focusing on current predominant strains in the United States, USA300 is the 

most common strain of S. aureus that spreads mainly in the community causing skin 

and soft-tissue infections (35). USA300 first emerged in 2000 as a cause of skin and 

soft-tissue infections among college football players in Pennsylvania and prisoners in 

Missouri (36, 37). Since 2000, it has continued to spread among the community in the 

United States and was isolated from cases of severe infections (38). The spread of 

USA300 is attributed to virulence characteristics like resistance to numerous antibiotics 

such as methicillin, erythromycin, levofloxacin, mupirocin, and tetracycline (35). Though 

USA300 is a dominant strain in the United States, it has been isolated in Europe, South 

America, and Australia (39-41). 

With the first report of MRSA in 1961, that bacterium was believed to be 

transmitted in the healthcare setting. However, in the 1990s, cases of MRSA were 

beginning to be reported in the community in individuals that had no prior hospitalization 

leading to both healthcare-associated (HA) and community-associated (CA) infections 

(42). MRSA and methicillin-susceptible S. aureus (MSSA) infections are dominant in 

both the healthcare and community setting (43, 44). As such, in 2013 MRSA was 

classified as a serious threat to public health due to widespread infections and 

associated morbidity in the United States (45). Although a recent report by the CDC 

details a steady decline in the incidence of HA-MRSA infections from 2005-2012, 

between 2013-2016 this decline has slowed (13). Furthermore, CA-MRSA infection 
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rates have decreased at a much slower rate (13). Alarmingly, the rates of HA-MSSA 

infections have not decreased and CA-MSSA infections are still steadily increasing (13). 

The severity of infections caused by S. aureus and the continued dominance in hospital 

and community settings, underscore the need to find ways to treat S. aureus infections 

that do not rely on antibiotics or lead to resistance. 

Section 2: Host Defense Against S. aureus 

 The success of S. aureus as a human pathogen is aided by its ability to 

overcome host defenses such as the innate immune system. In this section, we will 

introduce components of the innate immune system that S. aureus faces upon invasion 

of the host focusing most heavily on macrophages. This will be followed by a section 

detailing how the innate immune system can recognize S. aureus. Then we will describe 

ways in which the innate immune system controls S. aureus during infection. After 

introducing how the host innate immune system interacts, recognizes, and controls S. 

aureus infection we then will cover the myriad adaptations of S. aureus that function to 

overcome the host response to infection.  

Physical and Chemical Barriers to S. aureus Infection. 

 The most common manifestation of S. aureus infection is skin and soft-tissue 

infection. Therefore, the first line of defense that S. aureus must overcome to cause 

disease is the host skin layer. The skin layer acts as physical barrier to prevent S. 

aureus from accessing deep tissues of the host. In the skin, epithelial cells linked 

together by tight junctions form a barrier to prevent S. aureus entry into the body. 

Besides these physical components, chemical components of the skin also work to 

defend against S. aureus infection. The skin is free of infection due to its slight acidic pH 
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and antimicrobial lipid composition (46). In saliva and tears, antibacterial enzymes 

including lysozyme and secretory phospholipase A2 function to kill S. aureus (47, 48). In 

addition, skin cells produce more than 20 different types of antimicrobial peptides 

(AMPs) such as defensins or cathelicidins, and make antibacterial fatty acids to prevent 

S. aureus infection (46, 49, 50). 

Cellular Arm of the Innate Immune System. 

When chemical and physical barriers to infection fail, the spread of a pathogen is 

countered by an innate inflammatory response mediated by recruited effector 

leukocytes and associated molecules. These leukocytes are derived from the myeloid 

lineage of cells which include macrophages, monocytes, neutrophils, dendritic cells, 

mast cells, eosinophils, and basophils. Though non-myeloid derived cells such as 

natural killer cells and gd T-cells also have innate-like functions. Cells that comprise the 

innate immune system are characterized by their ability to recognize microbes and 

mount fast responses to infection. The majority of innate immune cells are present in 

the blood and can access almost any tissue site during an infection. All of these innate 

immune cells are described to interact with S. aureus in some capacity and are outlined 

below.  

Eosinophils, Basophils, and Mast Cells. 

 Eosinophils, basophils and mast cells are highly granular cells of the innate 

immune system that have many overlapping functions. All of these cells contribute to 

responses in allergic inflammation. Eosinophils produce a wide range of cytokines, 

though their production of cytotoxic granule proteins such as major basic protein, 

eosinophil peroxidase, eosinophil cationic protein, and eosinophil-derived neurotoxin 
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(51, 52). Granule proteins produced by eosinophils aid in host control of helminth 

infections. Eosinophils can also respond to inflammatory signals and release 

mitochondrial DNA forming traps with granule proteins that are known to have 

antibacterial activity (53).  

Like eosinophils, basophils facilitate host defense to parasites. Basophils have 

little proliferative capacity, but upon activation produce histamine in addition to 

interleukin (IL) 4 and IL-13 all of which are potent mediators of allergic responses (54). 

Mast cells have many overlapping functions with basophils including the production of 

granule proteins such as histamines, but they also produce IL-5 and IL-13 upon 

activation (55). Again, mast cells are widely recognized for their role in allergic 

responses but can also aid in control of bacteria or viruses.  

While the role of eosinophils, basophils, and mast cells in facilitating host 

defense to S. aureus infection is not well understood, there are numerous studies that 

describe activation of these granular cells in response to S. aureus exposure. S. aureus 

can exacerbate allergic diseases like atopic dermatitis (56). In atopic dermatitis the 

functions of these granular cells contribute to the pathology associated with disease. 

Eosinophils were found to be targeted and killed by a S. aureus toxin in the supernatant 

called alpha-hemolysin (57). The S. aureus mediated killing of eosinophils is proposed 

to increase tissue injury during allergic disease (57). Moreover, Staphylococcal protein 

A, which binds to Fc regions of antibodies, is reported to bind and crosslink IgE and IgG 

on the surface of basophils causing the release of histamine (58). Lastly, mast cells can 

recognize the presence of S. aureus and activate inflammatory responses such as 

production of IL-8 and tumor necrosis factor-a (TNFa) (59). Interestingly, S. aureus can 



 

      

8 

 

invade and persist in mast cells (60). While S. aureus can activate mast cells in vitro, 

mice lacking mast cells were not more sensitive to S. aureus infection (61). In summary, 

while there is a small amount of published work related to how granulocytes such as 

eosinophils, basophils, and mast cells interact with S. aureus, the biological relevance 

of these interactions needs to be further explored. 

Dendritic Cells. 

 Dendritic cells are aptly named for their stellate morphology, when first described 

in the 1970s (62, 63). They are a heterogenous population of cells with distinct functions 

and subsets that are present in peripheral tissues. A main function of dendritic cells is 

their proficient ability to ingest matter through phagocytosis, micropinocytosis, and 

receptor-mediated endocytosis (64). Upon engulfment of a pathogen or activation by 

pro-inflammatory signals, dendritic cells can migrate from the tissue into secondary 

lymphoid organs and undergo a maturation event culminating in antigen presentation 

(64, 65). In antigen presentation, the internalized pathogen is processed and broken 

down into small components or antigens that are then presented on major 

histocompatibility class I or II (MHC) to activate naïve T cells (64, 65). In addition to 

antigen presentation on MHC, T cells also require co-stimulation which is provided by a 

variety of surface expressed molecules on dendritic cells including cluster of 

differentiation (CD) 40, CD80 and CD86 (66). Furthermore, dendritic cells secrete 

cytokines such as IL-12 that are involved in differentiation and activation of Th1 cells 

(67). In mice, dendritic cells are usually defined by the expression of an integrin named 

CD11c and high levels of MHC-II. A subset of dendritic cells that respond to viral 

pathogens are known as plasmacytoid dendritic cells. Relevant to S. aureus are the 
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classic/conventional dendritic cells, which secrete cytokines and chemokines necessary 

for establishing protection against S. aureus (68).   

 Dendritic cells also interact with S. aureus in different ways that can have major 

consequences for the innate and adaptive immune system. For example, wall teichoic 

acid of S. aureus drives dendritic cell maturation and activation in vitro (69). Without 

proper dendritic cell activation, they do not efficiently present antigen nor activate T 

cells. EsxA/EsxB are virulence factors of S. aureus and were found to be important for 

dendritic cells to condition the Th1/Th17 response to S. aureus (70). Conditional 

knockout of dendritic cells in mice during infection with S. aureus led to higher bacterial 

loads, inflammation, and mortality (71). A recent example of S. aureus interaction with 

dendritic cells revolves around the S. aureus toxin LukAB, which can kill dendritic cells 

and interfere with their activation of T cells (72). All together, these examples highlight a 

few of the interactions between S. aureus and dendritic cells that can influence the host 

response to infection. 

Neutrophils. 

 Neutrophils are the most abundant cell of the innate immune system (73-75). 

Neutrophils are mainly present in the blood, though they can be found in the bone 

marrow, spleen, lung and the liver (76, 77). Because of their unique multi-lobulated 

nucleus, neutrophils are termed polymorphonuclear leukocytes (PMNs), which include 

other innate immune cells such as basophils and eosinophils. An additional 

characteristic of neutrophils is their large abundance of granules and secretory vesicles 

present in the cytoplasm (78, 79). Neutrophils are considered to be short-lived cells, but 

during inflammation their longevity is expanded (76, 80). Upon invasion of S. aureus or 
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other pathogenic microbes into host tissues, neutrophils are rapidly recruited from the 

vasculature to site of infection by extravasation (81). During extravasation, P- and E-

selectin on the surface of endothelial cells in blood vessels bind to glycosylated ligands 

on the surface of neutrophils, causing free-flowing neutrophils to tether to the 

endothelium (82). The flow of circulating blood causes neutrophils to roll along the 

endothelium until they adhere via binding to integrins (83). Neutrophil specific 

chemokine gradients on the endothelium promote the crawling of neutrophils during 

extravasation (84). Finally, this process culminates upon transmigration of neutrophils 

through the endothelial cell layer and into the tissue by either paracellular or 

transcellular routes (85). 

 Neutrophils are considered to be highly pro-inflammatory cells with potent killing 

capacities. Though less proficient than macrophages and dendritic cells, neutrophils 

also phagocytose extracellular material. In mice, neutrophils are characterized by 

surface expression of the integrin CD11b and the protein Ly6G. It is unknown if there 

are different subsets of neutrophils like dendritic cells and macrophages. 

In the context of S. aureus infection, neutrophils are critical to infection control, as 

their absence leads to a higher susceptibility to infection (86, 87).  During MRSA 

infection, distinct types of neutrophils were isolated from mice, based on their surface 

expression of proteins and production of cytokines, that either resisted or were 

susceptible to infection (88). The neutrophils isolated from resistant mice were more 

mature and displayed pro-inflammatory characteristics in contrast to the anti-

inflammatory phenotype of neutrophils from susceptible mice (88). It is unknown if there 
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are different lineages of neutrophils that arise during infection with S. aureus or if 

neutrophils change functions based on diverse signals.  

Macrophages. 

 Described by their ability to phagocytose bacteria and apoptotic cells over 100 

years ago, macrophages have long been considered to be important cells of the innate 

immune system (89). In the host, macrophages have critical immune roles in pathogen 

defense and are major mediators in a multitude of host homeostatic functions. In 

addition to engulfment of pathogens and cellular debris, macrophages secrete an 

abundant array of cytokines and chemokines that function to regulate other innate 

immune cells and regulate the adaptive immune response to infection (90).   

Tissue resident macrophages. Nearly every tissue in the body has a resident 

population of macrophages, including immune privileged sites such as the brain and 

testes (91). In these tissues, macrophages can orchestrate critical functions in tissue 

development, sense damage, and mediate tissue repair. Originally, these tissue 

resident macrophages were thought to be populated by circulating blood monocytes 

that can differentiate into macrophages. However, we now understand that this is not 

the case. Instead these tissue resident macrophages are derived from the yolk sac and 

fetal liver, with only a small component derived from hematopoietic stem cells in the 

bone marrow (92, 93). These resident macrophages are then maintained by continuous 

self-renewal (94-96). Moreover, tissue resident macrophages have distinct tissue-

specific transcriptional and epigenetic profiles that highlight their heterogenous tissue 

specific functions based on the anatomical location in which they reside (97-100). Brief 

examples of the diverse functions of tissue resident macrophages are the following: 
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osteoclasts, bone macrophages, are highly specialized cells that can remodel bone 

(101); microglia present in the central nervous system contribute to brain development 

and function (102); lung alveolar macrophages clear surfactants produced by lung cells 

in addition to inhaled particulates and microbes (103); Kupffer cells in the liver remove 

harmful metabolites and pathogens (104); splenic red-pulp macrophages remove 

senescent red blood cells from circulation and recycle heme and iron (105).  

Peritoneal macrophages. A large reservoir of tissue resident macrophages is 

present in the peritoneal cavity. Peritoneal macrophages comprise two major subsets, 

the large and the small peritoneal macrophage (106). These two macrophages 

populations were first separated based on high surface levels of the integrin CD11b and 

the surface glycoprotein F4/80 in the large peritoneal macrophages compared to the 

small peritoneal macrophages (107). Large peritoneal macrophages are thought to 

originate from the yolk sac and self-renew in contrast to small peritoneal macrophages 

which have bone-marrow origins (108). During an infection in the peritoneal cavity, 

small peritoneal macrophages increase in number and are derived from recruited 

monocytes (107). Furthermore, small peritoneal macrophages are more phagocytotic 

and produce oxidative molecules to a higher extent than large peritoneal macrophages.  

Recruitment of macrophages during infection. During the course of acute 

inflammation or infection, macrophages are recruited to facilitate the host immune 

response. Macrophages that are present at the site of infection or inflammation can be 

from the tissue resident cells or derived from circulating monocytes. Monocytes 

originate from hematopoietic stems cells derived from the bone marrow and themselves 

have important functions in innate immunity (109, 110). However, monocytes infiltrate 
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the site of inflammation or infection where they differentiate into macrophages or 

dendritic cells (111). In response to environmental stimuli, these monocyte-derived 

macrophages can accentuate inflammatory responses or dampen the inflammatory 

response. These recruited monocytes are innate effectors that can kill pathogens 

through phagocytosis, produce a range of antimicrobial reactive oxygen species, and 

secrete inflammatory cytokines (112). In contrast, monocytes can promote angiogenesis 

to facilitate wound healing (113). Monocyte recruitment is driven by two main 

chemokines, the monocyte chemotactic protein 1 (MCP-1/CCL2) and CX3CL1 that bind 

to receptors, CCR2 and CX3CR1 (114, 115). These chemokines are produced by 

fibroblasts, epithelial cells, and endothelial cells in response to inflammation and thus 

facilitate the recruitment of monocytes to the site of inflammation.  

M1 and M2 macrophages. Macrophages are grouped into two main categories 

based on polarization states in response to various stimuli, M1 or classically activated 

macrophages and M2 or alternatively activated macrophages (116). The dogma is that 

M1 macrophages are polarized from the presence of lipopolysaccharide (LPS) and/or 

interferon-g (IFN-g) and M2 macrophages arise from IL-4 and IL-13 signaling (117, 118). 

Expression of specific transcription factors in M1 and M2 macrophages contribute to 

their polarization. Upon activation, M1 macrophages are more phagocytic, produce pro-

inflammatory cytokines such as IL-12, IL-1a/b, IL-6, TNFa, upregulate surface 

molecules, and have increased pathogen-killing capacity. In contrast, M2 macrophages 

are considered to be any macrophage that is not pro-inflammatory, which can include 

both wound healing and anti-inflammatory macrophages. These anti-inflammatory M2 

macrophages exert immunosuppression through production of cytokines such as IL-10 
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or transforming growth factor b (TGF-b) (119).  Besides immunosuppressive functions, 

other M2 macrophage roles can include promotion of allergic inflammation, aiding tumor 

growth, and also serving as reservoirs of pathogen survival. The M1 and M2 distinction 

of macrophages was proposed to mimic the T cell literature, as distinct classes of T 

cells are well characterized. However, the idea of defining macrophages as M1 or M2 is 

now regarded as too simplistic and narrow based on the varied roles that 

heterogeneous populations of macrophages can assume. Moreover, unlike other 

immune cells that upon differentiation are committed in lineage, macrophages are not 

irreversibly committed to a certain polarization state and can exert functions that 

encompass both M1 and M2 activities (120). Thus, some have proposed that due to the 

remarkable plasticity of macrophages, their classification should not be thought of as a 

linear scale, but rather representing a color wheel in which a blending of phenotypes 

leads to a larger spectrum that encompasses heterogeneous macrophage populations 

(90).  

S. aureus interaction with macrophages. Like neutrophils, macrophages are 

part of the initial cellular response to infection. As such, S. aureus and macrophages 

interact with each other during infection. Mice that are depleted of macrophages are 

exquisitely sensitive to S. aureus infection. For example, during S. aureus-induced 

peritonitis in mice, the absence of macrophages led to increased bacterial loads in 

organs as well as significantly higher mortality (121). Likewise, in a pulmonary model of 

infection, absence of alveolar macrophages significantly increased the mortality of mice 

but did not alter bacterial loads in the lung (122). S. aureus is readily internalized by 

macrophages, where it can survive and persist (123, 124). It is hypothesized that, as a 
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consequence of this persistence, S. aureus uses macrophages as a means of 

dissemination during infection (123, 124). In cystic fibrosis, S. aureus can cause 

recurrent pneumonia which is attributed to the intracellular persistence of S. aureus in 

alveolar macrophages (125). Thus, alveolar macrophages from the cystic fibrotic lung 

may serve as a reservoir of S. aureus leading to chronic pneumonia. Recently, it was 

reported that in a model of recurrent skin and soft-tissue infections by S. aureus that the 

host’s ability to mount a greater recall response to recurrent infections is mediated by 

the innate-like memory of macrophages (126). Altogether, the interactions between S. 

aureus and macrophages during infection are a critical determinant to the outcome of 

infection.  

Concluding Remarks. 

 In this section, we have introduced the main cellular components of the innate 

immune system that interface with S. aureus. These include eosinophils, basophils, 

mast cells, dendritic cells, neutrophils, and macrophages. We defined general features 

of these cells and highlighted some literature evidence that supports interactions of 

these innate cells with S. aureus. In the next section we will introduce how cells of the 

innate system detect S. aureus. 

Section 3: Innate Recognition of S. aureus 

 After breaching physical barriers, the innate immune system is the first line of 

defense against S. aureus. The recognition of S. aureus by the innate immune system 

is mediated through germline-encoded pattern recognition receptors (PRRs). PRRs are 

able to recognize microbial components like essential cell membrane and cell wall 

components of bacteria, bacterial toxins, DNA, RNA, bacterial lipoproteins, and 
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components of bacteria motility organelles. These microbial components are collectively 

known as pathogen-associated molecular patterns (PAMPs). PRRs are found either on 

the surface or reside within the cytosol of the cell. Interactions with cognate PAMPs 

leads to activation of specific signaling pathways that culminate in antimicrobial 

responses. PRRs modulate responses to various stimuli, are independent of 

immunological memory, and are present both internally and externally in cells that 

express PRRs (127). Almost every cell in the innate immune system, as well as 

endothelial and epithelial cells, and some cells of the adaptive immune system express 

PRRs. The first family of PRRs to be studied in detail is the Toll-like receptor (TLR) 

family. The name stems from the unanticipated role of the Toll protein in Drosophila 

melanogaster in responding to fungal infection (128). Currently there are 10 TLRs in 

humans and 13 known TLRs in mice that recognize a range of PAMPs. The primary 

ligands of these TLRs are summarized in Table 1. Other classes of PRRs include C-

type lectin receptors (CLRs), RIG-I-like helicases, formylated protein receptors (FPR1 

and FPR2) or the nucleotide binding-oligomerization domain (NOD)-like receptors. The 

diverse location, range of cell types, recognition of numerous PAMPs, and activation of 

antimicrobial signaling pathways of PRRs arm the innate immune system to mount rapid 

responses to invading pathogens. 
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Table 1. Toll-like Receptors and Ligands. 
 

Toll-like Receptor (TLR) 
(Location) 

Primary Ligand(s) Reference(s) 

1/2 
(Surface) 

Triacylated lipoproteins/ 
lipopeptides 

(129) 

2 
(Surface) 

Lipoprotein/lipopeptides, 
peptidoglycan (controversial), 

lipoteichoic acid, zymosan 

(130-133) 

3 
(Internal) 

Viral double-stranded RNA (134) 

4 
(Surface) 

Lipopolysaccharide (135) 

5 
(Surface) 

Flagellin (136) 

6/2 
(Surface) 

Diacylated 
lipoproteins/lipopeptides, 

lipoteichoic acid 

(137, 138) 

7 
(Internal) 

Viral single-stranded RNA (139, 140) 

8 
(Internal) 

Viral single-stranded RNA or 
bacterial RNA 

(140, 141) 

9 
(Internal) 

CpG-containing DNA (142) 

10 (human only) N/A N/A 
11 (only in mice) 

(Internal) 
Profilin-like molecule; and 

unknown ligand from 
uropathogenic bacteria 

(143, 144) 

12 (only in mice) Profilin-like molecule (145) 
13 (only in mice) 

(Internal) 
23S ribosomal RNA (146) 

 

PRR Recognition of S. aureus. 

 Recognition of S. aureus by PRRs is rapidly achieved due its many PAMPs 

including: lipoteichoic acid (LTA), peptidoglycan, lipoproteins, DNA, and RNA. S. 

aureus-derived PAMPs include the cell wall, which is comprised of thick peptidoglycan 

layers embedded with LTA, as well as membrane anchored lipoproteins. S. aureus is 

considered to be an extracellular pathogen in that it does not depend on invading a host 

cell for its pathogenesis or replication. As such, the dominant PRRs that recognize S. 

aureus are found on the surface of PRR-expressing cells. This includes TLR2 that 

recognizes bacterial lipids, CLRs that sense carbohydrates, and formyl peptide 
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receptors that bind to secreted bacterial proteins containing a formylated methionine or 

to lytic small molecules made by S. aureus named phenol-soluble modulins (PSMs) 

(147). However, S. aureus can be internalized by professional phagocytes such as 

neutrophils, macrophages or dendritic cells, and by non-professional phagocytes 

including human keratinocytes. Internalized S. aureus is then recognized by endosomal 

and cytosolic PRRs including TLR8/9 that sense RNA and DNA respectively, and NLRs 

that detect peptidoglycan structures (141, 148, 149). 

TLR2 Recognition of S. aureus. 

The most important and well characterized PRR that recognizes S. aureus is 

TLR2. Like other surface TLRs, TLR2 is part of the type I integral membrane 

glycoprotein family (150). The extracellular N-terminal ectodomain is responsible for 

PAMP detection and consists of 16-28 leucine-rich repeats (LRR) (151). The conserved 

intracellular C-terminal domain bears homology to the IL-1 receptor and is known as the 

Toll/IL-1 receptor domain (TIR) (152). This intracellular TIR domain is necessary for the 

interaction of adaptor molecules, which aid in activating downstream signaling pathways 

upon receptor engagement (153). Recognition of TLR2 native ligands occurs through 

heterodimerization with either TLR1 or TLR6. Upon dimerization with a native ligand, 

crystallography studies with bound ligands reveal that the ectodomain of each monomer 

form a horse-shoe shaped structure containing the LRRs and the two monomers 

collectively form an “m” shaped complex with the ligand, stabilizing the two receptors 

(154-157). TLR1/2 heterodimers bind to triacylated lipoproteins and TLR2/6 

heterodimers primarily recognize diacylated lipoproteins and LTA (which is diacylated) 
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(158). Recognition of lipoproteins by TLR2 in the absence of TLR1 or TLR6 does not 

occur (159).  

S. aureus produces abundant amounts of lipoproteins that are both diacylated 

and triacylated, but under most growth conditions S. aureus lipoproteins are triacylated 

(160, 161). Therefore, recognition of S. aureus lipoproteins is most often mediated by 

TLR1/2. Co-crystallization of TLR1/2 heterodimer with a synthetic triacylated lipopeptide 

demonstrates that the ectodomain of TLR1 has a channel that binds the amide-linked 

lipid chain of the triacylated lipopeptide (157). This channel is blocked by phenylalanine 

residues in TLR6, providing a structural explanation for the specificity of diacylated or 

triacylated lipoproteins by TLRs (162). TLR2 has a hydrophobic pocket that interacts 

with the cysteine-linked diacylglycerol in a less specific manner that allows for functional 

plasticity in recognition of fatty acid chains with varying length or chemical structure 

(162).  

The cell wall of S. aureus is made up of thick layers of peptidoglycan. Countless 

studies and reviews list bacterial peptidoglycan as a TLR2 ligand (132, 163, 164). Many 

of the initial studies that determined peptidoglycan was a TLR2 ligand used 

commercially purified preparations of peptidoglycan. The use of commercial purified 

peptidoglycan may contain other TLR2 activating components. A study by Travassos et 

al. detailed that the TLR2-activating function of purified peptidoglycan stems from 

contaminating cell wall LTA and lipoproteins that are easily co-purified with 

peptidoglycan (165). Furthermore, they show that, with added steps in the procedure to 

isolate peptidoglycan by including treatments with amylase, trypsin, sodium dodecyl 

sulfate, acetone, and hydrofluoric acid, that peptidoglycan fails to activate cells through 
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TLR2 (165). Importantly, the hydrofluoric acid treatment step deactivates bacterial 

lipoproteins and LTA, which abrogates the TLR2 activating function of purified 

peptidoglycan. Treatment of S. aureus cell wall components with lipase, to hydrolyze 

the esterified lipids attached to lipoproteins also abrogates the TLR2 activating ability of 

the purified cell wall fractions (166, 167). Shortly after, another group reported that by 

treating bacteria with penicillin, which prevents peptidoglycan transpeptidation and 

allows for purification of soluble peptidoglycan fragments that are not incorporated into 

the cell wall or linked to other cell wall components, peptidoglycan still activates TLR2 

responses (168). A study using chemically synthesized fragments of peptidoglycan 

structure and surface plasma resonance found that only some but not all of the 

synthesized fragments could bind to TLR2 (169). However, these synthetic fragments 

were never put onto TLR2 expressing cells. Peptidoglycan isolated from Bacillus 

anthracis, which lacks LTA, needed to be internalized by cells in order to activate 

immune signaling cascades (170). In this instance, the cytosolic NLRs, which are 

definitive peptidoglycan receptors, are likely recognizing the internalized peptidoglycan. 

The variation in peptidoglycan structure from different bacterial species in conjunction 

with the slightly different methodologies of peptidoglycan purification compound the 

controversy of defining it as a TLR2 ligand (171). Thus, peptidoglycan is not likely to be 

a ligand of TLR2.  

TLR2 co-receptors. Besides working with TLR1 and TLR6 to increase the range 

of TLR2 substrate recognition, other molecules such as CD14, CD36 and asialo-GM1 

also interact with TLR2 to facilitate ligand recognition. These molecules are not 

necessary for TLR2 to recognize PAMPs, but instead function to enhance responses by 
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lowering the concentrations of ligand needed for receptor recognition (172, 173). CD14 

is a glycosylphosphatidylinositol-anchored membrane protein with no intracellular 

domain that can be found expressed on phagocytes such as macrophages. Besides 

being critical for facilitating TLR4 recognition of LPS, CD14 is an accessory molecule 

that helps to load both LTA and diacylated lipoproteins onto TLR2/6 heterodimers as 

well as deliver triacylated lipoproteins to TLR1/2 heterodimers (174-176). CD36, a 

membrane glycoprotein involved in scavenging, can load diacylated LTA or lipoproteins 

onto TLR2/6, but CD36 itself cannot bind to triacylated lipoproteins (177). CD36 plays a 

critical role during infection as CD36 knockout mice were found to be highly susceptible 

to S. aureus infection (172). Moreover, CD36 deficient macrophages could not produce 

cytokines after stimulation by LTA or different forms of diacylated lipoproteins, but other 

diacylated and triacylated lipoproteins were found to activate these CD36 deficient 

macrophages (178). Thus, CD36 may only recognize LTA and diacylated lipoproteins 

with certain structures. A study identified that CD36 may bind ligands and transfer them 

to CD14, which are both localized in lipid rafts that contain TLR1/2 or TLR2/6, and then 

load the ligands to the relevant TLR2 heterodimer (177). Besides CD14 and CD36, 

asialylated glycolipids like asialo-GM1, which are found in lung epithelial cells, are 

hypothesized to facilitate TLR2 recognition of S. aureus (179, 180). On the surface of 

airway epithelial cells, TLR2 and asialo-GM1 associate in lipid rafts and generate the 

synthesis of IL-8 after exposure to S. aureus (181).  Therefore, the association of TLR2 

with TLR1, TLR6, CD14, CD36 and asialo-GM1 help to generate a large variety of 

stimuli for TLR2. 
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 The TLR2 signaling pathway. Upon ligand binding to either heterodimer pair of 

TLR2, a signaling cascade induces nuclear translocation of the transcription factor 

nuclear factor kappa B (NF-kB), which controls the expression of pro-inflammatory 

genes. As diagramed in Figure 1, upon ligand recognition and dimerization of TLR2 the 

TIR domain of TIRAP/Mal proteins bind to the TIR domain of TLR2 and recruits the 

common adaptor molecule MyD88 (182). MyD88 then recruits IL-1R-associated kinase 

4 (IRAK-4) that then phosphorylates IRAK-1 to then initiate autophosphorylation (183). 

The phosphorylated IRAK-1 subsequently associates with TNFR-associated factor 6 

(TRAF6), which acts as an ubiquitin protein ligase (E3) to ubiquitinate itself in addition to 

the IKK-g/NF-kB essential modulator (NEMO) (184, 185). This ubiquitination activates a 

complex of TGF-b-activated kinase 1 (TAK1) and its associated proteins, leading to the 

phosphorylation of NEMO and activation of the inhibitor of nuclear factor-k (IKK) 

complex (186). Phosphorylated IkB undergoes K48-linked ubiquitination and 

degradation by the proteasome. This frees NF-kB to then translocate to the nucleus to 

initiative its transcriptional program of pro-inflammatory gene expression (187). At the 

same time, TAK1 activates the mitogen-activated protein kinases (MAPKs) cascades, 

leading to activation factor-1 (AP-1) induction, which also induces the expression of 

genes encoding pro-inflammatory factors (184). Together, NF-kB and AP-1 lead to the 

production of cytokines and chemokines such as IL-6, TNF, KC/IL-8, and Chemokine 

(C-C motif) ligand 3 or 4 (CCL3 and CCL4) also known as macrophage inflammatory 

protein 1-alpha or beta (MIP-1a and MIP-1b). This is just a very small sampling of the 

wide range of inflammatory changes mediated by these transcription factors.  
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Figure 1. Model of TLR2 Signaling Pathway. After ligand recognition and dimerization 
of TLR2 with TLR1 or TLR6, the TIR domain of TLR2 recruits the common adaptor 
protein MyD88. MyD88 then recruits IRAK-4 which phosphorylates IRAK-1. The 
phosphorylated IRAK-1 subsequently associates with TRAF6, which ubiquitinates itself 
in addition to the IKK-g/NEMO complex. This ubiquitination activates a complex of TAK1 
and its associated proteins, leading to the phosphorylation of NEMO and activation of 
the IKK complex. Phosphorylated IkB undergoes K48-linked ubiquitination and 
degradation by the proteasome. This frees NF-kB to then translocate to the nucleus to 
initiative its transcription program of pro-inflammatory genes. At the same time, TAK1 
activates the MAP kinases cascades, leading to AP-1 induction, which also induces the 
expression of genes encoding pro-inflammatory factors. 
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Concluding Remarks.  

 In this section, we introduced how the host innate immune system recognizes S. 

aureus. This is carried out by the expression of various types of PRRs such as TLRs on 

innate cells as well as other non-innate immune cells including epithelial cells and 

keratinocytes in the skin. In particular, we focused on how S. aureus PAMPs are 

potently recognized by TLR2. PAMP recognition leads to a signaling cascade that 

culminates in the synthesis or activation of mediators of inflammation by innate immune 

cells. In this next section, we will introduce how the host controls or eliminates S. aureus 

upon recognition of the bacterium. 

Section 4: Host Control of S. aureus 

Extracellular Mechanisms of Host Defense. 

Antimicrobial peptides. A chemical defense strategy by innate cells and skin 

cells is the production of AMPs. AMPs are made by cells that are the primary defenders 

against S. aureus such as mast cells, eosinophils, dendritic cells, neutrophils, 

monocytes, macrophages, and keratinocytes. In total, there are over 1200 known or 

predicted AMPs with a diverse range of structure and activities (188). However, there 

are common features of these peptides, such as being small, containing positive 

charged residues, and having an amphipathic structure. Different types of AMPs 

including a-defensins, b-defensins, and cathelicidins are known to have antibacterial 

activity against S. aureus (189). The unique features of AMPs allow them to attach and 

insert into membrane bilayers to form pores through ‘barrel-stave’, ‘carpet’ or ‘toroidal-

pore’ mechanisms (190-192). The formation of transmembrane pores in bacteria lead to 

lysis and death of the targeted bacterium. However, pore formation is not the only 
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mechanism of bacterial killing, as AMPs can enter bacteria to inhibit cell-wall synthesis, 

or block DNA and protein synthesis. Besides the potent killing capacity of AMPs, they 

can also possess a variety of immune regulating functions (193). AMPs can serve as 

chemoattractants to promote leukocyte recruitment to the site of infection, induce 

production of chemokines and cytokines by innate immune cells, influence cell 

differentiation, modulate immune signaling pathways, and initiate adaptive immune 

responses. Thus, AMP production by the host in response to S. aureus infection is a 

broad defense mechanism.  

 Complement. Another critical mediator of innate immunity is the complement 

system, initially discovered for its ability to induce bacterial lysis. The complement 

system is a cascade of soluble proteins produced by the liver that function mainly in the 

serum as well as in tissues, on surfaces, or within the cell. There are three separate 

pathways of the complement system: classical pathway, lectin pathway, and the 

alternative pathway (194, 195). All of these pathways end in formation of surface-bound 

C3 convertases that cleave C3 to C3a and C3b.  

 The classical pathway is initiated when C1q, C1r, and C1s bind to the Fc portion 

of IgG or IgM that is bound to S. aureus. C1s is then activated to cleave C4 and C2 to 

yield the C3 convertase C4bC2a. This is similar to the lectin pathway which is activated 

when mannose binding lectin or Ficolin bind to carbohydrate moieties on pathogens 

(196, 197). Proteins associated with mannose binding lectin autoactivate upon binding 

to carbohydrate moieties on pathogens, cleaving C4 into C4a and C4b as well as C2 

into C2b and C2a. C4b and C2a form the C3 convertase C4bC2a. In the alternative 

pathway, C3 is constitutively hydrolyzed to form C3b which binds to bacteria. This 
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attracts factor B and factor D to form the C3 convertase C3bBb of the alternative 

pathway (198). Furthermore, cleavage of C3 by the C3 convertases forms C3a and 

C3b, which combine with other complement proteins to the generate two C5 

convertases, C4bC2aC3b and C3bBb. The cleavage of C5 by the C5 convertases 

produces C5a and C5b. 

 Activated complement leads to generation of three different types of immune 

effectors. First, C3a and C5a are anaphylatoxins that can attract and activate 

leukocytes through interaction with the C3a and C5a receptor (C3aR or C5aR) on 

leukocytes (199, 200). Second, C5b is part of the membrane attack complex that 

directly lyses Gram-negative bacteria. Last, the complement cascade produces 

opsonins like C3b, iC3b, and C3d that covalently bind to bacterial cells to facilitate 

phagocytosis by innate immune cells. In summary, the complement system is a large 

and complex cascade of cleavage and binding events that culminates in directly or 

indirectly killing invading bacteria like S. aureus. 

Cytokine and chemokine production. Another component of innate immune 

system control of S. aureus infection is the ability to produce and secrete cytokines and 

chemokines that help to regulate both the innate and adaptive immune system. 

Cytokines are small soluble proteins that initiate specific pro- and anti-inflammatory 

responses by binding to specific receptors on cells. There are over 100 proteins 

described as cytokines (201). In focusing on a small subset of the pro-inflammatory 

cytokines produced mainly by macrophages and/or neutrophils, the most common 

cytokines are IL-6, TNF, keratinocyte-derived cytokine (KC or IL-8 in humans), IL-1 

family, and IL-12. IL-6, TNF, and the IL-1 family (including IL-1a, IL-1b, and IL-1Ra) are 
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potent pyrogens and all cause a fever response (202).  IL-6 pro-inflammatory functions 

include recruitment of monocytes to the site of infection, maintenance of Th17 cells, and 

inhibition of T cell apoptosis (203, 204). TNF induces vasodilation and loss of vascular 

permeability, which aids immune cell tissue infiltration.  The IL-1 family of cytokines 

especially IL-1a and IL-1b are strongly pro-inflammatory and share overlapping 

functions. IL-1b stimulates histamine release from mast cells thereby causing 

vasodilation and increased local inflammation. Moreover, IL-1b assists in CD4 T cell 

differentiation and expansion, increases the surface expression of adhesion molecules 

on various cell types, and is a chemoattractant for granulocytes (205). KC is a potent 

chemoattractant for neutrophil recruitment (206, 207). IL-12, comprised of the p35 and 

p40 subunits, promotes inflammation through stimulation of Th1 cells resulting in 

production of IFN-g, which potently stimulates pro-inflammatory functions of 

macrophages (208).  

Chemokines are a type of cytokine, but they serve as chemoattractants to recruit 

specific cell types to the site of injury (209). Macrophages and neutrophils, among other 

cells, secrete CCL2, CCL3, and CCL4 in response to pro-inflammatory stimuli. After the 

binding of these chemokines to their cognate receptors, CCR2 for CCL2, and CCR5 for 

CCL3 and CCL4, monocytes and macrophages recruitment to the site of infection is 

enhanced. Altogether, the production of pro-inflammatory cytokines and chemokines in 

recognition of S. aureus infection serves to amplify the immune response to clear S. 

aureus from the host. 
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Cellular Mediated Control of S. aureus. 

Phagocytosis and phagosome formation. Professional phagocytes of the 

innate immune system, including neutrophils, eosinophils, dendritic cells, macrophages, 

and monocytes work to ingest and eliminate invading pathogens like S. aureus. The 

process of phagocytosis and subsequent killing of internalized bacteria is best 

understood in neutrophils and macrophages. For neutrophils, initiation of phagocytosis 

requires the deposition of opsonins on the surface of the bacterium (210). In the serum, 

the predominant factors that serve as opsonins are immunoglobulins IgG and 

complement components such as C3b. Once deposited on the bacterial surface, 

receptors on neutrophils such as the Fc receptors, complement receptors, or other 

PRRs can then trigger phagocytosis. Macrophages generally do not need bacteria or 

other material to be opsonized to trigger phagocytosis. Macrophages are constitutively 

undergoing dynamic actin-based rearrangement to produce extracellular protrusions 

that probe the surrounding environments (211-213). Upon recognition of opsonized 

bacteria by different surface receptors, signal transduction in the interior of the cell 

works to promote localized lipid remodeling and rearrangement of the actin cytoskeleton 

within the plasma membrane (214, 215). Actin polymerization is required at the leading 

edge of the membrane pseudopodia to envelop the bacterium and concurrently actin 

depolymerization at the base of the pseudopod forms the phagocytic cup to allow entry 

of the newly internalized bacterium (216-218). The internalized bacterium is present in a 

structure called the phagosome, which is an outside-in compartment inside the cell. The 

phagosome then immediately undergoes a maturation process to become a highly 

localized site of bacterial killing. This process is driven by a series of sequential 
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interactions/fusions with different vesicles of the endocytic pathway, each transforming 

the phagosome in a unique way (219). Maturation of the phagosome is comprised of 

early, intermediate, and late stages. The final stage of phagosome maturation occurs 

when the maturing phagosome fuses with a lysosome, forming the phagolysosome. 

During the entire maturation process, the lumen of the phagosome becomes 

increasingly acidic from the activity of proton-pumping V-ATPases, which creates an 

unfavorable bacterial growth environment (220). The acidic environment in the lumen is 

not only important for inhibiting the growth of the resident bacteria but also provides the 

optimum pH in which many hydrolytic enzymes function (221, 222). 

Neutrophil mediated killing of S. aureus. Neutrophils, which are one the first 

immune cells recruited to the site of infection, can extracellularly kill S. aureus through 

neutrophil extracellular trap (NETs) formation in a process named NETosis or by 

degranulation. NETs are large, web-like extracellular structures that contain 

decondensed chromatin with embedded antimicrobial molecules that function to kill 

bacteria, viruses, fungi, and parasites (223). S. aureus is known to initiate two different 

types of NETosis, one that results in cell death and one that is independent of cell 

death. In the cell death version of NETosis, nucleus delobulation precedes disassembly 

of the nuclear envelope and loss of cellular polarization (224). Next, the chromatin 

decondenses and the plasma membrane ruptures leading to expelling of the NET and 

cell death. The non-lytic form of NETosis leads to expulsion of chromatin and granule 

contents. The remaining cell, called an anucleated cytoplast, can continue to ingest 

pathogens (225, 226). 
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Degranulation is another key killing mechanism of neutrophils. The process of 

degranulation occurs when PRR engagement stimulates neutrophils to translocate 

granules to the plasma membrane where they then can release their contents in the 

extracellular milieu through exocytosis (227). Four different types of granules exist in 

neutrophils: primary or azurophilic granules, secondary or specific granules, tertiary 

granules, and secretory vesicles (228). Of these granules, the primary granules contain 

the most reactive molecules such as elastase, myeloperoxidase (MPO), cathepsins, 

and defensins (229). Secondary and tertiary granules contain overlapping contents such 

as lactoferrin, matrix metalloprotease nine, and other materials (230). The release of 

these toxic granule contents by degranulation facilitate the strong bactericidal ability of 

neutrophils. In addition to the extracellular release of granules, they can be delivered to 

the phagosome. Lactoferrin in neutrophil secondary and tertiary granules acts as a 

scavenger of iron, aiding in bacterial growth restriction (231). A similar bacteriostatic 

activity is carried out by the membrane protein, named natural resistance-associate 

macrophage protein 1, which extrudes divalent metals such as Fe2+, Zn2+ and Mn2+ from 

the phagosomal lumen (232-234). Furthermore, neutrophils produce calprotectin, which 

can bind and sequester zinc and manganese from bacteria (231). This sequestration of 

essential metals or other trace nutrients is a general process called nutritional immunity 

(235).  

  Macrophage and neutrophil ROS production. A major antimicrobial activity of 

neutrophils and macrophages is a process known as respiratory burst, which generates 

potent reactive oxygen species (ROS) (236). The generation of ROS occurs through the 

nicotinamide adenine dinucleotide phosphate (NADPH) phagocyte oxidase complex 
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that is assembled on the phagosomal membrane (237). The NADPH oxidase complex 

is comprised of two transmembrane proteins, gp91phox and p22phox, in addition to four 

cytosolic proteins denoted as p47phox, p67phox, p40phox, and Rac1 or Rac2 (237-

240). Upon assembly and activation of the NADPH oxidase complex, it transfers 

electrons from NADPH to molecular oxygen releasing superoxide (O2-•) in the 

phagosome (239). Superoxide can undergo spontaneous dismutation into hydrogen 

peroxide (H2O2) or hydroxyl radical and other ROS (237, 239, 241-243). H2O2 can then 

be converted into hypochlorous acid and chloramines by MPO (229, 241). These ROS 

lead to oxidization of internalized bacterial DNA, mobilization of iron from iron-sulphur-

containing dehydratases promoting toxic Fenton chemistry, and oxidation of protein 

residues (237, 244, 245). All of these collectively facilitate killing of the internalized 

bacteria by ROS. NADPH oxidase dysfunction leads to chronic granulomatous disease 

(CGD) (246, 247). Patients with CGD commonly suffer from recurrent infections with S. 

aureus as well as the fungal pathogen Aspergillus, highlighting the importance of 

NADPH oxidase in host defense (246, 247). In addition to NADPH oxidase-derived 

ROS, mitochondrial respiration also generates ROS that contribute to the destruction of 

internalized bacteria (248). These mitochondrial ROS (mROS) are generated when 

electrons from the oxidative phosphorylation machinery escape and react with 

molecular oxygen (249, 250). Recent work demonstrates that mROS are packaged into 

mitochondrial-derived vesicles and delivered to the phagosome to facilitate the inhibition 

of internalized S. aureus (251, 252). Compared to macrophages, neutrophils are 

capable of producing higher amounts of ROS in response to bacterial pathogens. In 
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summary, the production of ROS by phagocytes is important for restricting S. aureus 

growth.  

 Macrophage and neutrophil RNS production. Synthesis of nitric oxide (NO•) 

also inhibits internalized bacterial pathogens and is produced in high amounts by 

macrophages (237). In response to engulfed pathogens, inducible nitric oxide 

synthetase (iNOS) is activated and leads to the formation of NO• and citrulline in large 

amounts from L-arginine and oxygen (253). It is known that NO• alone is not a highly 

reactive molecule and has an expansive range of cellular functions (254). Rather, NO• 

only becomes highly reactive when it is converted by the presence of oxygen into 

nitrogen dioxide, peroxynitrite (ONOO-), dinitrogen trioxide, and other nitrogen-based 

reactive species collectively forming reactive nitrogen species (RNS) (237, 255). The 

synthesized NO• and RNS inhibit bacterial respiration, perturb DNA replication, interfere 

with metal centers and tyrosine residues in proteins, and alter lipid integrity (237, 254, 

256). NO• and RNS are produced in higher abundance in activated macrophages rather 

than neutrophils. Given the similarities in the reactivity and formation of ROS and RNS, 

under certain conditions they can have synergistic antimicrobial activities (257). In 

particular, the production of the powerfully reactive RNS, ONOO-, is formed from 

NADPH oxidase-derived O2-• and iNOS-generated NO•, establishing a link between 

ROS and RNS production (237, 254).  

Concluding Remarks.  

 In this section, we introduced the various ways in which the innate immune 

system can kill pathogens like S. aureus. AMP production and activation of the 

complement system both contribute to the elimination of S. aureus. Also, production of 
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inflammatory cytokines and chemokines are necessary to coordinate innate and 

adaptive responses to S. aureus infection. The best studied antimicrobial functions of 

the innate system are the antibacterial activities of neutrophils and macrophages. Many 

of the antibacterial functions occur within neutrophils and macrophages, through a 

coordinated attack of S. aureus internalized by phagocytosis. In the next section, we 

cover the known virulence factors of S. aureus that work to counter these innate 

immune responses. 

Section 5: Innate Immune Evasion Mechanisms of S. aureus 

 S. aureus has acquired a vast array of virulence factors that inhibit innate 

responses and facilitate disease. Table 2 highlights many virulence factors encoded by 

S. aureus and the immune components they target.  

Table 2. Virulence Factors of S. aureus 
 

Virulence Factor Function Immune Target Reference 
Aureolysin Metalloprotease, cleaves C3 

and LL-37 
Complement System, blocks 

deposition of C3b; AMP 
function 

(258, 259)  

Staphylococcal 
complement inhibitor 

(SCIN) 

Binds and stabilizes C3bBb 
and C4b2a 

Complement system, 
impairs C3a/C3b/C5a 

production 

(260, 261)  

Staphylokinase (SAK) Activate plasminogen to 
generate plasmin 

Complement system, AMP 
production, and opsonization 

(262, 263)  

Protein A (SpA) Binds to Fc region of 
Immunoglobins 

Phagocytosis; complement 
system 

(264, 265)  

Staphylococcal binder 
of immunoglobin (Sbi) 

Binds to Fc region of IgG Phagocytosis; complement 
system 

(266-268)  

Extracellular fibrinogen 
binding molecule (Efb) 

Binds to fibrinogen and C3d Phagocytosis; complement 
system 

(260, 269)  

Extracellular 
complement binding 

molecule (Ecb) 

Binds to C3d Phagocytosis; complement 
system 

(260)  

Superantigen-like 
proteins (SSL 
3/5/6/7/10/11) 

Binds to IgA/IgG1, PSGL1, 
CD47, CXCR4 

Complement system; 
phagocytosis; Neutrophil 
migration; TLR2 signaling  

(270-276)  

coagulase and von 
Willebrand factor-

binding protein 

generate staphylothrombin Blocks agglutination and 
phagocytosis 

(277)  

DltABCD Modifies wall teichoic acids 
with d-alanine 

AMP  (278)  
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MprF Modification of 
phosphatidylglycerol with l-

lysine  

AMP (279)  

OatA Peptidoglycan acetylation Lysozyme activity (280)  
Extracellular 

adherence protein and 
homologs (Eap, EapH1, 

EapH2) 

Inhibition of serine proteases; 
bind to ICAM1 

Neutrophil antibacterial 
activity; Leukocyte migration 

(281, 282)  

SelX Bind to PSGL1 Leukocyte migration (274)  
Staphopain A Cleaves CXCR2 Neutrophil migration (283)  

chemotaxis inhibitory 
protein of S. aureus 

(CHIPS) 

Bind FPR1 and C5aR Neutrophil migration (284, 285) 

formyl peptide 
receptor-like 1 inhibitor 

and its homolog 
(FLIPr/FLIPrL) 

Bind FPR1 and FPR2 Recognition of formylated 
proteins; Neutrophil 

migration 

(286)  

Phenol Soluble 
Modulins (PSMs) 

Lysis of immune cells Innate immune cells (287, 288)  

Alpha-hemolysin (Hla) Lysis of innate immune cells, 
erythrocytes, epithelial cells 

Various cell types (289, 290)  

Leukotoxins (HlgAB, 
HlgCB, LukAB/HG, 

LukED, PVL) 

Lysis of immune cells and 
erythrocytes  

Cellular innate immunity and 
T-cells 

(291-293)  

adenosine synthase A 
(AdsA) 

Generates adenosine Inhibit neutrophil 
degranulation and 
respiratory burst 

(294)  

staphyloxanthin antioxidant ROS detoxification (295)  
Catalase and 

alkylhydroperoxide 
reductase 

antioxidant ROS detoxification   (296)  

SodA and SodM Superoxide dismutases ROS detoxification (297)  
methionine sulfoxide 

reductase (Msr) 
Repair oxidized methionine 

residues 
ROS detoxification  (298)  

surface factor 
promoting resistance 

to oxidative killing 
(Sok) 

Resists oxidative killing Inhibit antimicrobial function 
of ROS 

(299)  

Flavohemoglobin 
(Hmp) 

NO• scavenger RNS detoxification (300)  

Lactate dehydrogenase 
(Ldh1) 

Maintain bacterial redox 
homeostasis  

Nitrosative stress in 
phagosome 

(301)  

 

Perturbation of Phagocytosis and Complement. 

Phagocytosis and the complement system are the targets of many S. aureus 

virulence factors. The presence of a thick peptidoglycan layer prevents the complement-

mediated membrane attack complex from lysing S. aureus. In addition, some clinical 

isolates of S. aureus contain genes that encode a polysaccharide capsule which can 

disrupt phagocytosis (302). One way that S. aureus targets the complement system 
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directly is through the activity of a zinc-dependent metalloprotease called Aureolysin 

(258). Aureolysin targets the complement system by cleaving C3 to form C3a and C3b. 

Then, the host complement factor I and factor H degrade C3b to prevent it from binding 

to S. aureus. The degradation of C3b also limits the release of C5a, interfering with 

production of opsonins. Staphylococcus complement inhibitor (SCIN) is a small protein 

that binds and stabilizes the C3bBb and C4b2a convertases preventing production of 

important complement mediators such as C3a, C3b, and C5a (260, 261). 

Staphylokinase (SAK), a secreted enzyme, activates host plasminogen attached on the 

bacterial surface to form plasmin, a potent serine protease (263). Plasmin is then able 

to cleave fibrin to break up blood clots and degrades C3b and human IgG. Collectively 

this blocks phagocytosis by eliminating potential complement-derived opsonins.  

Besides complement-derived opsonins, immunoglobins like IgG can serve as 

opsonins. Staphylococcal protein A (SpA) and Staphylococcal binder of immunoglobulin 

(Sbi) both bind to the Fc domain of IgG (264, 265, 268, 303). SpA and Sbi interfere with 

Fc receptor mediated phagocytosis and block the complement protein C1q from binding 

to IgG thereby disrupting complement activation (266, 267). Moreover, extracellular 

fibrinogen binding molecule (Efb) and extracellular complement-binding protein (Ecb) 

bind to the C3d region of cleaved C3b blocking complement-mediated opsonization 

(260, 269).  

Also involved in complement system inhibition are the staphylococcal 

superantigen-like proteins (SSLs) that are closely related to superantigens of S. aureus 

but lack the functional T cell receptor binding domain (304). The 14 ssl genes are 

arranged as tandem repeats in two different areas on the chromosome, in genomic 
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island-a and immune evasion cluster 2 (305). Most SSLs are only specific for humans 

and not animal host factors. SSL7 can interfere with the complement system by binding 

to human IgA and C5, leading to impaired IgA binding with its receptor FcaRI (270). 

Similarly, SSL10 binds to the Fc region of human IgG1 and blocks FcgR-mediated 

phagocytosis (306). Moreover, SSL3 can bind to the extracellular domain of TLR2, 

blocking macrophages from optimally recognizing native TLR2-activating ligands (276). 

Thus, many virulence factors of S. aureus function to block components of the 

complement system as well as interfere with phagocytosis. 

Disruption of Coagulation. 

Coagulation is another innate response mechanism by the host that is initiated by 

activated thrombin, converting fibrinogen to a crosslinked fibrin meshwork structure that 

can immobilize bacteria and attract phagocytic immune cells to clear the entrapped 

bacteria. All S. aureus isolates secrete coagulase and von Willebrand factor-binding 

protein, which are two coagulase degrading enzymes (305). These coagulases 

associate with prothrombin to generate staphylothrombin, which cleaves fibrinogen 

yielding fibrin without activating other host factors (277). The resulting fibrin begins to 

accumulate and assemble on the surface of S. aureus with the assistance of surface 

proteins clumping factor A, fibronectin-binding protein A and B, and bone sialoprotein 

binding protein. The agglutination of fibrin on the surface of S. aureus protects it from 

phagocytes. Lastly, SSL10 from S. aureus prevents prothrombin autoactivation, 

preventing activation of other host factors that stimulate the attraction of phagocytes to 

the entrapped bacteria (306). In summary, S. aureus is armed with different 

mechanisms to avoid coagulation by the host.  
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Interference with AMP Activity.  

Multiple virulence factors and adaptations of S. aureus contribute to a collective 

resistance against different AMPs and antibacterial proteins. Besides its ability to cleave 

complement proteins, Aureolysin also cleaves the cathelicidin AMP LL-37 and 

contributes to resistance to this AMP in vitro (259). As mentioned above, S. aureus SAK 

stimulates the protease plasmin to bind and inhibit the activity of a-defensin AMPs 

(262). Resistance to the antibacterial enzyme lysozyme, was attributed to the function a 

membrane bound O-acetyltransferase protein that modified the C6 hydroxyl group of 

muramic acid (280). Moreover, S. aureus secretes extracellular adherence protein (Eap) 

and its related homologs EapH1 and EapH2. Eap, EapH1, and EapH2 inhibit the activity 

of serine proteases neutrophil elastase, proteinase 3, and cathepsin G that are 

expressed by neutrophils (281). Furthermore, S. aureus uses modifications to wall 

teichoic acid, LTA, and membrane phospholipids to lower the net negative charge of its 

membrane. This prevents cationic AMPs from being able to effectively bind to S. aureus 

and cause cell death. The DltABCD proteins, encoded by the dlt operon, lead to d-

alanine substitutions into wall teichoic acids to reduce negative charge of this 

membrane component (278). In similar fashion, MprF works to increase the positive 

charge of phosphatidylglycerol exposed on the outer face of the cytoplasmic membrane 

by adding a positively charge l-lysine residue (279). In summary, S. aureus can either 

directly target AMPs through virulence factors or modifies its own cellular structures to 

hinder AMP killing.   
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Blockade of Neutrophil Migration.  

 The migration and extravasation of activated neutrophils to the site of infection is 

a major barrier to S. aureus infection. These processes of neutrophils are inhibited by S. 

aureus through the secretion of SSLs, Eap, Staphopain A, chemotaxis inhibitory protein 

of S. aureus (CHIPS), and formyl peptide receptor-like 1 inhibitor (FLIPr) or its homolog 

(FLIPrL). SSL5, SSL11 and SelX (a staphylococcal enterotoxin-like protein) can bind to 

P-selectin glycoprotein ligand 1 (PSGL1) on leukocytes (272, 274, 275). PSGL-1 

regulates the adhesion and rolling steps of neutrophil extravasation through binding to 

P-selectin on activated endothelium. Thus, SSL5, SSL11, and SelX binding to PSGL1 

interferes with neutrophil extravasation, diminishing the number of neutrophils recruited 

to the site of infection. Eap blocks neutrophil and leukocyte migration by associating 

with intercellular adhesion molecule 1 (ICAM1) (282). SSL6 binds to the receptor CD47, 

which is a common receptor found on most tissues involved in migration, phagocytosis, 

and proliferation (274). Furthermore, SSL10 interferes with the chemoattraction of 

neutrophils through the blockade of the C-X-C chemokine receptor 4 (CXCR4) (307). 

The secreted protease Staphopain A cleaves the N-terminus of CXCR2 chemokines, 

blocking chemokine signaling and the migration of neutrophils (283). The binding of 

bacterial formylated proteins to FPR1 and C5a to the C5a receptor potentiate neutrophil 

chemotaxis and migration. CHIPS is a small protein that can bind to only human 

formylated peptide receptor 1 (FPR1) and the human complement protein C5a receptor, 

thereby blocking the neutrophil chemotaxis function induced by these receptors (285). A 

search for proteins homologous to CHIPS, identified both FLIPr and FLIPrL, which 

function as antagonists of FPR1 and contribute to blockade of neutrophil chemotaxis 
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(286). In conclusion, the interference of neutrophil migration is a target of many different 

S. aureus virulence factors. 

Toxins of S. aureus.  

 S. aureus directly induces the killing of innate immune cells via PSMs and 

different toxins. These toxins are arguably the most harmful virulence determinants of S. 

aureus. PSMs are a family of small amphipathic a-helical peptides with broad-range 

lytic activities. PSMs include both a- and b-type PSMs and the delta-toxin – a member 

of the a-PSMs. a-PSMs are 20-25 amino acids in length and are usually either neutral 

or positively charged. In contrast, b-PSMs are twice the size of a-PSMs at around 43-45 

amino acids and have a negative net charge. Focusing on just the PSM cell lysing 

activities, they are reported to lyse osteoblasts, endothelial cells, epithelial cells, 

monocytes, erythrocytes, and importantly PMNs. The targeting of all these diverse cell 

types is likely to be a receptor-independent process that relies on membrane insertion 

and pore formation (308). This is in contrast to other S. aureus cytolytic toxins, such as 

alpha-hemolysin (Hla) or the bicomponent leukotoxins, which are highly specific for a 

particular cell type and host species.  

Hla binds to the receptor A Disintegrin and Metalloproteinase Domain-containing 

protein 10 (ADAM10), which is expressed on the surface of myeloid cells, including 

neutrophils, epithelial cells and the vascular endothelium (289). Hla can lyse rabbit 

erythrocytes to a significantly greater degree compared to human erythrocytes. After 

binding to ADAM10, Hla assembles into a heptameric pore and through the 

metalloproteinase activity of ADAM10, triggers the lysis of epithelial cells or modulate 

the activity of innate immune cells (309).  



 

      

40 

 

Another highly destructive group of toxins are the bicomponent pore-forming 

leukotoxins, which have host species specific targets. These toxins consist of two 

monomeric subunits that target receptors on immune cells and kill by forming b-barrel 

pores that span the phospholipid bilayer (310). There are five known leukotoxins that 

associate with human infection, HlgAB, HlgCB, LukAB/HG, LukED, and Panton-

Valentine leukocidin (PVL) (311). All strains of S. aureus that infect humans produce at 

least three leukotoxins (HlgAB, HlgCB, and LukAB/HG), while the most highly virulent 

human isolates produce all five human-associated leukotoxins (311). LukMF’ and 

LukPQ are two other leukotoxins that are made by S. aureus but are only associated 

with zoonotic infections and rarely humans (312, 313). There are a diverse range of 

proteinaceous receptors that these leukotoxins bind to, conferring cell-specific targets 

for lysis. HlgAB binds to chemokine receptors CXCR1, CXCR2, and CCR2, as well as 

the Duffy antigen receptor for chemokines (DARC) (314, 315). HlgCB and PVL uses 

chemokine receptors C5aR1 and C5aR2 to associate with target cells (315). LukED 

also targets chemokine receptors, mainly CCR5, CXCR1, and CXCR2 on myeloid cells 

as well as DARC on erythrocytes (314, 316, 317). LukAB/HG binds to the myeloid 

marker CD11b and thus targets a range of phagocytic leukocytes (318). Receptor 

targeting by the five different human leukotoxins allows for lysis of a large number of 

immune cells, such as neutrophils, monocytes, macrophages, dendritic cells, T cells, 

and natural killer cells. In summary, S. aureus lytic molecules and toxins are collectively 

a major destructive group of virulence factors that have the potential to induce major 

host damage.  
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Mitigating Oxidative Stress in the Phagosome.  

 S. aureus withstands and survives an onslaught of host destructive mechanisms 

within the phagosome of neutrophils and macrophages through various adaptations and 

virulence factors. The host produces adenosine in response to hypoxia, ROS exposure 

or tissue damage. Adenosine recognition by the host during an active infection, signals 

that the level of inflammation to control disease is becoming self-harming. As a 

consequence of adenosine-based signaling, it can stop platelet aggregation and limit 

respiratory burst of neutrophils. S. aureus uses this system to its advantage and 

generates adenosine during infection through adenosine synthase A (294). The 

production of S. aureus-derived adenosine facilitates its survival within neutrophils likely 

through inhibition of respiratory burst (294) .  

Many virulence factors help S. aureus combat the antibacterial effects of ROS 

within the phagosome. The golden carotenoid pigment of S. aureus, staphyloxanthin, 

functions as an antioxidant protecting against damaging hydroxyl radicals (295). 

Furthermore, harmful effects by hydrogen peroxide are mitigated through the functions 

of S. aureus catalase and alkylhydroperoxide reductase (296). To withstand ROS 

toxicity, S. aureus also produces two superoxide dismutases, SodA and SodM, which 

work to eliminate superoxide production (297). Methionine residues in proteins can be 

targeted by ROS, leading to harmful oxidation. S. aureus encodes a methionine 

sulfoxide reductase or Msr that can repair the oxidized methionine residues (298). A 

surface protein of S. aureus named surface factor promoting resistance to oxidative 

killing or Sok is involved in resistance to ROS generated by neutrophils (299). Besides 

ROS, NO• and RNS induce nitrosative stress against S. aureus. One way that S. aureus 
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mediates NO• resistance is by the flavohemoglobin Hmp that scavenges NO• (300). 

Furthermore, a lactate dehydrogenase, Ldh1, is induced in response to NO• to 

circumvent the disruption of redox homeostasis within S. aureus and regenerate NADH 

and NAD+ (301). The mechanisms that facilitate the detoxification of ROS and 

avoidance of nitrosative stress within the phagosome clearly contribute to the ability of 

S. aureus to resist killing.  

S. aureus Survival in Immune Cells. 

 S. aureus is considered to be an extracellular pathogen, yet a growing body of 

evidence suggests that it is able to survive within various cell types including 

macrophages and neutrophils (123, 125, 291, 319, 320). To cope with the harsh 

environment within the phagosome, S. aureus can differentiate into small-colony 

variants (321). These small-colony variants are in a metabolically dormant state, can 

withstand stressors, and are highly resistant to antibiotics. Furthermore, residence in a 

host cell also can protect bacteria from antibiotics (322). Thus, the small-colony variant 

phenotype of intracellular S. aureus and the resulting protection from antibiotics may 

contribute to its survival within host cells. This has led to the hypothesis that S. aureus 

uses host cells such as neutrophils to support its dissemination during bloodstream 

infection to other parts of the host (323). Support for this hypothesis comes from a study 

that isolated neutrophils from the peritoneal cavity of mice infected with S. aureus that 

harbored viable bacteria and were able to cause disease when administered to naïve 

mice (324). To aid in the escape from within neutrophils, S. aureus increases the 

production of PSMs and LukAB/GH to mediate cell lysis and subsequent escape from 

neutrophils (325, 326). Although the immune system has dedicated cells such as 
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neutrophils to mediate bacterial-killing, S. aureus can hijack these cells with its virulence 

factors and use them for protection from other host defenses.  

Concluding Remarks. 

 S. aureus has a large array of virulence factors that can target numerous parts of 

the innate response to infection. As a consequence, S. aureus can often easily escape 

and disseminate causing severe disease. Furthermore, a vast majority of the evasion 

mechanisms introduced focus on how S. aureus counters neutrophil immune 

responses. Comparatively less is known about specific virulence factors that can 

subvert macrophage immune responses. A major goal of this thesis is to identify novel 

ways in which S. aureus evades macrophage immune responses.  

Section 6: S. aureus Metabolism and Pathogenesis 

Trace Metal Acquisition.  

 Besides the numerous innate immune evasion adaptations of S. aureus, it also 

harnesses a diverse repertoire of traits that aid in nutrient acquisition. The acquisition of 

trace metals such as iron, manganese, zinc, and copper during infection are crucial for 

survival of S. aureus, as numerous studies detail that deficiency in acquiring these 

metals leads to a defect in pathogenesis (327-336). As mentioned before, the host 

produces multiple metal binding proteins such as calprotectin, lactoferrin, or transferrin 

to outcompete bacterial sequestering mechanisms. Overcoming iron limitation is 

required to infect a host. S. aureus utilizes siderophores and a heme acquisition system 

to promote survival. Staphyloferrin A and staphyloferrin B are two siderophores 

secreted by S. aureus that bind to iron with high affinity, providing the bacterium with 

iron (337, 338). Both of these siderophores can remove and acquire iron from human 
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transferrin. Though siderophore-mediated iron acquisition supports growth of S. aureus, 

it prefers to use heme as a source of iron (339). Heme is the primary source of iron 

within vertebrate hosts, and S. aureus has a dedicated heme scavenging and heme 

uptake system (340, 341). Once heme enters the bacterial cell, the tetrapyrrole ring is 

degraded to liberate iron (342). Like iron, both manganese and zinc are required for S. 

aureus pathogenesis. Manganese is acquired through two transporters, MntABC and 

MntH, and zinc is imported through AdcABC and CntABCDF (327, 329). Loss of any of 

these transporters or importers in S. aureus compromises pathogenesis. Copper is a 

cofactor for various proteins in S. aureus. Currently the exact mechanism of copper 

acquisition in the host and the relevance of copper import to pathogenesis in S. aureus 

is unknown. However, two proteins CopA and CopZ are hypothesized to maintain 

copper homeostasis within S. aureus, as loss of these proteins leads to intracellular 

copper accumulation and toxicity (343). 

Acquisition of Other Nutrients.  

  In addition to trace metal acquisition adaptations by S. aureus, the bacterium 

also needs to import other molecules involved in metabolism such as carbohydrates 

and inorganic phosphate. Recent work identified 11 carbohydrate transporters in S. 

aureus, four of which can import glucose (344). Elimination of some of these 

carbohydrate transporters severely limits the amount of imported glucose and 

diminishes the pathogenesis of S. aureus during skin and soft-tissue infection. Similarly, 

S. aureus encodes three different inorganic phosphate transporters (PstSCAB, PitA, 

and NptA) and elimination of one is not sufficient to cause attenuation of disease (345, 

346). Rather, deletion of NptA and either remaining transporter conferred a defect 
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during S. aureus infection. These mechanisms facilitate the ability of S. aureus to 

overcome host imposed nutritional immunity. 

Moonlighting Proteins.   

 As described in detail above, S. aureus has a dedicated arsenal of virulence 

factors that perform distinct functions to promote microbial survival. However, a growing 

number of proteins outside this array of virulence factors have been identified that are 

able to carry out secondary activities, including the ability to promote virulence (347, 

348). Proteins possessing additional biological activities beyond their primary function 

are described as having moonlighting activity (349). These moonlighting proteins are 

emerging as important mediators of virulence in many bacterial pathogens. Proteins 

with moonlighting activity span all kingdoms of life. Most of the eukaryotic and 

prokaryotic moonlighting proteins are well-known metabolic enzymes or molecular 

chaperones. Many bacterial moonlighting proteins have primary functions as metabolic 

enzymes in the bacterial cytosol; however, inexplicably, these proteins are also 

commonly found in the extracellular environment where they contribute to bacterial 

virulence. For example, the glycolytic enzyme glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), which is present on the cell surface of streptococci and other 

bacteria, facilitates bacterial adhesion to a variety of ligands including the major host 

adhesive glycoprotein, fibronectin, as well as lysozyme, actin, and myosin (350). S. 

aureus GAPDH can bind to host transferrin, which sequesters iron away from bacteria 

(351). Enolase, an enzyme involved in glycolysis, is also found on the surface of S. 

aureus where it is hypothesized to bind to laminin (352). It is unknown whether the 

ability of GAPDH or enolase to bind transferrin or laminin has physiological relevance 



 

      

46 

 

during S. aureus infection. Moreover, as described with GAPDH of streptococci and S. 

aureus, the homologs of moonlighting proteins in other species are often found to retain 

their secondary functions highlighting their conservation. 

 Up to 25% of the secretome of Escherichia coli, Bacillus subtilis and S. aureus 

were identified as cytoplasmic proteins that function in metabolic pathways (353-356). 

What is so unusual, is that these extracellular cytoplasmic proteins do not contain any 

discernable secretion signals. This release of cytoplasmic proteins is specific, as not 

every cytoplasmic protein is found in the extracellular environment (357). Currently, the 

mechanism for surface display and/or secretion of cytoplasmic proteins is not well 

characterized.  What is known is that the presence of extracellular cytoplasmic proteins 

from S. aureus depends on the activity of the major autolysin, Atl (357). Atl is a 

peptidoglycan hydrolase and is involved in peptidoglycan remodeling of S. aureus. In 

the absence of Atl, there is a marked decrease in the amount of released cytoplasmic 

extracellular proteins. Another group concluded that the release of cytoplasmic proteins 

is not solely dependent on bacterial autolysis, as the abundances of released 

cytoplasmic proteins occur over time throughout growth and are in similar abundance 

compared to a naturally secreted protein (358). Furthermore, they show that some 

released cytoplasmic proteins congregate at the septum region of dividing cells. Also, in 

Listeria monocytogenes the surface display of certain cytoplasmic proteins partially 

depend on the SecA2 accessory secretion protein (359). Again, although the exact 

mechanism behind cytoplasmic protein release into the extracellular environment is 

unknown, it is appreciated that this is likely an active process.  
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Concluding Remarks. 

If S. aureus cannot acquire essential nutrients such as trace metals in the host, it 

cannot effectively replicate and cause disease. Moreover, metabolic proteins are found 

to be present in the extracellular environment and may facilitate pathogenesis.  The 

processes of trace nutrient acquisition and metabolic moonlighting proteins suggest that 

bacterial metabolism facilitates pathogenesis either directly or indirectly. In the next 

section, we will introduce a trace nutrient called lipoic acid that our laboratory has found 

to be essential for S. aureus pathogenesis. 

Section 7: Lipoic Acid and S. aureus 

Overview of Lipoic Acid.  

An essential trace nutrient that S. aureus must acquire is the metabolic cofactor 

lipoic acid. Lipoic acid is an organosulfur-containing molecule that is covalently linked to 

proteins in large multi-subunit enzymatic complexes and is involved in redox coupling 

during oxidative and one carbon metabolism (Figure 2A) (360). This cofactor is found in 

nearly all kingdoms of life, including bacteria, yeast, and higher order eukaryotes. Five 

multi-subunit complexes contain lipoic acid: pyruvate dehydrogenase complex (PDH), 2-

Oxoglutarate dehydrogenase (OGDH), branched-chain 2-Oxoacid dehydrogenase 

(BCODH), the glycine cleavage system (GCS) and acetoin dehydrogenase complex 

(AoDH) (361). S. aureus has all of these complexes except AoDH. In these complexes, 

lipoic acid serves as an electrophile that can bind reaction intermediates and shuttle 

substrates between the active sites of different subunits (362, 363). Due to this crucial 

function, without lipoic acid, these enzyme complexes do not work. The 2-oxoacid 

decarboxylases (PDH, OGDH, BCODH) are comprised of E1, E2, and E3 subunits 
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(361, 364). The core of the enzyme structure is provided by the E2 subunit, and often 

these 2-oxoacid decarboxylases carry multiple copies of the E2 component. In Gram-

positive bacteria, the core of PDH is comprised of 60 E2 subunits arranged with 

icosahedral symmetry (365). The GCS has four main subunits, the pyridoxal phosphate-

containing protein (P protein), hydrogen carrier protein (H protein), tetrahydrofolate-

containing protein (T protein), and lipoamide dehydrogenase (L protein). Lipoyl moieties 

are found covalently linked to a conserved lysine within the E2 or H subunit of these 

complexes. The number of lipoyl domains on PDH varies from one to three, while all 

OGDH and BCODH E2 subunits contain just one domain (361). PDH catalyzes the 

oxidative decarboxylation of pyruvate to form acetyl coenzyme A, feeding several 

metabolic pathways in the cells, including the tricarboxylic acid (TCA) cycle, fatty acid 

biosynthesis, and arms of isoprenoid biosynthesis. OGDH converts a-ketoglutarate to 

succinyl-coA, which is consumed by the TCA cycle or can be diverted for heme and 

amino acid biosynthesis. BCODH participates in the degradation of branched-chain 

amino acids to generate branched-chain coenzyme A intermediates needed for fatty 

acid synthesis. The GCS in bacteria degrades glycine and produces 5,19-methylene-

tetrahydrofolate, a one carbon donor involved in synthesis in serine, thymidine, and 

purines (366). In mammals, GCS prevents the buildup of toxic levels of glycine. Despite 

the conservation of lipoic acid, the mechanisms of lipoic acid acquisition show 

considerable diversity. 
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Figure 2. Lipoic Acid Acquisition in S. aureus. (A) Structure of lipoic acid. (B) Model 
of the S. aureus lipoic acid synthesis and salvage pathways. ACP, Acyl carrier protein; 
GcvH, H protein of the glycine cleavage system; E2s, E2 subunits of PDH, OGDH, and 
BCODH. LipM, octanoyl transferase; LipA, lipoyl synthetase; LipL, lipoyl transferase; 
LplA1/A2, lipoate protein ligases. (A) Reprinted with permission from Spalding and 
Prigge, 2010 (360). (Figure 42-Appendix A) 
  
Acquisition of Lipoic Acid. 

Bacteria acquire lipoic acid through the use of two different mechanisms: de novo 

synthesis or salvage from the environment. Though lipoic acid is an essential cofactor 

needed for viability, some bacteria such as Helicobacter pylori have adapted alternative 

non-lipoic acid dependent metabolic enzymes to facilitate cellular viability (367, 368). 

Lipoic acid acquisition and the proteins involved are best characterized in E. coli, B. 

subtilis, and L. monocytogenes (369-372). Recent work from our laboratory has 
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characterized lipoic acid acquisition schemes in S. aureus. Like B. subtilis, S. aureus 

engages in both de novo synthesis and salvage of lipoic acid (Figure 2B) (373, 374). 

Using genetic and biochemical studies, we have determined that synthesis of lipoic acid 

depends on the enzymes LipA, LipM, and LipL (373, 374). The salvage of lipoic acid 

occurs through the action of two ligases, LplA1 and LplA2. Lipoic acid synthesis starts 

with the transfer of octanoic acid, a medium chain fatty acid, from its acyl carrier protein 

(ACP) to GcvH by LipM, an octanoyl transferase. The lipoic acid synthase LipA then 

inserts two sulfur atoms into the octanoyl-precursor forming a dithiolane ring yielding 

lipoic acid. The amidotransferase LipL transfers the lipoyl moiety from GcvH to 

conserved lysine residues on the E2 subunits of PDH, OGDH, and BCODH (373, 374). 

In the scavenging pathway, the ligase LplA1 scavenges free lipoic acid from the 

environment and attaches it to GcvH where the lipoyl moiety is then transferred to its 

cognate E2 subunits (373, 374). Another ligase, LplA2, also scavenges free lipoic acid 

but it bypasses GcvH and directly attaches the lipoyl moiety to E2-PDH, E2-OGDH, and 

E2-BCODH (373, 374).   

Lipoic Acid in Pathogenesis. 

Given the significance of lipoic acid in bacterial metabolism, it is no surprise that 

acquisition of lipoic acid contributes to pathogenesis. For example, lipoic acid salvage 

enzymes promote the pathogenesis of Listeria monocytogenes and Chlamydia 

trachomatis (369, 375-377). In Plasmodium, the salvage enzyme ortholog LplA1 

contributes to the survival of the parasite during expansion within red blood cells during 

infection (378, 379). As of 2014, there was no data in the literature to suggest how lipoic 

acid acquisition in S. aureus contributes to virulence during infection. However 
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published work and preliminary studies from our laboratory indicate lipoic acid synthesis 

and salvage pathways are crucial for infection by S. aureus (373). We have found that 

in bloodstream infection, perturbations of lipoic acid synthesis and salvage can lead to 

tissue-specific defects where infection of the kidney depends on salvage, but infection 

of the heart requires de novo synthesis (373). These data suggest there is varied 

dependency on de novo lipoic acid synthesis or salvage for S. aureus survival that 

depends on the tissue site.  

Immunosuppressive Properties of Lipoic Acid. 

Aside from the central role of lipoic acid in metabolism, it also possesses 

immunosuppressive traits. High concentrations of free lipoic acid reduce the respiratory 

burst of neutrophils through its antioxidant properties and block the translocation of the 

transcription factor, NFkB, to the nucleus (380-383). Intriguingly, high concentrations of 

free lipoic acid also can activate Akt (384). This stimulates the phosphoinositide 3-

kinase/Akt signaling axis, which has a range of biological effects; but, in terms of lipoic 

acid activation, it was demonstrated to limit inflammatory cytokine production. Another 

described immunosuppressive activity of free lipoic acid, is the inhibition of iNOS activity 

at the protein level when induced by IL-1b (385). However, free lipoic acid is not a 

physiologically relevant form as lipoic acid is always bound to a protein via an amide 

bound. The relevance of lipoic acid immunosuppressive abilities has never been tested 

in vivo during the course of a bacterial infection.  

Summary 

 S. aureus is a human pathogen that can infect almost every tissue site in the host 

and cause significant disease. The innate immune system of the host is a fast-acting 
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initial line of defense that can recognize and utilize many diverse mechanisms to limit 

infection. However, S. aureus has evolved and acquired an array of virulence factors 

that can inhibit innate immune cell recruitment and antimicrobial activity, or directly 

target and kill phagocytic leukocytes thereby facilitating pathogenesis. In order to 

successfully infect the host, S. aureus must be able to acquire trace nutrients. How 

evasion of host innate responses and acquisition of trace nutrients in S. aureus dictates 

pathogenesis is largely understudied. Moreover, a majority of what is known about 

innate immune evasion and S. aureus focuses on countering neutrophil activity and not 

macrophages.  

Thus, this thesis sought to identify novel host innate evasion mechanisms of S. 

aureus that are directed at curbing macrophage immune responses. We found that the 

function of the lipoic acid synthetase, LipA, is necessary to dampen macrophage 

activation by S. aureus PAMPs. This occurs through the release of a metabolic protein 

into the extracellular environment, E2-PDH, which is modified with lipoic acid. The lipoic 

acid modified E2-PDH moonlights by restricting TLR1/2 activation of macrophages. 

During infection, the production of lipoic acid is crucial to dampen the inflammatory 

responses of macrophages. In the absence of this lipoic acid-based restriction of 

macrophage inflammatory responses during infection, macrophages are better able to 

control infection. In summary, this thesis has identified a novel innate immune evasion 

mechanism of S. aureus closely associated with bacterial metabolism. 
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CHAPTER TWO

MATERIALS AND EXPERIMENTAL METHODS 

Bacterial Strains and Culture Conditions 

All bacterial strains and oligonucleotides used in this thesis are listed in Table 3. 

The WT and parental strain used to generate all S. aureus mutants used in this study 

was the pulse field gel electrophoresis type USA300 isolate LAC cured of its plasmids 

(wild type – AH1263), unless noted otherwise. S. aureus RN4220 is a NCTC8325 

derivative which is restriction deficient for passage of plasmid. The T7 expressing 

Escherichia coli strain, lysY/Iq, was used as a host to overexpress and purify 

recombinant 6x-Histidine tagged S. aureus E2-PDH. All S. aureus strains were either 

grown in rich medium - Tryptic Soy Broth (TSB) (Criterion), or in defined medium lacking 

lipoic acid - Roswell Park Memorial Institute 1640 medium (RPMI) (Corning) 

supplemented with 1% casamino acids (Amresco). E. coli was cultivated in Lysogeny 

Broth, Miller formulation (LB) (BD Biosciences). Unless noted, all bacteria were grown 

at 37°C in a shaking incubator at 200 rpm in tubes kept at a 45° angle. When solid 

medium was required, agar (Amresco) was supplemented into TSB and LB at 1.5%. 

Where necessary, media was supplemented with antibiotics at the following final 

concentrations for S. aureus: erythromycin (Erm), 3 µg/mL (Amresco); kanamycin (Kan), 

50 µg/mL (Amresco); neomycin (Neo), 50 µg/mL (Amresco); and chloramphenicol 

(Cam), 10 µg/mL (Amresco). Antibiotics for E. coli were supplemented at the following 

final concentrations: ampicillin (Amp), 100 µg/mL (Gold Biotechnology); Kan, 10 or 25
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 µg/mL (Amresco); and Neo, 10 or 25 µg/mL (Amresco). RPMI medium used to bypass 

the requirement for lipoic acid (RPMI+BCFA) was supplemented with the following 

branched-chain carboxylic acids: 11.23 mM isobutyric acid (Sigma), 9.5 mM 2-

methylbutyric acid (Alfa Aesar), 9.69 mM isovaleric acid (Sigma), and 10 mM sodium 

acetate (Amresco), pH 7.4-7.5.  

Molecular Genetic Techniques 

S. aureus chromosomal DNA was isolated using the Wizard Genomic DNA 

purification kit (Promega) following the manufacturer’s protocol with minor modifications.  

1.2 mL of an overnight culture was pelleted by centrifugation at 14000 rpm for 3 minutes 

at room temperature and resuspended in 200 μL of TSM buffer (50 mM Tris, 0.5 M D-

Sucrose,10 mM MgCl2 pH 7.5) followed by addition of 2.5 µL of lysostaphin (Ambi 

Products, NY) stock solution (2 mg/mL in 20 mM sodium acetate, pH 4.5) and 

incubation at 37°C for 15 minutes to digest the cell wall. The bacteria were then pelleted 

by centrifugation at 14000 rpm for 5 minutes at room temperature and the chromosomal 

DNA was extracted as detailed by the manufacturer’s instructions. Recombinant 

plasmids and DNA from agarose gels were recovered using miniprep/midiprep and gel 

extraction kits from QIAGEN following the supplied protocol. Polymerase chain reaction 

was conducted using GoTaq polymerase (Promega) or Phusion High-Fidelity DNA 

polymerase (New England Biolabs) with oligonucleotide primers from Eurofin Genomics 

(Table 4), and dNTPs from Quanta Biosciences. DNA digestion was performed using 

restriction enzymes purchased from New England Biolabs. When digesting plasmids 

shrimp alkaline phosphatase (Amresco) was supplemented into the digests. Ligations 

were conducted using T4 DNA Ligase (New England Biolabs) at 16°C overnight.  
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Table 3. List of Strains  

Designation  Description Strain  
WT AH-LAC  S. aureus USA300 Strain LAC. Plasmid 

cured. 
USA300 AH-LAC 

WT LAC S. aureus USA300 Strain LAC USA300 WT LAC 
Transposon mutant library Nebraska Transposon Mutant Library of 

USA300 JE2 (386)  
USA300 JE2 

WT JE2 S. aureus USA300 Strain JE2 USA300 JE2 
DH5a E. coli strain used for propagating pIMAY in 

S. aureus   
DH5a 

lysY/Iq E. coli lysY/Iq strain used for expression of 
E2-PDH 

lysY/Iq 

RN4220 Restriction deficient S. aureus for plasmid 
propagation  

RN4220  

DlipA AH-LAC with in-frame deletion of lipA FA-S831* 

ΔlipA  + ΔlipA FA-S831 complemented with pJC1112-lipA FA-S877* 

ΔE2-PDH::kan   AH-LAC with gene replacement of e2-pdh 
with the kanamycin resistance cassette  

FA-S1041 

ΔE2-OGDH::kan   AH-LAC with gene replacement of e2-ogdh 
with the kanamycin resistance cassette  

FA-S1042 

ΔgcvH::kan AH-LAC with gene replacement of gcvH with 
the kanamycin resistance cassette 

FA-S1038 

ΔlipM AH-LAC with an in-frame deletion of lipM FA-S842* 

ΔlipL AH-LAC with an in-frame deletion of lipL FA-S1176* 

ΔlplA1 AH-LAC with an in-frame deletion of lplA1 FA-S841* 

ΔlplA2 AH-LAC with an in-frame deletion of lplA2 FA-S837* 

atl::erm  Transposon insertion into atl from the 
Nebraska Transposon Mutant Library of 
USA300 JE2 

NE460 

secA2::erm  Transposon insertion into secA2 from the 
Nebraska Transposon Mutant Library of 
USA300 JE2 

NE66 

ΔlipA::kan E.coli ΔlipA::kan LysY IQ E. coli FA-E1344 

6x-His-PDH  
 

pET15b encoding 6x-His-PDH transformed 
into ΔlipA::kan LysY IQ E. coli 

FA-S1359 

SitC-6x-His RN4220 with pOS1-PsarA-sodRbs-SitC-6x-His FA-S1424* 

*denotes strains generated by current and former members of the Alonzo Lab: Ryan 
Novak, Azul Zorzoli, and Xi Chen. 
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E. coli Competent Cell Preparation 

 A 5 mL O/N culture of E. coli in LB was grown at 37°C with shaking at 200 rpm. 

The overnight culture was diluted 1:55 into a 250 mL flask containing 200 mL of LB, and 

then grown at 37°C with shaking at 200 rpm until cultures reached an OD600 0.3-0.4 

(around 2.5 hours). The culture was divided equally into four pre-chilled 50 mL conical 

tubes and incubated on ice for 10 minutes. The tubes were centrifuged at 4000 rpm for 

10 minutes at 4°C. Supernatant was discarded and the pellets were resuspended in 10 

mL of Transformation Buffer 1 (30 mM KOAc, 100 mM RbCl2, 10 mM CaCl2, 50 mM 

MnCl2, 15% glycerol, pH to 5.8 using 0.2 M acetic acid) and incubated on ice for 10 

minutes. These washed cells were then centrifuged at 4000 rpm for 5 minutes at 4°C. 

Supernatant was discarded and the pellets were resuspended in 1 mL of 

Transformation Buffer 2 (10 mM MOPS, 75 mM CaCl2, 10 mM RbCl2, 15% glycerol, pH 

to 6.5 with KOH) and transferred to 1.5 mL microcentrifuge tubes. The competent cell 

preparations were stored at -80°C for future use. 

E. coli Transformation 

5 µL of a ligation reaction or 1 µL of purified plasmid were added to 50 µL of 

competent E. coli in microcentrifuge tubes on ice for 20 minutes. Bacterial cells were 

then heat-shocked for 45 seconds at 42°C and immediately placed on ice for 2 minutes. 

For recovery, 250 μL of SOC medium (0.5% tryptone, 0.5% yeast extract, 0.05% NaCl, 

250 mM KCl, adjusted to a pH 7.0 using 5M NaOH followed by addition of 20 mL 1M 

glucose) was added to the bacterial cells and incubated at 37°C with shaking at 200 

rpm for 2 hours.  After incubation, 100 µL of the transformation mixture was plated on 

LB plates with relevant antibiotics to select for transformants.  



 

      

57 

 

Preparation of S. aureus Electrocompetent Cells 

 A 5 mL O/N culture of S. aureus in TSB was grown at 37°C with shaking at 200 

rpm. The next day, 300 µL of the overnight culture was added to 30 mL of fresh TSB 

and grown for 3 hours at 37°C with shaking at 200 rpm. The culture was centrifuged for 

10 minutes at 8000 rpm for 10 minutes at 4°C. Supernatant was decanted and the 

bacterial pellet was washed in 30 mL ice-cold 10% glycerol, followed by another 

centrifugation at 8000 rpm for 10 minutes at 4°C. This washing step was repeated once 

more. Cells were then resuspended in 15 mL 10% glycerol followed by additional 

centrifugation at 8000 rpm for 10 minutes. Lastly, cells were suspended in 3 mL 10% 

glycerol and aliquoted into 1.5 mL microcentrifuge tubes and stored at -80°C until use. 

S. aureus Electroporation 

 To transform S. aureus, 50 μL of thawed S. aureus competent cells was mixed 

with ~1 μg of purified plasmid by gentle agitation and incubated at room temperature for 

30 minutes. The mixture was transferred to a 2 mm electroporation cuvette (VWR) and 

pulsed with a GenePulserXcell BioRad electroporator at 1800 V, 10 µF, 600 Ω. After 

pulsing, cells we allowed to recover in 750 µL of TSB for 1.5 hours at 30°C with shaking 

at 200 rpm. After incubation, 100 µL of the bacteria was plated onto TSA plates 

supplemented with appropriate antibiotics. The remaining bacteria were first pelleted by 

centrifugation at 10000 rpm for 2 minutes and the supernatant was removed until 100 

µL remained. The pellet was resuspended in this remaining 100 µL and plated onto TSA 

plates supplemented with appropriate antibiotics. Plates were incubated for 1-2 days at 

30°C. 
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Construction of Marked Deletion Mutants 

Two fragments corresponding to 500 base pairs upstream of the start codon and 

500 base pairs downstream of the stop codon of e2-pdh, e2-ogdh, and gcvH were 

amplified by polymerase chain reaction (PCR). The upstream fragment was PCR 

amplified from WT S. aureus genomic DNA using primer 0791SOE1-Kpn/0995SOE1-

Kpn/1305SOE1-Kpn and primer 0791SOE2-Kas/0995SOE2-Kas/1305SOE2-Kas (Table 

4). The downstream fragment was also PCR amplified from WT S. aureus genomic 

DNA using primer 0791SOE3-Kas/0995SOE3-Kas/1305SOE3-Kas and primer 

0791SOE4-Sac/0995SOE4-Sac/1305SOE4-Sac (Table 4). The resulting fragments 

were purified and used as templates in a splicing by overlap extension (SOEing) PCR 

reaction to generate the final amplicon for mutagenesis. This amplicon was then cloned 

into pIMAY using the KpnI and SacI restriction enzymes and propagated in E. coli.  

To construct pIMAY mutagenesis plasmids containing an antibiotic resistance 

marker, aphA3 (kanR) was PCR amplified from the plasmid pBTK with oligonucleotides 

KanF-Kas and KanR-Kas (Table 4). We then sub-cloned the kanR gene into a unique 

KasI site engineered between the upstream and downstream regions of homology 

previously cloned into pIMAY. Once constructed, the pIMAY gene replacement 

constructs were transformed into E. coli and selected for chloramphenicol (Cam) 

resistance. The pIMAY plasmids were propagated in E. coli and purified for 

electroporation into the restriction deficient S. aureus strain RN4220. The pIMAY 

plasmids were isolated from RN4220 and then electroporated into WT S. aureus LAC 

as described above. The pIMAY plasmid replicates at 28°C and integrates into the S. 

aureus chromosome at 37°C so it was maintained at 28°C until performing 
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mutagenesis. Allelic replacement was carried out by shifting to the non-permissive 

temperature for pIMAY replication (37°C) in the presence of Cam. This allows for pIMAY 

to integrate into the genome at the cloned homologous sites. The strains were then 

cultured at 28°C without Cam selection to facilitate a second recombination event and 

subsequent excision of the plasmid from the genome. To counter-select for bacteria that 

have lost the pIMAY plasmid, bacteria are plated on anhydrous tetracycline (AnTet). At 

the same time, the bacteria were selected on Kan/Neo plates to select for successful 

gene replacement events. Colonies that were Cam sensitive, AnTet resistant, and 

Kan/Neo resistant were analyzed by PCR for deletion of the relevant genes. This 

procedure was used to generate the following mutant strains: Δe2-pdh::kan, Δe2-

ogdh::kan, and ΔgcvH::kan. 

Bacterial Growth Curves 

Growth curves of WT, ΔlipA, or ΔlipA+lipA were carried out in TSB and RPMI, 

RPMI supplemented with 25 nM α-lipoic acid (Sigma), or RPMI supplemented with 

BCFA (RPMI+BCFA). Overnight cultures were prepared in triplicate in either TSB or 

RPMI+BCFA in a 96-well round-bottom polystyrene plate (CellTreat). The next day, 

cultures were washed three times in TSB or RPMI and the triplicate samples were 

subcultured 1:100 and grown in a 96-well flat-bottom polystyrene plate at 37°C with 

shaking at 200 rpm. Bacterial growth was assessed hourly for 10 hours by measuring 

optical density at 600 nm (OD600) using an ELx800 microplate reader (BioTek) until 

reaching stationary phase (~10 hours).  
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Table 4. List of Primers  
 
Name  Sequence  
LipAP1F ATTGAATTGAAACGCTTTCCTTCGTAATTCGCAACTGGAACACGCACGC

TGTGTAGGCTGGAGCTGCTTC 
LipAP2R CTTCAAAAAGCGGGTTTTTTATCAGACAGATGTAAGTAATTATTACAGGA

ATGGGAATTAGCCATGGTCC 
LipAF ATTGAATTGAAACGCTTTCCTTCGT 
LipAR CTTCAAAAAGCGGGTTTTTTATCAG 
995hisN/CF ATATCATATGGCATTTGAATTTAGATTACCC 
995hisNR ATATGGATCCTTACCCCTCCATTAATAATAA 
SitC1 ATATCTGCAGCTGATATTTTTGACT 
SitC2 TAATAAAGGTACTAATTTTTTCATAAATAATCATCCTCCTAAGGT 
SitC3 ACCTTAGGAGGATGATTATTTATGAAAAAATTAGTACCTTTATTA 
SitC4 ATATGTCGACTTAGTGATGGTGATGGTGATGTTTCATGCTTCCGTGTAC

AG 
NE66F GATATTGTGGATTATGAGTAT 
NE66R AAACCGAGACGTCCATTAGT 
NE460F AATATTTTTCATTAATTAAGTC 
NE460R ATAATTATAGTTATGATCAATT 
0791SOE1-Kpn CCC-GGTACC(KpnI)-AGGTTGCAGTCGTATGATTA 
0791SOE2-Kas ATTAAGGAGTTACACGGTGA-GGCGCC(KasI)-

GAGAATCCCCTCCTAATTAA 
0791SOE3-Kas TTAATTAGGAGGGGATTCTC-GGCGCC(KasI)-

TCACCGTGTAACTCCTTAAT 
0791SOE4-Sac CCC-GAGCTC(SacI)-CAGACATTCCATACATTTGATC 
0995SOE1-Kpn CCC-GGTACC(KpnI)-TGAAGAAGTACCTGAAGAAG 
0995SOE2-Kas GAAATCTCCAACTACCATGTT-GGCGCC(KasI)-

GTTTTTGCCCTCCTAAGATT 
0995SOE3-Kas AATCTTAGGAGGGCAAAAAC-GGCGCC(KasI)-

AACATGGTAGTTGGAGATTTC 
0995SOE4-Sac CCC-GAGCTC(SacI)-TACTTCTTGTAAGTTTAAAGCA 
1305SOE1-Kpn CCC-GGTACC(KpnI)-TGCACAAGCGGCTAGTTTA 
1305SOE2-Kas TAAACTATTTTGTGTTGTGGA-GGCGCC(KasI)-

GACTTATTTCCCCCTAGTTA 
1305SOE3-Kas TAACTAGGGGGAAATAAGTC-GGCGCC(KasI)-

TCCACAACACAAAATAGTTTA 
1305SOE4-Sac CCC-GAGCTC(SacI)-AATCATAAATTATAGAATATCGG 
KanF-Kas TCCCGGCGCCCTCGACGATAAACCCAGCGAAC 
KanR-Kas TCCCGGCGCCCTTTTTAGACATCTAAATCTAGGTAC 

 

Isolation of Bone Marrow-Derived Macrophages 

Primary murine bone marrow macrophages (BMM) were derived from bone 

marrow progenitor cells isolated from the femurs and tibias of C57BL/6 (WT, TLR2-/-, 

TLR4-/-, MyD88-/-) mice. 5 x 106 progenitor cells were plated in 100 x 26-mm Petri dishes 
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containing 15 mL bone marrow macrophage medium (BMM medium - DMEM (CellGro) 

+ 1 mM Sodium Pyruvate (CellGro) + 1 mM HEPES Buffer (CellGro) + 2 mM L-

glutamine (CellGro) + 20% heat inactivated FBS (Seradigm) + 30% L929 fibroblast cell 

supernatant + 100 µg/ml Penicillin/Streptomycin (Pen/Strep) (CellGro) + 50 µM β-

mercaptoethanol (Amresco)). After 3 days at 37°C, 5% CO2, 10 mL of fresh BMM 

medium was added and macrophages were allowed to differentiate for 6 more days. To 

remove differentiated BMM from petri dishes, the cells were rinsed with 10 mL 1X PBS 

and incubated with 10 mL 1X PBS at 4°C for 30 minutes. Following incubation, cells 

were removed by manual pipetting and 1 x 107 cells were resuspended in BMM medium 

containing 10% DMSO (Sigma) for storage in liquid nitrogen. For experiments using 

frozen BMM, the frozen vial was thawed at 37°C and then slowly diluted dropwise into 

fresh BMM medium, pelleted by centrifugation at 1500 rpm at 4°C for 5 minutes, and 

then resuspended in 10 mL of fresh BMM medium. The cell suspension was 

subsequently split into two 100 x 26-mm Petri plates containing 10 mL BMM medium 

with 100 µg/mL penicillin/streptomycin and was cultured for 3 days at 37°C, 5% CO2 

before use.  

Isolation of Bone Marrow Neutrophils 

Murine bone marrow neutrophils were isolated from the femurs and tibias of 

C57BL/6 WT mice by flushing out the bone marrow cells with DMEM + 10% heat 

inactivated FBS. Cells were then centrifuged at 1500 rpm at 4°C for 5 minutes, the 

supernatant was decanted, and red blood cells were lysed with ACK lysing buffer 

(Lonza) by resuspending the pellet in 2 mL of lysis buffer and incubating for 2 minutes 

at room temperature. Cell lysis was stopped by adding 8 mL of 1X sterile PBS, mixing 
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gently, and pelleting by centrifugation at 1500 rpm, 4°C for 5 minutes. The cells were 

then resuspended in 10 mL of DMEM + 10% heat inactivated FBS, counted, and 

resuspended in 1 mL of 1X PBS after pelleting by centrifugation at 1500 rpm at 4°C for 

5 minutes. To isolate neutrophils, we used density gradient centrifugation. 3 mL of 

Histopaque 1077 (density 1.077 g/mL) (Sigma) was gently overlaid on 3 mL of 

Histopaque 1119 (density 1.119 g/mL) (Sigma) followed by addition of the bone marrow 

cell suspension on top of the Histopaque 1077 layer. The samples were then 

centrifuged for 30 minutes at 2000 rpm 25°C without brake and neutrophils were 

collected at the interface between the Histopaque 1119 and 1077 layers. Purified 

neutrophils were then washed twice by centrifugation at 1500 rpm at 4°C for 5 minutes 

and resuspending with DMEM + 10% heat inactivated FBS supplemented with 100 

µg/mL Pen/Strep (Corning) and 50 µg/mL gentamicin (Amresco). Neutrophils were then 

seeded at 65000 cells per well into 96-well flat-bottom tissue culture treated plates 

(Corning) in 90 µL DMEM + 10% heat inactivated FBS supplemented with 100 µg/mL 

Pen/Strep and 50 µg/mL gentamicin. The neutrophils were activated with 10 µL OD-

normalized supernatants from 9 hour S. aureus cultures followed by incubation at 37°C, 

5% CO2 for 12 hours.  Macrophage supernatants were then removed and either used 

immediately or stored at -80°C. To measure the levels of cytokines and chemokines in 

the neutrophil supernatants, a custom Cytometric Bead Array Flex set (BD Biosciences) 

was used according to manufacturer’s specifications. Bead and supernatant mixtures 

were incubated for 1.5 hours at 25°C at 600 rpm using a Thermo Mixer C (Eppendorf) in 

a 96-well V-bottom plate (Corning). Samples were then washed using FACS Wash 

Buffer (1X PBS + 2% heat inactivated FBS + 0.05% (w/v) Sodium Azide), data collected 
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on a LSRFortessa (BD Biosciences), and analyzed using FlowJo software (FlowJo, 

LLC) by gating on individual bead populations and calculating the geometric mean of 

fluorescence relative to protein standards. 

To measure the purity of the isolated bone marrow neutrophils, 100000 cells 

were transferred to a 96-well V-bottom plate (Corning) for cell surface staining. Prior to 

staining, immune cells were incubated with 50 μL of FACS Wash Buffer containing 0.2 

μg/mL of anti-CD16/CD32 (93) (BioLegend) for 30 minutes on ice to block Fc receptors 

followed by washing with FACS Wash Buffer and surface staining with the following 

antibodies from BioLegend: anti-CD11b-FITC (M1/70) and anti-Ly6G-APC (1A8) for 30 

minutes on ice and washed twice with FACS Wash Buffer. Samples were then washed 

twice and fixed using FACS Fixing Buffer (1X PBS + 2% heat inactivated FBS + 2% 

Paraformaldehyde + 0.05% (w/v) sodium azide). Data was collected on a LSRFortessa 

(BD Biosciences) and subsequently analyzed using FlowJo software (FlowJo, LLC). 

Isolated bone marrow neutrophils were 85-90% pure.  

Transposon Mutant Library Screen on BMM 

An annotated transposon mutant library generated in USA300 strain JE2 was 

used for screening (BEI resources repository) by Francis Alonzo. Overnight cultures 

were prepared by inoculating polystyrene plates (Corning) containing sterile TSB with 

transposon mutants that had been spot plated and grown on solid agar in 12x8 arrays 

(20 plates, each containing a single 12x8 array of mutant strains) the night prior. 

Following overnight growth at 37°C, the mutant library was subcultured 1:100 by 

inoculating 2 µL of a well-mixed overnight culture into 198 µL fresh TSB in 96-well 

polystyrene plates (Corning). The cultures were allowed to grow for 9 hours (OD600 = 
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1.2) at 37°C with shaking at 200 rpm. After 9 hours, the OD600 of the strains was 

measured using an Envision 2103 plate reader (Perkin-Elmer) and the bacteria were 

pelleted by centrifugation at 3700 rpm for 15 minutes at 4°C. Cell free supernatant was 

collected and used immediately for screening or stored at -80°C. 65000 BMM derived 

from bone marrow of 6-8 week old male and female C57BL/6 mice were seeded into 

96-well flat-bottom tissue culture treated plates (Corning) in BMM medium with 100 

µg/mL Pen/Strep (Corning) and 50 µg/mL gentamicin (Amresco) the day before use. 

The following day, supernatants isolated from 9 hour cultures of S. aureus transposon 

mutants were thawed from storage at -80°C on ice followed by addition of 10 µL OD 

normalized supernatants to macrophages in 90 µL BMM medium and incubation at 

37°C, 5% CO2 for 24 hours.  Macrophage supernatants were then removed and either 

used immediately in cytometric bead array or stored at -80°C for later analysis. 

To measure the levels of cytokines and chemokines in the macrophage supernatants, a 

custom Cytometric Bead Array Flex set (BD Biosciences) was used according to 

manufacturer’s specifications. Bead and supernatant mixtures were incubated for 1.5 

hours at 25°C at 600 rpm using a Thermo Mixer C (Eppendorf) in a 96-well V-bottom 

plate (Corning). Samples were then washed using FACS Wash Buffer (1X PBS + 2% 

heat inactivated FBS + 0.05% (w/v) Sodium Azide), data collected on a LSRFortessa 

(BD Biosciences), and analyzed using FlowJo software (FlowJo, LLC) by gating on 

individual bead populations and calculating the geometric mean of fluorescence relative 

to protein standards. From the 1920 mutants in the library, 96 were initially selected for 

rescreening based upon an altered abundance that fell at least 1 standard deviation 

outside the average response induced by all 1920 mutants. These 96 mutants were 
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rescreened. Those mutants whose cytokine abundance remained 1 standard deviation 

above or below that of wild type induction levels were selected and are displayed in 

Table 5. ++ and -- in Table 5 refers to those mutants whose cytokine levels fell one 

standard deviation beyond wild type in the positive or negative direction respectively. 

For an NE264 mutant, MCP1 and KC levels were highly variable between biological 

replicates, therefore these cytokine changes were designated ++/ND in Table 5. All 21 

mutants were rescreened in triplicate to confirm statistically significant enhancement or 

diminution of cytokine secretion relative to WT controls. After confirmation, the 

mutations were subsequently transduced into S. aureus USA300 strain LAC to confirm 

phenotypes before moving forward with prioritization of mutants for further studies. All 

transduced mutants were screened in triplicate and assessed for statistically significant 

differences in cytokine abundance compared to wildtype. This screen was conducted by 

Dr. Francis Alonzo.  

S. aureus Cell Free Supernatant Preparation 

S. aureus overnight cultures were prepared in triplicate by inoculating three wells 

with an individual bacterial colony in a 96-well round-bottom polystyrene plate 

containing RPMI+BCFA medium that was filtered sterilized using a 0.22 µM PES 

syringe filter (Corning) into a plastic conical tube. Following overnight growth at 37°C 

with shaking at 200 rpm, triplicate samples were subcultured by inoculating 3 µL of a 

well-mixed overnight culture into 147 µL RPMI+BCFA. The cultures were allowed to 

grow for 3, 5, or 9 hours at 37°C with shaking at 200 rpm. After 3, 5 or 9 hours, the 

OD600 of the strains were measured using an ELx800 microplate reader (BioTek) for 

OD normalization and the bacteria were pelleted by centrifugation at 3700 rpm for 15 
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minutes at 4°C. Cell free supernatant was collected and used immediately or stored at -

80°C.  

Purification of S. aureus Lipoyl-E2-PDH 

Recombinant E2-PDH was expressed and purified from E. coli lysY/Iq containing 

a ΔlipA::kan mutation. The ΔlipA::kan mutant was generated using lambda red 

mutagenesis. In brief, a primer pair (LipAP1F/LipAP2R) was designed containing 50 bp 

of homology upstream and downstream to the lipA gene in E. coli and homology to the 

priming regions of pKD4. These primers were then used to PCR amplify the kanamycin 

resistance cassette encoded in pKD4. Lambda red mutagenesis was carried out by 

electroporating this amplicon into competent lysY/Iq expressing pKD46 and plating on 

LB containing either 10 or 25 µg/mL of Kan and Neo. Antibiotic resistant colonies were 

patched and subsequently assessed for replacement of the lipA gene with the pKD4 

Kan resistance cassette using PCR with primer pair LipAF/LipAR. To generate a 6x-His-

Tagged E2-PDH expression plasmid, WT genomic DNA was isolated and amplified with 

the primer pair 0995hisN/CF/0995hisNR to generate an E2-PDH encoding amplicon 

flanked by NdeI and BamHI restriction sites. This amplicon was ligated into a pET15b 

expression plasmid which was subsequently transformed into the ΔlipA::kan lysY/Iq 

strain. To confirm expression of the N terminal 6x Histidine tagged E2-PDH, protein 

production was assessed after induction with 1 mM IPTG at 37°C for 3 hours (Gold 

Biotechnology).  

To purify E2-PDH, lysY/Iq ΔlipA::kan E. coli containing the pET15b-6x-His-E2-

PDH plasmid was grown overnight in 30 mL LB (BD Biosciences) supplemented with 

100 µg/mL ampicillin (Gold Biotechnology) at 37°C, 220 rpm. The following day, the 
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bacteria were subcultured 1:100 in 4 L fresh LB medium and grown for 20 hours at 37°C 

until reaching an OD600 of 0.25-0.3 followed by addition of IPTG (0.5 mM) (Gold 

Biotechnology) and incubation for 4 hours at 37°C at 220 rpm. Bacteria were pelleted by 

centrifugation at 8500 rpm for 10 minutes at 4°C followed by storage at -80°C. The 

following day, bacterial pellets were thawed at 37°C and resuspended in lysis buffer (25 

mM imidazole (Alfa Aesar), 50 mM Tris-HCL, 300 mM NaCl (Amresco), pH 8) 

supplemented with 1 mM dithiothreitol (DTT) (Amresco) and 1 mM phenylmethane 

sulfonyl fluoride (PMSF) (Acròs Organics). Bacteria were lysed on ice using a sonicator 

(Branson) at 20-second intervals with a rate of 0.8 seconds per pulse and an output of 

340 W for a total of 15 minutes. The bacterial debris was pelleted by centrifugation for 

45 minutes at 11000 rpm, filtered through a 0.45 μm filter followed by incubation of the 

clarified supernatant for 1 hour with 1 mL nickel-NTA resin (Qiagen). The resin was 

washed with 150 mL 50 mM imidazole, 1 mM DTT, 50 mM Tris-HCL, 300 mM NaCl, pH 

8 followed by elution in the same buffer containing 500 mM imidazole. The purified 

protein was dialyzed using snakeskin dialysis tubing (10 kDa MWCO, Thermo Scientific) 

into 100 mM imidazole + 50 mM Tris-HCL, 300 mM NaCl, pH 8.0 for 3 hours; 25 mM 

imidazole + 50 mM Tris-HCL, 300 mM NaCl, pH 8.0 overnight; and 50 mM Tris-HCL, 

300 mM NaCl, pH 8 for an additional 3 hours. The concentration of the purified protein 

was measured using a bicinchoninic acid (BCA) kit (Thermo Scientific) and stored at -

80°C. 

To lipoylate purified 6x-His-E2-PDH 4x50 µl reactions were set up in 50 mM Tris-

HCl, 300 mM NaCl, pH 8.0 supplemented with 6 mM ATP (Amresco), 1 mM DTT, 1 mM 

MgCl2 (Amresco), 1 µM recombinant purified lipoate protein ligase, 20 µM E2-PDH, and 
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2.4 mM lipoic acid. The reactions were incubated for 2 hours at 37°C shaking at 600 

rpm. After incubation, the reaction mixtures were loaded onto a Superdex 100 Increase 

3.2/300 Gel Filtration column and fractionated by size exclusion chromatography using 

an AKTA FPLC system (GE Healthcare) to purify lipoyl-E2-PDH in a final buffer 

containing 50 mM Tris-HCl, 300 mM NaCl, pH 8.0. Protein purity and lipoylation were 

confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

and Coomassie staining with GelCode Blue stain reagent (Thermo Scientific), or via 

immunoblot with anti-lipoic acid antibody as described in detail below. The methods for 

purification and lipoylation of E2-PDH were devised by Irina Laczkovich.  

Purification of S. aureus Lipoprotein SitC 

Recombinant SitC was expressed and purified from S. aureus strain RN4220. To 

generate a plasmid capable of expressing SitC harboring a C-terminal 6x-His tag we 

first amplified the S. aureus sarA promoter (PsarA) linked to the ribosome binding site of 

the S. aureus superoxide dismutase (sodRbs) using primer pair SitC1/SitC2 and the 

plasmid pOS1-PsarA-sodRbs-sGFP as template. We then amplified the sitC from S. 

aureus LAC gDNA using primer pair SitC3/SitC4. SitC4 contains coding sequence for a 

6x-His tag embedded in the primer. The resulting amplicons from these PCRs were 

used in a SOEing PCR reaction to generate a single amplicon harboring PsarA-

sodRbsSitC-6xHis flanked by restriction endonuclease cut sites Pst1 and Sal1. The PsarA-

sodRbsSitC-6xHis was digested, ligated into the pOS1 plasmid, and transformed into 

DH5a E. coli. The pOS1- PsarA-sodRbsSitC-6xHis plasmid, was then purified from E. coli 

and electroporated into RN4220.  
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To purify SitC, S. aureus RN4220 containing the pOS1- PsarA-sodRbsSitC-6xHis 

plasmid was grown overnight at 37°C, 220 rpm in TSB supplemented with 10 μg of 

chloramphenicol (Amresco). The following day, the bacteria were subcultured 1:100 into 

2 liters of fresh TSB medium (Criterion) supplemented with 10 μg of chloramphenicol 

(Amresco) and grown for 8 hours at 37°C.  Bacteria were pelleted by centrifugation at 

8500 rpm for 10 minutes at 4°C and then stored at -80°C overnight. Bacteria pellets 

were thawed on ice and resuspended in lysis buffer (20mM Tris-HCL (Alfa Aesar), 

50mM NaCl (Amresco), pH 8.0). The resuspended cells were treated with 200 μl 

lysostaphin (Ambi Products, NY) (2mg/mL in 20mM sodium acetate pH 4.5) and 

incubated at 37°C for 1 hour. The cells were supplemented with 2 mM phenylmethane 

sulfonyl fluoride (PMSF) and lysed on ice via sonication (Branson) at 20-second 

intervals with a rate of 0.8 seconds per pulse and an output of 340W for a total of 30 

minutes. The bacterial debris was pelleted by centrifugation for 1 hour at 11000 rpm and 

cell-free supernatants were collected followed by isolation of membranes by 

ultracentrifugation at 39000 rpm for 1 hour. Membrane pellets were solubilized in 

extraction buffer (20mM Tris-HCl, 50mM NaCl, 2% TritonX-100 (Amresco), pH 8.0) for 

18 hours at 4°C. 1mL of Nickel-NTA resin (Qiagen) was equilibrated in the same 

extraction buffer for 18 hours at 4°C.  The following day, the solubilized membrane 

pellets were centrifuged at 11000 rpm for 1 hour to remove any insoluble debris, filtered 

through a 0.45 µM syringe filter, and incubated with Nickel-NTA resin for 1 hour at room 

temperature. The resin was washed four times with wash buffer (20mM Tris-HCl, 50mM 

NaCl, 0.25% TritonX-100, 40mM imidazole (Amresco)) prior to elution in the same 

buffer containing 400 mM imidazole. The purified protein was dialyzed using snakeskin 
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dialysis tubing (10kDa MWCO, Thermo Scientific) into 100mM imidazole, 20mM Tris-

HCl, 50mM NaCl ,0.25% TritonX-100 pH 8.0 3 hours at 4°C; 25mM imidazole, 20mM 

Tris-HCl, 50mM NaCl, 0.25% TritonX-100 pH 8.0 3 hours at 4°C; 20mM Tris-HCl, 50mM 

NaCl 0.25% TritonX-100 pH 8.0 overnight at 4°C.  The concentration of the purified SitC 

was measured using a bicinchoninic acid (BCA) kit (Thermo Scientific) and determined 

to be 2mg/mL. The purified protein was stored at -80°C until use where it was diluted 

20,000-fold before addition to cells so that the final TritonX-100 concentration was 

0.00001% with no adverse effects on mammalian cells. Protein purity was confirmed by 

SDS-PAGE and Coomassie staining. Purification of SitC was performed by Xi Chen. 

Exoprotein Isolation and Immunoblotting 

To isolate S. aureus exoproteins, strains were first grown overnight in 5 mL TSB 

or RPMI+BCFA in conical tubes. The following morning the bacteria were subcultured 

1:100 into conical tubes containing 5 mL fresh TSB or RPMI+BCFA and allowed to grow 

for 9 hours at 37°C with shaking at 200 rpm. After 9 hours, the OD600 was measured 

using a Genesys 10S UV-Vis spectrophotometer (Thermo Scientific). The cultures were 

pelleted by centrifugation at 4200 rpm at 4°C for 15 minutes. After pelleting the bacteria, 

1.3 mL cell free supernatant was removed followed by the addition of trichloroacetic 

acid (TCA) (Alfa Aesar) to 10% final volume and subsequent incubation at 4°C 

overnight. The following day, samples were centrifuged at 13000 rpm at 4°C for 15 

minutes and 1 mL of 100% EtOH was added followed by incubation at 4°C for 30 

minutes. The precipitated proteins were centrifuged at 13000 rpm at 4°C for 15 minutes 

and EtOH was removed, followed by an additional centrifugation at 15000 rpm for 2 

minutes at room temperature and removal of any excess ethanol. The pellets were then 
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left to air dry for 1 hour, followed by resuspension in 30 µL of TCA-SDS buffer (2X SDS 

buffer + β-mercaptoethanol diluted 1:1 with 0.5M Tris-HCl buffer (pH 8.0) + 4% SDS) 

and boiling for 10 minutes at 100°C. Samples were normalized to the highest OD600 

and separated by SDS-PAGE in 10% or 12% polyacrylamide gels followed by 

Coomassie staining with GelCode Blue stain reagent (Thermo Scientific). 

For immunoblotting, strains were first grown overnight in RPMI+BCFA. The 

following morning, overnights were subcultured 1:100 in 50 mL flasks containing 5 mL 

of RPMI+BCFA with reduced branched chain fatty acid precursors (1.123 mM isobutyric 

acid, 1.0 mM 2-methylbutyric acid, 1.0 mM isovaleric acid and 1.0 mM Na acetate) to 

reduce background on immunoblots. After 9 hours, the OD600 was measured and 

bacteria from 4 mL culture volume were pelleted by centrifugation at 4200 rpm at 4°C 

for 15 minutes. 1.3 mL cell free supernatant was removed followed by the addition of 

10% TCA and isolation of secreted proteins as described above. To detect lipoyl 

proteins in the supernatant, samples were loaded based on OD normalization to 

account for minor differences in final optical density, resolved on 10% or 8% SDS-

PAGE gels, followed by transfer to 0.2 µm PVDF membrane (EMD Millipore) at 200V for 

1.5 hours in a Quadra Mini-Vertical PAGE/Blotting System (CBS Scientific). Membranes 

were then incubated overnight in PBST (PBS + 0.1% Tween-20) with 5% Bovine Serum 

Albumin (BSA) (Amresco) or with 5% BSA in TBST (Tris-buffered saline + 1% Tween-

20) at 4°C overnight. The following day, membranes were blocked with 0.9 mg/mL 

human IgG (Sigma) for 1 hour to mitigate nonspecific binding to S. aureus antibody 

binding proteins. Membranes were washed three times in PBST or TBST for 15 minutes 

each followed by addition of a 1:5,000 dilution of rabbit anti-lipoic acid antibody (EMD 
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Millipore) in 10 mL of PBST + 5% BSA or TBST + 5% BSA. After 1 hour, membranes 

were washed three times with PBST or TBST for 15 minutes each, incubated with a 

1:400 dilution of goat anti-rabbit IgG (H+L) HRP conjugate (Thermo Scientific) in 10mL 

of PBST + 5% BSA for 1 hour or 1:5000 goat anti-rabbit IgG (H+L) Alkaline 

Phosphatase (Thermo Scientific) in 10mL of TBST + 5% BSA secondary antibodies 

depending on the detection method, followed by an additional three 15 minute washes 

in PBST or TBST. Immunoblots were visualized using a FluorChemE System (Protein 

Simple) or exposed to film (Dot Scientific), and developed using an Alphatek Ax390 SE 

autoprocessor using Pierce ECL Western Blotting Substrate (Thermo Scientific) or after 

addition of 35 µL of a 50 mg/mL stock of 5-bromo-4-chloro-3-indoyl phosphate 

(Amresco) and 66 µL of a 50mg/mL stock of nitro blue tetrazolium (Amresco) to 10mL of 

100 mM Tris pH 9.5 + 100 mM NaCl + 5 mM MgCl2 (AP Buffer) to membranes followed 

by incubation for 1-2 minutes.  

Isolation of Surface Proteins 

To isolate proteins on the surface of S. aureus, 5 mL cultures of strains were 

grown overnight in RPMI+BCFA. The following morning, the OD600 of the cultures were 

measured and then pelleted by centrifugation at 4200 rpm at 4°C for 15 minutes. The 

supernatant was decanted, and the cell pellets were resuspended in 200 µL of a 125 

mM Tris-HCL (pH 7.0) + 2% SDS solution. Samples were transferred to 1.5 mL 

microcentrifuge tubes, and boiled for 3 minutes at 95°C. After boiling, samples were 

spun at 10,000 g for 10 minutes. 180 µL of supernatant containing surface proteins was 

collected and boiled at 100°C for 10 minutes in 6X SDS sample buffer (30% (v/v) 

glycerol (Amresco) + 0.5M Tris (Amresco) + 10% (w/v) SDS (Amresco) + 5% (v/v) β-
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mercaptoethanol + 0.012% (w/v) bromophenol blue (Amresco)) followed by storage at -

20°C or immediate use in SDS-PAGE. Samples were loaded based on OD 

normalization to account for minor differences in final optical density and loaded onto 

12% SDS-PAGE gels followed either by Coomassie staining with GelCode Blue stain 

reagent or transfer to 0.2 µm PVDF membrane at 200V for 1 hour. Membranes were 

then blocked overnight with 5% BSA in TBST (Tris-buffered saline + 1% Tween-20) at 

4°C. Immunoblotting was conducted as described above using 0.9 mg/mL of human IgG 

for blocking, 1:3000 rabbit anti-lipoic acid primary antibody, and 1:5000 goat anti-rabbit 

IgG (H+L) Alkaline Phosphatase (Thermo Scientific) secondary antibody. Immunoblot 

were then developed after addition of 35 µL of a 50 mg/mL stock of 5-bromo-4-chloro-3-

indoyl phosphate (Amresco) and 66 µL of a 50mg/mL stock of nitro blue tetrazolium 

(Amresco) to 10mL of 100 mM Tris pH 9.5 + 100 mM NaCl + 5 mM MgCl2 (AP Buffer) to 

membranes followed by incubation for 1-2 minutes.  

Quantification of Lipoyl-E2-PDH 

To quantify the amount of lipoyl E2-PDH released by S. aureus, WT S. aureus 

was first grown overnight in RPMI+BCFA. The following morning, overnights were 

subcultured 1:100 in 50 mL flasks containing 5 mL of RPMI+BCFA with reduced 

branched chain fatty acid precursors. After 9 hours, the bacteria were pelleted by 

centrifugation at 4200 rpm at 4°C for 15 minutes. 1.3 mL cell free supernatant was 

removed followed by the addition of 10% TCA and secreted proteins were isolated as 

described above. 2.5 µL of WT TCA precipitated supernatant was loaded onto a 10% 

SDS-PAGE gel and resolved with a titration of purified recombinant lipoyl-E2-PDH. After 

performing an immunoblot to detect lipoyl-E2-PDH as described above, the amount of 
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lipoyl E2-PDH was estimated based on the intensity of the bands and found to be 

present in the range of approximately 25-50 nM. 

Immunoblotting for Cytosolic Lipoyl-Proteins 

To assess cytosolic lipoyl-protein profiles, strains were grown overnight in 

RPMI+BCFA. The next day cultures were diluted 1:100 in 5 mL RPMI+BCFA and grown 

for 9 hours at 37°C with shaking at 200 rpm. After 9 hours, OD600 was measured and 

the strains were pelleted by centrifugation at 4200 rpm for 15 minutes at 4°C. The spent 

culture medium was aspirated and the bacterial pellets were resuspended in 250 µL of 

sterile 1X PBS. The bacterial suspensions were transferred into screw-cap 

microcentrifuge lysing tubes (Fisher Scientific) containing 250 µL of 0.1 mm glass cell 

disruption beads (Scientific Industries, Inc.) and lysed using a Fast Prep-24 5G (MP 

Biomedicals) bead disruption system at setting 5.0 for 20 seconds followed by a 5 

minute incubation on ice and additional disruption at setting 4.5 for 20 seconds. Tubes 

were centrifuged at 13000 rpm for 15 minutes at 4°C  to pellet debris and 100 µL of 

clarified lysates were boiled at 100°C for 10 minutes in 6X SDS sample buffer (30% 

(v/v) glycerol (Amresco) + 0.5M Tris (Amresco) + 10% (w/v) SDS (Amresco) + 5% (v/v) 

β-mercaptoethanol + 0.012% (w/v) bromophenol blue (Amresco)) followed by storage at 

-20°C or immediate use in SDS-PAGE. Samples were loaded based on OD 

normalization to account for minor differences in final optical density and loaded onto 

12% SDS-PAGE gels followed either by Coomassie staining with GelCode Blue stain 

reagent (Thermo Scientific) or transfer to 0.2 µm PVDF membrane at 200V for 1 hour. 

Membranes were then blocked overnight with 5% BSA in PBST or with 5% BSA in 

TBST (Tris-buffered saline + 1% Tween-20) at 4°C. Immunoblotting was conducted as 
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described above using 0.9 mg/mL human IgG for blocking, 1:3000 rabbit anti-lipoic acid 

primary antibody, and either 1:200 goat anti-rabbit IgG (H+L) HRP conjugate or 1:5000 

goat anti-rabbit IgG (H+L) Alkaline Phosphatase (Thermo Scientific) secondary 

antibodies depending on the detection method. Immunoblots were developed after 

addition of Pierce ECL Western Blotting Substrate, exposure to film (Dot Scientific), and 

developed using an Alphatek Ax390 SE autoprocessor, or after addition of 35 µL of a 50 

mg/mL stock of 5-bromo-4-chloro-3-indoyl phosphate (Amresco) and 66 µL of a 

50mg/mL stock of nitro blue tetrazolium (Amresco) to 10mL of 100 mM Tris pH 9.5 + 

100 mM NaCl + 5 mM MgCl2 (AP Buffer) to membranes followed by incubation for 1-2 

minutes.  

In vitro Macrophage Experiments 

65000 macrophages were seeded into 96-well flat-bottom tissue culture treated 

plates (Corning) in 90 µL BMM medium supplemented with 100 µg/mL Pen/Strep and 

50 µg/mL gentamicin (Amresco) the day before use. The following day, supernatants 

isolated from 9 hour cultures of S. aureus were thawed from storage at -80°C on ice and 

10 µL was added to BMMs following OD normalization between strains to ensure 

equivalent content followed by incubation at 37°C, 5% CO2 for 24 hours. Macrophage 

supernatants were then removed and either used immediately or stored at -80°C. In 

experiments using either purified recombinant E2-PDH or synthetic DKA and DKLA 

(AnaSpec), proteins were pretreated with 20 µg/mL of Polymyxin B sulfate (Alfa Aesar) 

for 1-2 hours at 37°C to mitigate aberrant LPS activation. Treated protein samples were 

then added to the macrophages in triplicate along with the TLR agonists Pam2CSK4 (1 

ng/mL) or Pam3CKS4 (3 ng/mL) (Invivogen) where indicated. In the experiments with 
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SitC, the recombinant lipoprotein was treated with polymyxin B sulfate as described and 

added to the macrophages at a concentration 0.1 ng/mL for measurement of CCL3 and 

CCL4 production and 1 ng/mL for measurement of IL-6 and TNF production. In the 

indicated experiments 250 ng/mL of E. coli serotype 0111:B4 lipopolysaccharide (Enzo 

Life Sciences) or 250 ng/mL of flagellin isolated from the Gram-negative 

bacterium Salmonella enterica serovar Typhimurium (InvivoGen) was added to cells in 

the absence or presence of with 3 mM α-lipoic acid (Sigma). All BMMs were activated 

for 24 hours at 37°C, 5% CO2, followed by removal of macrophage supernatant and 

immediate use or storage at -80°C. 

To measure the levels of cytokines and chemokines in the macrophage 

supernatants, a custom Cytometric Bead Array Flex set (BD Biosciences) was used 

according to manufacturer’s specifications. Bead and supernatant mixtures were 

incubated for 1.5 hours at 25°C at 600 rpm using a Thermo Mixer C (Eppendorf) in a 

96-well V-bottom plate (Corning). Samples were then washed using FACS Wash Buffer 

(1X PBS + 2% heat inactivated FBS + 0.05% (w/v)  Sodium Azide), data collected on a 

LSRFortessa (BD Biosciences), and analyzed using FlowJo software (FlowJo, LLC) by 

gating on individual bead populations and calculating the geometric mean of 

fluorescence relative to protein standards.  

To measure bacterial survival upon infection of activated macrophages, 65000 

BMM were first seeded into 96-well flat-bottom plates in BMM-medium without 

antibiotic. The following day cells were treated with 10% S. aureus cell free supernatant 

and incubated for 16 hours to induce macrophage activation. The day after activation, 

overnight cultures of WT and ΔlipA S. aureus were normalized to an OD600 of 0.32-
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0.33 (1x108 CFU/mL) in PBS, added to macrophages at a multiplicity of infection of 1, 

and spun for 7 minutes at 1500 rpm to synchronize the infection. Infections were carried 

out at 37°C, 5% CO2 for 30 minutes, washed 3X with 1X PBS and incubated with 

gentamicin (50 μg/mL) at 37°C, 5% CO2 for an additional 30 minutes. Cells were 

washed 3X with 1X PBS and placed in BMM medium without antibiotic. After an 

additional hour of incubation, saponin (0.1%) was added to the wells and incubated on 

ice for 30 minutes, followed by plating onto BCFA-containing tryptic soy agar plates to 

enumerate bacterial CFU. 

Detection of Lipoyl-Peptide Binding 

A competition enzyme-linked immunosorbent assay (ELISA) plate-based assay 

was used to assess if lipoyl-peptides bound to TLR1/2 heterodimers. A 96-well EIA/RIA 

plate (Corning, cat# 3591) was coated with 50 µL containing 5 µg/mL of recombinant 

human TLR1/Fc chimera (R&D systems) and 4 µg/mL of recombinant mouse TLR2/Fc 

chimera (R&D systems). The ELISA plate was covered in parafilm and stored at 4°C to 

coat the wells overnight. The next day, the ELISA plate was washed three times in 200 

µL of 1X PBS + 0.05% Tween-20. After the final wash, wells were blocked in 

StartingBlock blocking buffer (Thermo Scientific) per manufacturers protocol. After 

blocking, the ELISA plate was washed three times in 200 µL of 1X PBS + 0.05% 

Tween-20. 100 µL of Pam3CSK4-biotin (Tocris Bioscience) was added to the wells in 

the presence of a serially diluted amount of synthetic DKA and DKLA (AnaSpec) in 100 

µL 1X PBS and incubated for 1 hour at 37°C 5% CO2. After incubation, the ELISA plate 

was washed five times in 200 µL of 1X PBS + 0.05% Tween-20 followed by addition of 

HRP Streptavidin (1:5000) (BioLegend) in 100 µL StartingBlock blocking buffer and 
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incubation at room temperature for 1 hour. After incubation, the ELISA plate was 

washed seven-eight times in 200 µL of 1X PBS + 0.05% Tween-20 and 100 µL of 

3,3’,5,5’-tetramethylbenzidine liquid substrate (Sigma) was added to the wells for 30 

minutes at room temperature, followed by addition of 2M sulfuric acid to stop the 

reaction. Color change was quantified by measuring the absorbance of the sample at 

450 nm using an ELx800 microplate reader (BioTek).  

NFkB Activation Assay 

To measure the activation of the transcription factor NFkB, the RAW-Blue 

macrophage cell line harboring an NFkB inducible chromosomally integrated secreted 

embryonic alkaline phosphatase (SEAP) reporter construct (Invivogen) was grown to 

about 50-70% confluency in DMEM (Corning) + 10% heat inactivated FBS in tissue 

culture treated T75 flasks (Corning). Media was removed from the flask and the cells 

were washed with 2mL of 0.05% trypsin + 0.53 mM EDTA (Corning). 2mL of fresh 

0.05% trypsin + 0.53 mM EDTA was added to the RAW cells for 5-10 minutes and cells 

were dissociated from the surface of the flasks by gentle agitation. Dissociated cells 

were then resuspended in DMEM + 10% heat inactivated FBS and centrifuged for 5 

minutes at 1500 rpm. Cells were then counted and seeded into 96-well flat-bottom 

tissue culture treated plates (Corning) at 50,000 cells per well in 90 µL of DMEM + 10% 

heat inactivated FBS supplemented with 100 µg/mL Pen/Strep (Corning) and 50 µg/mL 

gentamicin (Amresco) the day before use. The following day, supernatants isolated from 

9 hour cultures of S. aureus were thawed from storage at -80°C on ice and added to the 

RAW cells following OD normalization between strains to ensure equivalent loading 

followed by incubation at 37°C, 5% CO2 for 24 hours. Treated RAW-Blue cell 
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supernatants were collected and subsequently heated at 68°C for 30 minutes to 

deactivate endogenous phosphatases. 50 µL of the deactivated RAW cell supernatants 

were mixed with an equal volume of 1-Step PNPP (Thermo Scientific) in a 96-well 

polystyrene plate. After 2-3 hours of incubation, color change was quantified by 

measuring the absorbance of the sample at 450 nm using an ELx800 microplate reader 

(BioTek).  

Murine Infection Models 

Single colonies of freshly struck out bacteria were inoculated in TSB with shaking 

at 37°C and grown overnight. The overnight culture was subcultured 1:100 in 15mL 

fresh TSB and incubated at 200 rpm at 37°C for 3 hours. Cultures were then centrifuged 

for 5 minutes at 4200 rpm at 4°C, and the resulting cell pellets were washed 3 times in 

1X sterile PBS. Bacterial suspensions were then normalized to an OD600 of 1.1-1.2 (~1 

x 109 CFU/mL) for intraperitoneal infection or to an OD600 of 0.32-0.33 (~1 x 108 

CFU/mL) for intravenous infection. Five to eight week old female Swiss Webster mice 

(Envigo) were then injected intraperitoneally with 100 μL of PBS containing 1 x 108 CFU 

of S. aureus. For intravenous infection, five to eight week old female Swiss Webster 

mice were anesthetized with 2,2,2-tribromoethanol (Avertin) (250 mg/kg) (Sigma), via 

intraperitoneal injection followed by inoculation with 100 μL PBS containing 1 x 107 CFU 

of S. aureus directly into the bloodstream via retro-orbital sinus. After infection, the 

remaining bacterial suspensions were plated onto TSA plates to ensure accuracy of 

infection inoculums. Mice were monitored daily and after 16 or 72 hours for IP infection 

and 96 hours for IV infection, serum was collected via the facial vein and mice were 

immediately euthanized by CO2 narcosis followed by aseptic isolation of kidneys and 
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lavage samples. Lavage samples were isolated by flushing the peritoneal cavity with 7 

mL of 1x sterile PBS. Kidneys were homogenized, and lavage fluid and kidney 

homogenates were serially diluted onto TSA plates followed by incubation at 37°C 

overnight to enumerate CFU.  

To deplete mice of macrophages, dichloromethane bisphosphonate (clodronate) 

loaded into liposomes (Liposoma) was administered [1mL/100g (~150 μL/mouse)] by 

i.p. injection. After three days, bacteria were cultured as described above and 

normalized to an OD600 of 0.32-0.33 (~1 x 108 CFU/mL). Mice were injected i.p. with 

100 μL of PBS containing 1 x 107 CFU of S. aureus. Mice were monitored until 16 hours 

or 72 hours post-infection followed by enumeration of bacterial loads from the lavage 

and kidneys as described above.  

For S. aureus re-challenge models, six to eight week old male and female Swiss 

Webster mice were immunized by i.p. injection with 100 μL of PBS containing 1 x 108 

CFU of WT or DlipA S. aureus or sterile PBS. 7- or 14-days after immunization, mice 

were anesthetized with 2,2,2-tribromoethanol (Avertin) (250 mg/kg) (Sigma), via i.p. 

injection followed by inoculation with 100 μL PBS containing 1 x 107 CFU of S. aureus 

directly into the bloodstream via retro-orbital sinus. Mice were monitored daily and then 

euthanized either 24, 72, 96, or 120 hours post infection. Kidneys or hearts were 

isolated and bacterial loads in the kidneys or the hearts was quantified as described 

above.  

Flow Cytometry of Immune Cells 

Assessment of immune cell recruitment to the peritoneal cavity was determined 

by performing a lavage of the peritoneal cavity of euthanized mice 16- or 72-hours post-
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infection with 7 mL of 1X sterile PBS in a 10 mL sterile syringe with an 18-gauge 

needle. Isolated cells were pelleted by centrifugation at 1500 rpm at 4°C for 5 minutes, 

supernatant was decanted, and red blood cells were lysed with ACK lysing buffer 

(Lonza) by resuspending the pellet in 2 mL of lysing buffer and incubating for 2 minutes 

at room temperature. Cell lysis was stopped by adding 8 mL of 1X sterile PBS, mixing 

gently, and pelleting by centrifugation at 1500 rpm at 4°C for 5 minutes. Cells were then 

suspended in 1X sterile PBS and kept on ice while they were counted. 1-2 million cells 

were transferred to a 96-well V-bottom plate (Corning) for cell surface staining. Prior to 

staining, immune cells were incubated with 50 μL of FACS Wash Buffer containing 0.2 

μg/mL of anti-CD16/CD32 (93) (BioLegend) for 30 minutes on ice to block Fc receptors 

followed by washing with FACS Wash Buffer and surface staining with the following 

antibodies from BioLegend: anti-CD11b-Pacific Blue (M1/70), anti-Ly6G-PE (1A8), anti-

DX5-APC-Cy7 (DX5), anti-CD206-FITC (C068C2), anti-CD11c-Alexa700 (N418), anti-I-

A/I-E-Alexa647 (M5/114.15.2), anti-F4/80-PE-Cy7 (BM8), anti-CCR5-biotin (HM-CCR5) 

for 30 minutes on ice and washed twice with FACS Wash Buffer. To stain for CCR5, 

streptavidin conjugated PerCP-Cy5.5 was added on ice for 30 minutes. Samples were 

then washed twice and fixed using FACS Fixing Buffer (1X PBS + 2% heat inactivated 

FBS + 2% Paraformaldehyde + 0.05% (w/v) sodium azide). Data was collected on a 

LSRFortessa (BD Biosciences) and subsequently analyzed using FlowJo software 

(FlowJo, LLC).  

To assess the immune cells recruited to the kidneys in intravenously infected 

mice after 96 hours, immune cell suspensions were purified using a 40/80 Percoll (GE 

Healthcare) density gradient centrifugation. Kidneys were isolated and homogenized 
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using glass mortar and pestle homogenizers (Kontes Glass Co) in 5 mL of RPMI 

(Corning). Kidney homogenate was then transferred to a 50 mL conical tube and 

centrifuged at 1500 rpm, 4°C for 5 minutes. Supernatant was decanted and red blood 

cells were lysed with ACK lysing buffer (Lonza) by resuspending the pellet in 2 mL of 

lysis buffer and incubating for 2 minutes at room temperature. Cell lysis was stopped by 

adding 8 mL of RPMI (Corning), mixing gently, and pelleting by centrifugation at 1500 

rpm, 4°C for 5 minutes. Cells were resuspended in 10 mL RPMI (Corning) and passed 

through a 70 μM nylon mesh cell strainer (Corning). A 100% Percoll solution was made 

by mixing 9 parts Percoll with 1 part 10X PBS (Corning), and then diluted to 80% or 

40% in RPMI + 10% heat inactivated FBS. Cells were then centrifuged at 1500 rpm at 

4°C for 5 minutes, resuspended in 5 mL of 40% RPMI Percoll solution, and overlaid 

carefully on top of 5 mL of the 80% RPMI Percoll solution. Percoll gradients were rested 

at room temperature for 10 minutes and then centrifuged for 20 minutes 2500 rpm at 

room temperature with no brake. The top layer of parenchymal cells was aspirated off, 

and the immune cells present at the 40%/80% Percoll interface were collected. The 

immune cells were then washed twice in RPMI + 10% heat inactivated FBS and stained 

for flow cytometry as described above. 

Measurement of Macrophage Surface Marker Expression 

To assess the levels of various surface markers on BMMs, 300000 BMMs were 

seeded into 24-well non-tissue culture treated plate (Corning) in 300 µL BMM medium 

supplemented with 100 µg/mL Pen/Strep and 50 µg/mL gentamicin (Amresco) the day 

before use. The following day, supernatants isolated from 9 hour cultures of S. aureus 

were thawed from storage at -80°C on ice and 30 µL supernatant was added to BMMs 
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following OD normalization between strains to ensure administration of equivalent 

content followed by incubation at 37°C, 5% CO2 for 1, 2, 4, and 24 hours. In some 

instances 3mM α-lipoic acid (Sigma) was added to BMM for the same incubation times. 

Media was then removed from the BMMs and washed three times in 1 mL of sterile 1X 

PBS. After the last wash, 250 µL of sterile 1X PBS was added to the BMMs and 

incubated at 4°C for 30 minutes. Following incubation, cells were removed by manual 

pipetting and transferred to a 96-well V-bottom plate (Corning) for cell surface staining. 

Prior to staining, cells were incubated with 50 μL of sterile 1X PBS containing 0.2 μg/mL 

of anti-CD16/CD32 (93) (BioLegend) for 30 minutes on ice to block Fc receptors 

followed by washing with sterile 1X PBS and surface staining with the following 

antibodies from BioLegend: anti-CD11b-APC-Cy7 (M1/70), anti-F4/80-PE-Cy7 (BM8), 

anti-CD80- PerCP-Cy5.5 (16-10A1), anti-CD86-APC (GL-1), anti-TLR2-FITC (T2.5), 

and anti-TLR1-PE (TR23) (eBioscience). A fixable viability dye, eFluor 450, 

(eBioscience) was also included in the staining panel. Samples were incubated on ice 

for 30 minutes, washed twice with sterile 1X PBS, and fixed with FACS Fixing Buffer. 

Data was collected on a LSRFortessa (BD Biosciences) and subsequently analyzed 

using FlowJo software (FlowJo, LLC).  

S. aureus Survival in F4/80+ Sorted Cells 

Five to eight week old female Swiss Webster mice were infected via the 

peritoneal route as described previously with WT and ΔlipA S. aureus or sterile 1X PBS. 

72 hours post infection mice were euthanized and peritoneal cells were isolated by 

lavaging the peritoneal cavity with 7 mL of 1X sterile PBS in a 10 mL sterile syringe with 

an 18-gauge needle. Cells were then pelleted by centrifugation at 1500 rpm at 4°C for 5 
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minutes followed by decanting the supernatant and resuspending in 5 mL complete 

RPMI cell culture medium (Corning) (RPMI + 10% heat inactivated FBS) supplemented 

with 100 µg/mL Pen/Strep and 50 µg/mL gentamicin and incubated on ice for 30 

minutes to 1 hour. After incubation, cells were washed 3X in complete RPMI medium 

without antibiotics and incubated for 30 minutes in the antibiotic free medium. Cells 

were then washed once and resuspended in FACS wash buffer without sodium azide 

for magnetic bead sorting. F4/80+ cells were sorted from total peritoneal cells using BD 

Imag Cell Separation (BD Biosciences) after incubation with anti-CD16/CD32 (93) 

(BioLegend) and biotinylated anti-F4/80 antibody (BM8) (BioLegend). In brief, 

streptavidin-conjugated magnetic beads were added to cells and allowed to bind to a 

magnet for 8 minutes followed by removal of the unbound fraction. Bound beads were 

then resuspended in FACS wash buffer without sodium azide and allowed to re-bind to 

the magnet for 6 minutes. This washing step was repeated once more to ensure purity 

of the bound fraction. Sorted cells were stored in FACS wash buffer without sodium 

azide overnight at 4°C. The following day an overnight culture of WT LAC grown in TSB 

was washed 3 times in 5 mL sterile 1X PBS, normalized to an OD600 of ~0.32 

(~1.0x108 CFU/mL), and opsonized by incubation with 10% mouse serum for 30 

minutes at 37°C followed by washing 3 times in 1 mL sterile 1X PBS. The sorted F4/80+ 

cells were pelleted by centrifugation at 1500 rpm at 4°C for 5 minutes, resuspended in 

fresh complete RPMI medium, and counted. The opsonized bacteria were then used to 

infect sorted F4/80+ cells at a multiplicity of infection 1 or 0.1 for 30 minutes at 37°C in 

sterile 1.5 mL microcentrifuge tubes placed on a rotisserie. Following the 30-minute 

infection, samples were centrifuged at 1500 rpm at room temperature in a benchtop 
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centrifuge (Eppendorf) for 5 minutes and washed 3 times in sterile 1X PBS. Samples 

were then resuspended in 1 mL complete RPMI medium and placed at 37°C on a 

rotisserie. In certain experiments ROS production was blocked by addition of 2 µM 

diphenyleneiodonium (DPI; Sigma), mROS production was blocked by addition of 10 

µM Necrox5 (Cayman Chemical), iNOS was blocked by the addition of 500 µM N6-(1-

Iminoethyl)-lysine hydrochloride (L-NIL; Tocris), or vehicle controls were added to the 

culture medium. S. aureus CFU were enumerated hourly by removing 100 μl aliquots, 

lysing with 0.1% saponin (Sigma) for 20 minutes on ice, followed by serial diluting and 

plating the dilutions on TSA plates supplemented with 50 µg/mL of Kan and Neo.  

For experiments in which NADPH oxidase activity was blocked the following 

modifications were performed. Prior to infection, F4/80+ cells were treated with 50 µM 

gp91ds-tat (Anaspec) or vehicle control for 1 hour in RPMI serum free medium to allow 

for entry of the inhibitor into cells. Treated cells were then centrifuged at 1500 rpm at 

room temperature in a benchtop centrifuge for 5 minutes and washed 3 times in sterile 

1X PBS. Washed cells were resuspended in complete RPMI medium containing 

opsonized bacteria at a MOI of 1 and allowed to infect for 30 minutes at 37°C under 

constant rotation. The remainder of the experiment was conducted as described above. 

Assessment of ROS Production 

Three days after i.p. infection with WT, DlipA, or DlipA + lipA strains, peritoneal 

cells were isolated by lavage of the peritoneal cavity followed by magnetic sorting of 

F4/80+ macrophages as detailed above. To measure changes in the oxidative state of 

isolated peritoneal F4/80+ macrophages (ROS production), 5x105 F4/80+ cells were 

infected with WT S. aureus at a MOI of 0.1 for 30 minutes under constant rotation at 
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37°C. Cells were washed free of bacteria followed by incubation in medium containing 

1.25 µM CellROX deep red (Thermo Fisher Scientific) for 1 hour under constant rotation 

at 37°C. Cells were then washed 3X with 200 µL of sterile 1X PBS. Fluorescence was 

measured using a LSRFortessa (BD Biosciences) and data were analyzed using 

FlowJo software (FlowJo, LLC). Fold changes in the geometric means of CellROX 

fluorescence were assessed in infected cells and compared to uninfected F4/80+ cells.  

Griess Test for NO• Production 

Three days after i.p. infection with WT, DlipA, or DlipA + lipA strains, peritoneal 

cells were isolated by lavage of the peritoneal cavity followed by magnetic sorting of 

F4/80+ macrophages as described above. Immediately after sorting, isolated F4/80+ 

macrophages were counted and 100,000 cells were plated in a 96 well plate (Corning) 

in 100 µL complete RPMI medium. Heat-killed WT S. aureus was prepared by 

incubating a PBS-washed overnight culture for 1hr at 60°C. Sterility of the heat-killed 

bacteria was confirmed by enumeration of CFU on a TSA plate. Sorted F4/80+ 

macrophages were then stimulated with the heat-killed bacteria at a MOI of 10 or left 

unstimulated. After overnight incubation at 37°C in 5% CO2, 50 µL of supernatant was 

removed and a Griess test was performed to measure nitrite, which is a breakdown 

product of nitric oxide. 50 µL of 1% sulfanilic acid (Sigma) in 5% phosphoric acid 

(Fischer Scientific) was added to the supernatant samples followed by incubation for 5 

minutes followed by addition of 50 µL of 0.1% N-alpha-naphthyl-ehtylenediamine 

(Sigma) in sterile water and incubation for an additional 5 minutes. To quantify the 

amount of nitrite present in the cell culture medium 100mM sodium nitrate (Sigma) was 

diluted 1:1 and used to make a standard curve. After incubation, sample absorbance 
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was measured at OD550 using an ELx800 microplate reader (BioTek). Fold increase in 

nitrite (nitric oxide) levels of F4/80+ macrophages was determined by comparing nitrite 

production in heat-killed S. aureus stimulated cells compared to non-stimulated cells 

isolated from the same original infection condition (WT, DlipA, or DlipA + lipA).  

Quantification and Statistical Analysis 

All experiments were repeated at least three independent times. Statistical 

analysis was conducted using Prism software (GraphPad) and the specific tests used 

are indicated in the figure legends. Statistical significance was defined as P<0.05. The 

number of animals per treatment group is indicated as “n” in the figure legends. For any 

data without the use of animal models, we assumed a Gaussian distribution and used 1-

way ANOVA with Bonferonni-Sidak post-test for pair-wise comparison.  For any data 

with the use of animal models, we assumed a non-Gaussian distribution and used non-

parametric 1-way ANOVA (Kruskal-Wallis Test) with Dunn’s post-test unless otherwise 

noted. For S. aureus ex vivo survival/growth assays with F4/80+ sorted cells a 2-way 

ANOVA with Tukey’s multiple comparison test was used.
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CHAPTER THREE

EXPERIMENTAL RESULTS 

Portions of this Chapter are Reprinted with Modifications from Grayczyk et al. 2017 
(387)  
 

Introduction 

The innate immune system is a fast-acting initial line of defense to prevent 

infection. In order to withstand innate defenses, bacterial pathogens such as the Gram-

positive bacterium S. aureus, produce a wide array of virulence factors that inhibit 

innate immune cell recruitment and antimicrobial activity, or directly target and kill 

phagocytic leukocytes thereby facilitating pathogenesis. As previously introduced, a 

large amount of work has been done to understand how S. aureus evades neutrophil 

responses. Comparatively less is known about avoidance of macrophage responses.  

Macrophages are professional phagocytic leukocytes that are central to antimicrobial 

innate defenses. Besides the pathogen killing capacity of macrophages, they also 

produce and secrete a variety of cytokines and chemokines that help to regulate both 

the innate and adaptive immune system. Though less efficient than dendritic cells, 

activated macrophages are capable of presenting antigens to engage with T cells and 

promote their activation. Given their potent antimicrobial activities and critical immune 

signaling functions, macrophages are a significant mediator of the immune response to 

infection that S. aureus must overcome in order to cause disease. A growing body of 

work has begun to uncover mechanisms used by S. aureus to evade macrophages.
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Nevertheless, the repertoire of extracellular S. aureus virulence factors that disrupt 

macrophage functions remains understudied. 

Dr. Francis Alonzo conducted a forward genetic screen to identify S. aureus 

secreted factors that perturb macrophage inflammatory responses. To determine if S. 

aureus releases extracellular factors that perturb macrophage activation, Dr. Alonzo 

devised a forward genetic screen using cell free supernatants derived from 1920 

annotated transposon mutants of the epidemic S. aureus clone, USA300 (JE2) (386). 

Supernatants were added to murine bone marrow derived macrophages (BMM) 

followed by measuring pro-inflammatory cytokine production using multiplexed cytokine 

bead arrays as outlined in Figure 3. 21 mutants were identified that enhanced or 

reduced macrophage cytokine secretion, representing potential gene products that 

interact with macrophages (Table 5). In the screen, already known mechanisms that 

altered macrophage responses were identified, such as an insertion in the gene that 

encodes the lipoprotein signal peptidase (lspA), NE1757. Deletion of lspA led to 

reduced macrophage activation consistent with its role in processing lipoproteins – the 

bacterial PAMP recognized by TLR1/2 and TLR2/6 heterodimers – and therefore served 

as an internal validation of the screen (Figure 4) (388-390). 

 

Figure 3. Transposon Mutant Screen. Design of screen used to identify macrophage 
immunomodulatory factors. Transposon mutants were grown to an OD600 of ~1.2, 
followed by addition of cell free supernatants to BMM for 24 hours. BMM supernatants 
were collected and assessed for cytokine and chemokine secretion using cytometric bead 
array (CBA). 
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Table 5.  Identification of S. aureus Transposon Mutants that Enhance/Reduce 
Macrophage Activation 
 

*ND – No difference from WT; ++, Increased compared to WT; --, decreased compared to WT; ++/ND, variable response 

  
 
 
 
 
 
 
 
 
 

Mutant # Accession # Gene Name Gene description IL1β IL6 KC MCP1 CCL3 CCL4 TNF 
NE95 SAUSA300_1989 agrB accessory gene 

regulator protein B 
++ -- -- -- -- -- ND 

NE1262 SAUSA300_1984 Hypothetical Hypothetical 
protein 

++ -- -- -- -- -- ND 

NE1908 SAUSA300_1911 -- ABC Transporter 
ATP-binding 
protein 

++ -- -- -- -- -- ND 

NE1714 SAUSA300_1590 -- GTP 
pyrophospokinase 

ND -- -- -- -- -- -- 

NE1757 SAUSA300_1089 lspA lipoprotein signal 
peptidase 

ND -- -- -- -- -- -- 

NE1684 SAUSA300_1308 arlR response regulator ++ ++ ++ ++ ND ++ ++ 
NE592 SAUSA300_2060 atpA ATP synthase F1, α 

subunit 
++ ++ ++ ++ ND ++ ++ 

NE481 SAUSA300_0645 -- DNA binding 
response regulator 

ND ++ ++ ++ ++ ++ ++ 

NE264 SAUSA300_0829 lipA lipoic acid 
synthetase 

ND ++ ++/ND ++/ND ++ ++ ++ 

NE1296 SAUSA300_0690 saeS sensor histidine 
kinase 

ND ++ ++ ++ ++ ++ ++ 

NE1622 SAUSA300_0691 saeR response regulator ND ++ ++ ++ ++ ++ ++ 
NE1775 SAUSA300_0320 geh triacylglycerol 

lipase 
ND ++ ++ ++ ++ ++ ++ 

NE1555 SAUSA300_1148 codY transcriptional 
repressor 

ND ND ND ND ++ ++ ND 

NE1607 SAUSA300_2025 rsbU sigma B regulation 
protein 

ND ND ND ND ++ ++ ND 

NE1833 SAUSA300_2026 -- PemK family 
protein 

ND ND ND ND ++ ++ ND 

NE1872 SAUSA300_2024 rsbV anti-sigma-B factor, 
antagonist 

ND ND ND ND ++ ++ ND 

NE229 SAUSA300_1119 Hypothetical Hypothetical 
protein 

++ ++ ND ++ ND ++ ++ 

NE292 SAUSA300_0539 ilvE branched chain 
amino acid amino-
transferase 

ND ND ND ++ ++ ++ ND 

NE912 SAUSA300_0752 clpP Clp protease ND ND ND ++ ND ++ ND 
NE1193 SAUSA300_0605 sarA accessory regulator 

A 
++ ++ ++ ++ ++ ++ ++ 

NE1909 SAUSA300_1720 Hypothetical Hypothetical 
protein 

ND ++ ND ND ND ++ ++ 
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Figure 4. Transposon Mutants Induce Higher or Lower BMM Cytokine and  
Chemokine Production. Relative abundance of IL-6, TNF, CCL3, and CCL4 produced 
by macrophages after addition of cell free supernatants from JE2 (WT), NE1757 
(lspA::erm), NE264 (lipA::erm).   

 

Of the other mutants identified, Dr. Alonzo found the transposon mutant NE264 

had a marked induction of IL-6, TNF, CCL3, and CCL4 relative to supernatant derived 

from the JE2 WT strain (Figure 4). Due to this increased macrophage response to the 

NE264 transposon mutant, this mutant was the selected for further assessment. NE264 

contains an insertion in the gene that encodes the lipoic acid synthetase, LipA, an 

enzyme required for synthesis of lipoic acid (361, 373). 

To confirm that disruption of lipA led to heightened macrophage activation, we 

used an in-frame deletion mutant (∆lipA) and complementation strain that harbors a 

chromosomally integrated plasmid with lipA under the control of its predicted native 

promoter (∆lipA+lipA). We assessed the growth dynamics of a ∆lipA mutant and found 

that a ∆lipA mutant grew identically to WT in tryptic soy broth (TSB), but not in Roswell 

Park Memorial Institute (RPMI) medium lacking free lipoic acid (Figure 5A and 5B). 

When free lipoic acid was supplemented into RPMI, a ∆lipA mutant grew identically to 

the WT strain bypassing the need for lipoic acid synthesis, as lipoic acid can be 



 

       

92 
acquired through the salvage pathway (Figure 2 and 5B) (373). The growth defect of a 

∆lipA mutant was rescued in RPMI bypass medium containing branched chain 

carboxylic acids and sodium acetate (RPMI + BCFA) (Figure 5C). The complementation 

strain, ∆lipA+lipA, fully complemented the growth defect of a ∆lipA mutant and mimicked 

WT growth (Figure 5A-C). To test if cell free supernatant from the ∆lipA mutant leads to 

hyper-activation of BMMs like the transposon insertion mutant, we added ∆lipA cell free 

supernatant derived from cultures grown in RPMI + BCFA medium to BMMs. The 

supernatant enhanced the secretion of the pro-inflammatory cytokines and chemokines 

IL-6, TNF, CCL3, and CCL4 (Figure 6), verifying the results from the screen. 

Furthermore, the enhanced activation of BMMs by ∆lipA mutant supernatant was 

complemented using the ∆lipA+lipA strain. Together, these data imply that LipA is 

required for synthesis of lipoic acid and suppresses BMM activation. 

 

 
Figure 5. Growth Dynamics of a ΔlipA Mutant in Various Media. (A-C) Growth 
curves of WT, ΔlipA, or ΔlipA+lipA in TSB, RPMI medium with and without 25 nM lipoic 
acid (LA), or RPMI medium supplemented with branched chain fatty acid precursors 
and sodium acetate (RPMI+BCFA), which bypasses the requirement for lipoic acid. 

A.
. 

B. C. 
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Figure 6. Lipoic Acid Synthesis is Required for Suppression of BMM Activation. 
IL-6, TNF, CCL3, and CCL4 production (pg/mL) by BMMs after addition of supernatant 
from WT, ΔlipA, or ΔlipA+lipA grown in RPMI+BCFA. Data shown are from one of at 
least three experiments conducted in triplicate. Means ± SD are shown (n = 3). *, 
P<0.05; **, P<0.01 by 1-way ANOVA with Bonferonni-Sidak post-test.  
 

The purpose of this thesis is to characterize and identify the mechanism behind 

the hyper-inflammatory macrophage response elicited by a ∆lipA mutant. In addition, we 

sought to elucidate if this modulation of macrophage immune responses imparted by 

LipA activity influences the pathogenesis of S. aureus using murine infection models. In 

summary, this dissertation reports on a novel innate immune evasion mechanism of S. 

aureus conferred through the function of the lipoic acid synthetase and adds to the 

growing body of work highlighting the crucial roles for bacterial metabolism in evasion of 

host immunity.  

LipA Restriction of Innate Immune Cell Activation Occurs through TLR2 

Immune cells sense and respond to S. aureus through TLR2-based recognition 

of lipoproteins and subsequent signaling through the adaptor protein MyD88 (391). To 

determine if lipA-mediated immune suppression occurs via a TLR2-dependent pathway, 

we evaluated activation of WT, TLR2-/-, TLR4-/- or MyD88-/- BMMs treated with 
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supernatant from WT, ΔlipA, or ΔlipA+lipA. Use of TLR2-/- and MyD88-/- BMMs 

abrogated the enhanced secretion of IL-6, TNF, CCL3, and CCL4 elicited by ΔlipA 

mutant supernatant (Figure 7). Signaling through TLR2 leads to NFκB activation and 

induction of pro-inflammatory cytokine and chemokine gene expression. We tested if 

macrophages treated with ΔlipA mutant supernatant have higher NFκB activation. The 

increased production of IL-6, TNF, CCL3, and CCL4 elicited by ΔlipA mutant 

supernatant correlated with increased NFκB dependent gene expression (Figure 8). 

These data suggest that LipA limits macrophage activation through a TLR2/MyD88 

dependent pathway.  

Neutrophils, like macrophages, express PRRs such as TLR2. To assess if other 

TLR2 expressing cells have enhanced activation in response to ΔlipA mutant 

supernatant, we tested the activation of neutrophils in response to ΔlipA mutant 

supernatant. We found that the enhanced activation caused by ΔlipA mutant 

supernatant is not limited to macrophages as murine neutrophils purified from the bone 

marrow also exhibited enhanced inflammatory chemokine secretion (Figure 9). These 

data indicate that other cells expressing TLR2-expressing cells respond better to 

supernatant derived from a ΔlipA mutant.  
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Figure 7. TLR2 and MyD88 are Required for ΔlipA Hyper-Activation of BMMs. 
Production of IL-6, TNF, CCL3, and CCL4 (pg/mL) after addition of cell-free supernatant 
from WT, ΔlipA, or ΔlipA+lipA to WT, TLR2-/-, TLR4-/-, or MyD88-/- BMMs. Data shown 
are from one of at least three experiments conducted in triplicate. (-), media alone. 
Means ± SD are shown (n=3). NS, not significant; *, P<0.05; **, P<0.01; ***, P<0.001, 
by 1-way ANOVA with Bonferonni-Sidak post-test. 
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Figure 8. NFkB Activation is Induced by ΔlipA Mutant Supernatant. NFkB activation 
after treatment of RAW 264.7 cells, containing an NFkB-inducible secreted embryonic 
alkaline phosphatase reporter, with cell-free supernatant from WT, ΔlipA, or ΔlipA+lipA. 
Relative reporter activity (Absorbance 450 nm) from one of two experiments conducted 
in triplicate is shown. Means ± SD are shown. **, P<0.01; ****, P<0.0001, by 1-way 
ANOVA with Bonferonni-Sidak post-test. 
 

 
Figure 9. Neutrophils Secrete Greater Amounts of Cytokines in Response to  
ΔlipA Mutant Supernatant. KC and TNF production (pg/mL) of primary murine 
neutrophils after 24 hour stimulation with cell-free supernatant from the indicated 
strains. (-), media alone. Means ± SD are shown (n=3). **, P<0.01; ****, P<0.0001, by 1-
way ANOVA with Bonferonni-Sidak post-test. 
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S. aureus Release of Lipoyl-E2-PDH Coincides with Macrophage Suppression 

As cell free supernatants are used in all immune cell activation studies, we 

hypothesized that the secretome of S. aureus could be disrupted in a ΔlipA mutant 

leading to enhanced TLR2-dependent macrophage activation. However, we found that 

a ΔlipA mutant does not exhibit major alterations in its exoprotein profile when grown in 

either TSB or RPMI + BCFA compared to WT (Figure 10). Thus, the heightened 

activation of macrophages is not due to the hyper-secretion of TLR2 activating proteins 

as detected by Coomassie staining.  

There are four cytosolic lipoylated proteins (E2-PDH, E2-OGDH, E2-BCODH, 

and GcvH) produced by S. aureus that rely on the lipoic acid synthase activity of LipA 

for lipoylation when there is no available exogenous lipoic acid (Figure 11A). We 

wondered if one of these four lipoylated proteins in the cytosol of WT S. aureus may be 

released into the supernatant. Indeed, we found that of the four cytosolic lipoylated 

proteins produced by S. aureus, one 72 kilodalton protein is released into the 

supernatant and contains a lipoyl moiety, but is absent in a ΔlipA mutant. This protein is 

similar in size to E2-PDH and immunoblot of exoproteins from a ΔE2-pdh mutant 

indicated that this released lipoyl-protein is E2-PDH (Figure 11B). In summary, these 

data suggest that WT S. aureus releases lipoyl-E2-PDH.  
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Figure 10. Exoprotein Profiles of WT, ΔlipA, and ΔlipA + lipA Strains. Coomassie 
stained SDS-PAGE gels of TCA precipitated exoproteins after 9 hours growth of the 
indicated strains in TSB or RPMI+BCFA. 

 

 
Figure 11. WT S. aureus Releases Lipoyl-E2-PDH into the Supernatant. 
Coomassie-blue stained SDS-PAGE gels (CB) or α-lipoic acid immunoblots (IB) of cell 
lysate (A) or TCA precipitated supernatant (B) proteins isolated after growing WT, ΔlipA, 
ΔlipA+lipA, and ΔE2-pdh in RPMI+BCFA for 9 hours. Other bands in supernatant IB 
appear to be non-specific.  

A. 

B. 
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Lipoic acid acquisition by S. aureus occurs through either synthesis or salvage 

((373) and Figure 2). LipA, LipM, and LipL are required for synthesis, while LplA1 and 

LplA2 are involved in salvage. LipA and LipM contribute to the direct synthesis of the 

lipoyl moiety and LipL is required for its transfer to E2-PDH and E2-BCODH. We 

hypothesized that deletion of lipM or lipL would phenocopy the inflammatory response 

elicited by BMMs treated with ΔlipA supernatant. We found that all mutants lacking 

lipoyl-E2-PDH (ΔlipA, ΔlipM, and ΔlipL), but not mutants of the salvage pathway (ΔlplA1 

and ΔlplA2) elicited higher activation of BMMs (Figure 12A and B). A ΔlipL mutant 

enhanced macrophage activation even with lipoyl-E2-OGDH and lipoyl-GcvH present in 

the cytosol (Figure 12B). These data indicate that de novo lipoic acid synthesis is 

required to suppress BMM activation and specifically links the presence of lipoyl-E2-

PDH in the supernatant to suppression of macrophage activation.  
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Figure 12. Lipoic Acid Synthesis and Release of Lipoyl-E2-PDH Correlate with 
Dampening of BMM Activation. (A) IL-6, TNF, CCL3, and CCL4 production (pg/mL) 
by BMMs after addition of supernatant from the indicated strains. Data shown are from 
one of at least three experiments conducted in triplicate. Means ± SD are shown (n = 3). 
**, P<0.01; ***, P<0.001; ****, P<0.0001 by 1-way ANOVA with Bonferonni-Sidak post-
test. (B) Whole cell lysates or TCA precipitated exoproteins from the indicated S. aureus 
strains collected after growth in RPMI+BCFA followed by immunoblotting for lipoic acid-
containing proteins. Other bands in supernatant IB appear to be non-specific. 

 

 

 

A. 

B. 
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Lipoyl-E2-PDH is Released During S. aureus Growth 

The detection of cytosolic proteins in the extracellular environment, such as E2-

PDH, has been observed for numerous bacteria even though they do not contain a 

secretion signal (357, 359, 392, 393).To test if the release of lipoyl-E2-PDH is an active 

process or due to cell lysis during bacterial growth, we assessed lipoyl-E2-PDH release 

in the supernatant over various timepoints. We were able to detect E2-PDH in 

supernatant as early as 5 hours and by 9 or 24 hours we saw the highest levels of 

released E2-PDH (Figure 13A). Since the release of lipoyl-E2-PDH occurs earlier than 9 

hours during growth, we surmised that ΔlipA mutant supernatant harvested prior to 9 

hours, which lacks lipoyl-E2-PDH, could enhance the activation of macrophages. 

Macrophages treated with supernatants from ΔlipA mutant supernatant after 3, 5, and 9 

hours of culture in RPMI + BCFA enhanced macrophage activation (Figure 13B). 

Comparisons to purified recombinant lipoyl-E2-PDH suggest that S. aureus supernatant 

contains ~25-50 nM released lipoyl-E2-PDH (Figure 14). Thus, S. aureus releases 

nanomolar amounts of lipoyl-E2-PDH throughout its growth cycle. 
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Figure 13. Release of Lipoyl-E2-PDH and Suppression of BMM Activation Occurs 
During Bacterial Growth. (A) Exoproteins were TCA precipitated from cell free 
supernatants of WT or ΔlipA S. aureus after 3, 5, 9, and 24 hours of growth in 
RPMI+BCFA followed by immunoblotting for lipoic acid-containing proteins. (B) CCL3 
and CCL4 production (pg/mL) by BMMs after addition of T3h, T5h, or T9h supernatant 
from the indicated strains. Data shown are from one out of at least three experiments 
conducted in triplicate. (-), media alone. Means ± SD are shown (n=3). *, P<0.05; ***, 
P<0.001; ****, P<0.0001 by 1-way ANOVA with Bonferonni-Sidak post-test. 
 

 
Figure 14. WT S. aureus Releases Nanomolar Amounts of Lipoyl-E2-PDH into  
the Supernatant. Immunoblot to quantify lipoyl-E2-PDH in S. aureus supernatant. To 
quantify the amount of lipoyl-E2-PDH released by S. aureus a titration of purified lipoyl-
E2-PDH was compared to released lipoyl-E2-PDH in the supernatant. 

B. 

A. 
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E2-PDH and GcvH are Detectable on the Bacterial Surface 

Extracellular detection of cytoplasmic proteins, though unusual, is not 

uncommon. A majority of these extracellular proteins are found to be expressed on the 

surface of bacteria. For example, E2-PDH has been detected on the surface of L. 

monocytogenes and Mycoplasma pneumonia (359, 391, 392).Therefore, we assessed if 

lipoyl-E2-PDH is also present on the surface of S. aureus. Visualization of surface 

extracted proteins show that E2-PDH and perhaps GcvH are present on the surface of 

WT S. aureus and its ΔlipA mutant (Figure 15). Furthermore, by immunoblot, we could 

see lipoyl-E2-PDH and lipoyl-GcvH in WT S. aureus, but not in a ΔlipA mutant (Figure 

15). This is surprising, as we did not see lipoyl-GcvH released into the supernatant of 

WT S. aureus by our detection methods. No lipoyl-E2-PDH was present on the surface 

of a ΔgcvH mutant, as GcvH is necessary to shuttle lipoic acid to E2-PDH (373, 374). 

Additionally, surface expression of E2-PDH and GcvH were not dependent on the lipoyl 

moiety, as we still saw both E2-PDH and GcvH on the surface of a ΔlipA mutant (Figure 

15). L. monocytogenes surface expression of E2-PDH is partially dependent on the 

secondary secretion system, SecA2 (359), whereas the autolysin Atl is required for the 

release of some cytosolic proteins in S. aureus (357). Using transposon mutants of atl 

and secA2, we found that SecA2 likely contributes to, while Atl may be necessary for 

the release of lipoyl-E2-PDH (Figure 16). All together, these data suggest lipoyl-E2-PDH 

is on the surface of S. aureus and potentially requires Atl-dependent lysis for release. 
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Figure 15. Surface Display of E2-PDH and GcvH. Coomassie-blue stained SDS-
PAGE gels (CB) or α-lipoic acid immunoblots (IB) of surface proteins isolated after 
growing WT, ΔlipA, ΔlipA+lipA, ΔgcvH, and ΔE2-pdh in RPMI+BCFA. Boxed regions in 
CB represents E2-PDH and GcvH location. Dominant band in IB appears to be non-
specific.  
 

 

 
Figure 16. Release of Lipoyl-E2-PDH Likely Requires Atl and Potentially 
SecA2. Whole cell lysates or TCA precipitated exoproteins from the indicated S. aureus 
strains collected after growth in RPMI+BCFA followed by immunoblotting (IB) for lipoic 
acid-containing proteins. Other bands in supernatant IB appear to be non-specific. 
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Free Lipoic Acid Restricts the Activation of Macrophages 

Free lipoic acid suppresses the respiratory burst of innate cells when used at 

high concentrations (394, 395). Therefore, we hypothesized that release of lipoyl-E2-

PDH by S. aureus might confer immunosuppressive properties. We first determined if 

free lipoic acid suppresses BMM activation by S. aureus secreted factors. 

Supplementation of ΔlipA mutant supernatant with 3 mM free lipoic acid reduced BMM 

secretion of IL-6, TNF, CCL3, and CCL4 (Figure 17). 3 mM free lipoic acid also 

diminished the activation of BMMs by Pam2CSK4 and Pam3CSK4, synthetic diacylated 

or triacylated lipopeptides that induce TLR2/6 or TLR1/2 heterodimer signaling (Figures 

18). As free lipoic acid could suppress TLR2-based activation of macrophages, we 

wondered if lipoic acid also impairs recognition of other surface TLRs, such as TLR4 

and TLR5. Activation of BMMs with the TLR4 ligand lipopolysaccharide or the TLR5 

ligand flagellin in the presence of 3 mM free lipoic acid reduced the activation of BMMs, 

as determined by lower cytokine secretion (Figure 19). These data indicate free lipoic 

acid suppresses TLR2-dependent and other TLR-based activation pathways of BMMs 

when applied at supraphysiologic concentrations. 
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Figure 17. Free Lipoic Acid Diminishes BMM Activation by ΔlipA Mutant  
Supernatant IL-6, TNF, CCL3, and CCL4 production (pg/mL) after addition of ΔlipA 
supernatant to BMMs in the presence of free lipoic acid (LA) (3 mM or 0.3 mM). Data 
shown are from one of at least three experiments conducted in triplicate. Means ± SD 
are shown (n=3). *, P<0.05; ****, P<0.0001 by 1-way ANOVA with Bonferonni-Sidak 
post-test. 

 

 
Figure 18. Free Lipoic Acid Restricts TLR2-Dependent BMM Activation. IL-6, TNF, 
CCL3, and CCL4 production (pg/mL) after addition of 3 ng/mL Pam2CKS4 (Pam2) and 
30 ng/mL of Pam3CSK4 (Pam3) to BMMs in the presence of free lipoic acid (3 mM or 
0.3 mM). (-), media alone. Data shown are from one of at least three experiments 
conducted in triplicate. Means ± SD are shown (n=3). NS, not significant; *, P<0.05; ***, 
P<0.001; ****, P<0.0001 by 1-way ANOVA with Bonferonni-Sidak post-test. 
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Figure 19. Free Lipoic Acid Blunts TLR4- and TLR5-Dependent BMM Activation. 
IL-6 and CCL4 production (pg/mL) after addition of 250 ng/mL lipopolysaccharide (LPS) 
and 250 ng/mL of flagellin to BMMs in the presence of 3mM free lipoic acid. Data shown 
are from one of at least three experiments conducted in triplicate. Means ± SD are 
shown (n=3). ***, P<0.001; ****, P<0.0001 by 1-way ANOVA with Bonferonni-Sidak post-
test. 
 

Lipoyl-E2-PDH Diminishes the TLR1/2 Activation of Macrophages 

Since free lipoic acid suppresses macrophage activation, we wondered whether 

lipoylated proteins – the main form of lipoic acid in living systems – from S. aureus are 

sufficient to suppress BMM activation at physiologically meaningful concentrations. We 

tested if lipoyl-E2-PDH suppresses BMM activation by first purifying recombinant S. 

aureus lipoyl-E2-PDH and lipoylating it in vitro (purification and lipoylation technique 

devised by Irina Laczkovich) (Figure 20). Next, we activated BMMs with Pam2CSK4 

and Pam3CSK4 in the presence of recombinant lipoyl-E2-PDH and monitored cytokine 

secretion. We found that 10 nM lipoyl-E2-PDH suppressed TLR1/2 activation, but not 

TLR2/6 activation (Figure 21). To test if the lipoyl moiety is necessary for the restriction 

of BMM activation we used a synthetic tripeptide containing a lipoyl-lysine residue, 

DKLA, and found that it is sufficient to suppress TLR1/2 dependent macrophage 

activation at 10 nM concentration but not the unmodified tripeptide, DKA (Figure 22). 

DKLA also suppressed macrophage activation by SitC, a TLR1/2 activating triacylated 
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lipoprotein produced by S. aureus (160, 161) (Figures 23). These data indicate that 

lipoyl-E2-PDH is sufficient to suppress TLR1/2 activation of macrophages and that 

immune suppression is directly linked to the lipoyl modification.  

 

Figure 20. Purified Lipoyl-E2-PDH. S. aureus E2-PDH purified from E. coli. 
Coomassie-stained SDS-PAGE gel of 1 μg lipoyl-E2-PDH (CB) and lipoyl moiety 
detection by immunoblot with anti-lipoic acid antibody (α-LA IB). 
 

 

Figure 21. Purified Lipoyl-E2-PDH Dampens TLR1/2 Activation of BMMs. IL-6, TNF, 
CCL3, CCL4 production (pg/mL) after addition of 10 nM lipoyl-E2-PDH (LA-PDH) to 
BMMs in the presence of 1 ng/mL of Pam2 or 3 ng/mL of Pam3. Data shown are from 
one of at least three experiments conducted in triplicate. Means ± SD are shown (n=3).  
***, P<0.001; ****, P<0.0001 by 1-way ANOVA with Bonferonni-Sidak post-test.  



 

       

109 

 

Figure 22. The Lipoyl Moiety is Necessary for Restriction of TLR1/2 Activation 
BMMs. IL-6, TNF, CCL3, and CCL4 production (pg/mL) after addition of 10 nM 
synthetic tripeptides DKLA and DKA to BMMs in the presence of 1 ng/mL of Pam2 or 3 
ng/mL of Pam3. Data shown are from one of at least three experiments conducted in 
triplicate. Means ± SD are shown (n=3).  *, P<0.05; **, P<0.01; ***, P<0.001; ****, 
P<0.0001 by 1-way ANOVA with Bonferonni-Sidak post-test. 
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Figure 23. Lipoyl-Peptide DKLA Dampens SitC Activation of BMMs. Coomassie-
stained SDS-PAGE gel of 500 ng purified SitC. IL-6, TNF, CCL3, and CCL4 production 
(pg/mL) after addition of SitC (0.1 ng/ml for CCL3/CCL4 and 1.0 ng/ml for IL-6/TNF) to 
BMM in the presence of 10 nM synthetic tripeptides DKLA and DKA. Data shown are 
from one of at least three experiments conducted in triplicate. Means ± SD are shown 
(n=3).  *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001 by 1-way ANOVA with 
Bonferonni-Sidak post-test.  

 

Mechanism of TLR1/2 Restriction by Lipoyl-Protein 

 Restriction of BMMs by lipoyl-E2-PDH only occurs through TLR1/2 and not 

TLR2/6, suggesting a mechanism of suppression specific to TLR1 or TLR2. We 

hypothesized that free lipoic acid or lipoyl-peptides either stimulates changes in TLR1 or 

TLR2 surface display, or directly interferes with the interaction of natural ligands with 

TLR1/2 by competing for similar binding sites. We tested this idea by assessing the 

levels of TLR1 or TLR2 on the surface of BMMs treated with supernatant derived from 

WT or ΔlipA S. aureus, as well as in the presence of free lipoic acid given that lipoyl-

proteins and free lipoic acid have different immunosuppressive functions. We found that 

there are no differences after treatment with supernatant from S. aureus that lack lipoyl 

proteins (ΔlipA) on the surface expression levels of TLR1 or TLR2 (Figure 24). 

Furthermore, we found that treatment of BMMs with free lipoic acid decreases the 
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amount of surface TLR2 on BMMs and not TLR1 (Figure 24). Next, we assessed if WT 

or ΔlipA supernatant or free lipoic acid could modulate the surface expression of other 

pro-inflammatory surface markers of BMMs such as CD80 and CD86. Again, there are 

no differences between surface CD80 or CD86 levels of BMMs treated with WT or ΔlipA 

supernatant. Interestingly, we found that free lipoic acid decreases the surface 

expression of CD86 but not CD80 relative to the media control condition (Figure 24). 

Like supernatant from S. aureus, free lipoic acid increased the surface levels of TLR1 

and CD80 (Figure 24). In summary, these data suggest that supernatant from a ΔlipA 

mutant does not modulate the levels of TLR1, TLR2, CD80, or CD86. Moreover, these 

data demonstrate that free lipoic acid reduces TLR2 and CD86 on BMMs, highlighting 

the broad immunosuppressive functions of free lipoic acid.  

 

 
Figure 24. Surface Expression of TLR1, TLR2, CD80, or CD86 are Not  
Modulated by ΔlipA Mutant Supernatant. BMMs were treated in the presence of WT 
or ΔlipA supernatant or 3 mM free lipoic acid (LA) for 18-24 hours followed by 
assessment of surface levels of TLR1 or TLR2, CD80, and CD86 by flow cytometry. 
Data shown are from one of at least three experiments conducted in triplicate. Means ± 
SD are shown (n=3). ***, P<0.001; ****, P<0.0001 by 1-way ANOVA with Bonferonni-
Sidak post-test. 
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To determine if lipoyl-peptides directly interfere with the interaction of natural 

ligands with TLR1/2 by competing for similar binding sites, we used an enzyme linked 

immunosorbent assay-based approach. Recombinant TLR1 and TLR2 were bound in a 

well overnight, followed by competing of binding for TLR1/2 between Pam3CSK4 and 

DKA or DKLA. If the lipoyl peptide DKLA binds to TLR1 or TLR2, then we expect to see 

a reduction in the binding of the native TLR1/2 ligand Pam3CSK4 in the presence of 

DKLA but not DKA. We found that an excess of DKLA, but not DKA, reduces the binding 

ability of Pam3CSK4 (Figure 25). However, as we titrated out the amounts of tripeptide, 

we observed high variability in the binding of Pam3CSK4. These data suggest that at 

high concentrations, the lipoyl moiety on DKLA may bind to TLR1/2 and compete for 

binding. However, this approach to determine if lipoyl-peptides bind to TLR1/2 to 

compete for binding sites with native ligands was limited and needs to be further 

refined.  

 
Figure 25. Binding of DKLA and DKA to Recombinant TLR1/2. 750 nM of 
biotinylated Pam3CSK4 binding to recombinant TLR1 and TLR2 in the presence of 
various amounts of the synthetic tripeptides DKA or DKLA. Percent binding determined 
by dividing the average absorbance of wells with Pam3CSK4 and titrated peptides by 
the absorbance of Pam3CSK4 binding alone. Pam3CSK4 binding to TLR1/2 alone was 
set as 100% binding. Means ± SD are shown (n=5). 
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Activity of the Lipoic Acid Synthetase Promotes S. aureus Pathogenesis 

Previous work in the lab conducted by Azul Zorzoli found that, during 

bloodstream infection, S. aureus mutants with defects in bacterial lipoic acid synthesis 

and salvage lead to tissue-specific virulence defects where infection of the kidney 

depends on lipoic acid salvage enzymes, but infection of the heart requires LipA (373). 

These observations suggest there is varied dependency on de novo lipoic acid 

synthesis for S. aureus survival in different tissue sites. Given the strong in vitro 

dampening of TLR1/2 activation of macrophages, we surmised that this 

immunosuppression could alter the host’s ability to limit infection by macrophage 

antimicrobial responses. To determine if lipoyl-protein immunosuppression occurs in 

vivo, we induced systemic infection in mice by intraperitoneal injection of WT, ΔlipA, or 

ΔlipA+lipA and determined the levels of macrophage chemokines in the serum. After 16 

hours, animals infected with a ΔlipA mutant had more CCL3 and CCL4 in the serum, 

whereas at 72 hours chemokine levels were similar (Figure 26). CCL3 and CCL4 are 

chemokines for macrophages and monocytes in addition to other innate immune cells 

through interaction with the CCR5 receptor. We then surveyed if the population of 

immune cells recruited to the site of infection were different between the infected 

animals. At 16 hours, the proportion of pro-inflammatory macrophages (CD11b+, F4/80+, 

CCR5+, I-A/I-Ehigh, Ly6G-) in the peritoneal cavity were identical among the infection 

groups (Figure 27). However, at 72 hours, ΔlipA mutant-infected animals had more I-

A/I-Ehigh/CCR5+ activated macrophages and I-A/I-Ehigh dendritic cells (Figure 27 and 28). 

Although CCL3 and CCL4 recruit other innate immune cells, the total number of 

recruited macrophages, neutrophils, and dendritic cells were the same in all infection 
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groups at both 16 hours and 72 hours post-infection (Figure 29). In summary, the 

proportion of activated pro-inflammatory phagocytes is larger in ΔlipA mutant-infected 

animals. 

 

 
 
Figure 26. Serum Levels of CCL3 and CCL4 Chemokines are Higher in ΔlipA 
Mutant-Infected Mice 16 Hours Post-Infection. Serum CCL3 and CCL4 levels 
(pg/mL) 16 hours or 72 hours post-infection. Means ± SD are shown (WT and ΔlipA 
n=10, ΔlipA+lipA n=7). NS, not significant; *, P<0.05 by 1-way ANOVA with Bonferonni-
Sidak post-test. 
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Figure 27. Greater Amounts of Pro-Inflammatory Macrophages are Recruited to  
the Site of Infection with a ΔlipA Mutant 72 Hours Post-Infection. Pro-inflammatory 
macrophages in the peritoneal cavity at 16 hours and 72 hours post-infection. 
Macrophages were gated on CD11b+ F4/80+ Ly6G- cells followed by assessment of 
CCR5+ I-A/I-Ehi cells. Flow cytometry plots are representative of 4-8 animals per group. 
Scatter plots display percent CCR5+/I-A/I-Ehi cells within the CD11b+ F4/80+ Ly6G- gate. 
Bars display the median. NS, not significant; **, P<0.01; ***, P<0.001 by 1-way ANOVA 
with Bonferonni-Sidak post-test.  
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Figure 28. Greater Amounts of IA/IE+ Dendritic Cells are Recruited to the Site of 
Infection with a ΔlipA Mutant 72 Hours Post-Infection. Measurement of dendritic 
cells (CD11b+ CD11c+ F4/80- Ly6G-) expressing MHCII (I-A/I-Ehi) in the peritoneal cavity 
72 hours post-infection. Histogram is representative of 8 animals per group. Scatter 
plots display geometric mean of I-A/I-Ehi cells within the CD11b+ CD11c+ F4/80- Ly6G- 
gate for all animals - WT (n=8), ΔlipA (n=8), and ΔlipA + lipA (n=8). Means ± SD are 
shown. **, P<0.01 by 1-way ANOVA with Bonferonni-Sidak post-test or P values are 
shown. 
 

 
Figure 29. The Total Number of Macrophages, Neutrophils, and Dendritic Cells 
are Not Different Between Infected Mice. Total cell numbers of macrophages, 
neutrophils, and dendritic cells in the peritoneal cavity of mice infected intraperitoneally 
with 1x108 CFU of WT, ΔlipA, or ΔlipA + lipA S. aureus 16- or 72-hours post-infection. 
Macrophages:CD11b+ F4/80+. Neutrophils: CD11b+ Ly6G+. Dendritic cells: CD11b+ 
CD11c+. Means ± SD are shown. 
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A ΔlipA Mutant is Attenuated During Infection 

Pro-inflammatory activated macrophages have a higher propensity to kill 

bacteria, and because we see higher proportions of activated macrophages recruited to 

the site of infection in animals infected with ΔlipA mutant-infected animals, we 

hypothesized there could be lower burdens of bacteria in the intraperitoneal infection 

model. Indeed, ΔlipA mutant-infected animals had significantly fewer bacteria at 16- and 

72-hours post-infection in the lavage fluid and kidney compared to WT or ΔlipA+lipA 

(Figure 30A). After 72 hours, a substantial number of the ΔlipA mutant-infected animals 

had undetectable bacteria in both the lavage fluid (N=7) and the kidneys (N=6) (Figure 

30A). By 72 hours, the median bacterial colony forming units (CFU) in ΔlipA mutant-

infected animals was near or at the limit of detection in both sites, while the median 

bacterial CFU of the WT and complement infected animals remained 1-2 logs higher, 

indicating LipA may promote bacterial survival during infection (Figure 30B). With these 

data, we cannot rule out the possibility that the attenuation of a DlipA mutant in vivo may 

stem either from observed metabolic deficiencies associated with lipoic acid limitation, 

or from improved clearance of bacteria by activated macrophages.  
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Figure 30. A ΔlipA Mutant is Attenuated During Infection. Bacterial burden (A) and 
medians of bacterial burden (B) in the peritoneal cavity and kidneys of mice 16 hours - 
WT (n=17), ΔlipA (n=19), ΔlipA+lipA (n=12), and 72 hours - WT (n=11), ΔlipA (n=12), 
ΔlipA+lipA (n=14) post IP infection. NS, not significant; *, P<0.05; **, P<0.01; ****, 
P<0.0001 by non-parametric 1-way ANOVA (Kruskal-Wallis Test) with Dunn’s post-test. 
Dashed lines, limit of detection. N=7 and N=6 in the 72 hour dataset are the number of 
animals with undetectable CFU (A).  

A. 

B. 
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As mentioned earlier, during bloodstream infection, a ΔlipA mutant is not 

attenuated in the kidneys (373). In this bloodstream model, kidney abscesses readily 

form where phagocytic leukocytes are excluded from the abscess (396, 397). Therefore, 

we wondered if there are greater proportions of pro-inflammatory macrophages in 

kidneys during bloodstream infection with a ΔlipA mutant that cannot penetrate this 

abscess, leading to failure to clear a ΔlipA mutant. To test this, we systemically infected 

mice via injection into the bloodstream with WT or ΔlipA and assessed the proportion of 

pro-inflammatory macrophages in the kidneys. As expected, we found no differences in 

bacterial burdens in the kidney; however, we observed macrophages expressing higher 

amounts of IA/IE, suggesting greater macrophage activation in the kidneys of ΔlipA 

mutant-infected animals (Figure 31). These data imply that, in the absence of 

macrophage infiltration, a growth defect imparted by lack of LipA activity is likely not 

sufficient for attenuation. 

 
 
Figure 31. A ΔlipA Mutant is Not Attenuated in Kidneys During Bloodstream  
Infection, but Recruits Pro-Inflammatory Macrophages Bacterial burden (CFU/mL) 
in the kidneys of mice 96 hours post IV infection- WT (n=3) and ΔlipA (n=4). Pro-
inflammatory macrophages (CD11b+ F4/80+ Ly6G-) expressing I-A/I-E in kidneys of 
mice 96 hours post-infection. Histogram is representative of 3-4 animals per group. 
Scatter plots display geometric mean of I-A/I-Ehi cells within the CD11b+ F4/80+ Ly6G- 
gate for all animals. Means ± SD are shown. **, P<0.01 by 1-way ANOVA with 
Bonferonni-Sidak post-test. 
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Macrophages are Responsible for Attenuation of a DlipA Mutant During Systemic 

Infection 

To test if the observed attenuation of a DlipA mutant is due to the antimicrobial 

activity of activated macrophages, we depleted mice of macrophages and their 

precursors by administering clodronate-loaded liposomes three days prior to infection 

with 1x107 CFU of WT, DlipA, or DlipA + lipA strains. We first determined if clodronate 

treatment depleted macrophages in our infection model by assessing the proportion of 

macrophages recovered from S. aureus infected mice that were pre-treated with 

clodronate or PBS three days prior to infection. Clodronate treated mice had 

significantly reduced proportions of macrophages (CD11b+ Ly6G- Ly6C- Gr1- F4/80+) in 

the peritoneal cavity compared to non-treated mice (Figure 32A). We then infected 

clodronate-treated mice with WT, DlipA, or DlipA + lipA strains and enumerated CFU at 

16 hours and 72 hours post-infection. After 16 hours, we recovered near identical CFU 

from the peritoneal cavities or kidneys of macrophage-depleted mice despite a large 

distribution of bacterial loads (Figure 32B). At 72 hours post-infection, there were no 

discernable differences in CFU recovered from the lavage or the kidneys of infected 

clodronate-treated mice regardless of the strain used for infection (Figure 32C). We also 

observe a large distribution in CFU recovered from clodronate treated-mice at 72 hours 

post-infection; however, there were no differences in the average CFU recovered from 

infected animals. In summary, these data suggest that, in a peritonitis infection model, 

macrophages are a primary mediator of clearance in DlipA mutant-infected animals as 

opposed to a metabolic defect associated with lipoic acid limitation and macrophages 

are instrumental to control bacterial loads during infection.  
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Figure 32. A DlipA Mutant is Not Attenuated in Macrophage-Depleted Mice. (A) 
Abundance of macrophages (CD11b+ Gr1- CD11c- Ly6G- F4/80+) in the peritoneal cavity 
of clodronate-treated mice or non-treated mice 72 hours post-intraperitoneal infection 
with WT S. aureus.  Bar represent medians. Data were analyzed using unpaired, two-
tailed Student’s t test. **, P<0.01. (B and C) the bacterial burden (Log10 CFU) in the 
peritoneal cavity and kidneys of clodronate treated mice 16 hours (B) post-
intraperitoneal infection with WT (n=18), DlipA (n=18), DlipA + lipA (n=18) or 72 hours 
(C) post-intraperitoneal infection with WT (n=13), DlipA (n=12), DlipA + lipA (n=11). Bars 
represent means. NS, not significant by non-parametric 1-way ANOVA (Kruskal-Wallis 
Test) with Dunn’s post-test. Dashed lines represent limit of detection.  
 
 
 
 
 
 
 

A. 

B. C
. 
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Macrophages from ΔlipA Mutant-Infected Mice Control the Outgrowth of S. aureus 

Because a greater proportion of macrophages in ΔlipA-infected mice have 

enhanced pro-inflammatory characteristics, we reasoned that these macrophages might 

have greater bactericidal activity. To test this hypothesis, we isolated F4/80+ peritoneal 

cells elicited to the peritoneal cavity 72 hours after infection with WT and ΔlipA S. 

aureus, or mock infected with PBS. After antibiotic treatment to kill bacteria used for 

elicitation, we infected the sorted population of F4/80+ cells with WT S. aureus. The 

F4/80+ peritoneal cells elicited after infection with a ΔlipA mutant inhibited the growth of 

S. aureus better than F4/80+ peritoneal cells elicited from WT or PBS treated mice 

(Figure 33). Consistent with our in vitro findings, these data indicate macrophage 

activation is increased in ΔlipA mutant-infected mice and coincides with better infection 

control. 

 
 
Figure 33. Macrophages Isolated from ΔlipA Mutant-Infected Mice Control the  
Outgrowth of S. aureus. Survival/outgrowth of WT S. aureus after infecting WT (n=8), 
ΔlipA (n=8), or PBS (n=8) elicited F4/80+ cells.  *, P<0.05, ****; P<0.0001 by 2-way 
ANOVA with Tukey’s post-test.  
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Macrophages from DlipA Mutant-Infected Mice Produce More ROS to Restrict S. 

aureus Growth 

As the pro-inflammatory macrophages recruited to the site of infection with a 

DlipA mutant better restrict bacterial growth ex vivo and are instrumental to bacterial 

clearance, we sought to determine the mechanism by which these macrophages have 

an enhanced restrictive capacity. Macrophages generate ROS as one of a variety of 

mechanisms used to inhibit the growth of engulfed pathogens. To test if ROS production 

by macrophages is increased in DlipA mutant-infected mice, we elicited macrophages to 

the peritoneal cavity using WT, DlipA, or DlipA + lipA strains and re-infected the isolated 

macrophages ex vivo with WT S. aureus followed by quantitation of ROS, using an 

indicator dye that fluoresces upon oxidation. Upon re-infection, macrophages sourced 

from WT-infected mice had a net decrease in mean fluorescent intensity (MFI) (Figure 

34). In contrast, macrophages isolated from DlipA mutant-infected mice had, on 

average, a positive fold change in MFI, suggesting that these macrophages have a 

higher oxidative state (Figure 34). This was partially complemented by the DlipA + lipA 

strain (Figure 34). These data suggest that macrophages from DlipA mutant-infected 

mice produce greater amounts of ROS.  

To test if the increased ROS generation by macrophages isolated from DlipA 

mutant-infected mice is necessary to restrict S. aureus growth, we first inhibited ROS 

production using diphenyleneiodonium chloride (DPI) and compared the ability to 

restrict growth relative to macrophages isolated from WT-infected or mock-infected 

(PBS) mice. As seen previously, ROS replete cells from DlipA mutant-infected mice 
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slow the outgrowth of S. aureus compared to macrophages isolated from WT-infected 

mice (Figure 35). Upon inhibition of ROS production by DPI treatment, the 

macrophages isolated from DlipA-infected mice no longer restricted S. aureus outgrowth 

compared to WT-infected or mock-infected mice (Figure 35). These data suggest that 

increased ROS production contributes to the heightened ability of macrophages isolated 

from DlipA mutant-infected mice to control bacterial outgrowth. 

 

 
 
Figure 34. Macrophages from DlipA Mutant-Infected Mice Produce Greater  
Amounts of ROS. F4/80+ macrophages were sorted from immune cells harvested from 
the peritoneal cavity of mice 72 hours post-intraperitoneal infection with WT (n=19), 
DlipA (n=20), DlipA + lipA (n=16) and infected ex vivo with WT S. aureus at a MOI of 
0.1. Macrophages were stained with the ROS indicator CellROX deep red and analyzed 
by flow cytometry. Fold changes in the geometric means of CellROX fluorescence were 
assessed in infected cells and compared to uninfected F4/80+ cells. **, P<0.01 by non-
parametric 1-way ANOVA (Kruskal-Wallis Test) with Dunn’s post-test. Dashed line is at 
zero, bars represent the median.  
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Figure 35. ROS Production Contributes to the Heightened Ability of  
Macrophages Isolated from DlipA Mutant-Infected Mice to Control Bacterial  
Outgrowth. Outgrowth (Log10 CFU/mL) of WT S. aureus after infecting F4/80+ cells 
isolated from mice 72 hours post-intraperitoneal infection with WT (n=4), ΔlipA (n=4), or 
PBS (n=4) treated with DMSO vehicle control or ROS inhibitor DPI. Bars represent 
medians. NS, not significant; *, P<0.05; ***, P<0.001 by 2-way ANOVA with Tukey’s post-
test. Data shown are from one of at least three independent experiments. 
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DlipA Mutant-Induced Antibacterial ROS Are Generated by NADPH Oxidase 

Although DPI is commonly used to inhibit production of ROS, it can have off-

target effects that lead to the inhibition of mitochondrial respiration, which interferes with 

mROS generation (398). Therefore, DPI cannot conclusively determine whether ROS 

derived from the mitochondria or NADPH oxidase facilitates restriction of bacterial 

growth. However, recent studies have found that delivery of mROS to the phagosome is 

important for the antimicrobial response to internalized S. aureus, suggesting mROS 

are important in bacterial clearance (251, 252). We asked if macrophages from DlipA 

mutant-infected mice use mROS or NADPH oxidase-derived ROS to restrict bacterial 

growth. We inoculated mice with WT S. aureus or a DlipA mutant, isolated 

macrophages, and determined if inhibition of mROS using the inhibitor Necrox-5 

abrogated growth restriction. Generation of mROS facilitated the killing of S. aureus 

within macrophages, as S. aureus survival was greater in Necrox-5 treated 

macrophages compared to vehicle treated macrophages (Figure 36A). However, in the 

presence of Necrox-5, macrophages isolated from DlipA-infected mice still restricted the 

outgrowth of S. aureus to a greater degree than macrophages from WT- or mock-

infected mice (Figure 36B-C). These data suggest that, while production of mROS 

contributes to control of S. aureus within the macrophage, they are not involved in the 

improved restrictive capacity of macrophages isolated from DlipA mutant-infected mice.  
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Figure 36. Macrophages Isolated from DlipA Mutant-Infected Mice Do Not Use 
mROS to Restrict Bacterial Outgrowth. (A) Percent survival of WT S. aureus 8 hours 
after infecting F4/80+ cells isolated from mice treated with DMSO vehicle control or 
mROS inhibitor Necrox-5. n=8, error bars represent SEM. Data were analyzed using 
unpaired, two-tailed Student’s t test. *, P<0.05. (B and C) Outgrowth (Log10 CFU/mL) of 
WT S. aureus after infecting F4/80+ cells isolated from mice 72 hours post-
intraperitoneal infection with WT (n=4), ΔlipA (n=4), or PBS (n=4) treated with (B) 
DMSO vehicle control or (C) Necrox-5. Bars represent medians. ***, P<0.001; ****, 
P<0.0001 by 2-way ANOVA with Tukey’s post-test. Data shown are from one of at least 
two independent experiments.  

 

B. 

C. 

A. 
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Since mROS do not appear to play a role in the improved restrictive function, we 

wondered if NADPH oxidase-dependent ROS production contributes to the greater 

ability of macrophages sourced from DlipA mutant-infected mice to restrict bacterial 

growth. To test this, we used a specific peptide-based inhibitor of NADPH oxidase, 

gp91ds-tat (399). This NADPH oxidase assembly inhibitor is a chimeric peptide 

containing an amino acid sequence with high affinity for the gp91-phox subunit of 

NADPH oxidase linked with the tat peptide sequence from human immunodeficiency 

virus, which facilitates entry into cells (399, 400). We isolated macrophages from WT, 

DlipA, and mock (PBS) infected mice followed by re-infection with WT S. aureus ex vivo 

and monitored bacterial outgrowth hourly. Macrophages from DlipA mutant-infected 

mice better restricted the outgrowth of S. aureus compared to macrophages isolated 

from WT and mock-infected mice (Figure 37A). Treatment of macrophages sourced 

from WT, DlipA, or mock-infected mice with gp91ds-tat prevented enhanced growth 

restriction of S. aureus compared to macrophages isolated from WT and mock-infected 

mice (Figure 37B). In summary, these data suggest that the ROS generated from 

NADPH oxidase are necessary for the increased growth restriction of macrophages 

isolated from DlipA mutant-infected mice. 
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Figure 37. NADPH Oxidase Derived ROS Contributes to Improved Control of  
Bacterial Outgrowth by Macrophages Isolated from DlipA Mutant-Infected  
Mice. (A and B) Outgrowth (Log10 CFU/mL) of WT S. aureus after infecting F4/80+ cells 
isolated from mice 72 hours post-intraperitoneal infection with WT (n=8), ΔlipA (n=8), or 
PBS (n=8) treated with (A) water vehicle control or (B) NADPH oxidase inhibitor 
gp91ds-tat. Bars represent medians. NS, not significant; **, P<0.01; ***, P<0.001; ****, 
P<0.0001 by 2-way ANOVA with Tukey’s post-test.  
 

B. 

A. 
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RNS Contributes to the Enhanced Ability of Macrophages from DlipA Mutant-

infected Mice to Slow Bacterial Outgrowth 

Besides ROS, which forms in the phagosome to kill engulfed pathogens, the 

generation of NO• and RNS by iNOS also controls pathogen growth (237). Our data 

thus far suggest that blockade of NADPH oxidase activity abrogates the restrictive 

capacity of macrophages from DlipA mutant-infected mice, implicating ROS in this 

process. However, antimicrobial RNS such as ONOO- may depend on NADPH oxidase 

derived O2-• (254). Thus, macrophages treated with NADPH oxidase inhibitors may also 

generate fewer antimicrobial RNS. Therefore, we tested if macrophages recruited to the 

site of infection with a DlipA mutant produce greater amounts of NO• in addition to ROS 

that together might lead to growth restriction. We stimulated macrophages isolated from 

WT, DlipA, or DlipA + lipA infected mice ex vivo with heat-killed S. aureus and measured 

NO• production by the Griess test (401). Upon re-stimulation, macrophages from DlipA 

mutant-infected mice produced three times greater levels of nitrite, a stable breakdown 

product of NO• compared to WT or the complement strain (Figure 38). These data 

suggest that macrophages from DlipA mutant-infected mice produce greater amounts of 

NO•.  

Given the increased production of NO• in macrophages isolated from DlipA 

mutant-infected mice, we tested whether RNS contributes to growth restriction. We 

monitored the growth of WT S. aureus in macrophages isolated from WT, DlipA, or 

mock-infected mice in the presence of a specific iNOS inhibitor, N6-(1-Iminoethyl)-lysine 

hydrochloride (L-NIL), which prevents NO• production and thus RNS generation. We 

found that iNOS inhibition by L-NIL abrogated the improved growth restriction of S. 
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aureus by DlipA mutant-elicited macrophages compared to macrophages isolated from 

WT or mock-infected mice (Figure 39). Together, our data demonstrate that NO• 

production and iNOS activity are also necessary for macrophages isolated from DlipA 

mutant-infected mice to limit S. aureus growth ex vivo. 

 

 
 
Figure 38. Macrophages Isolated from DlipA Mutant-Infected Mice Produce  
Greater Levels of Nitric Oxide. F4/80+ macrophages were sorted from immune cells 
harvested from the peritoneal cavity of mice 72 hours post-intraperitoneal infection with 
WT (n=20), DlipA (n=19), DlipA + lipA (n=20) and stimulated overnight ex vivo with heat-
killed WT S. aureus at a MOI of 10. Nitrite levels, a breakdown of nitric oxide production, 
were measured by Griess test. Fold induction of nitric oxide production was determined 
by comparing levels of nitrite produced by infected cells to uninfected F4/80+ cells. *, 
P<0.05 by non-parametric 1-way ANOVA (Kruskal-Wallis Test) with Dunn’s post-test. 
Bars represent the median. 
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Figure 39. RNS are Important for Restriction of Bacterial Growth by  
Macrophages Isolated from DlipA Mutant-Infected Mice. Outgrowth (Log10 CFU/mL) 
of WT S. aureus after infecting F4/80+ cells isolated from mice 72 hours post-
intraperitoneal infection with WT (n=8), ΔlipA (n=8), or PBS (n=8) treated with water 
vehicle control or iNOS inhibitor L-NIL. Bars represent medians. NS, not significant; *, 
P<0.05; **, P<0.01; ****, P<0.0001 by 2-way ANOVA with Tukey’s post-test. 
 
 

 



 

       

133 
Primary Infection with a DlipA Mutant Fails to Protect Mice from Secondary S. 

aureus Challenge 

We have observed that a DlipA mutant not only increases macrophage ROS and 

RNS production to enhance bacterial killing, but also leads to (i) greater neutrophil 

cytokine and chemokine release (Figure 9) and (ii) elicits dendritic cells and 

macrophages with large amounts of the antigen presenting molecule major 

histocompatibility complex II (MHC-II) during infection (Figure 28). Thus, we wondered if 

infection with a DlipA mutant might improve protective recall responses upon S. aureus 

re-infection. We immunized mice with WT, a DlipA mutant, or PBS (mock) and allowed 

infection to clear over seven days. After seven days, mice were re-challenged with WT 

S. aureus and CFU were quantified in the kidney over time. Mice immunized with a 

DlipA mutant had equivalent CFU in the kidney compared to mice immunized with WT 

or mice that were not immunized at all time points (Figure 40A). Moreover, upon 

extension of the immunization time-course to two weeks, we noted that re-infection 

continues to yield identical CFU in the kidney regardless of whether or not the mice 

received primary immunization with WT or a DlipA mutant (Figure 40B). Interestingly, in 

mice immunized over the course of two weeks, we see higher levels of bacterial loads in 

the heart if mice received a primary immunization with a DlipA mutant (Figure 40B). In 

summary, these data suggest that despite the greater host innate response elicited 

during infection with a DlipA mutant, no improved response or potentially a worse recall 

response follows.  
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Figure 40. Immunization of Mice with a DlipA Mutant Does Not Confer  
Protection from Secondary Challenge. (A and B) Mice were immunized by 
intraperitoneal injection with either 1 x 108 CFU of WT or DlipA S. aureus or sterile PBS 
(mock immunized). Either 7- (A) or 14- (B) days after immunization, mice were re-
challenged via injection into the retro-orbital sinus with 1 x 107 CFU of WT S. aureus. 
Bacterial burden (Log10 CFU) in the kidneys (A and B) or hearts (B) of mice assessed 
(A) 24 hours (WT: n=8, DlipA: n=8, PBS: n=8), 72 hours (WT: n=8, DlipA: n=6, PBS: 
n=8), 96 hours (WT: n=20, DlipA: n=23, PBS: n=23), 120 hours (WT: n=7, DlipA: n=6, 
PBS: n=8) or (B) 96 hours (WT: n=11, DlipA: n=9, PBS: n=8) post-secondary challenge. 
Bars represent medians and dashed lines represent the limit of detection. NS, not 
significant; **, P<0.01; by non-parametric 1-way ANOVA (Kruskal-Wallis Test) with 
Dunn’s post-test.

B. 

A. 
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CHAPTER FOUR

DISCUSSION 

Introduction 

For a pathogen to infect and replicate in the host, it is often necessary to impede 

host immune defenses. The human pathogen S. aureus has armed itself with a 

repertoire of virulence factors to promote immune evasion. Many virulence factors 

counter neutrophil responses to infection, as these cells constitute the initial cellular 

response to S. aureus infection. Macrophages are another cellular component of the 

innate immune system with critical antimicrobial functions. In addition to their killing 

capacity, macrophages also produce cytokines and chemokines to promote key 

functions of both innate and adaptive immunity. Thus, macrophages are a key cell for S. 

aureus to overcome during infection. The goal of this thesis was to identify and 

characterize a novel extracellular virulence factor of S. aureus that counters 

macrophage immune responses.  

Using a transposon mutant library of the USA300 strain JE2, Dr. Alonzo found 

numerous mutants that elicited reduced or enhanced production of pro-inflammatory 

cytokines and chemokines by BMMs. Of interest, was the hyper-activation of BMMs 

caused by addition of supernatant from a S. aureus mutant with a mutation in the lipA 

gene. The lipA gene encodes for lipoic acid synthetase, which synthesizes the essential 

metabolic cofactor lipoic acid. In this work, we found that suppression of macrophage 

activation correlated with the ability of S. aureus to release a lipoic acid-modified 

metabolic enzyme subunit, E2 PDH, into the supernatant where it moonlights by
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restricting the TLR1/2 activation of macrophages. We show that dampening of 

macrophage function by LipA activity is necessary for optimal S. aureus pathogenesis. 

In the absence of lipoic acid synthesis in S. aureus, we saw that a DlipA mutant is more 

readily cleared by the host and elicits greater proportions of pro-inflammatory 

macrophages. Upon isolation of these macrophages, they restrict the outgrowth of S. 

aureus ex vivo better than macrophages from WT infected mice. The impedance of 

macrophage antimicrobial functions by LipA is mediated by reductions in the generation 

of ROS and RNS by NADPH oxidase and iNOS, respectively, leading to improved 

survival of S. aureus during infection. This suppressive function is lost upon infection 

with a DlipA mutant, whose clearance is dramatically improved due to enhanced 

production of ROS and RNS by macrophages at the site of infection. Despite the 

induction of a more robust antimicrobial immune response during infection with a DlipA 

mutant, the host is unable to mount a successful recall response, likely due to rapid 

clearance of the microbe. Figure 41 depicts a graphical model for how we imagine lipoic 

acid synthesis alters macrophage immune responses. On the whole, the work in this 

thesis demonstrates that synthesis of bacterial-derived lipoic acid by LipA confers 

immunosuppressive properties on macrophages and emphasizes the close associations 

between bacterial metabolism and evasion of innate immunity. 
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Figure 41. Model of Lipoic Acid Synthesis Modulation of Macrophage  
Responses. WT S. aureus uses lipoic acid synthesis to attach a lipoyl moiety to E2-
PDH, which is released into the supernatant. Lipoyl-E2-PDH blocks TLR1/2 activation of 
macrophages, perhaps through binding competition with native ligands, leading to 
reduction in pro-inflammatory cytokines and chemokines IL-6, TNF, CCL3 and CCL4. 
As a result of LipA-mediated immunosuppression, macrophages produce less 
antimicrobial RNS and ROS and fail to efficiently kill bacteria.  
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Release of Lipoyl-E2-PDH 

 In order for S. aureus to dampen the activation of macrophages, it needs to 

release lipoyl-E2-PDH. Once outside of the bacterial cell, our data suggests that lipoyl-

E2-PDH can block TLR1/2 activation of macrophages. Normally, lipoyl-E2-PDH 

functions within the PDH complex present in the cytoplasm of S. aureus. The PDH 

complex catalyzes the oxidative decarboxylation of pyruvate to form acetyl coenzyme A, 

feeding several metabolic pathways in the cells, including the TCA cycle, fatty acid 

biosynthesis, and parts of isoprenoid biosynthesis. E2-PDH is not predicted to be 

secreted by S. aureus as it does not have a secretion sequence. Thus, it is unexpected 

to see a subunit of this cytoplasmic enzyme complex in the cell-free supernatant of S. 

aureus. In this section, we will discuss the release of lipoyl-E2-PDH by S. aureus. 

Excretion of Cytoplasmic Proteins.  

Our detection methods for identifying lipoylated proteins in the supernatant of S. 

aureus indicates that, of the four cytosolic lipoylated proteins, E2-PDH is the only 

subunit released by the bacterium (Figure 11). The extracellular detection of lipoyl-E2-

PDH is unusual, considering it lacks a discernable secretion sequence and is 

predominantly thought to function in the cytosol as a component of the PDH complex. 

However, metabolic enzymes and subunits of metabolic complexes, like PDH, are 

routinely found in the extracellular environment in numerous bacteria and eukaryotes 

(347, 348). E2-PDH was found on the surface of L. monocytogenes, where it depends 

on the SecA2 accessory secretion system for surface display (359). Furthermore, E2-

PDH is present on the surface of M. pneumoniae, where it is hypothesized to bind 

human plasminogen (392, 393). In prior studies, it was shown that S. aureus can 
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release cytoplasmic proteins into the extracellular environment including E2-PDH (357, 

358). This release of cytoplasmic proteins into the extracellular environment correlated 

with cell division and is linked to the activity of the peptidoglycan modifying enzyme, Atl 

(357). Not every cytoplasmic protein of S. aureus is found extracellularly, suggesting 

that this phenomenon is specific and not exclusively due to lysis of the bacterial cell. 

Indeed, our studies support data in literature, as we saw the release of lipoyl-E2-PDH 

requires Atl and to a lesser extent SecA2, despite the presence of cytosolic lipoyl-E2-

PDH in Datl and DsecA2 mutants (Figure 16). The roles of Atl and SecA2 in E2-PDH 

release are yet to be confirmed through genetic complementation of the Datl and 

DsecA2 mutant strains. The exact mechanism by which particular cytoplasmic proteins 

like lipoyl-E2-PDH are selected for extracellular release and then allowed to traverse 

across the bacterial membrane also needs to be studied. One way to approach this 

would be to fluorescently tag E2-PDH with a protein such as green fluorescent protein. 

Then, we could observe the localization dynamics of this tagged E2-PDH during phases 

of S. aureus growth with fluorescence microscopy. Furthermore, protein secretion in 

bacteria can require the assistance of chaperone proteins. Thus, it is possible that 

chaperone proteins or other proteins besides the other subunits of PDH interact with 

E2-PDH to facilitate its release into the extracellular environment.  

Surface Display of E2-PDH and GcvH.  

It is unknown how cytoplasmic proteins, like E2-PDH, that lack a discernable 

secretion sequence are released by bacteria. However, what we do know is that, as 

mentioned previously, other bacteria express cytoplasmic proteins on their surface. Our 

data confirm this happens in S. aureus, as we saw E2-PDH on the cell surface (Figure 
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15). In addition to E2-PDH, we find GcvH on the surface though we cannot detect it in 

the supernatant by immunoblot. It needs to be tested if the presence of E2-PDH and 

GcvH on the surface changes during the growth of S. aureus. Moreover, we wondered if 

the lipoyl moiety of E2-PDH is necessary for its release into the extracellular 

environment. However, our data indicates that the lipoyl moiety of E2-PDH and GcvH 

do not appear to be necessary for surface display, as we can detect both E2-PDH and 

GcvH on the surface a DlipA mutant (Figure 15). We surmise that both E2-PDH and 

GcvH on the surface of a DlipA mutant are modified with the medium chain fatty acid 

precursor to lipoic acid, octanoic acid. It is possible that the modification of octanoic acid 

on E2-PDH and GcvH facilitates their localization to the surface. We could test this 

possibility by substituting alanine for the conserved modified lysine residues of E2-PDH 

and GcvH and then assess the surface display of the non-modified E2-PDH and GcvH. 

If the modification of octanoic acid is necessary for the surface display of E2-PDH and 

GcvH, then we expect mutation of the modified conserved lysine residues would disrupt 

surface display. Along these lines, it remains to be explored if a DlipA mutant could 

release non-lipoyl-E2-PDH into the extracellular environment or if E2-PDH stays 

associated with the bacterial surface. More sensitive detection methods, such as mass 

spectrometry of exoproteins, could reveal if other lipoyl-proteins are present in the 

supernatant and if a DlipA mutant releases non-lipoyl modified versions of E2-PDH.  

Why E2-PDH?  

Out of the four lipoyl-proteins in the cytosol of S. aureus, we identified that only 

lipoyl-E2-PDH is released during growth in our conditions. PDH is one of the largest 

cellular machines in Gram-positive bacteria, as it contains 60 copies of E1 and E2 
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subunits, and 6-12 copies of the E3 subunit (365, 402). This is in contrast to the other 

lipoic acid modified subunits of enzyme complexes that contain fewer copies (~24 for 

E2-OGDH) of the lipoylated subunits (361). Thus, the high abundance of lipoyl-E2-PDH 

copies in the cytosol may explain why this protein is the primary released lipoyl-protein. 

The higher abundance of lipoyl-E2-PDH in the cytosol is evident in our immunoblots, as 

E2-PDH is the most intense band on the immunoblot (Figure 11A).  

Our studies determined that a synthetic tripeptide containing the lipoyl-lysine 

residue, DKLA, but not the unmodified tripeptide, DKA, is sufficient to restrict 

macrophage activation (Figure 22 and 23). This indicates the lipoyl moiety is required 

for immune suppression rather than a unique property of the lipoyl-E2-PDH protein 

itself. Since a lipoyl modification is sufficient for blunting macrophage activation, we 

believe that it is possible for any lipoyl protein, where the domain is accessible, to 

restrict macrophage activation. Future studies will need to test if any of the other three 

lipoyl-proteins of S. aureus (E2-OGDH, E2-BCODH, and GcvH) can confer 

immunosuppressive properties.  

Concluding Remarks. 

 In summary, S. aureus is able to release lipoyl-E2-PDH into the supernatant 

through an unknown mechanism. Because lipoyl-E2-PDH is an easily detectable 

protein, it can serve as a tool to more carefully delineate the process by which bacteria, 

like S. aureus, release a subset of cytoplasmic proteins without a discernable secretion 

signal.  
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Lipoic Acid and Lipoyl-Protein Suppression of Macrophage Activation 

In this thesis, we provide data to support the hypothesis that bacterial derived 

lipoic acid can suppress the activation of innate immune cells. Lipoic acid derived from 

bacteria encounters immune cells in a form that is covalently attached to conserved 

lysine residues in the E2 subunit of PDH. Our data indicate that free lipoic acid and 

protein-linked lipoic acid confer different immunosuppressive properties on 

macrophages. Therefore, free lipoic acid and lipoyl-proteins may use different methods 

to exert their immunosuppressive functions on macrophages. In this section, we 

speculate on what the mechanisms for free lipoic acid and lipoyl-protein based 

immunosuppression could be. 

Lipoic Acid Suppression of BMM Activation.  

Millimolar concentrations of free lipoic are needed to suppress the activation of 

BMMs by either S. aureus supernatant, or TLR1/2, TLR2/6, TLR4, and TLR5 agonists 

(Figure 17-19). We only tested if free lipoic acid could block the activation of TLRs 

present on the surface of macrophages. However, due to the broad suppressive effects 

of lipoic acid, we expect that it could likely block other TLR activation pathways or other 

PRRs expressed by macrophages. To assess if free lipoic acid can limit the activation of 

other TLRs, such as TLR3, TLR7, TLR8, and TLR9, which are expressed intracellularly, 

one could stimulate macrophages with TLR3/7/8/9 agonists in the presence or absence 

of free lipoic acid and determine macrophage activation by cytokine secretion. 

Moreover, it would be valuable to test if free lipoic acid can block the activation of other 

inflammatory pathways, such as the inflammasome, by stimulating macrophages with 

inflammasome agonists in the presence of free lipoic acid.  



 

        

143 
Besides TLR based suppression, we found that free lipoic acid reduces the 

surface expression of TLR2 and CD86 on BMMs (Figure 24). Our data indicate that free 

lipoic acid reduced expression of only certain surface molecules, like TLR2 and CD86 

but not TLR1 nor CD80. Therefore, we hypothesize that there are other markers of 

BMMs that may be regulated by lipoic acid through an undetermined mechanism. 

RNAseq could be a useful approach to understand the broad modulatory effects of free 

lipoic acid on expression of the full range of BMM transcripts or those of other innate 

immune cells. Data from RNAseq could determine if free lipoic acid can polarize 

macrophages to a more pro-inflammatory or anti-inflammatory state. Moreover, others 

found that high concentrations of free lipoic acid reduce the respiratory burst of 

neutrophils through its antioxidant properties and block the translocation of the 

transcription factor, NFkB, to the nucleus (380-383). Also, free lipoic acid can activate 

the phosphoinositide 3-kinase/Akt signaling pathway to reduce inflammatory cytokine 

production (384). The perturbation of respiratory burst, blockade of NFkB translocation, 

and activation of the phosphoinositide 3-kinase/Akt signaling pathway all occur 

internally within immune cells. Because free lipoic acid can block these internal 

processes of inflammation, it must be able to enter eukaryotic cells to do so. Little 

insight has been made into how free lipoic acid or lipoyl proteins can enter into 

eukaryotic cells. In enterocytes and hepatocytes, the sodium-dependent multivitamin 

transport system (SMVT) transports biotin and patothenate and is reported to be used 

by lipoic acid or lipoyl proteins to enter these eukaryotic cells (403-405). It is unknown if 

macrophages express or utilize the SMVT system; thus, free lipoic acid may gain entry 
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into macrophages by other means, such as passive diffusion, which would necessitate 

the high concentrations needed for immunosuppression in our studies. 

Lipoyl-E2-PDH Restriction of BMM Activation.  

In contrast to free lipoic acid, which can limit the activation of BMMs through 

multiple TLRs, we found that purified lipoyl-E2-PDH limitsTLR1/2 activation of 

macrophages by Pam3CSK4 (Figure 22). For free lipoic acid to exert its TLR-restrictive 

function, millimolar quantities were needed. In contrast, nanomolar quantities of lipoyl-

E2-PDH or DKLA were sufficient to reduce TLR1/2 activation of BMMs. We hypothesize 

that a 1000-fold less lipoyl-protein is required for immunosuppression compared to free 

lipoic acid possibly due to the hydrophobic nature of free lipoic acid. The protein-bound 

form of lipoic acid would be more stable in solution and could access the macrophage 

more easily compared to hydrophobic free lipoic acid. Moreover, free lipoic acid could 

possibly diffuse across cellular membranes where it is then attached to host metabolic 

proteins, whereas the protein or peptide-bound form cannot readily do so.  

TLR2 Activation by S. aureus.  

To speculate about why lipoyl-E2-PDH only blocks TLR1/2 activation of BMMs, 

we need to revisit how the innate immune system mainly recognizes S. aureus. S. 

aureus produces numerous PAMPs that are recognized by TLR2 like peptidoglycan and 

lipoteichoic acid (132, 163, 164). However, the biological relevance of these PAMPs is 

questioned as the concentrations of peptidoglycan and lipoteichoic acid needed to 

activate TLR2 are not physiological (406). Treatment of peptidoglycan purification 

preparations with hydrofluoric acid to degrade LTA and lipoproteins completely 

abrogates the TLR2-activating effects of this purified peptidoglycan (165). Similarly, 
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treatment of S. aureus cell wall components with lipase to degrade the lipoproteins also 

abrogated the TLR2 activating ability of the purified cell wall fractions (166, 167). The 

consensus for S. aureus-based TLR2 activation is that lipoproteins are the most potent 

PAMPs that activate TLR2. These abundant lipoproteins from S. aureus can be 

diacylated or triacylated and are recognized by TLR1/2 and TLR2/6, respectively (158). 

S. aureus is reported to predominantly synthesize lipoproteins in their triacylated form in 

standard growth conditions (160, 161). Thus, TLR1/2 heterodimerization is a presumed 

major pathway of immune activation in S. aureus, necessitating adaptations by this 

pathogen to overcome TLR1/2 recognition.  

TLR1/2 Restriction by Lipoyl-E2-PDH.  

Triacylated lipoproteins and peptides bind to TLR1 and TLR2 via interactions of 

the amide-linked acyl chain with TLR1 and the cysteine-linked diacylglycerol with TLR2 

(157, 162). Lipoyl-PDH and lipoyl peptides suppress macrophage activation by 

Pam3CSK4, but not Pam2CSK4, suggesting a mechanism of blockade that is specific 

to TLR1/2. We found that the lipoyl moiety on DKLA is necessary to block the TLR1/2 

activation by the native triacylated lipoprotein SitC from S. aureus (Figure 23). The 

crystal structure of TLR1/2 with Pam3CSK4 revealed a hydrophobic binding pocket in 

TLR1 that interacts with the amide bound lipid of Pam3CSK4 (157). This hydrophobic 

interaction is reminiscent of how amide-linked lipoic acid binds within the hydrophobic 

pocket of E1 subunits (407, 408). This is in contrast to the binding pocket of TLR6, 

which is much shorter and is truncated by bulky phenylalanine side chains (162). 

Furthermore, TLR1 is thought to preferentially bind to peptide-bound medium chain fatty 

acids (> 6 carbons), resulting in activation of immune cells (409-411). We surmise that 
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the lipid-like structure of lipoic acid may facilitate E2-PDH and DKLA binding in the TLR1 

lipid binding pocket in order to compete with triacylated lipoproteins/peptides to prevent 

TLR1/2 activation. We tested this hypothesis by assessing if DKLA but not DKA could 

reduce the binding of Pam3CSK4 to TLR1/2. Using an enzyme-linked immunosorbent 

assay, we found that high molar excess concentrations (~20 times) of DKLA, but not 

DKA, were able to reproducibly block Pam3CSK4 binding to TLR1/2 (Figure 25). 

However, upon diluting out the competing tripeptides, we experienced variability 

between technical and biological replicates. This perhaps is due to lack of optimal 

dimerization between recombinant TLR1 and TLR2, which could lower the binding 

efficacy of Pam3CSK4 in the various replicates. Furthermore, this approach fails to 

distinguish if blocking of Pam3CKS4 binding is occurring in the ligand binding site of 

TLR1 or TLR2. We suggest that more sensitive biochemical approaches such as 

isothermal titration calorimetry, using only TLR1 or TLR2 with DKLA or DKA to measure 

binding events could decipher if the lipoyl moiety binds to TLR1 or TLR2. To determine 

if the lipoyl moiety binds within the pocket of TLR1, we could systematically mutate 

residues that comprise the binding pocket of TLR1 and assess by isothermal titration 

calorimetry if binding between DKLA with TLR1 still occurs. Also, if isothermal titration 

calorimetry indicates an interaction between TLR1 and DKLA, we could perform protein 

X-ray crystallography of TLR1 co-crystallized with DKLA to see where DKLA may be 

binding. 

The biologically active form of lipoic acid is not a linear fatty acid as it contains a 

dithiolane ring. This dithiolane ring may sterically hinder the insertion of lipoic acid within 

the TLR1 binding pocket. However, the disulfide bond in the dithiolane ring can be 
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reduced in certain conditions, breaking up the ring structure in the head group of lipoic 

acid (360). Although the extracellular environment is thought to be mainly oxidizing, the 

effect of the redox state of the lipoyl moiety on proteins to confer immunosuppressive 

functions needs to be considered. To test this, we could treat DKLA with a reducing 

agent such as dithiothreitol and assess by isothermal titration calorimetry the difference 

of binding between dithiothreitol treated and untreated DKLA with TLR1. 

Concluding Remarks. 

 Free lipoic acid and protein-bound lipoic acid derived from bacteria confer 

different immunosuppressive functions. We found that free lipoic acid can broadly 

suppress surface TLR activation by macrophages, as well as modulate the surface 

expression levels of certain markers on macrophages. This is in contrast to lipoyl-E2-

PDH, which we found only blocks TLR1/2 activation. Future studies will need to be 

conducted to determine how free lipoic acid can exert its broad anti-inflammatory 

activities on macrophages. Furthermore, we need to test how lipoyl-E2-PDH and the 

lipoyl-peptide DKLA only restricts TLR1/2 activation of macrophages. 

Breadth of Lipoic Acid Synthesis Dependent Suppression of Immune Cells 

 Though macrophages were used throughout this thesis, we observed that a DlipA 

mutant increased the activation of neutrophils as well as dendritic cells. Since lipoyl-

proteins restrict TLR1/2 activation, any cell that expresses TLR1/2, such as neutrophils 

and dendritic cells, may be modulated by LipA activity. Other innate immune cells that 

express TLR1/2 need to be tested to determine if their functions are also modulated by 

LipA-mediated mechanisms. Additionally, non-immune cells such as keratinocytes in 

the skin or epithelial cells can express TLR1/2 (412). Therefore, it would be interesting 
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to assess if activity of LipA modulates functions of these barrier cells that can encounter 

S. aureus during an infection. This could be tested by treating keratinocytes with 

supernatant from a DlipA mutant and then measure cytokine secretion as a readout of 

activation. 

Use of lipoic acid as cofactor in PDH is conserved in all kingdoms of life, though 

some bacterial species such as H. pylori do not use lipoic acid as a metabolic cofactor. 

It is unknown if lipoic acid synthesis in other Gram-positive or Gram-negative pathogens 

confers immunosuppressive functions to facilitate pathogenesis. Given the conservation 

of lipoic acid, we posit that any bacterial pathogen that activates the innate immune 

system through TLR1/2 and uses lipoic acid as a metabolic cofactor could use it a 

mechanism to evade TLR1/2 activation. However, the ability of lipoyl-E2-PDH or lipoyl-

proteins to moonlight depends on the extracellular presence of lipoylated metabolic 

proteins. As mentioned previously, E2-PDH is found on the surface of L. 

monocytogenes and M. pneumoniae. It is unknown if surface-associated E2-PDH is 

ever released from the surface of these bacteria into the extracellular environment, like 

we saw with S. aureus. Thus, we need to assess if other bacteria, such as L. 

monocytogenes and M. pneumoniae, release lipoylated-E2-PDH or other lipoyl-proteins 

into the extracellular environment during growth.  

Other TLR2-based Evasion Mechanisms.  

S. aureus has evolved in other ways to evade TLR2 recognition by the innate 

immune system. For example, the superantigen-like protein SSL3 is known to bind to 

the extracellular domain of TLR2 and function as an antagonist (276). Additionally, 

recent work conducted by Xi Chen in the Alonzo laboratory identified that the glycerol 
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ester hydrolase (Geh) of S. aureus prevents activation of macrophages by both 

diacylated and triacylated lipopeptides likely through cleavage of the two ester-bound 

lipid chains in the lipopeptides (413). The activity of SSL3, Geh, and LipA all seem to 

mask the TLR2-dependent activation of innate immune cells through slightly different 

mechanisms. For example, Geh only cleaves ester-bound lipid chains in triacylated 

lipoproteins, which are recognized by TLR2. We believe that the lipoyl moiety interferes 

with TLR1 recognition of the amide-linked lipid chain of the triacylated lipoprotein. 

Therefore, the activities of Geh and LipA are likely both important for blocking TLR2-

based recognition of S. aureus. Due to the broad immunosuppressive functions of lipoic 

acid, we believe that LipA could alter the pathogenesis of S. aureus in a non-TLR2 

dependent manner. We need to determine if a ΔlipA mutant is compromised for 

infection in TLR2 knockout animals as we know that a Δgeh mutant can colonize TLR2 

knockout animals to the same level as WT S. aureus (413). The combined contribution 

of all three known TLR2-based evasion mechanisms in S. aureus during infection needs 

to be further explored. This could be assessed by creating a triple mutant strain of S. 

aureus that contains deletions of the genes that encode for LipA, Geh, and SSL3 and 

assessing infection outcomes.   

Concluding Remarks. 

 In this thesis, we primarily focused on how lipoic acid synthesis in S. aureus 

suppresses the activation of macrophages. This finding could have broad implications in 

the sense that many bacterial species use lipoic acid as a metabolic cofactor. Thus it is 

possible that other bacteria could use lipoic acid as means to dampen macrophage 

activation. Furthermore, other cells in the innate immune system can recognize and 
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become activated by S. aureus. Though we predominantly use macrophages in this 

thesis, other cells that express TLR1/2 could be blocked by lipoyl protein production. 

Lastly, S. aureus has more than one way to block TLR2 activation by innate immunity. It 

needs to be considered how other TLR2 evasion of mechanisms work either individually 

or together in the context of infection to evade the innate immune system.  

Importance of Lipoic Acid Synthesis in S. aureus Pathogenesis 

 An important outcome of this thesis was our ability to demonstrate that lipoic acid 

synthesis can influence the virulence of S. aureus through its immunosuppressive 

abilities. Although lipoic acid synthesis is intimately linked to bacterial metabolism, the 

ability of lipoic acid to dampen macrophage antibacterial activities is crucial to the ability 

of S. aureus to survive in the host. In this section, we discuss the implications of lipoic 

acid synthesis in promoting S. aureus pathogenesis.  

Inflammation Dynamics in ΔlipA Mutant-Infected Mice.  

A ΔlipA mutant elicited heightened levels of CCL3 and CCL4 in the serum early 

in infection and greater proportions of activated macrophages (CCR5+ IA/IEhi) at the site 

of infection were not seen until later in the infection time-course (Figure 26 and 27). 

However, CCL3 and CCL4 levels were indistinguishable later in infection. We posit that 

the early increase in macrophage chemokines is likely a meaningful early signature that 

promotes the enhanced recruitment and activation of macrophages seen at 72 hours in 

ΔlipA-infected animals. At later time points of infection, when many ΔlipA-infected mice 

have undetectable infection, the effects of lipoyl-E2-PDH on chemokine secretion are 

less clear. 
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During infection, circulating monocytes in the blood are recruited into the 

peritoneal cavity and differentiate into F4/80-expressing macrophages (111). These 

recruited monocytes that differentiate into macrophages are recruited by the chemokine 

CCL2, and these cells also express the CCR2 receptor (114, 115). We did not test for 

CCL2 levels in the serum of ΔlipA mutant-infected animals nor assess CCR2 levels on 

the macrophage population at the site of infection. Though we see differences in the 

proportion of pro-inflammatory macrophages during infection, at both early and later 

stages of infection, the total number of macrophages, neutrophils, and dendritic cells 

were not different between the infection groups. These data are somewhat 

counterintuitive as presence of macrophage chemokines CCL3 and CCL4 in the serum 

would presumably recruit more macrophages and other innate immune cells to the site 

of infection with a ΔlipA mutant. Perhaps our assessment of immune cell numbers at 

16- or 72-hours post-infection failed to capture the proper timeframe in which increased 

cell numbers are present in ΔlipA mutant-infected animals if at all. We can test some of 

these ideas by assessing CCR2 levels on macrophages and CCL2 levels in the serum 

after infection with a ΔlipA mutant, and determine cell counts of the immune cells 

present earlier than 16 hours post-infection. 

Activated Macrophages by a ΔlipA Mutant Control Infection.  

Mice infected with a ΔlipA mutant of S. aureus more readily clear infection than 

mice infected with WT S. aureus (Figure 30). The clearance of bacteria in ΔlipA mutant-

infected animals correlated with the presence of greater proportions of activated 

macrophages. Upon isolation, these cells exhibited a greater ability to limit bacterial 

growth ex vivo (Figure 33). Using clodronate to deplete mice of macrophages, we 
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determined that the attenuation of a DlipA mutant during peritoneal infection is mediated 

almost exclusively by activated macrophages (Figure 32). This was surprising, as we 

surmised a proportion of the virulence defect of a DlipA mutant was derived from 

compromised metabolism due to lipoic acid limitation (373). During bloodstream 

infection, S. aureus mutants with defects in bacterial lipoic acid synthesis and salvage 

lead to tissue-specific virulence defects where infection of the kidney depends on lipoic 

acid salvage enzymes, but infection of the heart requires LipA (373). These 

observations suggest there is varied dependency on de novo lipoic acid synthesis for S. 

aureus survival in different tissue sites. Although virulence defects in the heart were 

previously attributed to lipoic acid auxotrophy, data in this thesis suggest the alternative 

possibility that LipA-dependent enhancement of antimicrobial innate immunity promotes 

infection persistence. To test this, we could systemically infect mice that are depleted of 

macrophages through treatment with liposomes containing clodronate and then 

measure the bacterial loads in the heart. We found that LipA is not necessary for 

bacterial survival in the peritoneal cavity in the absence of macrophages (Figure 32B 

and 32C).  We surmise that either an alternative metabolism takes over to allow survival 

in the absence of lipoic acid, or that sufficient trace lipoic acid is available to maintain 

metabolic activity (414-417). Incorporation of trace lipoic acid, while sufficient to 

maintain growth, appears to be insufficient to suppress immune responses in 

macrophage depleted mice. 

Clodronate Depletion.  

To deplete mice of macrophages, we administered clodronate-containing 

liposomes (86, 121, 122). At 72 hours post-infection in the peritoneal cavity of 
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macrophage depleted mice, we saw complete clearance of bacteria in some animals. 

Clodronate is used extensively to deplete macrophages, but other cells such as 

monocytes can also be depleted (418). Neutrophils, on the other hand, are still present 

in clodronate-treated mice, possibly in even greater amounts after S. aureus infection 

(121). The presence of neutrophils in the peritoneal cavity, given their crucial role in 

protection from S. aureus infection (86, 87), could account for clearance observed in 

some of the macrophage depleted mice. Though we have noted that lipoic acid 

synthesis interferes with neutrophil cytokine and chemokine secretion, this did not 

translate to enhanced clearance of a DlipA mutant compared to WT in macrophage 

depleted mice. To assess if neutrophils account for the clearance of bacteria in 

macrophage depleted mice, we could deplete mice of both macrophages and 

neutrophils and determine if mice are still able to clear bacteria after infection. 

Nonetheless, our studies show macrophage activity primarily leads to the virulence 

defect of a DlipA mutant.  

LipA Activity Modulates Macrophage ROS and RNS.  

Our data indicate that macrophages from DlipA mutant-infected mice are primed 

to produce higher amounts of ROS and NO•. Moreover, inhibition of NADPH oxidase 

activity by gp91ds-tat and iNOS activity by L-NIL abolished the greater restrictive 

capacity of macrophages from DlipA mutant-infected mice. Because both inhibitors 

abrogate bacterial growth defects when used separately, we assume that NADPH 

oxidase-derived ROS and iNOS-derived NO• are both required for S. aureus growth 

restriction. It is known that NO• alone is not a highly reactive molecule and has an 

expansive range of cellular functions (254). Rather, NO• becomes highly reactive when 
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it is converted to oxidative products such as ONOO- from superoxide (254). The 

resulting powerfully reactive ONOO- leads to microbial destruction by reacting with 

iron/sulfur metal centers, causing tyrosine nitration, triggering lipid peroxidation, and 

damaging DNA (237). As such, elimination of either ROS production or NO• production 

has the potential to compromise generation of potent antimicrobials, such as ONOO-. 

We propose a mechanism based on our data where the immunosuppressive effects of 

lipoic acid synthesis by S. aureus leads to reduced generation of the highly antimicrobial 

RNS derived from NADPH oxidase superoxide and NO•. The assessment of specific 

RNS species production using boronate-containing fluorescent probes (ESIPT) in 

macrophages isolated from WT and DlipA-infected animals needs to be tested, although 

this may be difficult due to the short half-life of species such as ONOO- (419, 420).  

TLR2 Activation of ROS.  

Lipoic acid synthesis is necessary to dampen TLR1/2 activation of BMMs through 

the release of lipoyl-E2-PDH by WT S. aureus. Besides leading to the production of pro-

inflammatory cytokines and chemokines, TLR2 can mediate the induction of ROS 

generation. Recognition of Mycobacterium tuberculosis by TLR2 leads to a direct 

interaction between TLR2 and NADPH oxidase to ultimately stimulate ROS production 

(421, 422). Similarly, activation of TLR2 by heat-killed L. monocytogenes induces an 

autophagy-associated protein, Rubicon, which interacts with the p22phox subunit of 

NADPH oxidase to aid in its phagosomal trafficking and subsequent superoxide 

production (423). Furthermore, TLR2 is necessary for efficient NADPH oxidase-

dependent killing of S. aureus in murine neutrophils (424). Indeed, our data aligns with 

these studies and suggests that LipA-dependent inhibition of TLR1/2 signaling by lipoyl-
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E2-PDH prevents activation of NADPH oxidase and thus ROS generation. This can be 

tested by treating macrophages with supernatant from a DlipA mutant and assessing 

levels of the NADPH oxidase complex proteins by immunoblot.  

Effects of Free Lipoic Acid on NADPH Oxidase and iNOS.  

In order to activate NADPH oxidase, Akt (protein kinase B) must phosphorylate 

p47phox (425). As mentioned before, high concentrations of free lipoic acid can activate 

Akt by increasing the levels of phosphorylated Akt (384). Because a DlipA mutant 

cannot synthesize lipoic acid, one might assume lower Akt activation and NADPH 

oxidase activity during infection. Our data does not support this assumption, as we see 

higher NADPH oxidase-derived ROS in macrophages from DlipA mutant-infected mice. 

We know that S. aureus derived lipoic acid is bound to proteins; thus, we believe the 

effects on Akt likely are not manifested in our infection system. In regard to iNOS 

activity, free lipoic acid can inhibit the induction of iNOS activity by IL-1b at the protein 

level (385). Thus, a DlipA mutant is likely more predisposed to activate iNOS activity 

leading to the observed higher NO• production. To test if a DlipA mutant may modulate 

Akt or iNOS activity, we can treat macrophages with supernatant from a DlipA mutant 

and then assess levels of phosphorylated Akt and the abundance of iNOS by 

immunoblot. Finally, free lipoic acid is known to have antioxidant activity that diminishes 

the respiratory burst of phagocytes (381, 383). Therefore, mice infected with a DlipA 

mutant may also be less likely to detoxify macrophage ROS or RNS. The detailed 

cellular mechanism behind how S. aureus lipoic acid synthesis interferes with ROS and 

RNS generation in macrophages during infection needs to be investigated. To test this, 

we can first activate macrophages with S. aureus supernatant to generate ROS and 
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RNS and treat these activated macrophages with free lipoic acid or lipoyl-E2-PDH. Then 

we could use fluorescent probes that measure ROS such as Cellrox or perform a Griess 

test to measure RNS production to determine if free lipoic acid or lipoyl-E2-PDH 

treatment modulates ROS or RNS levels.   

mROS Inhibition of S. aureus.  

Upon stimulation of macrophages through TLR1/2/4, mitochondria are recruited 

to the phagosome and can produce mROS which are known to contribute to the killing 

of S. aureus within the phagosome (248, 251, 252). Curiously, we found that mROS do 

not contribute to the ability of macrophages from DlipA-infected mice to restrict bacterial 

outgrowth. NO• and the resulting ONOO- are capable of interfering with the 

mitochondrial electron transport chain and perturb mitochondria respiration (254). 

However, this disruption of electron transfer by NO• can markedly increase the leakage 

of electrons resulting in enhanced formation of superoxide in the mitochondrial matrix 

(254). In a recent study, it was found that alpha-hemolysin activates the inflammasome 

in macrophages, leading to sequestration of mitochondria away from the phagosomes 

(252). These authors believe that the failure of mitochondria to localize and deliver 

mROS into the phagosome contributes to S. aureus survival in macrophages (252). 

Thus, it is possible the secretion of alpha-hemolysin could interfere with mROS-

mediated killing during infection in our ex vivo survival experiments. Nonetheless, we 

saw that mROS production in macrophages contributed to growth restriction of S. 

aureus (Figure 36A), but our data suggests that the greater ROS-related restrictive 

function of macrophages from DlipA-infected mice is mediated by NADPH oxidase 

derived ROS.  
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Macrophage Restriction of S. aureus. 

 Infection with WT or DlipA S. aureus elicits macrophages that possess a greater 

intrinsic ability to restrict growth compared to macrophages from mock-infected mice. 

Inhibition of mROS, NADPH oxidase or iNOS in macrophages from S. aureus-infected 

mice (WT or DlipA) still retain their greater restrictive capacity relative to the 

macrophages from mock-infected mice. Thus, S. aureus infection elicits macrophages 

that upon isolation and re-infection are more predisposed to produce greater ROS from 

the mitochondria or NADPH oxidase and RNS from iNOS activity that coalesce to 

hinder bacterial growth. In each instance where one main source of antimicrobial activity 

is blocked (ROS, mROS, or RNS), the other two pathways are sufficient to hinder 

bacteria growth. However, only upon treatment of macrophages with DPI, which blocks 

all ROS production and iNOS activity through off-target effects (398, 426), do we see no 

differences in growth restrictive function between S. aureus elicited macrophages or 

macrophages from mock-infected mice (Figure 35). These data highlight how S. aureus 

infection elicits macrophages that have ROS and RNS dependent restrictive functions.  

A DlipA Mutant Fails to Prime the Adaptive Immune System 

 Macrophages play a major role in the activation of the adaptive immune system 

through production of cytokines and chemokines that regulate T cell function and 

facilitate dendritic cell maturation, leading to antigen presentation and induction of 

adaptive immunity (90, 427). Despite the improved activation of innate immunity and 

microbial clearance after infection with a DlipA mutant, we found that prior infection 

failed to protect the host or even lead to more severe infection after secondary 

challenge. We suspect that the explanation for such poor immunity to infection centers 
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on the fact that S. aureus is destroyed too rapidly after infection with a DlipA mutant, a 

consequence of improved macrophage activation. The robust and destructive oxidative 

burst of macrophages interferes with optimal antigen presentation due to rapid 

phagolysosome fusion and destruction of antigenic peptides, lowering their ability to 

optimally present antigen (427). This contrasts with dendritic cells, which have 

drastically different phagosomal environments. Dendritic cell phagosomes are less 

destructive and can conserve antigenic information from engulfed pathogens thereby 

promoting efficient antigen presentation (427). Studies on early antibiotic intervention in 

Salmonella and Chlamydia infections found that early administration shortened the 

duration of antigen presentation, leading to poor protective memory (428). This 

observation supports our hypothesis that activated macrophages destroy antigen too 

quickly during infection with a DlipA mutant, leading to poor protective memory. Our 

data also demonstrate that NO• production is increased upon infection with a DlipA 

mutant, which is in part responsible for the antimicrobial function of recruited 

macrophages. Beyond its importance in the generation of RNS, NO• has diverse 

signaling functions that can dramatically affect adaptive immune responses such as 

inhibition of T cell proliferation (429-431). Thus, it is possible that the greater NO• 

produced by macrophages during infection with a DlipA mutant may interfere with 

optimal T cell proliferation. Whatever the ultimate mechanism, what seems clear is that 

improved activation of innate immune responses is unable to facilitate acquired 

immunity to S. aureus infection in mice. 
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Summary 

 In this thesis, we provided evidence for a novel S. aureus macrophage evasion 

mechanism. We found that synthesis of the metabolic cofactor lipoic acid by LipA is 

necessary for the suppression of macrophage inflammatory responses. This is 

mediated by the release of lipoyl-E2-PDH by S. aureus where it moonlights by 

restricting the TLR1/2 activation by triacylated lipoproteins of macrophages. Moreover, 

S. aureus lipoyl-protein production in vivo results in impaired activation of inflammatory 

ROS and RNS responses of macrophages and leads to reduced host control of 

bacterial growth and dissemination. Additionally, increased macrophage responses do 

not necessarily translate to protection against reinfection. 

Bacterial pathogens are a significant cause of mortality and morbidity in human 

health. Modern medicine is faced with a crisis concerning the development of bacterial 

resistance to common treatment methods such as antibiotics. It is imperative to develop 

new therapeutics that target novel bacterial targets that do not lead to resistance. To 

begin to undercover novel therapeutics against bacterial pathogens, we must 

fundamentally understand how these pathogens interact with the host to cause disease. 

Thus, the scope of this thesis encompassed three main objectives: (1) to understand 

how bacteria cause disease; (2) to study how the host responds to bacterial disease; 

and (3) to uncover novel mechanisms by which bacterial pathogens evade the host 

response to infection. By understanding the interaction between the host and the 

pathogen, we can potentially identify new means to treat these infections. In line with 

these objectives, the work in this thesis has broadened our understanding that bacterial 

metabolism is closely linked with the evasion of innate immune responses by virtue of 
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the moonlighting activity of a metabolic protein. The metabolic disadvantage coupled 

with the observed heightened innate immune response associated with a S. aureus 

strain containing a mutation in the gene encoding for the lipoic acid synthetase, 

highlights a possibly lucrative therapeutic target for S. aureus infections that may cripple 

bacterial replication but still enhance host immunity. This work could have broad 

applications to other bacterial pathogens as well given that lipoic acid is a highly 

conserved metabolic cofactor in many human pathogens.
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Figure 42. Permission to Reproduce Copyrighted Content. Reprinted with 
permission from Spalding and Prigge, 2010 (360). See figure 2A.
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